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Abstract

Compression of 2 dimensional data is important for the efficient transmission, storage and manipulation
of Images. The most common technique used for lossy image compression relies on fast application of
the Discrete Cosine Transform (DCT). The cosine transform has been heavily researched and many
efficient methods have been determined and successfully applied in practice; this paper presents a novel
method for evolving a DCT algorithm using genetic programming. We show that it is possible to evolve a
very close approximation to a 4 point transform. In theory, an 8 point transform could also be evolved
using the same technique.

A Brief Overview of the DCT

The cosine transform translates a set of data points from the spatial domain to the frequency domain using
Cosine basis functions[6]. The DCT has found a wide range of application in signal processing, data
compression, telecommunication, image processing, feature extraction and filtering. The DCT is a very
important translation method in multimedia application. This is because the DCT as an approximation to
the Karhunen-Loéve transform for first-order Markov stationary random data. DCT algorithms can be
classified into three categories based on their approach. a) indirect computation, b) direct factorization, c)
recursive computation. [11]. A two-dimensional DCT can be obtained by first applying a 1-D DCT over
the rows followed by a 1-D DCT to the columns of the input data matrix. A great detail research of DCT
is introduced in [17].

The expression of a 2-D DCT is based on the following:

T@,)) =c(, j)E E S(m,n) cos

m=0 n=0

n(2m+ 1)1 cos n(2n+1)j
2N

Where T(, j) is a real valued output matrix, S(m, n) is the input matrix,
c(i,0) =c(0, j) = I/N and c(i, j) = 2/N (i = 0, j =0)
N is the point size of the DCT.

Many different fast algorithms to compute the DCT have been proposed. The complexity of some well
known algorithms for an 8 point 1D DCT are shown below:

Method Multiplications | Additions
W. Chen[5] 16 26
B. G. Lee[14] 12 29
H.S.Hou [11] | 12 29
C. Loeffler [15] | 11 29
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A Short Introduction To Genetic Programming

Genetic programming as a field was introduced by John Koza in 1992 [12]. Genetic programming is an
attempt to answer the question: “can computer solve problems without being explicitly
programmed?”’[12] GP is based upon the earlier technique of genetic algorithms described by
Holland[10][2].

GP runs using a population of possible solutions (individuals). Each individual represents an abstract
syntax tree made up with a series of functions and terminals. A fitness value is set up to determine how
good an individual is at solving the problem. Since it is possible to calculate an abstract syntax tree for
each set of input data, the fitness function can be designed to determine the fitness value based on the
result of the abstract syntax tree. Training data is usually a set of input output data pairs. In practice, a
distance is used to represent how fit the tree is by comparing the output data of the training set and the
result of the abstract syntax tree.

After initializing the population, the GP mechanism will take over and search the problem space. A tree
can be created from the function set and terminal set while the fitness function determines how close the
tree is to the problem specification. During execution of the GP, new individuals are produced continually
and a fitness value for an individual is attached to itself. The commonly used GP operators are
reproduction, crossover and mutation.

Reproduction is a method that copies an individual in the population and places it into the new
population. Reproduction copies the abstract syntax tree as well as all the information attached to the tree,
including the fitness value. The fitness value is used to determine the chance of reproduction.
Reproduction results in more useful abstract syntax trees appearing in the population.

The crossover operation takes two parental programs selected based on fitness and generates offspring
programs by combining them. The parental programs in genetic programming are typically of different
sizes and shapes. The offspring programs are composed of sub-expressions from their parents. Crossover
provides a mechanism for exploring the search space by creating a new program that combines
advantages of parents with high fitness value[7].

Mutation operates on one program; from this, one or more nodes are selected to be modified. The selected
node is replaced by a randomly generated new node[10]. After mutation, the fitness of the program is
evaluated and it is placed into the population. The mutation operator helps to avoid local optima in the
search space[1][13].

During the run, GP operators operate with given probabilities. Obviously, population members with high
fitness values should have a high chance of survival and have a high chance of helping form the next
generation than those with a low fitness value. The fitness value will drive a change in population from
one generation to next, and like natural selection, only the strong individuals will survive. The average
fitness of the next generation should be higher than the previous generation. In such a way, the population
can evolve over time[3].

Each individual in the population during the search process represents a point in the search space of all
possible programs. Using the fitness measure, the exploration process moves toward the point in space
with the largest fitness. When the generation reaches the highest point in the search space, a termination
criterion designed to stop the search is satisfied and the genetic programming system is completed.

There are five major steps in applying genetic programming to solve a problem.
* determine the set of terminals.
* determine the set of functions.
¢ determine the fitness function.
* determine the parameters and variables for controlling the run.
¢ determine the method of designating a result and the criterion for termination a run.
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4. Related Work

In Koza [12](10.13), image compression is mentioned and he successfully evolves a model to compress a
30X30 bitmap image using standard GP. Because of the vast computation necessary, only a small image
was tested in Koza's work.

In Koza and other standard GP systems, an S-expression is evolved and evaluated. Most of the time is
spent on evaluating each S-expression. To increase the speed of evaluating such S-expression, Fukunaga
et al [8] have developed a compiler for an efficient GP system. Simple arithmetic operators can be
executed with a single instruction at the hardware level instead of many recursive function calls in
standard LISP S-expression. In one paper [8], a predictive coder is evolved that can be used for multi-
level compression(e.g. a Huffman coder). They worked on a 64X64 image and this proved much faster
than the standard GP system.

Nordin and Bnazhaf [16] use the idea of programmatic compression to compress sound and image data.
They use a chunking method to process an image that allows the system to converge quickly to a solution.
The image was divided into 8X8 or 16X16 pixel blocks. They claim to be the first to first to compress a
real full size image(256X256) using GP.

Implementation

Koza(1989, 1992) describes a genetic programming system using Lisp S-expressions. In his work, he
uses a tree—based representation as the genetic algorithm framework. We chose to use C++ for its ease of
use and efficiency.

The system must be able to read a data set, which is stored in text format file. The data file contains five
columns in which that first four are the training set and the last one is the target. The file is organised in
rows where each row represents a training — target pair. The parameters such as population size and
program size are predefined in a parameter file. The system must be able to implement genetic operations
such as crossover, reproduction and initialisation, in order to search the solution space of the problem
domain. At any time, the best solution so far must be recorded so that the best solution can be retrieved
even before termination.

Our goal was to evolve a 4x 4 block DCT. This is efficiently implemented in terms of 1 dimensional
DCTs using the row — column approach[4]. We follow this approach and try to evolve a 4 point one
dimensional DCT. It is possible, theoretically, to evolve a tree in which the entire 4 point DCT is
translated. In practice, however, it was found to be almost impossible to evolve such a program. In fact, it
is not necessary to perform the entire 4 point DCT using one single translation formula. An easier way is
to transform the 4 point DCT one point at a time. This reduces the computational complexity in a parallel
way.

Because we are performing the DCT one point in a time, it is obvious that a single tree is a good way of
expressing a one point translation. Four trees are required to accomplish the complete 4 point DCT. The
nodes are functions that are selected from a function set and the leaves are terminals from a terminal set.
The terminals may be input data from a text file or numbers randomly generated by the system.

The system reads training data from a text file in which the 32 set training—target data pairs are located.
Each row represents a set of training—target data pairs containing five numbers. The first four numbers are
the training set while the last one is the target. Training data is selected randomly from an 8-bit bitmap
image. This data is converted to a range of between —128 to + 127. Since we are creating a training data
set, translation speed is not an important issue here. Any transform method can be applied to accomplish
the DCT. The standard DCT is used for translation in our implementation. That is:

T(k) = c(k)i S(n)cos T2+ Dk
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where c(O) = %, and c(k) = V‘C‘%’ k=0.

As the four points are translated separately, we have four files after translation. Each file records one
point of the data set.

During run time, improving solutions are found continuously. Each time a better individual has been
evolved, the system displays its fitness value and the distance between the current value and the target
value for each fitness case.

The reason of why we chose a 4 point DCT instead of an 8 point DCT is because of the computational
complexity of the genetic programming system. For a DCT, the translation difficulty varies for each
point. The first and the fourth point are easier than the others. Genetic programming solves problems by
very widespread search in the problem space to find a best solution. The sufficiency requirement must be
satisfied when we supply the system with a function set and terminal set. For an 8 point DCT, we tried to
supply the terminal set with 8 input data points and 8 random numbers. The terminal set contains 16
elements in total. Because of hardware limitations we found that this problem was just too complex to be
solved in a reasonable length of time.

Our fitness function is based on the square of the difference between the target and the actual value .
Error = (C - D)2

C is the current evaluated value. D is the target value [9].

Results

All the runs are based on tournament selection with tournament size of four and the following parameters.
Creation probability: 0.02
Crossover probability: 0.7
Mutation probability: 0.02
Population size: 500
Maximum program size: 50 (for point 0 and point 2)
Maximum program size: 80 (for point 1 and point 3)

The results are summarised as follows. The figures show 15 runs for each point in which point O and
point 2 are for one million generations
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Result for point 0 over 15 trials

Result for point 2 over 15 trials
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Result for point 3 over 15 trials

Point 1 and point 3 are for five million generations. The run times are between 1 and 6 hours for each run.
Point 0 and point 2 take less time than point 1 and point 3 to converge to optimum solutions. This is
because of the difference in complexity of the problems and the total number of the elements in the
function set and terminal set.
The table below lists the computed data using the best solution and the target data.

Computed | Target Computed | Target Computed | Target Computed | Target
Point 0 Point 0 Point 1 Point 1 Point 2 Point 2 Point 3 Point 3
64 64 12 12 -1 -1 5 5

65 64 1 1 -11 -11 -2 -2

62 62 12 12 3 3 10 10

66 65 1 1 0 0 -14 -15

70 69 10 10 10 10 -11 -11

56 55 11 11 7 7 -8 -8

70 69 7 7 0 0 -9 -9

41 41 19 19 -7 -6 1 0

61 61 6 6 -1 0 0 0

39 39 9 9 -18 -19 -1 -1
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64 64 7 7 -1 -1 3 3
45 45 8 7 -9 -9 1 1
65 64 8 8 -4 -4 -5 -4
31 31 19 19 6 6 8 8
55 55 4 4 -6 -6 -1 -1
12 12 7 7 0 0 6 6
172 172 9 9 -4 -3 2 2
130 130 18 18 -11 -11 0 0
22 22 -17 -17 6 6 2 3
47 47 -12 -12 2 1 5 5
3 3 12 12 -3 -3 0 0
-5 -5 2 2 2 2 -5 -4
21 21 -1 0 1 0 1 1
7 6 12 12 -1 -1 2 2
0 0 -5 -4 -12 -13 5 5
-4 -4 4 4 6 6 2 -1
4 4 5 5 -5 -4
8 8 13 13 -9 -8 -8 -8
-6 -6 1 1 -4 -4
-8 -8 7 7 4 3 -4 -4
0 0 -5 -5 -4 -4 2 1
-200 -199 25 25 0 0 -4 -4

Parts of the test data are randomly selected from an 8-bit black and white bitmap picture while some are
the result of the DCT. The raw evolved trees are as follows:

Point O:

Point 1:

Point 2:

Point 3:

((0.504865)*(((b)-(a))-(c)))-((a)-((d)*(0.504865))+(0.504865)-
(div(a,a)))+div(div(div((0.504865)-(d),c),(b)-(a)),(d)-(0.504865))+c+a+a

(0.638957)-((0.638957)*(((0.372204)-((((b)-(c))*((0.638957)*(0.638957)))-(d)))-(a)))

((a)-(b)+(d+0.449478)-(div(b,div(a,0.449478))+c)+div(d,div((b)-((c)*((d)-(c))+(div(a,c))-
((b)*(d))),(b)-(0.449478))))*(0.449478)

((div(div(((0.389072)*((0.134196)*((div(0.427715,b))*((0.427715)-(0.389072)))))-(((d+c)-
(0.134196))*(d)),d),((b)-((a)-(a)))-(b)))*((0.604979)*(((0.134196+(a)-(d))*(0.427715))-(((b)-
(0.604979+(c)-((0.389072)-(0.134196))))-(0.134196)))))-((0.134196)*((0.604979)*(0.427715)))

We simplify the raw programs by hand since they contain redundant code. The simplified programs are as

follows:

Point O:

Point 1:

Point 2:

Point 3:

0.504865*(b-a-c+d)+0.495135+div(div(div(0.504865-d,c),b-a),d-0.504865)+c+a
0.638957-(0.638957*((0.372204-((b-c)*0.408266-d))-a))
(a-b+d+0.449478-(div(b,div(a,0.449478))+c)+div(d,div(b-(c*(d-c)+ (div(a,c))-b*d),b-
0.449478)))*0.449478

0.604979*(((0.134196+a-d)*0.427715)-(b-0.484299-c))-0.034724

The fitness of the four programs computed by using the 32 set test data is listed in the following table:
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Point Fitness
Point 0 0.9141
Point 1 0.9329
Point 2 0.8778
Point 3 0.9204

Note that the total error is the sum of the error squared, which magnifies the actual error value. For point
1, the fitness of the evolved program is 0.9329, this reflects a difference of only 3 between target data and
computed data for all the test data. This result is very close to the ideal target.

For point 0, in one run, an interesting result is evolved. It has the form:
(c+b+d+a) * 0.50086
This solution has the fitness value of 0.9022.
For point 2, in one run, a simple solution is also evolved:
0.456939*(0.456939-c-b+d+a)
This solution has the fitness value of 0.8635.
For point 1, although we supply 4 random numbers in the terminal set, the best result contains three
random numbers only. This result shows that genetic programming converges to a solution that is
problem oriented instead of a combination of the elements in function set and terminal set.

In order to compare the evolutionary algorithm and a random search algorithm, we evaluated randomly
created individuals for each point. The results are listed as follows. Five million individuals are evaluated
for each point. The fitness is between 0 and 1 and is divided into 20 ranges. The first range contains
individuals that have the fitness value:

0<= fitness<0.05

Range Point 0 Point 1 Point 2 Point3

0 4,999,947 4,998,790 4,999,137 4,935,424

0.05 52 1122 858 64512

0.1 44 60

w

0.15 28

0.2 16

0.25
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The results of the random search shows that most of the individuals have a very low fitness value.
Surprisingly, one individual for point O has a high fitness value of 0.7, which may reflect the fact that
point O evolution is the easiest problem of all. From the distribution, we can see that random search
algorithm is so weak that it is almost impossible to find a good solution.
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To investigate the possibility of evolving an 8 point transform, we tried to evolve point 1. Parameter
setting is the same as for the four point DCT except the maximum program size is set to 200 and the
terminal set contains 8 random numbers. Four trials were tested in our experiment, where each trial ran
for five million generations. For point 1, the evolved best individual has the fitness value of 0.225. The
time spent on each run is about 10 hours.
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8 Point Result for point 1 over 4 trials

Summary

The results have shown that the DCT can be evolved by means of the genetic programming paradigm.
The best result uses 15 multiplications and 32 additions to carry out a 4 point DCT. The purpose of this
investigation was not to evolve a fast DCT but to explore the possibility of evolving a DCT by means of
genetic programming. Evolution of a fast DCT and an 8—point DCT are suggested as future work.

Conclusion

Research into the DCT continues to be an important topic in transform coding and signal processing. All
current algorithms are based on an exact ruled based approach. In this paper, we have successfully
evolved an approximate evolutionary algorithm based DCT .Our results use four separate trees for four
points. By examining the results, the evolved tree for point 1 and point 3 have higher fitness than that
point 0 and 2. This may reflect the different parameter settings between point 0, point 2 and point 1, point
3. There are four random numbers in the terminal set of point 1 and point 3 while only one random
number in the terminal set of point O and point 2. More random numbers in the terminal set may make for
easier fine-tuning of the solution. The successful evolution of the four point DCT implies that an eight
point DCT is also possible. This is the most useful size because it is used in many standards such as JPEG
and MPEG.

The run time of the genetic programming system for the four point DCT varies. Point 0 and point 2 took
one to two hours while point 1 and point 3 took about 6 hours..

The four point DCT used in this project is not used in practice. Future work may include an evolutionary
algorithm for a fast 8 point DCT that is more useful.

The most important issue in implementation of the DCT is its efficiency. This is the reason why research
is still being carried out on the DCT. Genetic programming provides a new approach for this field — not
limited by rule based methods, but using an evolutionary algorithm. Theoretically, the most efficient 8
point DCT could be evolved using the evolutionary approach. To evolve a fast 8 point DCT, computation
speed will be a key issue since the terminal set must contain many more elements. Compilation methods
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and Distributed Genetic Programming could be used to improve the evaluation speed significantly and
increase the probability of success.
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