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Abstract 
 
A  variety  of  growth  curves  have  been  developed  to  model  both  unpredated,  intraspecific  
population  dynamics  and  more  general  biological  growth. Most successful predictive models are 
shown to be based on extended forms of the classical Verhulst logistic growth equation.  We  further 
review  and  compare  several  such models  and  calculate  and investigate properties  of  interest for 
these. We also identify and detail several previously unreported associated limitations and restrictions.  
 A  generalized  form  of  the  logistic  growth  curve  is  introduced  which  is  shown  incorporate these 
models as special cases. The reported limitations of the generic growth model are shown to be addressed  
by  this  new  model and similarities between this and the  extended  growth  curves  are  identified.  
Several  of  its  properties  are also presented. We furthermore show that additional growth characteristics 
are accommodated by this new model, enabling previously unsupported, untypical population dynamics to 
be modelled by judicious choice of model parameter values alone.   
 
 
1.  Introduction 
In  order  to  model  growth  of  biological  systems   numerous  models  have  been  introduced.  These  
variously  address  population  dynamics,  either  modelled  discretely  or,  for  large  populations,  mostly  
continuously.  Others  model  actual  physical  growth  of  some  property  of  interest  for  an  organism  
or  organisms. 
The  simple  exponential  growth  model  can  provide  an  adequate  approximation  to  such  growth  for  
the  initial  period.    However,  for  populations,  no  predation  or  intraspecific  competition  is  included.  
The  population  would  therefore  continue  to  increase  unhindered  (or  inevitably  reduce  to  zero  if  
an  initial  growth  reduction  were  present).  Even  in  the  case  where  predation  was  at  most  
negligible,  the  model  does  not  accommodate  reductions  due  to  intraspecific  competition  for  
environmental  resources  such  as  food  and  habitat.  For  the  case  of  growth  per  se,  unrestricted  
growth  is  also  unrealistic.  For  example,  as  plants  approach  maturity,  the  physical  characteristics  of  
interest  will  reach  a  limiting  dimension. 
Verhulst  [1]  considered  that,  for  the  population  model,  a  stable  population  would  consequently  
have  a  saturation  level  characteristic:  this  is  typically  called  the  carrying  capacity,  K,  and  forms  a  
numerical  upper  bound  on  the  growth  size.  To  incorporate  this  limiting  form  he  introduced  the  
logistic  growth  equation  which is  shown  later  to  provide  an  extension  to  the  exponential  model.  
This  logistic equation  can  also  be  seen  to  model  physical  growth  provided  K  is  interpreted, rather 
naturally,  as  the  limiting  physical  dimension.  It is  parameterized  by  the  initial  population  size  (or  
physical  dimension),  the  initial  growth  rate,  and  K.  For  typical  values  of  these,  particularly,  where  
the  initial  population  size  (or  dimension)  is  smaller  than  K,  the  resulting  logistic   growth  rate  
curve  is  sigmoidal.  Furthemore,  the  point  of  inflection  for  the  system  is  fixed  such  that  the  

corresponding  population  (or  dimension)  is  
2
K

.  This  places  an  undesirable  restriction  on  the  

shape  of  the  curve  and  clearly  limits  the  generality  of  the  model.  We  will  see  later  that  the  
Verhulst  logistic  growth  model  has  formed  the  basis  for  several  extended  models.  Each  is  a  
parameterised  version  of  the  original  and  provides  a  relaxation  of  this  restriction.  
Notwithstanding  this  limitation  the  logistic  growth  equation  has  been  used  to  model  many  diverse  
biological  systems.  Carlson  [2]  reported  the  growth  of  yeast  which  is  modelled  well  by  the  curve  
[3,4].  Morgan  [5]  ingeniously  used  the  equation  to  describe  herding  behaviour  of  African  
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elephants.  Krebs  [6]   also  used  the  Verhulst  logistic  equation  to  fit  to  population  data  for  
Peruvian  anchovies.  
There  have  been  applications  of  the  logistic  model  outside  the  field  of  Biology also.  Fisher  and  
Pry  [7]  have  successfully  exploited  the  logistic  model  to  describe  the  market  penetration  of  many  
new  products  and  technologies.  In  this  particular  application  of  the  logistic  model  N  represents a 

measure of  the  market  already  captured  and  
K

NK −
  that for  the  fraction  of  the  market  remaining  

to  be  captured.  Marchetti  and Nakicenovic  [8]  have  given  a  summary  of  world  energy  usage  and  
source  substitution  by  employing  the  logistic  model.   Herman  and  Montroll  [9]  have  shown  that  
as  basic  an  evolutionary  process  as  the  industrial  revolution  may  also  be  modelled  by  logistic  
dynamics.  Here, as  the  industrial  revolution  evolved,  the  fraction  of  the  labour  force  in  agriculture  
declined  while  the  fraction  in  industry  grew.  
In  this  paper  we  present  the  major  models  of  this  form.  We  identify  the  population  (or  
dimension)  corresponding  to   the  characteristic point of inflection for each and  compare  and  contrast  
these.  We  also  present  previously  unreported  properties  of  these  models.  Finally,  we  introduce  a  
generalized  logistic  equation  which  incorporates  all  these  as  special  cases.  We  also  investigate  
properties  of  this  model. 
 
2.  The  Logistic  Growth  Curve 
The  simplest  realistic  model  of  population  dynamics  is  the  one  with  exponential  growth 

rN
dt
dN =  

with  solution 
rteNtN 0)( =  

where  r  is  the  intrinsic  growth  rate  and  represents  growth  rate  per  capita.  To  remove  unrestricted  
growth  Verhulst  [1]  considered  that  a  stable  population  would  have  a  saturation  level  
characteristic  of  the  environment.  To  achieve  this  the  exponential  model  was  augmented  by  a  

multiplicative  factor,  
K
N−1 ,  which  represents  the  fractional  deficiency  of  the  current  size  from  

the  saturation  level,  K. 

In  Lotka’s  analysis  [10]  of  the  logistic  growth  concept  the  rate  of  population  growth,  
dt
dN

,  at  

any  moment  t  is  a  function  of  the  population  size  at  that  moment,  N(t),  namely, 

)(Nf
dt
dN =  

Since  a  zero  population  has  zero  growth,  N=0  is  an  algebraic  root  of  the  yet  unknown  function  
f(N).  By  expanding  f(N)  as  a  Taylor  series  near   N=0  and  setting  f(0)=0  Lotka  obtained   the  
following  power  series   
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where  higher  terms  are  assumed  negligible. 

By  setting  rf =′ )0(   and  
K
rf 2)0( −=′′ ,  where  r  is  the  intrinsic  growth  rate  of  the  population   

and  K  is  the  carrying  capacity,  one  is  led  to  the  Verhulst  logistic  equation 
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



 −=
K
NrN

dt
dN 1                                                                           (1) 

The  Verhulst  logistic  equation  is  also referred to in the literature as the  Verhulst-Pearl  equation  after  
Verhulst,  who  first  derived  the  curve,  and  Pearl  [11],  who  used  the  curve  to  approximate  
population  growth  in  the  United  States  in  1920.   
 
Equation (1)  has  solution 

                                                          
00

0

)(
)(

NeNK
KN

tN rt +−
= −                                                    (2) 

where  N0  is  the  population  size  at  time  t = 0.   
The  three  key  features   of  the  logistic  growth  are: 
(i) KtNlim

t
=

∞→
)( , the  population  will  ultimately  reach  its  carrying  capacity. 

(ii) The  relative  growth  rate,  ,1
dt
dN

N
  declines  linearly  with  increasing population  size. 

(iii) The  population  at  the  inflection  point  (where  growth  rate  is  maximum),  Ninf ,  is  exactly  

half  the  carrying  capacity,  Ninf 2
K= . 

For r > 0, the  resulting  growth  curve  has  a  sigmoidal  shape  and,  from  (2),  is  asymptotic  to  the  
carrying  capacity. When r < 0 and a reduction in the growth rate per capita is present, the growth curve is 
asymptotic to zero leading to population extinction. In the trivial case of no intrinsic growth rate, r = 0, the 
population remains static at the initial value of N0. Population biologists and ecologists are interested 
mainly in the case where r > 0 and we restrict our investigations to this case in this paper. 
Figure  1  depicts  several  logistic  curves  for  various such values of  r  with  N0=10,  K=100.  The  
larger  the  r  the  faster  in  time  the  curve  reaches  the  carrying  capacity  K.  Figure  2  illustrates  the  

fact  that  the  population  at  the  inflection  point,  Ninf = 50
2

=K
,  regardless  of the  value  assumed  

by  the  intrinsic  growth  rate,  r.    
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Figure  1.  The  evolution  of  population  size  in  time  for  the  Verhulst  logistic  growth. 
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Figure  2.  Plots  of  the  growth  rate  versus  population  size  for  the  Verhulst  logistic  growth. 
 
 
3.  Extended  Logistic  Growth   Models 
Since  the  original  work of  Verhulst  [1]  and  Pearl  and  Reed  [11]  there  have  been  several  
contributions  suggesting  alternative  functional  forms,  f(N),  for  growth  whilst  retaining  the  sigmoid   
and  asymptotic  property  of  the  Verhulst logistic  curve.  In  the  plant  sciences,  Richards  [12]  was  
the  first  to  apply  a  growth  equation  developed  first  by  Von  Bertalanffy  [13]  to  describe  the  
growth  of  animals.  Richards  growth  curve  was  used  for  fitting  experimental  data  by  Nelder  [14],  
who  used  the  term  generalized  logistic  equation  to  describe  the  equation.  Blumberg  [15]  
introduced  the  hyperlogistic  equation  as a  generalization  of  Richards’  equation.   Turner  and  co-
authors  [16,17]  suggested  a  further  generalization  of  the  logistic  growth   and  termed  their  
equation  the  generic  logistic  equation.  In  a  more  recent  survey  paper  Buis   [18]  revisited  the  
previous  works  on  logistic  growth  functions  and  outlined some of their  respective  properties.       
In  this  section  we  derive  several  well  known  growth  functions  which  extend  the  standard  Verhulst  
equation.  In  addition,  we  examine  the  presence  or  absence  of  the  sigmoid  feature  that  
characterizes  most  growth  curves  and  is  responsible  for  the  existence  of  an  inflection  point. 
 
 3.1  Generic  Growth  Function 
Turner  and  co-authors  [17]  proposed  a  modified   Verhulst  logistic  equation  which  they   termed  
the  generic  growth  function.  This  has  the  form 

                                                 

γβ
γβ
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K
NrN

dt
dN 1)1(1                                                        (3) 

where  β, γ  are  positive  exponents  and  
β

γ 11+<  .  This  has  the  solution, 
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The  population  at  the   inflection  point,  Ninf ,   is  given  by 
 

                                               KNinf

β

β
βγ
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For  β = γ =1   the  functional  form  for  Ninf   reduces  to  that  for  the  Verhulst  logistic  equation.  The  

condition    
β

γ 11+<     ensures  that   Ninf > 0.   For  extreme  values  of   β  and  γ  we  obtain  the  

following  limits  for  Ninf : 
 
    ∞<<= −

→
γγ

β
0  ,

0
KeNlim inf  

10, <<=
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γ
β

KNlim inf  

    ∞<<=
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β
γ
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KNlim inf  

    0,0 →=
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β
γ infNlim  

   
Figure  3  displays  several  generic  growth  curves  evolving  in  time  t    and  figure  4  presents  the  
growth  rate  versus  time  evolution  for  N0 = 10,  K = 100.  A  visible  inflection  point  occurs  for  β = 

5.0,  γ = 1.0,  given  by  70
6
1 2.0

≈






= KNinf ,  and  is  clearly  seen  in  Figure  4.  For   β = 0.5,  γ = 

2.5,   105.2
6
1 2

<≈






= KNinf ,  and  no  inflection  is  present.  Also  no  inflection  occurs  for  β = 

0.2,  γ = 5.0,  0
6
1 5

≈






= KNinf .  An  inflection  point,  Ninf = 25,   is  present  for  β = 1.0,  γ = 1.5.   

More  symmetric  graphs  with  inflection  occurring  at  around  half  the  value  of  K,  are  those  with  β 
= 2.0,  γ = 1.0  and  β = 3.0,  γ = 1.0,  giving  Ninf ≈ 58  and  Ninf ≈ 63  respectively. 
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Figure  3.  The  evolution  of  population   size  in  time  for  several  parameter  pairs  (β , γ)  according  
to  the  generic  growth  form. 
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Figure  4.  Growth  rate  versus  size  plots  for  the  generic  growth  function. 
 
3.2.  Blumberg’s  equation 
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Blumberg  [15]  introduced  another  growth  equation  based  on  a  modification  of  the  Verhulst  
logistic  growth  equation  to  model  population  dynamics  or  organ  size  evolution.    Blumberg  
observed  that   the  major  limitation  of  the  logistic  curve  was  the  inflexibility  of  the  inflection  
point.  He  further  observed  that  attempts  to  modify  the  constant  intrinsic growth rate  term,  r,   
treating  this  as  a  time-dependent  polynomial  to  overcome  this  limitation,  often  leads  to  
underestimation  of  future  values  (see  also  [10]).  Blumberg  therefore introduced  what  he  called  the   
hyperlogistic  function,  accordingly   

                                                  
γ

α







 −=
K
NrN

dt
dN 1                                                                        (5) 

Blumberg’s  equation  is  consistent  with  the  Turner  and  co-authors’  generic  equation  (3)  when  α = 
2 - γ ,  β = 1,  and  γ < 2. 
Equation (5)  can  be  re-formulated  as  the  integral  equation   

trKdxxx
K

tN

K
N

1

)(

)1(
0

−−− =−∫
αγα  

This  does  not  always  afford  a  closed  form  analytical  solution.  Blumberg    therefore  catalogued  
analytic  expressions  (when  an  explicit  integration  can  be  carried  out)  of  the  growth  function  N(t)  
for  various  values  of  the  parameters  α  and   γ.   
The  population  at  the  inflection  point,  Ninf ,   is  given  by 

                                                           KNinf γα
α
+

=                                                   

This  also  coincides  with  that  of  the  Verhulst  logistic  equation  when  α = γ.    For α >> γ   the  
inflection  occurs  very  near  the  carrying  capacity, and  for α << γ,     Ninf  approaches  0  and  inflection  
occurs  only  if   N0<Ninf .   
Figure  5  and figure 6  exhibit  respectively  the  population  size  as  a  function  of  time  and  the  
growth  rate  variation  with  population  size  for  several  values  of  the  parameters  α  and   γ.  In  

Figure  6  the  gradual  transition  of  the  inflection  point  from  values  less  than  50
2

=K
,  when  

α < γ,  to  values  greater  than  
2
K

,  when  α > γ,  can  be  clearly  seen. 
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5.  Blumberg's  logistic  curve
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Figure  5.  Population  size  growth  versus  time  according  to  Blumberg’s  functional  form. 
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6.  Blumberg's  equation
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Figure  6.  Growth  rate  versus  size  graph  for  Blumberg’s  equation.  The  movement  of   the  
inflection  point  from  the  left,  where  α < γ,  to  the  right,  where  α > γ,    is  clearly  visible 
 
3.3.  Von  Bertalanffy’s  growth  equation 
Von  Bertalanffy  [13]  introduced  his  growth  equation  to  model  fish  weight  growth.  Here  the  
Verhulst  logistic  growth   curve  was  modified  to  accommodate  crude  “metabolic  types”  based  upon  
physiological  reasoning.  He  proposed  the  form  given  below  which  can  be  seen  to  be  a  special  
case  of  the  Bernoulli  differential  equation:  
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The  Bertalanffy  model  cannot  be  derived  from  the  Turner  model   as   the  values  of  the  exponents,  

1  ,
3
1  ,

3
2 === γβα ,  violate  the   condition )1(1 γβα −+=   stipulated  by  Turner et al. (see  

Section  3.5). It cannot therefore be seen as a special case and should be viewed as a separate model 
accordingly. 
Here, Ninf  is  given  by 
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which, whilst differing from that for the Verhulst curve, still represents a substantial restriction for general 
modelling purposes. 
Figures  7  and  8  display  respectively  a  typical  Von  Bertalanffy  weight  growth  curve  and  its  
inflection. 
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7.  Von  Bertalanffy's  growth  curve

 

 
Figure  7.  Von  Bertalanffy’s  weight  growth  curve. 
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Figure  8.  The  growth  rate  for  Von  Bertalanffy’s  form  realizes  its  maximum  at  around  30,  when  
the  asymptotic  value  is  K = 100. 
 
3.4.  Richards  growth  equation 
Richards  extended  the  growth  equation  developed  by  Von  Bertalanffy  to  fit  empirical  plant  data  
[12].  Richards’s  suggestion  was  to  use  the  following  equation  which  is  also  a   special  case  of  the  
Bernoulli  differential  equation 
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Unlike its Von Bertalanffy antecedent however, the Richards  growth  function does  follow  from  the  
Turner  model  (Section  3.5)  in the case where,  γ = 1.   
Here inflection  occurs  at  
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For  β = 1,  (6) trivially  reduces  to  the  Verhulst  logistic  growth  equation  (1).   For  extreme  values  
of  β  we  obtain  the  following  values  for  Ninf : 
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Consistent with the previous observation, the  above  values  also  follow  from  the  corresponding  
population  value at  the  inflection  point  for  the  generic  growth   function  with  γ = 1.  
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Figure  9  illustrates  four  different  Richards  growth  curves  with  β = 0.01,  0.05,  3.0 and  6.0.  Figure  
10  displays  the  variation  of  the  weight  growth  rate   for  small values  for β,  β = 0.01  and  β = 0.05  

giving  inflection  at  Ninf ≈ 36  and   Ninf ≈ 38  (both  values  are  approximately  equal  to  
e
K

),  and  

larger  β values  resulting  in  higher  inflection  values. 
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Figure  9.  Plant  weight  growth  in  time  according  to  Richards’  equation. 
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Figure  10.  Weight  growth  rate  versus  weight  plot  for  Richards’  equation. 
 
3.5.  Gompertz  growth  function 
The  Gompertz  growth  curve   can  be  derived  from  the  following  form  of  the  logistic  equation  as  
a  limiting   case:   
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where  βγK
rr =′ . 

Looking  at   
β

ββ NK −
  in  the  limit  as 0→β   we  obtain    
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Similarly, ( ) .0,
0

>=′
→

γ
β

rrlim  

The  growth  rate  modelled  by  the Gompertz function is given by 
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With  1  ,0 ≠> γγ ,  this special case is more usually known  as  the  hyper-Gompertz  (Turner et al. 
[17]),  generalized  ecological  growth  function,  or  simply  generalized  Gompertz  function. 
Equation (7)  can  be  conveniently  rewritten  as  follows 
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which  upon  integration  leads  to  the  analytic  solution   
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The  population  at  the   inflection  point,  Ninf ,  is  obtained  by  differentiating  both  sides  of  
γββ
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The  above  form  can  also  be  obtained  by  differentiating  both  sides  of  equation  (7)  and  setting  

02

2

=
dt

Nd
.          

For  relatively  large  increasing positive values  of  γ  the  inflection  point  tends  to  0.  Indeed, to 
achieve  an inflection point, it  is  necessary that  0NKe >−γ ,  whereas  for  increasingly small  values  
of  γ,  the  inflection  point  tends  to   K.   
For  γ = 1  the  equation   
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is  the  ordinary  Gompertz  growth  (see  [19],  [20]).  The  solution  to  (8)  is 
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The  population  value  at  the  inflection  point,  1−= KeNinf ,    is  obtained  from  that  for  the  

generalized  Gompertz  growth  function  with  γ  =1. 
Figure  11  depicts  three  hyper-Gompertz  growth  curves  (γ > 0, γ≠1)  and  the  ordinary  Gompertz  
growth  (γ = 1)  for  N0 = 10  and  K = 100.  As predicated, relatively  large  values  of  γ  result  in  an  
inflection  near  the  origin,  γ = 3  gives  Ninf ≈ 4.5 < N0,  γ = 2.5  gives  Ninf ≈ 7.5 < N0,  whereas  
relatively  low  values  of  γ  result  in  a  visible  inflection point. A value of  γ = 0.5  gives  Ninf ≈ 60,  and 
γ = 1  gives  Ninf ≈ 35.5,  as  shown  in  Figure 12. 
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Figure  11.  Hyper-Gompertz  and  ordinary  Gompertz  (γ = 1)  growth  plots. 
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Figure  12.  Hyper-Gompertz  and  ordinary  Gompertz  (γ = 1)  weight  growth   rates  versus  weight  
curves. 
 
 
4.  Generalized  Logistic  growth   function 
Here  we  propose  a  generalized  logistic  growth  equation  which  incorporates  all  previously  reported  
functional  forms  as  special   cases.  We  will  adopt  the  term  generalized  logistic  equation  in  our  
exposition,  a  term  first  used  by  Nelder  [14]  to  describe the Richards  equation.  We  believe  the  
adopted  term  is  an  appropriate  one  as it  connotes  exactly  what  it  purports  to  achieve.   
 
4.1.  Definition  and  properties  of  the  generalized  logistic  function 
We  define  the  generalized  logistic  function  thus   
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where  α , β , γ  are  positive  real  numbers.  In  this  paper  we  confine  ourselves  to  positive  values  
for  these  parameters  and that for r,  as negative  exponents  do  not  always  provide  a  biologically  
plausible  model.  Unlike  Lotka’s  derivation  of  the  Verhulst  logistic  growth  equation  from  the  
truncation  of  the  Taylor  series    expansion  of  f(N)  near    N = 0,  (9)  cannot  be  derived  from  such  
an  expansion  unless  α , β , γ  are  all  positive  integers,  in  which  case   a  power  series  can  be  
generated  with  the  first  α  terms  0)0()0()0()0( )1( ===′′=′= −αffff � .   
By  differentiating  (9)  and  setting  the  second  derivative  to  zero,  we  obtain  the   following   
parametric  expression  for  the  population  value,  Ninf ,  at  the  inflection  point   
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Clearly  if  Ninf < N0 ,   no  inflection  is  possible as the population will have started with this initial value, 
N0,  and with a positive intrinsic growth per capita rate thus ensuring that Ninf  is not achievable.   
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The  above  expression  can  be  seen  to  contain  the  inflection  points  of  all  previous  curves  as  
special  cases.  For example, with )1(1 γβα −+= ,  it  reduces  to  the  inflection  value  for  the  
generic  growth  model  given  by  (4). 
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Figure  13.  The  generalized  logistic  curve and  its  derivative  models. 
Figure  14  is  a  display  of  the  generalized  logistic  growth  curve  with  parameters  α,  β,  γ  chosen  at  
random  (but  kept  positive),  and  figure  15  shows  the  growth  rates  with  their  respective  maxima  
for  the  same  parameter  range. 
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Figure  14.  The  generalized  logistic  growth  rate  curve  for  several  parameter  triplets  (α,β,γ)  and  X0 
= 10,  K = 100. 
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Figure  15.  Population  growth  rate  as  function  of  population  size  according  to  the  generalized  
logistic  form. 
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By   introducing  the  auxiliary  variable  
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For  a  certain  configuration  of  parameters  the  above  integral  is  the  Incomplete  Beta  Function  [21].  
Specifically,  the  parameter  configuration  (assuming  again  all  parameters  are  positive)  is 

10  0,  ,10 <<><< γβα  

By  expanding  binomially  the  γ−− )1( x   term  in  the  integrand  of  (10)  step  by  step  integration  

can  be  performed.  For  notational  convenience  let   11 −−=
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The  above  form  provides  an  analytical  expression  of  t  as  a  function  of   
K
Nx = .  An  alternative,  

but  equivalent,  infinite  series  expression  to  (11),  taken  from  Abramowitz  and  Stegun  [22],  is  

reported  in  the  book  by  Banks  [23].  The  more  desirable  functional  form,  
K

tNtx )()( =  ,  is  one  

of  the  real  roots  of  the  polynomial  arising  from  truncating  (11)  thus,  
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where   constanttrKtg +−= −1)( αβ   and  ai = ai(γ, θ),  are  coefficients  functionally  dependent  on  
γ  and   θ . 
 

4.2.  Comments  on  the  inflection  value  Ninf 

In  order  to  assess  properly  the  evolution  of  the  inflection  value,  KNinf
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the  simultaneous  variation  of  the  parameters  γβα ,,   we  have  created  surface  plots  of  Ninf.  On  
each  surface  plot  one  parameter  is  held  constant  and  the  other  two  are  allowed  to  vary. 
Figure  16  is  a  three-dimensional  plot  of  Ninf  versus  parameters  γβ , .  Here  α   as  well  as  β  and  

γ  are  allowed  to  vary  continuously  in  the  range  [1.0 , 100.0].  It  can  be  seen  that  ↑infN   as  
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For  0.100=== γβα ,  100=≈ KNinf .  For  0.100== γα   and  0.10=β ,  Ninf  ≈ 50,  

whereas  for  0.100== βα   and  0.10=γ ,   Ninf  ≈ 100.   For  much  smaller  values  of  α,  say  α = 
10.0  we  have  a  similar  situation:  for  0.10  ,0.100 == γβ ,  Ninf  ≈ 100,  and  for  

0.100  ,0.10 == γβ ,  Ninf  ≈ 10.  This  indicates  that  for  relatively  small  values  of  β ,   large  
values  of  γ   have  a  moderating  effect  on  the  growth  of  the  inflection  value  regardless  of  the  
value  of   α. 

 
Figure  16.  Surface  plots  of  the  inflection  value,  Ninf  (K = 100)  as  a  function  of  two  variables  β,γ.  
Each  surface  corresponds  to  a  particular  value  of  the  parameter    
 
Figure  17  is  a  three-dimensional  plot  of  Ninf  versus  parameters  γα , .  Here  again  α,  β,  γ  are  

allowed  to  vary  continuously  in  the  range  [1.0 , 100.0].  Again  it  can  be  seen  that  ↑infN   as  
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The  resulting  inequality  is  established  by  observing that   the  following  inequality  

y
yy 1ln −>   for  y > 1, 

where  
α
βγ+= 1y ,  is  always  true  given  the  restrictions  on  α, β  and  γ. 
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It  is  obvious  from  the  plot  that  β  is  the  dominant  parameter  in  that  large  values  of  β  result  in  a  
high  inflection  value,  Ninf > 90,  regardless  of  the  magnitude  of  the  other  two  parameter  values.    
For  small  values  of  β  however,  say  β = 0.5,  α  is  the  dominant  parameter  in  that  small  values  of  
α  will  drive  the  inflection  value  to  zero  and  large  values  of  α  will  result  in  a  rapid  increase  of  
the  inflection  value.   
 

 
Figure  17.  Surface  plots  of  the  inflection  value,  Ninf  (K = 100)  as  a  function  of  two  variables  α,γ.  
Each  surface  corresponds  to  a  particular  value  of  the  parameter   β  in  the  range  [0.50 , 100.0]. 
 
Figure  18  is  a  three-dimensional  plot  of  Ninf  versus  parameters  βα , .  Here  also  α,  β,  γ  are  

allowed  to  vary  continuously  in  the  range  [1.0 , 100.0].   In  this  case  however,   ↓infN   as  −γ   
because 

 
 
 

 
 
 
 

Very  small  values  of  α  and  β  rapidly  drive  the inflection  value  to  zero  regardless  of  the  value  
of  γ.   Large  values  of  either  α  or  β,  or  both,  will  restore  the  inflection  value  to  its  asymptotic  
value  when  γ  is  relatively  small,  say  γ = 10.0.  When  γ  is  large  however,  say   γ = 100.0,  large  
values  of   β   and  small  values  of  α   result  in  a  much  more  rapid  growth  of  the  inflection  value  
towards  K  than  correspondingly  large  values  of  α  and  small  values  of  β,  which  produce  a  
maximum  inflection  value  of  50.          
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Figure  18.  Surface  plots  of  the  inflection  value,  Ninf  (K = 100)  as  a  function  of  two  variables  
α,β.  Each  surface  corresponds  to  a  particular  value  of  the  parameter   γ  in  the  range  [10.0 , 
100.0]. 
 
It is clearly evident from inspection  of  figures 16,  17  and  18   that  for  intermediate  to  large  values  
of  γβα ,,  (typically  α>10,  β > 40, γ > 40  for  figures  16  and  17  and  α>40,  β > 40, γ > 10  for  
figure  18)    the  corresponding  surfaces  consistently  exhibit  approximately  zero  curvature,  that  is,  
they  are  effectively  planes.  This  is  seen  immediately  from  considering   the  total  differential  dNinf  
along  any  surface,  for  example,  α = constant  (exhibited  in  figure  16): 
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We  are  going  to  prove  that  dNinf   vanishes  identically  on  the  surface  α = constant   by  proving  

that  
β∂

∂ infN
  and  

γ∂
∂ infN

  vanish  identically  for  relatively  large  values  of   β   and   γ.    Since  

1>>
α
βγ

  we  shall  use  the  approximation  
α
βγ

α
βγ ≈+1 . 

11
1

11

11

1               

                

1

+

−−

−−









−

=






−

≈






 +−=
∂

∂

β
β

β

β

βγ
α

α
βγ

α

α
βγ

αγ

K

K

KNinf

 



44  R.L.I.M.S. Vol. 2,  May 2001 
 

 

Then 

01
11

1

,,
=

























−=

∂
∂ +

∞→∞→∞→∞→

β
β

γβγβ βγ
α

γ
Klim

N
lim inf  

Next  consider  the  limit  of  
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  after  rearranging  terms: 
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since   0ln =
∞→ y
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This  directly  implies  that  for  an  infinite  configuration  of  any  two  parameters  and  a  fixed  (but  
relatively  high)  value  of  the  remaining parameter,  the  time  needed  by  the  population (or growing 
organism)  to  reach  a  given  inflection  value,  tinf ,  is  not  unique,  or  equivalently,  that  a  given  
inflection  value,  Ninf ,  can  be  attained  via  many  different  parameter  values  and  hence  at  different  
times  tinf .       
 
 
 
5.  Discussion 
The classical Logistic growth equation of Verhulst has been used a basis for several extended models. 
Each is shown to accommodate population or physical growth without the restriction that the maximum 
growth rate must, rather artificially, occur at half of the carrying capacity in the case of population 
dynamics, or maximum attainable dimension for physical growth, for the system being modelled. 
Properties and restrictions previously unreported for these models are identified and presented.  
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A generalized  form  of  logistic  growth  (13) has been introduced which encompasses extended logistic 
growth  models  as  special  cases.  We  have  shown  that   the  general  solution  to  (13)  is  an  
Incomplete  Beta  Function  which  has  been  tabulated  by  Pearson  [21].  In  addition  we  have  dealt  
rigorously,  for  the  first  time,  with  the  population  at  the  inflection  point,  Ninf ,  of  all  the  growth  
models  presented. Furthermore,  for this generalised form, we have  proved  that  for  extreme  values  of  
certain  parameters,  the  population  will  reach  a  fraction  of  the carrying  capacity,  K.  This  is  a  
novel  feature  possessed  by  the  generalized  logistic  growth curve alone and  differentiates  it  from  the  
Verhulst  logistic  growth  curve  (1)  and  the extended forms which have been discussed. It also 
emphasizes  its  modelling utility  in  situations  where  a  biological  population (or growing organism) is  
unable,  for  whatever  reason,  to  reach  the  expected  carrying  capacity  of  the  environment  (or 
limiting dimension).  
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