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Abstract
An examination of the pure algebraic properties of computational type conversion leads to a new
generalizations of the concept of a homomorphism for which the term conversion seems appropriate.
While an homomorphism is a mapping that respects the value of all terms, a conversion is a mapping
that respects the value of all sufficiently small terms. Such a mapping has practical value, as well
as theoretical interest that stems from conversions forming a category. This paper gives a precise
definition of the concept and demonstrates an application to formal computer science based on
work completed by the author in his PhD thesis.

1 Background

The purpose of this discussion is to introduce a particular generalization of the concept of an
homomorphism, and to motivate its use. The new concept originated in a problem of optimization
of an automated computation, but is presented here as an abstract entity. The formality of the
presentation is constrained in order to keep the intuitive computational meaning of the concept
clear. However, sufficient comments and references are given to enable the interested reader to fill
in the details of a fully formal approach.

Formally, computational types are, herein, equated with universal algebras, but treated from
an abstract algebraic perspective. An universal algebra [1] is an underlying set V of values together
with a collection of operations fi : V ai → V , each with their own arity, ai ∈ ZZ+. The positive
reals (IR+,×,−1 ) under multiplication and multiplicative inversion are a concrete example. The
underlying set of values is IR+, the operations are multiplication which is binary, having arity 2,
and inversion which is unary, having arity 1. The definition is very general, and includes as special
cases groups, rings, fields, and such-like from abstract algebra, as well as abstract data types, which
form a central part of formal code analysis and synthesis in computer science [2].

The characteristic which makes universal algebras particularly suited to formal computer science
theory is the concentration on the structure and value of expressions. In this context an expression
such as x × y with unknown quantities x and y is taken as a formal term in the symbols x and y.
This is a generalization of the technique [7] for forming the ring of polynomials F [x] over a field F
as a ring of formal sums of powers of x, with coefficients in F . In the abstract algebraic approach,
the associated evaluation homomorphisms φi takes terms in a formal language [3] into the set V
of values. For example, given a formal term x1 × x2, the value of φa,b(x1 × x2) where a, b ∈ V is
the particular element c ∈ V such that a × b = c.

A full discussion of the constructions implied by the above will not be undertaken here, the
interested reader is referred to the literature. An intuitive understanding of the concepts is sufficient
for the following discussion.

Sometimes we can extend an ability to compute in one algebraic structure into an ability
to compute in another. Continuing the example of real arithmetic above, it is well known that
computation of a product a×b can proceed by the method of logarithms. a×b = exp(log a+log b).
A more complex expression such as a× b× c−1 can be mapped in a similar manner to exp(log a +
log b+(− log c)). In general we may wish to evaluate an arbitrary finite term in the formal algebra
of expressions over (IR+,×,−1 ). The method for doing this by logarithms is apparent, and easily
converted into instructions for automated computation.
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This computational transformation may be justified in this case by the observation that that
log is an isomorphism of (IR+,×,−1 ) onto (IR,+,−), the algebra of the reals under addition and
additive negation. The former algebra could be represented, in a digital computer, by storing it as
the latter, and providing the logarithm and exponential functions as input and output conditioning,
solely for the purpose of interacting with the external environment. Such an approach is standard
both in pure algebra and in the theory of computation.

But, in contemporary digital computers, pure algebras are often represented by data structures
that are not isomorphic to the pure version. Integer arithmetic (ZZ,+,×) is typically represented
by (ZZn,+,×), where n is some power of 2, and real arithmetic (IR,+,×) is represented by floating
point arithmetic, which is not even associative [9]. Such a state of affairs, although historically
and technologically precedented, has driven a wedge between pure mathematics and practical
computing.

One approach for attempting reconciliation of pure mathematics and the pragmatic art of
automated computation is to build correct models of the pure algebraic structures [5]. While this
approach is viable and even indispensable in many cases it also suffers from a lack of efficiency [6].
It is the author’s personal feeling on this matter that a more complete reconciliation will only be
obtained by also extending the mathematics to incorporate the actual behaviour of the efficient
computational types, if only so that pure and efficient structures can be designed from the ground
up.

As part of this process, this discussion is designed to show not simply that but why an homo-
morphism is not strictly required, and at the same time to define a pure algebraic concept which
could be used as a tool to study these types of non-homomorphic representation.

2 Motivation

The triggering motivation for the construction presented here was a question tackled by the author
[8] about the optimality of certain special case matrix algorithms. Rather than simply re-arranging
the required operations as a bookkeeping exercise, the task being examined was the reparameteri-
sation of a matrix universal algebra in order to allow computation via non equivalent expressions.

For example, if we express symmetric second order real matrices as the image of a map from
IR2 → IR2,2 as follows:

(a, b) →
[

a b
b a

]
,

then we can compute with the matrices by computing with pairs of numbers. In particular
(a, b)∗(c, d) = (ac+bd, bc+ad) is the required formula for multiplying matrices thus parameterised.
Such a parameterisation is a mild improvement over the naive storage of all four matrix elements.
However, it is also simply the removal of a fairly obvious redundancy, a simple bookkeeping exercise.

None-the-less, is this expression optimal? In this parameterisation it is. But, a different, less
obvious, parameterisation gives further improvement. By storing the matrices as

(a, b) →
[

(a + b)/2 (a − b)/2
(a − b)/2 (a + b)/2

]
,

matrix multiplication is computed by the simple expression: (a, b)∗ (c, d) = (ac, bd). Which has
three times less operations, and reveals an hidden independence of the dimensions which could be
used to compute the result in parallel.

Is this expression optimal? The problem in answering this question, which at first glance may
have appeared trivial, is that the optimal expression depends on the parameterisation. Perhaps
some space filling curve gives a parameterisation of IR2 by IR which would allow the operation to
be computed by, say, a single multiplication. From a pragmatic perspective, in the computational
world of floating point representation, the required approximation to such parameterisations can
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be quite easy to compute, and from the pure perspective, the desire is to optimize over all possible
parameterisations, not just, for example, continuous ones.

The following discussion demonstrates that the obvious answer is right, no such parameteri-
sation is possible. But, it is not nearly so obvious as it might at first seem. In a very real sense
the assertion is only just true. Even though the desired parameterisation does not exist, there is
a sequence of parameterisations whose behaviour limits to the desired behaviour1.

3 Definition and properties

We now simplify our real arithmetic example to concentrate only on the operations of addition
(IR,+) and multiplication (IR+,×). The isomorphism, log, has the definitive property that log(a×
b) = log(a)+log(b). However, computationally, the important thing is the existence of the function,
exp, with the property that a × b = exp(log(a) + log(b)). Without the ability to map the result
back again to the original domain, the conversion would be of limited use. In the logarithm case
exp happens to be the inverse of log, however, the universal truth of the latter equality does not
imply that this must be so.

As an example, mapping ZZn → ZZ by mapping 1 → 1 and 2 → 2 and so on, means that we
can evaluate expressions in (ZZn,+), by mapping into (ZZ,+) and then mapping back. In this case
the map from ZZ to ZZn is a homomorphism but not an injective one, and is not the inverse of the
forward map.

The pragmatic case allows the use of two maps, not specifically the inverses of one another.
The first turns a problem in domain A into a problem in domain B, and the second maps an
answer in domain B back into domain A. In computational terms, we have converted the problem
in domain A to one in domain B. The generic idea of such a reduction [4] is a central concept in
the theory of computational complexity. But, the emphasis of this paper is on the mathematical
properties of certain pairs of mapping between algebraic structures, which do not simply re-arrange
the problem, but change its overt nature completely.

Definition
A pair (f, g) of maps f : A → B and g : B → A, is a conversion
of (A, ∗) into (B, ◦), if ∀a, b ∈ A, g(f(a) ◦ f(b)) = a ∗ b.

One way in which this can occur is that g : B → A is an onto homomorphism and f is any one
sided inverse of g, such that f(a) ∈ g−1(a) and thus g(f(a)) = a. But, this is not the only way.

An example, less trivial than that presented above emphasizes the point.
Given a non negative integer a, and a positive integer b,
define a%b = a − b ∗ 	a/b
 so a%b is positive, and in the discrete interval [0 .. b − 1] and

a = b(	a/b
) + a%b
define bindn(a, b) = n4 ∗ bindn(	a/n
, 	b/n
) + n2(a%n) + b%n

with bindn(0, 0) = 0
define freen(t) = (	t/n2
%(n2), t%(n2)) + freen(	t/n4
)

with freen(0) = 0

Theorem 1 freen(bindn(a1, b1) + bindn(a2, b2)) = (a1 + a2, b1 + b2).

Proof: Use induction, with hypothesis that the assertion is true for 0 < a1, a2, b1, b2 < nm,
base case is m = 0 is immediate. We prove the case m = 1, If 0 < a1, a1, b1, b2 < n, then
	a/n
, 	b/n
 = 0, bindn(0, 0) = n4 ∗ bindn(0, 0) + 0 = 0 So, bind(a1, b1) = n2(a1%n) + b%n,
similarly for a2 and b3. So the expression is freen(n2(a1%n2)+b1%n2 +n2(a2%n)+b2%n2) which
is, freen(n2((a1 + a2)%n2) + (b1 + b2)%n) = ((a1 + a2)%n2, (b1 + b2)%n2). since all the numbers
are in [0..n], we see that this is (a1 + a2, b1 + b2), a similar argument demonstrates the general
inductive case.

1Of course the parameterisations do not limit to a specific parameterisation
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But it is fairly clear that typically neither bind nor free will be an homomorphism. In fact,
there are no homomorphisms from (IR2,+) into (IR,+).

Note the similarity and distinction between homomorphism and conversion. Homomorphism
is characterized by φ(a ∗ b) = φ(a) ◦ φ(b), while a conversion requires a ∗ b = g(f(a) ◦ f(b)). In
the case of any onto homomorphism we can find an operation ψ such that φ(ψ(a)) = a, and thus
φ(ψ(a) ◦ψ(b)) = φ(ψ(a)) ∗φ(ψ(b)) = a ∗ b. So, each homomorphism leads to a collection of related
conversions. However, the shift of ψ to the other side of the equality has a profound effect. While
for a homomorphism for any integer n > 0 we have φ(Πn

i=1ai) = Πn
i=1φ(ai), this is not always the

case for a conversion.
Direct computation shows that

free2(1 × bind2(1, 1)) = (1, 1)
free2(2 × bind2(1, 1)) = (2, 2)
free2(3 × bind2(1, 1)) = (3, 3)
free2(4 × bind2(1, 1)) = (1, 2)

A direct computation also shows that ...

free2(n2 × bindn(1, 1)) = (1, n2),

but, for α ∈ [0 .. n2 − 1],

free2(α × bindn(1, 1)) = (α, α),

This suggests the following theorem:

Theorem 2 freen(Σm
i=1bindn(ai, bi)) = (Σm

i=1ai,Σm
i=1bi)

exactly when Σm
i=1((ain

p−1)%np),Σm
i=1((bin

p−1)%np < n2 for
each non negative integer p.

Proof: Looking at the proof of Theorem 1 we see that the essential point is that in the
evaluation of freen(n2((a1 +a2)%n2)+(b1 + b2)%n) to a value of ((a1 +a2)%n2, (b1 + b2)%n2) the
requirement is that the numbers are in [0 .. n] and so this is (a1 +a2, b1 + b2). It would not matter
how many summands where involved, as long as this condition holds. Further, if the condition
does not hold it is apparent that the required equality does not hold either. Thus, the theorem
follows.

As a direct corollary, it is clear that any summation with no more than n summands will not
have the auxiliary sums from the theorem greater than n2, and thus can be correctly computed by
converting via bindn, summing, and then converting back via freen.

The same result can be obtained for the reals by defining

rbindn(a, b) = limm→∞ n−mbindn(	anm
, 	bnm
)
rfreen(a) = limm→∞ n−mfreen(	anm
)

and following through the basic proof for the integer case checking that the limit is not affected.
Thus, and most importantly, it has been shown that for each n ∈ ZZ+ there is a conversion from

(IR2,+) to (IR,+) which can be used to evaluate a summation of up to n summands. As long as
we know beforehand how many summands there are, we can correctly compute the value of the
sum of a number of pairs of numbers by converting it into a sum of single numbers.

It now remains to answer the question of whether there is exists a single conversion that will
compute all (or perhaps just all finite) summations correctly. The is the subject of the rest of the
discussion.
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4 The duration of a conversion

We now formalise the observation made at the end of the previous section. The definitions will be
given for the case of an universal algebra with a single binary operation, however the construction of
the appropriate definition for universal algebras with more operations, with different arities, should
be clear from the discussion. Conceptually the following definition is fairly straight forward, but
requires a bit of careful wording so that infinite expressions can be included.

4.1 The general definition

Given a set S of symbols, otherwise undefined, a formal S-expression is a rooted, leaf S-weighted
binary tree. If t1 and t2 are S-expressions, we define t1#t2 to be the S-expression formed by
adding a new root node whose left and right children are the root nodes of t1 and t2 respectively.
If a collection E of S-expressions is closed under # then (E, #) is an universal algebra. The set of
weights of single leaf trees in E is called the expression base of (E, #). By the size of an expression
is meant the number (possibly infinite) of leaf nodes.

Let (A, ∗) be universal algebra, and (E, #) be an universal algebra of A-expressions such that
the expression base of (E, #) is A. For each a ∈ A let t(a) be the single leaf tree weighted by a.
An evaluation of (E, #) in A is a homomorphism v : (E, #) → (A, ∗) such that v(t(a)) = a.

Let vA be an evaluation of E in A. Given another universal algebra (B, ◦), and a map f : A →
B, the collection of expressions f(E) is the set of expressions obtained by changing each weight a
to the weight f(a). Let vB be an evaluation of f(E) in B. Let g : B → A such that (f, g) is a
conversion of A into B.

If there exists a cardinality c, such that for each expression e ∈ E that is at most size c,
g(vB(f(e))) = vA(e) then the conversion (f, g) is said to be of duration at least c. If the equality
holds for all e ∈ E, then the conversion is said to be permanent in E.

4.2 Application to topological abelian groups

We now specialise the definition somewhat and derive results that will enable us to answer directly
the question left open at the end of section 3.

If (A, ∗) is a topological universal algebra with an identity element, then we can usefully define
a value for some countably infinite expressions by a form of limit. Specifically, for any infinite
expression generate the set of all finite expressions obtained by replacing enough subtrees by the
identity element in (A, ∗). If the set of values of these finite expressions has a unique accumulation
point, then we call it the limiting value of the infinite expression, and take it as the value of the
infinite expression. In the following we assume that we are using such an evaluation.

Let (A, ∗) be an abelian group. It should be clear from the above discussion that any evaluation
is uniquely defined on the finite expressions, and that any evaluation that respects limits must be
uniquely defined on countable sized expressions which have a limit. Such an evaluation corresponds
to the intuitive notion of evaluation of expression in an universal algebra.

An infinite series in an abelian group is an expression in which the left hand child of each node
is a leaf. Thus there is exactly one element at any given depth i from the root node. Call this the
element ai. The value of such an expression (if it exists) is denoted by Σ∞

i=1ai.
Let (B, ◦) be another topological abelian group, and (f, g) a conversion of A to B. If the sum

Σ∞
i=1f(ai) has a limiting value whenever Σ∞

i=1ai does, and further if when it does we also have that
g(Σ∞

i=1f(ai)) = Σ∞
i=1ai Then (f, g) is said to be a permanent conversion of A to B.

Theorem 3 If (f, g) is a permanent conversion, then g is a homomorphism of G =< f(A) > onto
A.

Proof: By definition each a and b in G can be expressed as a = Σ(f(ai) and b = Σ(bi) for some
ai and bi all in A. so g(a+b) = g(Σf(ai)+Σf(bi)) = g(Σ(f(ai)+f(bi))) = Σ(ai +bi) = Σai +Σbi.
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We can also demonstrate that g is continuous as follows:
Let zi ∈ A be defined for i ∈ ZZ, and suppose that zi → z ∈ A. Let ∆i = zi+1 − zi and

δi = g(∆i).
So zn = Σn

i=1∆i

Thus g(zn) = g(Σn
i=1∆i) = Σn

i=1δi.
Let yn = Σn

i=1δi and y = Σ∞
i=1δi

Now g(z) = g(Σ∞
i=1∆i = Σ∞

i=1g(∆i) = Σ∞
i=1δi

So zi → z implies that g(zi) → g(z).
So g : G → A is a continuous homomorphism.
Finally, g must be onto A, since any element in A can be obtained as a sum of two other values

in A.
We have thus proved

Theorem 4 If (f, g) is a permanent limit respecting conversion from one topological abelian group
to another, then g is an onto homomorphism.

We are now in a position to demonstrate the answer to the question of optimality of addition in
(IR2,+). The question can be answered in a slightly more general setting. Consider a permanent
conversion (f, g) from (IRm,+) into (IRn,+). From the above discussion g : IRn → IRm must be a
continuous onto homomorphism. But the dimension of g(B) as a vector space is no greater than
the dimension of B, so for this to occur, the dimension of A must be no greater than the dimension
of B.

Thus (IRn,+) is optimal, in so far as it cannot be permanently converted to a smaller expression
using the standard arithmetic operations (due to the logarithm relation between addition and
multiplication).

It was part of the point of this paper to show that this was only just true, ie, we can convert
for any duration, as long as we know what that duration is before hand.

It is however interesting to note that the amount of work to add the numbers, give say, a
decimal digit representation, is not improved by the conversion, since the number of digits to
handle increases.

5 Discussion

The fact that we have decided what operations we can have in IR is important. Since IR and
IR2 are equivalent as sets we could just get any one to one map between them, and construct an
appropriate operation that mimics two dimensions of addition, but this operation is not available,
and if we constructed it out of arithmetic operations we would need at least two of them, which
means that there is no saving on the work required.

We can look at this a bit like a local topological group, ie, that the structure is a group as
long as you don’t multiply things to far from the identity element. In a similar manner, we see a
conversion as respecting the structure of the evaluation homomorphism acting on the class of formal
expressions in the algebra. As long as you stick to simple expressions the conversion produces the
right answer, but outside some boundary it might not.

A similar phenomenon in computing is type conversion from int to float. If we convert and then
add, and take the result back to an int then sometimes the result is correct, but if the values are
too big, the float will drop significant digits in the result. Another example, modulo n arithmetic
converted to modulo m arithmetic, if m > 2n is not a multiple of n, then a single addition will
work, but multiple additions might not.

We can compose conversions in a natural manner, by composing the individual functions.
Define (f1, g1) ◦ (f2, g2) to be (f2 ◦ f1, g1 ◦ g2). Composition of conversions is associative, since
composition of functions is. Further, the pair composed of two copies of the identity function in a
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single algebraic structure is a conversion from an abstract algebraic structure to itself. Thus, the
set of algebraic structures, with conversions, forms a category.

The challenge here is to construct a mature algebraic theory of conversions. Algebraically
universal conversions with the projective property, similar to projective modules, could be useful
for determining the optimality of whole classes of algorithms by making it possible to demonstrate
the non-existence of conversions to simpler structures. Generically, the relationship of conversions
to homomorphisms seems similar to that between semi-groups and groups. An explicit connection
might be interesting. Construction of a natural group Con(A, B) of conversions from A to B seem
problematical due to the interaction between the two halves of the conversion. However, such a
construction in similar manner to Hom(A, B), could lead to a structure theory of conversions,
including a form of homology theory. Further work will be required to answer these questions.
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