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Abstract

The geographical relative risk function is a useful tool for investigating the spatial

distribution of disease based on case and control data. The most common way of esti-

mating this function is using the ratio of spatial kernel density estimates constructed

from the locations of cases and controls respectively. This technique is known as the

density ratio method. The performance of kernel density estimators depends on the

choice of kernel and the smoothing parameter (bandwidth). The choice of kernel is

not critical to the statistical performance of the method but the bandwidth is crucial.

Different bandwidth selectors such as least squares cross validation (LSCV) and like-

lihood cross validation (LCV) are chosen to control the degree of smoothing during

the computation of the density ratio estimator.

An alternative way of estimating this relative risk function is local linear regression

approach. This deserves consideration since the density ratio estimator can be less

natural when the relative risk has a global trend, as one might expect to see when

there is a line source of risk such as a polluted river or a road. The use of local linear

regression for estimation of log relative risk functions per se has not been examined

in any detail in the literature, so our work on this methodology is a novel contribu-

tion. A detailed account of local linear approach in the estimation of log relative risk

function is provided, consisting of an analysis of asymptotic properties and a method

for computing tolerance contours to emphasize the regions of significantly high risk.

Data driven bandwidth selectors for the local linear method including a novel plug-in

methodology is examined.
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A simulation study to compare the performance of density ratio and local linear es-

timators using a range of data-driven bandwidth selectors is presented. The analysis

of two specific data sets is examined.

The estimation of the spatial relative risk function is extended to spatio-temporal

estimation through the use of suitable temporal kernel functions, since time-scale is

an important consideration when estimating disease risk. The extended version of

the kernel density estimation is applied here to compute the unknown densities of the

spatio-temporal relative risk function. Next we investigate the time derivatives of the

space-time relative risk function to see how the disease change with time. This dis-

cussion provides novel contributions with the introduction to time derivatives of the

relative risk function as well as asymptotic methods for the computation of tolerance

contours to highlight subregions of significantly elevated risk. LSCV and subjective

bandwidths are used to compute these estimators since it performs well in density

ratio method. The analysis on a real application to foot and mouth disease (FMD)

of 1967 outbreak is employed to illustrate these estimators.

The relative risk function is investigated when the data include a spatially varying

covariate. The discussion produces the introduction to generalized relative risk func-

tion in two ways and also asymptotic properties of estimators for both cases as novel

works. Generalized kernel density estimation is used to replace the unknown densi-

ties in the relative risk function. Asymptotic theories are used to compute tolerance

contours to identify the areas which show high risk. LSCV bandwidth selector is

described in this estimation process providing the implicit formulae. We illustrate

this methodology on data from the 2001 outbreak of FMD in the UK, examining the

effect of farm size as a covariate.
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ĝ−i(x;h) Leave-one-out estimate based on control data
hopt The optimal bandwidth
hMISE MISE- optimal bandwidth
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Chapter 1

Introduction

1.1 Motivation and problem description

Modern epidemiology began with the spatial analysis of John Snow’s work on cholera

in the middle of nineteenth century (see Wand, 2008). However, over the last two

decades, there have been major developments in the statistical methods available to

investigate the patterns of epidemiological diseases not only in space but also in space

and time. So the work in this thesis is motivated by such epidemiological outbreaks

in the world, be they in human or animal populations, since it significantly influences

to the economy, e.g. foot-and-mouth disease, Salmonella , dengue, cholera, etc. This

thesis is concerned with the statistical methods in the field of epidemiology, which

can be defined as the study of how disease is distributed among populations and of

the factors that impact this distribution. Epidemiology involves the investigation of

determinants of human as well as animal health and disease, for the improvement of

health care and the prevention of illness. In recent years, epidemiology has become

an increasingly important approach in both public health and clinical practice. It is

now used together with laboratory research to identify risk factors for diseases.

1
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More specifically, this thesis focuses on statistical methodologies in geographical epi-

demiology, which is defined as the study of geographical factors affecting the health

and illness of populations. The typical characteristic is that the geographical loca-

tion is considered as an important explanatory variable, either because it reflects an

environmentally determined element of risk or because people with similar risk char-

acteristics live together. So this risk varies from place to place. (See Gordis, 2000.)

One of the milestones in the development of epidemiology was the case-control study,

which has played a major role during the second half of the twentieth century in iden-

tifying the association between the disease and the potential risk factors. It works

by taking separate samples of diseased cases and of controls at risk of developing

disease (see Gordis, 2000). In such a study, it is important to know about selecting

the sample of cases and controls.

Cases can be chosen from different kinds of sources, which include hospital patients,

patients in physicians’ practices, or clinic patients. Many health authorities maintain

registries of patients with certain diseases, such as cancer, which can serve as valuable

sources of cases for such studies.

Choice of the most suitable control group is one of the most difficult debated aspects

of the study region. One can interpret selecting the control group in different ways.

However, the fundamental issue relating to the selection of controls is that they ought

to be a representative of all persons without the disease in the population from which
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the cases are selected. As an example, controls may be selected either from non-

hospitalized people living in the society or from hospitalized patients admitted for

diseases other than that for which the cases are admitted.

Generally, case-control studies are best suited to the study of rare diseases (e.g. larynx

cancer) and especially useful when a study must be done quickly and inexpensively.

Suppose that we have case-control data for a particular disease and we need to ana-

lyze them to serve as a measure of how the risk varies from location to location. This

amounts to comparing the density function for the incident cases with that of the

control population. The natural way to make this comparison is through the ratio,

which defines a relative risk function. Bithel (1990, 1992) proposed that relative risk

function over a geographical region can be defined as a ratio of two densities, where

the numerator represents the case data while the denominator determines the control

data.

Let us familiarize with a case-control study. The data used in the Figure 1.1 consists

of the residential locations of all the cases of larynx and lung cancer, diagnosed in

part of Lancashire, England, during 1974-1983. The locations of 58 larynx cancer are

considered as cases while 978 lung cancer as controls since it is standardized by the

distribution of controls. The cases and controls are denoted by • and + respectively.

An industrial incinerator, which is now disused but is a suspected source of risk for

larynx cancer, is also located in this region, denoted by a �. A lot of cases and

controls can be seen in highly populated urban areas while there is low population

density in rural areas. The main aim here is to examine the variation of risk over the
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Figure 1.1: The geographical distribution of larynx (58 cases-•) and lung (978
controls-+) cancer data. Incinerator is displayed as �.

whole region (in essence and exploratory data analysis). In addition to this aim, we

wish to assess any increase of the risk of larynx cancer in the vicinity of the incinerator.

Estimates of the relative risk function have been applied effectively in many situations.

For example, Kelsall & Diggle (1995a) discuss certain methodological advances in the

estimation of relative risk function for the one-dimensional case and extend this work

to the bivariate case as in Kelsall & Diggle (1995b). In the latter paper, they have
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introduced tolerance contours in order to assess the significant elevated risk surface.

Apart from this methodological research, some have worked on real applications of

the relative risk function. That is, Wheeler (2007) carries out a comparison of spatial

clustering and cluster detection techniques for childcare leukemia incidence in Ohio.

Sabel et al. (2000) study the estimation of relative risk for motor neurone disease

in Finland. Kelsall & Diggle (1998) study two methods in the relative risk estima-

tion. They are the density ratio (our traditional method) and the binary regression

approach. They analyze cancer data from the Walsall district health authority, UK.

As noted previously, the relative risk function is the ratio of case to control densities.

These must be estimated in practice. There are two approaches to determine the

unknown density function for a random sample. One can either choose the paramet-

ric approach, which requires the assumption that the random sample belongs to a

parametric family of distributions and then estimating the unknown parameters, or

the non-parametric approach, which requires less rigid assumptions about the den-

sity of the random sample (Silverman, 1986). An obvious drawback of the parametric

approach is that important data structure can be masked when there is no previous

knowledge of the sample to assist in the choice of the parametric family of distribu-

tions. So in this thesis, we focus on non-parametric models in our estimators.

1.2 Organization of the thesis

There are three main objectives of this thesis. They are to examine the spatial varia-

tion in risk of disease over a geographical region, to identify hot-spot areas of increased
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risk and to investigate how this risk changes through time or with other covariates.

Note that we focus on methods for preliminary exploration and visualization of the

relative risk over space, rather than formal model building and inference.

Chapter 2 commences with a comprehensive review of spatial relative risk function

and its estimation using kernel smoothing, which is used to estimate the unknown

densities in the relative risk function. These methods are discussed in both univariate

and multivariate (bivariate) cases. Moreover, we investigate the crucial matter of se-

lecting the smoothing parameter for kernel density estimation. We then look at edge

effects which arise when there are observations near the boundary of the region, and

stabilization of the relative risk estimates in areas of sparse data. This Chapter also

provides a discussion about the existing asymptotic properties of bias and variance of

kernel density estimates and relative risk estimates (on log scale). The use of kernel

density estimates (KDE) and relative risk estimates is illustrated in two real applica-

tions, to the Chorley-Ribble larynx cancer data that we introduced earlier, and data

on Myrtle-Wilt in Tasmania.

Chapter 3 examines two cross-validation bandwidth selectors, namely least squares

cross validation (LSCV) and likelihood cross validation (LCV). Then we carry out a

simulation study to contrast the performance of LSCV over LCV in the estimation

of log relative risk function. The performance of these bandwidth selectors are then

illustrated in the Chorley-Ribble larynx cancer data.

We explore a local linear method for estimation of the log relative risk function in
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Chapter 4. We provide a direct proof of results for the asymptotic bias and variance

of the local linear estimator. A large simulation study is carried out to contrast the

performance of the density ratio method over local linear approach in the computa-

tion of relative risk function. Here, we introduce a new plug-in bandwidth selection

method for the local linear estimator. During the simulation study, LSCV bandwidth

selector is used to compute density ratio estimator while LCV and our novel plug-in

(PI) bandwidth selectors are employed for local linear estimator. The use of the rel-

ative risk estimates is illustrated in three real data sets, Myrtle Wilt, Chorley-Ribble

and FMD in 1967 outbreak. These real data are used to compute log relative risk

estimates for both methods and highlight the regions of significantly elevated risk by

computing 95% tolerance contours. The work in this Chapter 4 is a novel contribution.

In the first half of Chapter 5, we expand the work on spatial analysis in Chapter 2 into

the context of space-time. We define a spatio-temporal relative risk function and also

a kernel density function. As in spatial analysis, we discuss about LSCV and LCV

bandwidth selectors in spatio-temporal relative risk estimation. The formula for the

asymptotic properties of spatio-temporal estimators are obtained and then tolerance

contours are examined to identify the regions having significantly high risk. In the

second half of Chapter 5, we introduce time derivatives of log relative risk function

since the rate of change of disease risk is important. The theoretical properties of

its estimators are derived. These estimates are illustrated with a real application to

foot and mouth disease (FMD) data highlighting the use of 5% tolerance contours to

identify the areas where the relative risk is changing. The work in the second half of

Chapter 5 retains as a novel contribution to the field of spatio-temporal exploratory
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data analysis.

We generalize the relative risk function in Chapter 6 when there is a spatially varying

covariate. The relative risk function is defined in two ways. We provide the asymp-

totic properties in both cases. LSCV is employed to choose the bandwidth. A real

application to FMD, which is diagnosed in the county of Cumbria, Northern England

in 2001, is used to produce these estimators when the covariate is considered as the

total farm population. The whole work we did in Chapter 6 is a novel addition to

the relevant fields.

In Chapter 7, we summarize the results, acquire throughout this thesis and suggest

future directions that can be carried on.

For convenience, proofs of results are collected together in the Appendix.



Chapter 2

Non-parametric estimation of

spatial relative risk function

2.1 Introduction

Suppose that we observe the locations of randomly sampled cases and controls for a

particular disease within a designated geographical region R. A question of consider-

able epidemiological interest is whether or not the disease risk varies across the region,

and if so in what manner. To answer this, suppose that we obtain random samples

of the locations of n1 cases and n2 controls, from densities f and g respectively. We

order the data so that x1, . . . ,xn1 are case locations and xn1+1, . . . ,xn1+n2 are control

locations. Bithell (1990) defined the geographical relative risk function, r for x ∈ R

as a density ratio

r(x) =
f(x)

g(x)
. (2.1.1)

9
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As pointed out by Wakefield and Elliott (1999), it would be more precise to refer to

r as a relative odds function, but the distinction is essentially ignorable if the disease

is rare. The mean value of r(x) averaged, with respect to the control density over R

is one i.e.,

Ex∼g[r(x)] =

∫
R
r(x)g(x) dx

=

∫
R

f(x)

g(x)
g(x) dx

=

∫
R
f(x) dx

= 1.

This means that r(x) > 1 indicates elevated risk of disease at the point x in compar-

ison to the region as a whole.

In practice, this relative risk function can be estimated by the ratio of kernel density

estimates. i.e.

r̂(x) =
f̂(x)

ĝ(x)
; x ∈ R. (2.1.2)

where f̂ and ĝ represent the kernel density estimates constructed from case and con-

trol data respectively. See for example Bithell (1991). Kelsall & Diggle (1995a)

discussed the estimation of r for the one dimensional case and extended to the bivari-

ate setting in Kelsall & Diggle (1995b). In this estimation process, Kelsall & Diggle

(1995a,b) suggest using the relative risk estimator on log scale in order to handle f

and g symmetrically.
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We therefore explicitly define the log relative risk function for x ∈ R as

ρ(x) = log [r(x)]

= log

[
f(x)

g(x)

]
= log [f(x)]− log [g(x)] (2.1.3)

and an estimate of it is given by

ρ̂(x) = log[f̂(x)]− log[ĝ(x)]. (2.1.4)

This density ratio methodology has been used successfully in a variety of applications

in both human and veterinary epidemiology, see Berke (2005) and Wheeler (2007). In

particular, this direct density ratio estimator of the relative risk function has proven

adept at identifying approximately circular or elliptical areas of elevated risk, often

around postulated point sources of risk (Hazelton & Davies, 2009). Primarily we shall

focus on the estimation of ρ rather than r.

The performance of density ratio depends critically on the choice of bandwidth.

Progress in the development of reliable data-driven bandwidth selectors for estima-

tion of relative risk has been relatively slow. Kelsall & Diggle (1995a, 1998) examine

the least squares and likelihood cross-validation techniques, while Hazelton (2008)

has proposed a weighted cross-validation method. Kelsall & Diggle (1998) have con-

ducted a small simulation study including the density ratio estimator implemented

using cross-validation bandwidth selectors, and have found relatively little difference

in performance. The choice of bandwidth selectors are described in detail in Chapter

3.
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In the remainder of this chapter, we review methods and techniques in kernel den-

sity estimation that will provide the necessary foundation for the developments in

subsequent chapters. We define the kernel density estimator for univariate case in

the estimation of spatial relative risk function (Silverman 1986) and provide a brief

description of it in Section 2.2.1. Then we extend it to bivariate case in Section 2.2.2.

According to previous research, sparse data can be a problem for relative risk esti-

mation. So it is discussed in Section 2.3.1. It is common to observe data near the

boundary of the region and this leads to edge effects during density estimation. Edge

correction process is examined in Section 2.3.2. We present the fundamental theories

for the density ratio approach in Section 2.4. Also we look at the bias and variance

asymptotic properties for the kernel density estimator and hence log relative risk es-

timator. In Section 2.5, we examine the computation of 5% tolerance contours to

highlight the areas of significantly elevated risk. We analyse two real applications

in Section 2.6 to illustrate the use of these estimators. The first data set relates to

the incidence of larynx cancer in the Chorley-Ribble Health region of Lancashire in

England while the second is concerned with the distribution of Myrtle Wilt in an area

of forest in the Australian state of Tasmania.

2.2 Kernel density estimation

Kernel smoothing is an important data smoothing technique where inferences about

the population are made, based on a finite data sample. The simplest data smoothing

application is for estimation of probability density functions. Kernel density estima-

tion is a method to estimate the probability density function of a random variable
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when a parametric model is inappropriate or unknown, i.e. a non-parametric ap-

proach. Most non-parametric density estimators are more computationally demand-

ing and a lot of research on this can be found in the literature.

The earliest non-parametric density estimator for univariate case is the histogram. Af-

ter that kernel, orthogonal series and nearest neighbor methods were invented. Later,

penalized likelihood, polynomial spline, variable kernel were introduced. Histograms,

frequency polygons, spline estimators, orthogonal series estimators and penalised like-

lihood estimators are discussed in Silverman (1986), Scott (1992) and Simonoff (1996).

However, we focus on kernel density estimators because they are easy to interpret and

to implement. See Wand & Jones (1995).

2.2.1 Univariate case

We begin with the univariate kernel density estimation since it is the most straight-

forward among several types of kernel estimators. The properties can be studied

thoroughly based on its simplicity. Suppose we have a random sample x1, . . . , xn1 ,

drawn from a common density f . Then the univariate kernel density function can be

estimated by f̂ as follows

f̂(x;h) = n−1
1

n1∑
i=1

Kh (x− xi) (2.2.1)

where K is the unscaled kernel function which is typically is a symmetric probabil-

ity density function with finite variance. Kh is the scaled kernel function and h is

the constant bandwidth which is a positive, non-random number. The scaled and

unscaled kernels are related by Kh(x) = h−1K(h−1x). To obtain f̂(x;h), a scaled
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Figure 2.1: Univariate kernel density estimate based on six observations: solid lines -
individual kernels, bold line - kernel density estimate

kernel function of probability mass n−1
1 is placed at each data point. These are then

summed up together to give a combined curve. This combined curve is the kernel

density estimate as given in Figure 2.1. Six data points are x1 = -0.9, x2 = -0.5, x3

= -0.15, x4 = 2.6, x5 = 2.91 and x6= 4.3, marked on the x-axis. The kernel K is the

standard normal probability density function (the solid lines are the scaled kernels).

We see that the kernel density estimate is trimodel, reflecting the shape of the data.

Here we use a subjective bandwidth, h = 0.468.

The kernel function, K determines the shape of the curve while the bandwidth h
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Figure 2.2: Scaled univariate kernel functions.

determines its width. It is generally accepted that the kernel function is not critical

(see Silverman 1986, Chap. 3). Some commonly used kernel functions are uniform,

triangular, biweight, triweight, Epanechnikov, Gaussian (normal), etc. Figure 2.2

shows the kernel functions that are commonly applied in density estimation. The

Gaussian kernel is often used, i.e. K(x) = φ(x), where φ is the standard normal

density function.

The choice of bandwidth is particularly important, since it controls the amount of

smoothing. The effect of varying bandwidth is given in Figure 2.3 which shows the
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Figure 2.3: Kernel density estimates for 299 observations of a bimodal density. Band-
widths: (a) 1; (b) 8; (c) 4.

kernel density estimates constructed from different bandwidths. The crucial task

is thus to find an automatic, data-driven bandwidth selector. The estimates have

been constructed from a set of 299 observations which is of eruptions of Old Faithful

geyser in Yellowstone National Park, USA (Weisberg, 1980). In Figure 2.3(a), kernel

estimate is constructed using bandwidth, h = 1. It can be seen that the narrowness

of the kernel means that the averaging process performed at each point is based on

relatively few observations resulting in a very rough estimate of f̂(x). This estimate

pays too much attention to the particular data set at hand and does not allow for

the variation across samples. Such an estimate is said to be undersmoothed. Figure
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2.3(b) shows the kernel density estimate constructed from the same data set, but with

different bandwidth, h=8. This result is a much smoother estimate which is really

too smooth since the bimodal structure has been smoothed away. This is an example

of an oversmoothed estimate. A compromise is reached with the bandwidth, h=4 in

Figure 2.3(c). In this case, the kernel estimate is not overly noisy, yet the essential

structure of the underlying density has been recovered which is bimodal. So care

must be taken while estimating the smoothing parameter. The choice of bandwidth

is discussed in detail in chapter 3. This univariate case is extended to the bivariate

setting in the next Section.

2.2.2 Bivariate case

The demand for non-parametric density estimates for recovering the structure in bi-

variate data is popular since it is easy to understand a perspective view or contour plot

of a two-dimensional density function. However, kernel smoothing estimator in higher

dimensions requires the specification of many more bandwidth parameters. Scott and

Thompson (1983) consider the presentation of four- and five-dimensional densities.

For further details, see Silverman (1986) and Wand & Jones (1995). Throughout this

thesis, we use bold face to display the locations in higher dimensional space.

Assume that x1, . . . ,xn1 is a random sample drawn from a generic density f . Then

the single bandwidth 2-dimensional kernel density estimator is defined by

f̂(x;h) = n−1
1

n1∑
i=1

Kh (x− xi) . (2.2.2)

where x = (x1, x2)T and xi = (xi1, xi2)T , i = 1, ..., n1. Here K is the unscaled kernel,
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Kh is the scaled kernel and h is the bandwidth. The scaled and unscaled kernels are

linked by Kh(x) = h−2K(h−1x) and K is a bivariate kernel function satisfying∫
R
K(x)dx = 1 (2.2.3)

(see Cacoullos, 1966). A well-known choice for kernel K is the standard bivariate

Gaussian density function

K(x) = (2π)−1exp

(
−1

2
xTx

)
(2.2.4)

in which case Kh(x − xi) determines the normal distribution with mean xi and co-

variance matrix h2I.

We concentrate our attention on kernel functions K that are spherically symmetric

probability density functions so that the scaled kernel Kh is isotropic. This is ar-

guably desirable for applications in geographical epidemiology. See Wand & Jones

(1993) and Doung & Hazelton (2003). As they lead to smooth density estimates and

simplify the mathematical analysis, we use Gaussian kernels throughout this thesis.

In this Section, we are considering bivariate kernel density estimators since our data

is (primarily) bivariate.

One of the fundamental steps in exploration of a bivariate data set is to examine a

scatter plot of the data. However, it is often the case that a density estimate will de-

tect features which cannot be seen in the scatter plot (Silverman, 1986). An example

is given in Figure 2.4. These data contains 58 larynx cancer bivariate data from the

Chorley-Ribble health authority. The dispersion of this data set is already shown in

the Figure 1.1 of Chapter 1. The left panel of Figure 2.4 shows the scatter plot of
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Figure 2.4: Left panel displays the scatter plot of larynx cancer data and the right
panel shows the bivariate kernel density estimate, constructed from these data. The
subjective bandwidth, 2 is used.

larynx cancer data and the right panel displays the bivariate kernel density estimate

constructed from these data. Here in the latter panel, two modes are visible and these

modes indicate major regions of having larynx cancer. Note that these modes are not

immediately apparent in the scatter plot. Even if the clusters were clearly depicted

in the scatter plot, the density estimate would still have the advantage of specifying

estimates of the locations of the two modes.

We focus on the fixed bandwidth case in this thesis because there are many unan-

swered questions about relative risk estimation with fixed bandwidths. Nonetheless,

adaptive estimation is also possible (see Davies & Hazelton, 2010).
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2.3 Technical problems arising in relative risk es-

timation

In this Section, we discuss about two problems arising in relative risk estimation.

The first problem is regarding sparse data. The relative risk estimator is unstable in

areas of sparse data and is undefined if the control density is estimated as zero. We

may therefore consider adding a stabilizing constant to the top and bottom of kernel

density estimates to avoid such noisy bumps. This is discussed in Section 2.3.1. The

boundary effects is the second problem. When the data lie at the boundary of the

region, some proportion of KDE is lost and hence make a significant difference to

the resultant KDE and hence relative risk estimator. So we use an edge correction

technique to control this problem in estimating KDE at boundary points and it is

described in Section 2.3.2. These two problems are discussed for bivariate case.

2.3.1 Data scarcity

Sparse data is often encountered in epidemiological studies since the distribution of

data can be sometimes highly non-uniform over the geographical region. We recall

here the Figure 1.1 of Chorley-Ribble cancer data. There is highly populated urban

areas as well as low population density in rural areas. The marked regions in Figure

2.5 shows the sparsely populated rural areas, which are located in southeast and

southwest of the geographical region. At these locations, kernel density estimates

of cases and controls can be very small or even zero (if using a kernel with finite

support), and hence the relative risk estimate is unstable or even undefined. This

type of situation requires a bigger bandwidth h in order to control the noise where the
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data are sparse. See Hazelton & Davies (2009). Therefore, the authors Bithel (1990)

and Anderson & Titterington (1997) suggest a stabilizing process of the underlying

density estimators by replacing r̂ with

Figure 2.5: Sparse data can be seen mainly in southwest and southeast regions.

r̃(x) =
f̂(x) + δ

ĝ(x) + δ
, (2.3.1)
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where δ > 0 is a small positive number. This particular number is labeled as the

‘stabilization constant’. Then the log relative risk function can be redefined as

ρ̃(x) = log[r̃(x)]

= log

[
f̂(x) + δ

ĝ(x) + δ

]
. (2.3.2)

One can choose δ = 10−8 (e.g.). Hazelton & Davies (2009) have chosen δ = δ0 maxx[ĝ(x)]

for a small constant δ0. While this is an interesting idea, it is unclear as to how δ may

be chosen optimally, and what the effects are on the properties of the relative risk

estimator. We do not pursue this methodology further in this thesis, but we choose

a large bandwidth to resolve this issue by controlling the variance of the estimates in

areas of low density.

2.3.2 Edge correction

All spatial analyses in epidemiology are usually carried out within a finite geographical

region R. So our theory on kernel density estimates is based on the assumption that

the densities of the cases and controls outside the study region R are zero. But

in practice, it is usually the case that some observations lie at the boundary of the

region of interest. The raw estimated densities are positive outside the region, thereby

introducing a bias near the edges of R. This can be clearly seen in Figure 2.6. Here

the shaded subregions contain mass from the kernel density estimates and hence result

in a loss of probability mass within the finite region. Density estimates, and hence

relative risk estimates, constructed from such data tend to be misrepresented by these

boundary effects. So we should employ boundary corrections methods to dodge this

obstacle. Lawson et al. (1999) have mentioned about elimination of edge effects in

disease mapping. Some suggestions for reducing edge effects can be found in Marron
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& Ruppert (1994). However, many of the one-dimensional edge correction methods in

the current literature are not easily extensible to higher dimensions. For this reason,

we shall use simple explicit edge correction terms, introduced by Diggle (1985) and

later by Kelsall & Diggle (1995b). They give an adjusted kernel estimator as follows:

f̄h(x) =
f̂h(x)

qh(x)
,

where qh(x) =
∫
h−2K{h−1(u − x)}du is the correction factor for the case data.

Figure 2.6: Shaded areas represent the subregions which contribute to the kernel
estimate, also is located outside of the region, so needs edge correction.

Note that f̄h(x) does not strictly integrate to unity on R. Similarly, ḡh(x) can be
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defined as above for the control data. Using f̄ and ḡ, we rescale relative risk estimate,

r̄ including edge correction terms as follows.

r̄h1,h2(x) =
f̄h1(x)

ḡh2(x)
;x ∈ R

=
f̂h1(x)

q1(x)

q2(x)

ĝh2(x)

= r̂h1,h2(x)
q2(x)

q1(x)
,

where q1(x) = qh1(x) and q2(x) = qh2(x).

Hazelton (2008) mentions that the rescaling factors cancel out when common band-

widths are chosen for the estimation of case and control densities. That is, h1 = h2

and then r̄h1,h2(x) = r̂h1,h2(x). So we use common bandwidths in this thesis for the

case and control density estimates to avoid the need for edge correction.

2.4 Asymptotic properties

2.4.1 Univariate case

Let us consider f̂(x;h) as an estimator of the density function f(x) at some point x

and X be a random variable having the density f . Assume that

1. The density f has second derivative f
′′

which is continuous and square inte-

grable.

2. The bandwidth h → 0 and nh → ∞ as n → ∞ where n = n1 + n2 with n1/n2

fixed.

3. The kernel, K is a bounded probability density function having finite second
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moment and symmetric about the origin, i.e.
∫
K(x)dx = 1,

∫
xK(x)dx = 0,

µ2(K) =
∫
x2K(x)dx <∞.

Assuming that the above conditions are satisfied, it can be shown that (see Bartlett,

1963) the bias and the variance of f̂(x;h) is as follows:

Bias[f̂(x, h)] =
1

2
h2µ2(K)f

′′
(x) + o(h2) (2.4.1)

and

Var[f̂(x, h)] = n−1
1 h−1f(x)R(K) + o(n−1

1 h−1), (2.4.2)

where R(K) =
∫
K(x)2dx. Notice that the bias of f̂ is asymptotically proportional to

h2. So to reduce bias, one needs to take small bandwidth h. However, the bandwidth,

h to be small makes a rise in the variance of f̂ since the variance of f̂ is proportional

to n−1
1 h−1. By adding the variance and the squared bias of f̂(x, h), we get the mean

squared error

MSE{f̂(x, h)} = n−1
1 h−1f(x)R(K) +

[
1

2
h2µ2(K)f

′′
(x)

]2

+ o(n−1
1 h−1) + o(h4).

If we integrate this over x ∈ R then we obtain

MISE{f̂(x, h)} ≈ n−1
1 h−1R(K) +

[
1

2
h2µ2(K)

]2 ∫
[f
′′
(x)]2dx.

By differentiating with respect to h and setting the derivative equal to zero, we get

the closed form expression of the optimal bandwidth as follows.

hopt =

[
R(K)

n1(µ2(K))2
∫

[f ′′(x)]2dx

]1/5

=

[
R(K)

n1(µ2(K))2R(f ′′)

]1/5

. (2.4.3)
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The expression 2.4.3 is interpretable as that hopt is inversely proportional to [R(f
′′
)]1/5.

Since |f ′′(x)| is a measure of the curvature of f , the functional R(f
′′
) measures the

total curvature of f . When R(f
′′
) is small, more smoothing is optimal while larger

R(f
′′
) makes the optimal smoothing smaller. We now use these results of Kelsall &

Diggle (1995) to derive the properties of ρ̂.

Theorem 2.4.1. Let x be a fixed element in the interior of support of f. Assume that

the conditions (1)-(3) are satisfied. Then

Bias[ρ̂(x, h)] =
1

2
µ2(K)

[
h2

1

f
′′
(x)

f(x)
− h2

2

g
′′
(x)

g(x)

]
+ o(h2

1 + h2
2)

and

Var[ρ̂(x, h)] = R(K)
[
n−1

1 h−1
1 f(x)−1 + n−1

2 h−1
2 g(x)−1

]
+ o(n−1

1 h−1
1 + n−1

2 h−1
2 ).

(See Kelsall & Diggle, 1995). The proof of this theorem can be found in the Appendix

A.1.

Note that the bias approximation of ρ̂ is zero if f = g and h1 = h2. We can assume

that f(x) > ε and g(x) > ε for all x ∈ R, where ε is assumed known.

2.4.2 Multivariate case

We obtain the asymptotic properties of bias and variance of f̂ and ρ̂ for multivariate

setting by making the following assumptions.

1. Each entry of the Hessian matrix Hf (.), which is the square matrix of second-

order partial derivatives of f , is piecewise continuous and square integrable.
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2. H = Hn1 is a sequence of bandwidth matrices such that n−1
1 |H|−1/2 and all

entries of H approach zero as n1 →∞. Also we assume the ratio of the largest

and smallest eigenvalues of H is bounded for all n1.

3. K is bounded, compactly supported d-variate kernel satisfying
∫
K(x)dx = 1,∫

xK(x)dx = 0 and
∫
xxTK(x)dx = µ2(K)I, where µ2(K) =

∫
x2
iK(x)dx is

independent of i.

Theorem 2.4.2. (Multivariate Taylor’s Theorem)

Let f be a d-variate function and αn be a sequence of d × 1 vectors with all compo-

nents tending to zero. Also let Df (x) be the vector of first-order partial derivatives of

f and Hf (x) be the Hessian matrix of f , the d× d matrix having (i, j) entry equal to
∂2

∂xi∂xj
f(x). Then, assuming that all entries of Hf (x) are continuous in a neighbor-

hood of x, we have

f(x + αn) = f(x) + αTnDf (x) + 1
2
αTnHf (x)αn + o(αTnαn)

(See Wand & Jones, 1995).

Theorem 2.4.3. If the above conditions are satisfied then

Bias[f̂(x,H) = 1
2
µ2(K)tr{HHf (x)}+ o{tr(H)}

and

Var[f̂(x,H)] = n−1
1 |H|−1/2R(K)f(x) + o(n−1

1 |H|−1/2).

Theorem 2.4.4. If the above conditions are satisfied then

Bias[ρ̂(x,H)] = 1
2
|H|1/2µ2(K)

[
∇2f(x)
f(x)

− ∇
2g(x)
g(x)

]
+ o(|H|1/2)

and

Var[ρ̂(x,H)] = R(K)

|H|1/2 [n−1
1 f(x)−1 + n−1

2 g(x)−1] + o
(
n−1

1 |H|−1/2 + n−1
2 |H|−1/2

)
.
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where ∇ is the Laplacian operator.

Since we are considering isotropic smoothing, we use H = h2I. Then the bias and

variance terms in Theorem (2.4.3) reduces to the following Theorem.

Theorem 2.4.5. If x is an interior spatial location of R, then

Bias[f̂(x;h)] =
1

2
µ2(K)h2∇2f(x) + o(h2) (2.4.4)

and

Var[f̂(x, h)] = n−1
1 h−2R(K)f(x) + o(n−1

1 h−2).

The bias and variance estimates of ρ̂ in Theorem (2.4.4) becomes

Theorem 2.4.6. If x is an interior spatial location of R, then

Bias[ρ̂(x;h)] =
1

2
h2µ2(K)

[
∇2f(x)/f(x)−∇2g(x)/g(x)

]
+ o(h2). (2.4.5)

and

Var[ρ̂(x, h)] =
R(K)

h2

[
n−1

1 f(x)−1 + n−1
2 g(x)−1

]
+ o(n−1

1 h−2 + n−1
2 h−2). (2.4.6)

The proof of the approximations in (2.4.5) and (2.4.6) are given in the Appendix A.2.

Note that the bias approximation of ρ̂ is zero if f = g, i.e., ρ̂ is an unbiased estimator

of ρ. However, we should avoid the possibility that ĝ = 0 (or f̂ = 0), when estimating
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ρ. Combining the terms of integrated variance and integrated squared bias of f̂ to

obtain MISE,

MISE{f̂(x)} =

∫
Var[f̂ ] +

∫
[Bias(f̂)]2

≈ n−1
1 h−2R(K) +

1

4
h4[µ2(K)]2

∫
[∇2f(x)]2dx.

By differentiating the MISE with respect to h and setting the derivative of it equal

to zero,

h6
opt = 2R(K)[µ2(K)]−2n−1

1

[∫
[∇2f(x)]2dx

]−1

=
2R(K)[R(∇2f)]−1

[µ2(K)]2n1

.

The conclusion we draw here is comparable to that for the univariate case. The

approximately optimal bandwidth converges to zero as n1 increases, but does so

extremely slowly, at the rate n
−1/6
1 . Furthermore, the appropriate value of hopt depends

on the unknown density being estimated, R(∇2f). Similarly, in terms of ρ̂,

MISE{ρ̂(x)} =

∫
Var[ρ̂] +

∫
[Bias(ρ̂)]2

= h−2R(K)

∫ [
n−1

1 f(x)−1 + n−1
2 g(x)−1

]
dx

+
1

4
h4[µ2(K)]2

∫ [
∇2f(x)/f(x)−∇2g(x)/g(x)

]2
dx.

By differentiating MISE with respect to h and setting the derivative of it equal to

zero,

hopt =

[
2R(K)

∫
[n−1

1 f(x)−1 + n−1
2 g(x)−1]dx

µ2(K)2
∫

[∇2f(x)/f(x)−∇2g(x)/g(x)]2dx

]1/6

These results in terms of ρ̂ are comparable to that of univariate case. If n1/n2 is

fixed, then hopt = O(n−1/6) as is standard in bivariate density estimation. If f ≈ g

over much of R then the optimal bandwidth will tend to be very large. Due to the

helpful bias cancelation when f = g, we use h1 = h2(= h) henceforth.
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2.5 Tolerance contours of density ratio estimators

Suppose that we obtain a relative risk estimate ρ̂(x) computed from data x1, . . . ,xn1

from the case density f and data xn1+1, . . . ,xn (n = n1 + n2) from the control den-

sity g, both defined on the region R. We wish to highlight the sub-regions of R

where we have observed significantly elevated risk estimates. One way of producing

tolerance contours plots is based on a pointwise p-value surface; see Kelsall & Diggle

(1995a). The idea is to investigate if the relative risk is greater than one at each point

x ∈ R by testing the null hypothesis H0 : ρ(x) = 0 against the alternative hypothesis

H1 : ρ(x) > 0 for x ∈ R.

Kelsall & Diggle (1995a) discussed calculating pointwise tolerance intervals for one-

dimensional data and extended it to the bivariate case in Kelsall & Diggle (1995b).

We produce a p-value surface p(x) with respect to the above hypotheses. The areas

within p 6 0.05 (for example) contour are diagnosed as having significantly raised

risk. Plotting tolerance contours on a relative risk surface can be used to distinguish

significant features of the log relative risk function, from spurious features. Most of

the researchers apply this method. Moreover, the construction of tolerance contours

should not be regarded as a formal testing procedure, but a method that highlights

areas of risk which needs further investigation. We note that this means that multiple

testing issues are essentially irrelevant.

There is a choice of methods to obtain the p-value surface {p(x) : x ∈ R}. Kelsall

and Diggle (1995a) proposed a Monte Carlo method based on random permutations

of the case and control labels of each data point. This is computationally exhaustive
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and perhaps produces incorrect resultant tolerance contours where high risk surfaces

are shown in regions with no data. However, Hazelton & Davies (2009) developed an

alternative asymptotic z−test statistic, which is computationally less expensive and

provides a more reliable method to obtain tolerance contours.

We therefore construct p-values for constructing tolerance contours for ρ̂ by using the

z-test test statistic. Since the bias is zero under H0,

Z̃(x) = ρ̂(x)/SE{ρ̂(x)},

where SE is the standard error, given by

SE{ρ̂(x)} = h−1

√
R(K)[n−1

1 f(x)−1 + n−1
2 g(x)−1] (2.5.1)

Assuming that the null hypothesis is true (under H0), the two sets of data arise from

a common density f = g. In that case both f and g in (2.5.1) can be replaced by a

pooled estimator, ĝp constructed from both cases and controls. We note that if x falls

at the boundary of the region, R, then it is necessary to apply edge correction (see

Section 2.3.2) to the density estimator ĝp and also replace R(K) in equation (2.5.1) by∫
R{Kh(x)}2dx. The results of Hall & Marron (1988) justify a normal approximation

to the sampling distribution of ρ̂(x).

2.6 Real applications

In this Section, we consider the estimation of spatial relative risk in two particular

real applications.
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2.6.1 Chorley-Ribble data

The first example, which is concerned with a well known example on cancers of the

larynx and lung diagnosed in the Chorley-Ribble region of Lancashire, England, is

already discussed in Chapter 1. This data set was initially analysed and presented by

Diggle (1990) and after that subsequently been analysed by Diggle and Rowlingson

(1994) and Baddeley et al. (2005).

Diggle (1990) and Diggle & Rowlingson (1994) have shown a significant association
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Figure 2.7: P-values surface based on the asymptotic theory describing the excess
risk for a given fixed bandwidth, h = 1. White solid lines indicate 95% tolerance
contours.

between risk and distance from the incinerator, using a parametric model for the decay



33

in risk with increasing distance. The same conclusions were found by Gatrell (1990)

who analysed the full set of data using the same methodology. A more extensive

investigation was carried out by Elliott et al. (1992b). They analysed the incidence

of cancers of the larynx and lung around the incinerator site in Lancashire and another

nine sites of similar incinerators in Great Britain. Using a non-parametric method

due to Stone (1988), they found no evidence of a consistent excess risk of either cancer

among residents living close to the incinerators.
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Figure 2.8: Estimates of the log-relative risk of larynx cancer in the Chorley-Ribble
region of Lancashire, England. The estimate is computed using the density ratio
method with subjective bandwidth h = 1. The dashed lines indicate 95% tolerance
contours for areas of elevated risk. The red square represents the incinerator.
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We computed the estimate of the log relative risk function using a bivariate Gaussian

kernel with subjective bandwidth h = 1. Then we calculated 95% tolerance contours

based on a p-value surface of 0.05 using an asymptotic z-test statistic. The P-values

surface based on the asymptotic theory can be seen in the Figure 2.7. The estimated

log relative risk surface with tolerance contours are depicted in Figure 2.8.

The suggestion of a small area of elevated risk in the south, as given by the p-value

surface in Figure 2.7 and also the density ratio approach appeared in Figure 2.8, is in

line with the aforementioned conjecture of the incinerator as a point source of risk.

2.6.2 Myrtle tree data

The second application related to the disease Myrtle Wilt for trees growing in Tasma-

nia, Australia. Myrtle Wilt is a fungal disease of Myrtle beech (Nothofagus cunning-

hami), and is a major cause of mortality in this type of tree in the states of Tasmania

and Victoria. The fungus is spread by air and water-borne spores, entering a new

tree via wounds in its outer bark. It may also spread via root grafts or root contact

in neighbouring trees. See for example, Kile, Packham and Elliott (1989) for further

discussion.

Figure 2.9 displays a pattern of 106 diseased and 221 healthy Myrtle Beech trees in a

170.5× 213.0 metre rectangular region. We have added an arbitrary polygonal win-

dow to this plot over which we compute our estimates of the relative risk of disease

since it is useless to extend the estimates into the empty regions beyond this window.

As before, log-relative risk estimates (along with associated tolerance contours) are
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Figure 2.9: Plot of 106 diseased (•) and 221 healthy (+) Myrtle Beech trees in
Tasmania.

computed on data using the density ratio method. A subjective bandwidth h = 30 is

used. The resulting estimates are displayed in Figure 2.10, along with 95% tolerance

contours. Eyeballing the data suggest that there is a stronger trend across the region

from left to right.

2.7 Conclusion

In this Chapter, we provide a description of the spatial relative risk function in ge-

ographical epidemiology. As we understand, the most important factor in kernel
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Figure 2.10: Estimates of the log-relative risk of disease from the Myrtle Beech
data. This estimate is obtained by using the density ratio method with subjective
bandwidth h = 30. The solid line indicates 95% tolerance contours for areas of
elevated risk.

density estimation (and hence relative risk estimation) is the degree of smoothing.

We do not give much attention to smoothing methods here, leaving this until Chap-

ter 3. However, we use subjective bandwidths in this Chapter in the computation of

density estimates.

We discussed two problems arising in the estimation of kernel density estimates and

relative risk estimates. One of these is known as the edge effect, which is affected by
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the observations occurred at the boundary of the region and the lack of information

outside the region. The other difficulty is sparsely populated areas and hence makes

relative risk estimates unstable.

The bias and variance of asymptotic properties of kernel estimates and hence relative

risk estimates are obtained over a particular geographical region. We highlight relative

risk hot-spots using tolerance contours based on a pointwise p-value surface. The use

of kernel density and hence relative risk estimates is illustrated in two real data sets,

Chorley-Ribble and Myrtle tree.



Chapter 3

Bandwidth selection for the

density ratio estimator

3.1 Introduction

The practical realization of the kernel density estimator requires the specification of

the bandwidth and so does density ratio estimator of relative risk. A bandwidth can

be in the form of either a constant (h) or a matrix (H). We focus on the former

choice with previous work on relative risk estimation. The choice of bandwidth is

very important since it significantly effects the kernel density estimator and hence

the relative risk estimator. In density estimation, there have been many methods to

choose the smoothing parameter. The simplest approach is to choose the bandwidth

subjectively by eye. So one can begin with a bigger bandwidth and to decrease the

degree of smoothing until one achieves a visually suitable level of smoothing. When

the user has some knowledge about the structure of the data, this approach is more

feasible. One disadvantage in this method is that it can be very time consuming to

select the bandwidth by eye. Moreover, such a subjective approach is unlikely to be

widely accepted amongst epidemiologists using the resultant relative risk estimates.

38
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So we need to try other methods as well.

In choosing the smoothing parameter, Kelsall & Diggle (1995a) have carried out a

simulation study for the univariate setting to compare the performance of different

cross-validation bandwidth selectors. Their results suggest that one particular method

labelled as “new cross-validation” is the preferred method for choice of smoothing pa-

rameter when estimating the log relative risk function, ρ(x). After that they extend

it to the two-dimensional case in Kelsall & Diggle (1995b). Hazelton & Davies (2009)

discuss about the fixed bandwidth in kernel density estimates of the relative risk

function. Davies & Hazelton (2010) work on the use of a spatially adaptive, vari-

able smoothing parameter in relative risk estimation. Duong & Hazelton (2003) have

worked on bandwidth matrices for bivariate kernel density estimation. They have

developed a new type of plug-in selector for full bandwidth matrices.

This Chapter focuses on data-based bandwidth selections in bivariate kernel density

estimation of the relative risk function. This is accomplished through numerical cal-

culation of optimal bandwidths and error criteria, as well as simulation.

The rest of the sections are organized as follows. We discuss the mean integrated

squared error (MISE), mean integrated absolute error (MIAE) and the asymptotic

mean integrated squared error (AMISE) in Section 3.2. The optimal bandwidth

formulaes using data-driven bandwidth selectors are obtained in Sections 3.3.1 and

3.3.2. The simulation study to compare such bandwidths is performed in Section

3.4 with the control densities and relative risk functions given in Table 3.1. These
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bandwidth selectors are illustrated in the real data set, given in Section 3.5.

3.2 Error criteria

The choice of bandwidth plays a key role in determining the performance of relative

risk estimators. We will seek bandwidth selectors that produce the optimal perfor-

mance. Such performance of bandwidth selectors can be quantified by reducing the

difference between a relative risk estimate, r̂ (or ρ̂ on log scale) with the true function,

r (or ρ on log scale). We use existing error criteria to measure the difference. One

well-known error criterion is the Integrated Squared Error (ISE). The ISE of ρ̂ can

be formulated as follows:

ISE{ρ̂(.;h)} =

∫
R

[ρ̂(x;h)− ρ(x)]2dx.

Here h (= h1 = h2) is assumed a common bandwidth. The ISE is a random variable

so an alternative is the Mean Integrated Squared Error or MISE, defined as follows:

MISE(h) = MISE{ρ̂(.;h)} = E
∫

[ρ̂(x;h)− ρ(x)]2dx.

Kelsall & Diggle (1995a) have considered the ISE and the MISE in the estimation of

relative risk function (on log scale). Wand & Jones (1995) have mostly used the MISE

for measuring the global performance of the kernel density estimator. In the context

of density estimation, Devroye and Györfi (1985) have worked on Mean Integrated

Absolute Error (MIAE), which is defined as follows:

MIAE{ρ̂(.;h)} = E
∫
|ρ̂(x;h)− ρ(x)|dx

However, we use the MISE since it is the most mathematically tractable criterion and

is the most widely used in practice. So we wish to find the optimal bandwidth by
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minimizing the MISE. That is,

hMISE = arg minhMISE[ρ̂(;h)].

In the context of density estimation, Wand & Jones (1995) have mentioned that MISE

does not have a closed form. So computing hMISE in general is very challenging, but

one can find an approximation to the MISE. We have

MISE ρ̂(x;h) =

∫
R
MSE ρ̂(x;h)dx

=

∫
R
E[ρ̂(x;h)− ρ(x)]2dx

=

∫
R

[Eρ̂(x;h)− ρ(x)]2dx +

∫
Varρ̂(x;h)dx

=

∫
R

[Biasρ̂(x;h)]2dx +

∫
Varρ̂(x;h)dx

This gives the MISE as the sum of the integrated square bias and the integrated

variance.

By substituting the asymptotic properties of bias and variance of ρ̂, obtained in

Chapter 2, we get

MISE(h) =
h4µ2(K)2

4

∫
R

[
∇2f(x)

f(x)
− ∇

2g(x)

g(x)

]2

dx +
R(K)

h2

∫
R

[
1

n1f(x)
+

1

n2g(x)

]
dx

+o(h4) + o(n−1
1 h−2 + n−1

2 h−2).

(3.2.1)

We differentiate this MISE with respect to h and then set the derivative equal to

zero. Then we reach to the optimal bandwidth hopt.

hopt =


2R(K)

∫
R

[
1

n1f(x)
+

1

n2g(x)

]
dx

µ2(k)2

∫
R

[
∇2f(x)

f(x)
− ∇

2g(x)

g(x)

]2

dx


1/6

.
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Note that we need to take care when estimating f and g since the denominator of hopt

disappears if f = g, which makes the optimal bandwidth large. The approximately

optimal bandwidth, hopt converges to zero as n1 and/or n2 increases. Furthermore,

the approximate value of this bandwidth depends on the unknown densities being es-

timated. However, there are existing several methods for choosing h as discussed now.

3.3 Cross validation bandwidth selectors

3.3.1 Least squares cross validation

The Least Squares Cross Validation (LSCV) criterion is a fully automatic method for

selecting the smoothing parameter. This technique was suggested by Rudemo (1982)

and Bowman (1984) in the context of density estimation. See also Bowman, Hall

and Titterington (1984), Hall (1983) and Stone (1984) for further reference. In this

section, we discuss the process of computing LSCV estimator in the estimation of log

relative risk, ρ̂.

Suppose that f and g are probability density functions of cases and controls respec-

tively defined within a given region R. In order to select h for the estimation of the

function α(f, g) (where, α(f(x), g(x)) = ρ(x)), a straightforward method is to choose

the values which minimize the integrated squared error (ISE) as follows:
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ISE{α(f̂ , ĝ)} =

∫ ∫
[α(f̂(x), ĝ(x))− α(f(x), g(x))]2dx.

=

∫ ∫
[α̂2 − 2α̂α + α2].

This is equivalent to minimizing

LSCV (h) =

∫ ∫
α(f̂ , ĝ)2dx− 2

∫ ∫
α(f̂ , ĝ)α(f, g)dx (3.3.1)

since the last term does not depend on h and so can be omitted.

A first-order Taylor approximation to α(f, g) gives,

α(f, g) ' α(f̂ , ĝ) + (f − f̂)
∂α

∂f̂
+ (g − ĝ)

∂α

∂ĝ
.

Substituting the above equation in (3.3.1), we get

LSCV (h) =

∫ ∫
α(f̂ , ĝ)2dx−2

∫ ∫
α(f̂ , ĝ)

[
α(f̂ , ĝ) + (f − f̂)

∂α

∂f̂
+ (g − ĝ)

∂α

∂ĝ

]
dx.

LSCV (h) = −
∫ ∫

α(f̂ , ĝ)2dx + 2

∫ ∫
Aδ(f̂ , ĝ)f̂(x)dx + 2

∫ ∫
Aτ (f̂ , ĝ)ĝ(x)dx

− 2

∫ ∫
Aδ(f̂ , ĝ)f(x)dx− 2

∫ ∫
Aτ (f̂ , ĝ)g(x)dx (3.3.2)

where Aδ(c1, c2) = α(c1, c2)
∂α(c1, c2)

∂c1

and similarly Aτ (c1, c2) = α(c1, c2)
∂α(c1, c2)

∂c2

.

The last two terms in the above equation are expectations with respect to the un-

known densities f and g. Therefore, we use the well-known “leave-one-out” criteria

to estimate the expectations and hence the last two terms are replaced by

−2n−1
1

n1∑
i=1

Aδ{f̂−i(xi), ĝ(xi)} − 2n−1
2

n1+n2∑
j=n1+1

Aτ{f̂(xj), ĝ
−j(xj)},
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where

f̂−i = (n1 − 1)−1

n1∑
j=1;j 6=i

Kh(x− xj),

a density estimate of f constructed from all the data points except (xi), and similarly

ĝ−j = (n2 − 1)−1

n1+n2∑
i=n1+1;i 6=j

Kh(x− xi),

where n1 and n2 are case and control sample sizes respectively. Then equation (3.3.2)

reduces to

L̂SCV (h) = −
∫ ∫

α(f̂ , ĝ)2dx + 2

∫ ∫
Aδ(f̂ , ĝ)f̂(x)dx

+ 2

∫ ∫
Aτ (f̂ , ĝ)ĝ(x)dx− 2n−1

1

n1∑
i=1

Aδ(f̂
−i, ĝ)− 2n−1

2

n1+n2∑
j=n1+1

Aτ (f̂ , ĝ
−j)

= −
∫ ∫

α(f̂ , ĝ)2dx + 2

∫ ∫
α(f̂ , ĝ)f̂

(
1

f̂

)
dx + 2

∫ ∫
α(f̂ , ĝ)ĝ

(
−1

ĝ

)
dx−

2n−1
1

n1∑
i=1

α(f̂−i, ĝ)

(
1

f̂−i

)
− 2n−1

2

n1+n2∑
j=n1+1

α(f̂ , ĝ−j)

(
−1

ĝ−j

)

= −
∫ ∫

α(f̂ , ĝ)2dx− 2n−1
1

n1∑
i=1

α(f̂−i, ĝ){f̂−i}−1 + 2n−1
2

n1+n2∑
j=n1+1

α(f̂ , ĝ−j){ĝ−j}−1

By replacing α(f, g) with log(f/g) = ρ, we get

L̂SCV (h) = −
∫ ∫

{ρ̂h(x)}2dx− 2n−1
1

n1∑
i=1

log

[
(f̂−ih (xi))

ĝh(xi)

]
{f̂−ih (xi)}−1 +

2n−1
2

n1+n2∑
j=n1+1

log

[
(f̂h(xj))

ĝ−jh (xj)

]
{ĝ−jh (xj)}−1. (3.3.3)

When x lies at the boundary of the region, as discussed in Chapter 2, the edge

correction technique needs to be applied. However, since we use a common bandwidth
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h for the computation of f̂ , ĝ and then the equation (3.3.3) is revised with the edge

correction factors as follows:

L̂SCV (h) = −
∫ ∫

{ρ̂h(x)}2dx− 2n−1
1

n1∑
i=1

log

[
(f̂−ih (xi))

ĝh(xi)

]
{f̃−ih (xi)}−1 +

2n−1
2

n1+n2∑
j=n1+1

log

[
(f̂h(xj))

ĝ−jh (xj)

]
{g̃−jh (xj)}−1, (3.3.4)

where,

f̃−i(x) = (n1 − 1)−1

n1∑
j=1;j 6=i

Kh(x− xj)/q1(x).

Similarly,

g̃−j(x) = (n2 − 1)−1

n1+n2∑
i=n1+1;i 6=j

Kh(x− xj)/q2(x),

where q1(x) and q2(x) are the edge correction terms, defined in Chapter 2. The

minimization of the above estimate L̂SCV over h gives LSCV optimal bandwidth,

namely,

ĥLSCV = arg minhL̂SCV (h).

In practice, the LSCV bandwidth selector has drawbacks. It often has more than one

local minimum with some spurious ones often leading to under smoothing. Hall &

Marron (1991a) have worked on this problem in the context of density estimation.

Simulation studies have shown that this problem can often be well handled by select-

ing the largest value of h for which a local minimum occurs. It is well known that

LSCV tends to produce highly variable bandwidth selectors in many problems. See

Hall & Marron (1987a), Park & Marron (1990) for further details. We therefore may

expect it to do so when estimating ρ. We examine this further through our numerical

studies.
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3.3.2 Likelihood cross validation

Likelihood cross validation (LCV) method is motivated by the maximum likelihood

principle. See Stone (1974) and Geisser (1975). Clark & Lawson (2004) have studied

different bandwidths including LCV in the context of a binary regression problem.

They note that the conditional probability of a case, for a given point x is

p(x) = Pr{Yi = 1|X = xi}

=
n1f(x)

n2g(x) + n1f(x)
,

where Yi are the binary labels giving one if the ith point is a case and zero if it is a

control. This is directly related to relative risk, r(x) by p(x) = n1r(x)/(n2 +n1r(x)).

The conditional log likelihood is

logL{p̂(x)} = log

[
n∏
i=1

{p̂(xi;h)}yi{1− p̂(xi;h)}1−yi

]
.

In the non-parametric case, this maximum likelihood principle would lead to unsat-

isfactory estimates p(zi) = 0 or p(zi) = 1 according to the binary variables yi = 0

or yi = 1 respectively. According to the LCV criteria, we consider the log likelihood

leave-one-out function that is minimized with respect to h, taken as its estimator.
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That is,

L̂CV (h) = log

[
n∏
i=1

{p̂−i(xi;h)}yi{1− p̂−i(xi;h)}1−yi

]

=
n∑
i=1

[
yi log[p̂−i(xi;h)] + (1− yi) log[1− p̂−i(xi;h)]

]
=

n1∑
i=1

[
yi log[p̂−i1 (xi;h)] + (1− yi) log[1− p̂−i1 (xi;h)]

]
+

n1+n2∑
i=n1+1

[
yi log[p̂−i2 (xi;h)] + (1− yi) log[1− p̂−i2 (xi;h)]

]
=

n1∑
i=1

log[p̂−i1 (xi;h)] +

n1+n2∑
i=n1+1

log[1− p̂−i2 (xi;h)]

where

p̂−i1 (xi;h) =
n1f̂

−i(xi, h)

n2ĝ(xi;h) + n1f̂−i(xi, h)
,

p̂−i2 (xi;h) =
n1f̂(xi;h)[

n1f̂(xi;h) + n2ĝ−i(xi;h)
]

and n = n1 + n2.

Also f̂−i and ĝ−i represent the kernel density estimates constructed respectively from

all case and control data points except the ith datum. The above results are obtained

when the points occur interior to the region. However, when the points fall at the

boundary of the region, the above results remain as it is since the edge correction

terms are cancelled out on top and bottom of p̂−i1 and p̂−i2 terms when using the same

bandwidth h for cases and controls. The likelihood cross-validation choice of h is

ĥLCV = arg maxhL̂CV(h).

It has been noted by Scott & Factor (1981) in the context of density estimation that

the performance of LCV bandwidth is very sensitive to outliers. It is a fact that LCV
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does not directly attempt to minimize MISE(ρ̂). Indeed, this methodology is more

natural when aiming to estimate p(x) (as was the aim of Clark & Lawson, 2004) than

when estimating ρ(x).

3.4 Simulation study to compare LSCV over LCV

in ρ̂ estimation

In order to examine the practical performance of bandwidth selectors in the estima-

tion of ρ̂, we conduct a simulation study to compare LSCV over LCV.

We consider six synthetic problems, in each defined on a square regionR=[0,10]×[0,10].

The forms of control densities, g and relative risk functions, r are displayed in Table

3.1. These problems are designed from real-world population distributions with a

mixture of rural and urban areas. In particular, we consider control densities in a sin-

gle mode because the results will also provide guidance to cases where multiple modes

are very well separated as we might expect to see with city and towns with real appli-

cations. So samples of controls (n2) are randomly generated from the defined control

densities while sample of cases (n1) are generated from the control distribution (g),

then accepted/rejected with probabilities proportional to the relevant relative risk

function (r) until the desired number n1 is reached.

Each control density is defined to be either uniform or bivariate normal density (trun-

cated to R). The control densities g are displayed in Figure 3.1. The corresponding

relative risk (on log scale) functions ρ are given in Figure 3.2 as filled contour plots.
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Table 3.1: Control densities and relative risk functions for six synthetic models. The
function φσ is a bivariate normal density with zero mean vector and covariance matrix
σ2I, where I is the 2×2 identity matrix. In addition, φRσ denotes φσ truncated to R.
The location parameters are µ1 = [4, 4]T , µ2 = [5, 5]T and µ3 = [6, 6]T .

Problem 1 g(z) = 0.01
r(z) ∝ 1 + exp(−‖z − µ2‖2)

Problem 2 g(z) = 0.01
r(z) ∝ 1 + 4 exp(−‖z − µ2‖2)

Problem 3 g(z) = 0.01
r(z) ∝ 1 + 2 exp(−‖z − µ1‖2) + 2 exp(−3‖z − µ3‖2)

Problem 4 g(z) = φR
1/
√

2
(z − µ2)

r(z) ∝ 1 + exp(−‖z − µ2‖2)

Problem 5 g(z) = φR
1/
√

2
(z − µ2)

r(z) ∝ 1 + 4 exp(−‖z − µ2‖2)

Problem 6 g(z) = φR
1/
√

2
(z − µ2)

r(z) ∝ 1 + 2 exp(−‖z − µ1‖2) + 2 exp(−3‖z − µ3‖2)
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Figure 3.1: Filled contour plots of the control densities, uniform(left panel) and
bivariate normal (right panel) as described in the text.

There are three relative risk functions used. The first relative risk function has a mild

circular clustering of risk in the middle of the region, the second consists a strong

circular clustering at the centre and the last function has an average risk variation

with two hot spots.

For each Problem, we carry out three sets of sample sizes. In the first set, we use

100 cases and controls (n1 = n2 = 100); in the second set, 100 cases and 400 controls

(n1 = 100 n2 = 400) and in the third set, 400 cases and controls (n1 = n2 = 400).

For each set, we generate 400 case-control data sets. The log relative risk function

is computed for each case using the density ratio method. We use LSCV and LCV

bandwidth selectors, which are obtained through an optimization process. Due to

multiple local minima of LSCV estimator, we restrict the search range to the interval

(h0, 4h0), where h0 is the geometric mean of the normal reference bandwidths (for
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Figure 3.2: Filled contour plots of the log-relative risk functions as described in
Table 3.1. Problems 1 and 4 represent the risk surface 1. Problems 2 and 5 represent
the risk surface 2. Problems 3 and 6 represent the risk surface 3.

e.g. Wand & Jones, 1995) for case and control density estimates. Bandwidths are

optimal if the targeted densities are normal. To assess the performance, we compute

the integrated squared error (ISE) of each estimate ρ̂ over the region R. Log(ISE)

are displayed using box-and-whisker plots which split by the bandwidth type (either

LSCV or LCV) and set in Figure 3.3. These all computations were obtained using R

statistical software. See R Development Core Team (2010).
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Overall the simulation results shows inferior performance of the LCV bandwidth se-

lector in density ratio estimation. LSCV bandwidth selector performs better. Specif-

ically, Problems 5 and 6 have particularly significant differences between these two

bandwidth selectors. The log(ISE) for Problems 1, 2, 3 and 4 is more comparable

between LSCV and LCV methods. For both bandwidth selectors, it is vital to note

that the selected value of h occurred at a boundary of the search interval [h0, 4h0]

for some simulated data sets. This reveals problems with the variability of the per-

formance of LCV and LSCV. There may be two possible reasons for the significant

differences of the bandwidth selectors for Problems 5 and 6. Perhaps because these

Problems are the most challenging in terms of the complexity of ρ or because they

require the smallest values of h.

The LSCV approach works by minimizing an approximate estimator of MISE (modulo

irrelevant additive constants). Usually, this method suffers from multiple local minima

and high variability. The LCV method optimizes a leave-one-out estimate of the log-

likelihood. The drawback of LCV is that it is sensitive to outliers and hence can

create an over-smoothed estimate. However, neither method is perfect. According to

the above simulation study, LSCV performs better than LCV as the former explicitly

targets the MISE of ρ̂ while the latter does not.

3.5 Real application: Cancers in South Lancashire

The distribution of the data in this example is already displayed in Chapter 1 and the

subject of a preliminary analysis in Chapter 2. See Diggle (1990) for further details.
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We estimate log relative risk functions using density ratio method for Chorley data.

Bandwidths 0.78 and 2.74 were obtained using the LSCV and LCV respectively. The

resulting estimates are depicted in Figure 3.4. The bandwidth estimators provide

different interpretations. The LSCV bandwidth allows the relative risk estimator to

highlight the areas having elevated risk (95% tolerance contours) around the inciner-

ator. In the mean time, LCV gives a smoothed risk surface, having high risk in the

southwest.

3.6 Conclusion

The choice of bandwidth plays a key role in determining the performance of ker-

nel density estimators and hence relative risk estimators. This is a vital problem

both from a practical and theoretical perspective. The contributions in this Chapter

have been to review some existing methods, compare LCV against LSCV through a

simulation, organize the asymptotic properties and look at the performance of these

estimators through a real application.

According to these finite sample performance results, LSCV bandwidth selector seems

at present to be the best option when implementing the density ratio estimator, but

we note that this is largely a reflection of the poor performance of the alternative

method. Also the simulation results depends on the chosen densities. We believe that

the absence of an effective plug-in bandwidth selector for the density ratio method

constitutes a major challenge for relative risk estimation in spatial epidemiology.
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Figure 3.3: Boxplots of log(ISE) of log-relative risk estimates for problems 1-6 from
Table 3.1. LCV and LSCV stand for likelihood and least squares cross validation
bandwidths respectively.
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Figure 3.4: Estimates of log-relative risk of larynx cancer data. Left panel shows
the estimate using LCV bw (2.74) while the right panel, using the LSCV bw (0.78).



Chapter 4

Local linear estimation of the

relative risk function

4.1 Introduction

As we have seen, the relative risk function can be estimated by the ratio of kernel

density estimates constructed from case and control location data respectively. This

methodology has been used successfully in a variety of applications in both human

and veterinary epidemiology (e.g. Sabel et al., 2000; Prince et al., 2001; Berke, 2005;

Wheeler, 2007). In particular, this direct density ratio estimator of the relative risk

function has proven adept at identifying approximately circular or elliptical areas

of elevated risk, perhaps around a postulated point sources of risk. However, this

approach can be less natural when the relative risk has a more global trend, as one

might expect to see when there is a line source of risk such as a polluted river or a road.

56
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An alternative approach to estimate the log-relative risk function is local polynomial

regression. The idea of local polynomial regression has been around for a long time.

It was systematically studied by Stone (1977, 1980, 1982) and Cleveland (1979). The

work on local polynomial fitting includes Fan (1992, 1993), Fan & Gijbels (1992) and

Ruppert & Wand (1994) in the context of standard regression. These papers give

a detailed picture of the advantages of local polynomial fitting. These estimate the

regression function at a particular point by locally fitting a pth degree polynomial to

the data.

One of the most important choices is the degree of the polynomial. Boundary bias

considerations indicate that one should fit local lines. But for estimating regions of

high curvature of the true function, such as at peaks and valleys, local line estimators

can have a substantial bias. This problem can be avoided by fitting higher degree

polynomials, although there are costs in terms of increased variance and computa-

tional complexity which needs to be considered. See Fan & Gijbels (1996).

As a special case, the Nadaraya-Watson estimator corresponds to fitting degree zero

polynomials, which is locally constant. See Nadaraya (1964) and Watson (1964). Of

particular importance and simplicity is the local linear estimator corresponding to

p = 1.

Throughout this chapter, we focus on the degree one polynomial (p = 1 case), i.e.

local linear regression. Local linear fitting has been seen to have several fascinating

qualities in terms of intuitive and mathematical simplicity. One noteworthy feature is
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the better performance at the boundaries compared to the local constant estimators

(i.e. p = 0 case).

Local polynomial regression has been used for non-normal data. In particular, Clark

& Lawson (2004) use local linear method to estimate the conditional probability func-

tion, p in disease mapping, using case-control data. However, the use of local linear

regression for estimation of the (log) relative risk functions per se has not been exam-

ined in the literature. Therefore, what we have done in this chapter becomes a novel

contribution to the relevant field.

This Chapter is divided into the following Sections. Firstly, we provide a detailed

account of local linear regression in the estimation of the log-relative risk function

in Section 4.2. During this estimation process, we use a local scoring algorithm to

fit the local linear model in Section 4.3. Then we provide an analysis of asymptotic

properties of local linear estimator. After that we construct tolerance contours to

highlight the regions which show significantly elevated risk. We also examine data-

driven bandwidth selection methods for the local-linear estimator, including a novel

plug-in methodology in Section 4.5.1. As Kelsall & Diggle (1995a) noted, the use of

plug-in bandwidth selectors in relative risk estimation is attractive in principle, since

plug-in methods are generally preferable to (unsmoothed) cross-validation methods

for kernel density estimation (e.g. Wand & Jones, 1995). However, Kelsall and Diggle

(1998) noted that there are significant difficulties in implementing plug-in methods

for the density ratio estimator because of the difficult forms of some of the functionals

that require pilot estimation, and no further progress has been made in this direction.
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We show here that plug-in bandwidth selection is a feasible prospect for local linear

estimators.

In order to explore the practical performance of the density ratio estimator against

the local linear estimator, we present the results of estimators by using the optimal

smoothing in Section 4.6.1 and then by using a data-driven bandwidth in Section

4.6.2. In the latter, we present numerical results comparing the performance of the

density ratio and local linear estimators using a variety of data-driven bandwidth

selectors. We include a simulation study involving 32 different test scenarios, charac-

terized by factors including the ‘shape’ of the risk surface (e.g. largely linear versus

circular contours); the magnitude of the maximum relative risk; and the rate at which

the risk decays from point or line sources.

We also examine analysis of three real data sets, the first relating to the distribution

of Myrtle Wilt in a region of forest in the Australian state of Tasmania, the second

concerned with the incidence of cancer of the larynx in the Chorley-Ribble region

of Lancashire, England and the last data set describes about the foot and mouth

epidemic (FMD) in 2001 of Cumbria, in the north-west of England. We computed

relative risk estimates (on log scale) for both methods and constructed tolerance

contours to highlight the regions of significantly high risk.
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4.2 Local linear estimator of the relative risk func-

tion

Suppose that we need to estimate the log relative risk function at the point x. In

this section, we discuss how the estimation process of log relative risk in geographical

epidemiology is done using local polynomial approach with the order p first, and then

the local linear case as a novel work. In the local polynomial approach, we model log

relative risk (ρ) in the neighborhood of x as a polynomial ; i.e.

ρ(z) ≈ P (z− x) (4.2.1)

where P is a polynomial form of order p. Since ρ(x) ≈ P (0) according to this poly-

nomial approximation it follows that we can estimate ρ(x) as the constant term from

a suitably fitted polynomial P̆ .

In order to fit this model, we recast it as a binary regression. To do so, we introduce

the binary variable Y , such that Yi = 1 if xi is a case location, and Yi = 0 if xi is a

control location. Conditional on the sample sizes n1 and n2, we denote the probability

that the observation i is a case rather than a control by

P (Yi = 1|Xi = xi) = p(xi).

Then the binary regression function p can be expressed as

p(x) =
πf(x)

(1− π)g(x) + πf(x)

=
πr(x)

(1− π) + πr(x)
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where r(x) = f(x)
g(x)

, is the relative risk function and π = n1

n1+n2
, is the overall proportion

of cases. Then we get,

r(x) =
(1− π)

π

p(x)

(1− p(x))
.

Following this on the logit scale in order to preserve the estimate in the range [0,1],

we have

log

{
p(x)

1− p(x)

}
= log{r(x)}+ log

[
n1

n2

]
= ρ(x) + log

[
n1

n2

]
.

Applying the local polynomial approximation for ρ from (4.2.1), therefore leads to a

local polynomial logistic regression model:

log

{
p(z)

1− p(z)

}
≈ Q(z− x) (4.2.2)

where P = Q− log(n1/n2).

As noted by Signorini & Jones (2004) in the context of univariate binary regression,

the natural way to fit the local polynomial representation in equation (4.2.2) is by

maximizing a local likelihood of Tibshirani & Hastie (1987). If we define the local

weights through a kernel function then the weighted log-likelihood can be written as,

L(Q,x) =
n∑
i=1

(yiQ(xi − x)− log {1 + exp[Q(xi − x)]})Kh(xi − x). (4.2.3)

For estimation at x ∈ R, the fitted polynomial Q̆ is the maximizer of L and hence

the local polynomial regression estimator of the log-relative risk function is ρ̆(x) =

Q̆(0) − log(n1/n2). In general the coefficients of Q̆ will not be available in closed
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form, so that estimation must proceed via numerical maximization of (4.2.3). The

estimating equations requiring iterative solution are (Signorini & Jones, 2004),

n∑
i=1

(Y i − p̂(xi − x))Kh(xi − x) = 0 (4.2.4)

where n = n1 + n2 and

n∑
i=1

(Yi − p̂(xi − x))(xi − x)Kh(Xi − x) = 0

where logit(p̂(z)) = β̂0 + β̂1z and that is,

log

(
p̂(z)

1− p̂(z)

)
= β̂0 + β̂1z.

The simplest form of our model is when the local polynomial is constant; i.e. Q(·) =

β0 ≡ β0,x (emphasizing the otherwise implicit dependence on the estimation point in

the second case). When the local polynomial is constant,

p̂(z) =
eβ̆0

1 + eβ̆0

and the equation (4.2.4) becomes

n∑
i=1

yiKh(xi − x) =
n∑
i=1

p̂(xi − x) Kh(xi − x)

By substituting p̂, we get the maximizer β̆0 of the local likelihood equation satisfies

n∑
i=1

yiKh(xi − x) =
n∑
i=1

eβ̆0

1 + eβ̆0
Kh(xi − x). (4.2.5)

From equation (4.2.5), we get

β̆0 = log

[ ∑n
i=1 yiKh(xi − x)∑n

i=1Kh(xi − x)−
∑n

i=1 yiKh(xi − x)

]
= log

[
n∑
i=1

yiKh(xi − x)

]
− log

[
n∑
i=1

(1− yi)Kh(xi − x)

]
.
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We find that the local constant estimator of the log-relative risk, ρLC, is therefore

given by

ρ̆LC(x) = β̆0 − log(n1/n2)

= log

[
n∑
i=1

yiKh(xi − x)

]
− log

[
n∑
i=1

(1− yi)Kh(xi − x)

]
− log[n1/n2]

= log

[
n−1

1

n∑
i=1

yiKh(xi − x)

]
− log

[
n−1

2

n∑
i=1

(1− yi)Kh(xi − x)

]
= log

[
f̂(x)

]
− log [ĝ(x)] , (4.2.6)

demonstrating the equivalence with the density ratio method, which is already de-

scribed in Chapter 2.

In the local linear case we have

Q(z) = β0 + β1(z1 − x1) + β2(z2 − x2). (4.2.7)

The local linear estimator is then given by ρ̆LL(x) = β̆0 − log(n1/n2) where β̆0 now

denotes the first element of β̆ = (β̆0, β̆1, β̆2)T , the polynomial coefficients maximizing

(4.2.3) with Q as defined in (4.2.7). Local constant is a particular case of local linear,

and so in theory the latter will be no worse than the former. However, in practice, the

additional complexity of the local linear estimator can result in worse performance.

As there is no explicit representation of ρ̆LL(x), β̆ will be fitted using an alternative

method described in detail in the next section.

4.3 Local scoring procedure

Generalized additive models (GAM) were popularized as non-parametric regression

techniques (Hastie and Tibshirani, 1990). They consist of assuming a parametric
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Table 4.1: The local scoring procedure

1. Initialise ĝ(xi;h) = 0 and α̂ = logit{n2/(n1 + n2)} (here ĝ(xi;h) = logit{p(x)}).

2. Set η̂i = ĝ(xi;h) and p̂(xi) = exp(η̂i)/{1 + exp(η̂i)}.

3. Construct the adjusted dependent variable zi = η̂i +
yi − p̂(xi)

p̂(xi){1− p̂(xi)}
with weights

wi = p̂(xi){1− p̂(xi)}

4. Fit a weighted linear model using either the Nadaraya-Watson regression estimator

ĝ(x;h) =

n∑
i=1

wiKh(x− xi)yi

n∑
i=1

wiKh(x− xi)

or the local linear regression estimator.

5. Repeat step (2) replacing η̂
(j)
i by η̂

(j+1)
i until ∆(η̂

(j+1)
i , η̂

(j)
i ) =

p∑
k=1

‖ĝj+1
k (x;h)− ĝjk(x;h)‖

p∑
k=1

‖ĝjk(x;h)‖

is below some small threshold ( e.g. 1E-5).

model for the data, but the relationship between the response variable and the non-

response variable is non-parametric. For GAM, the backfitting iteration is performed

by transforming the original observations to scores and fitting those in an iterative

and weighted manner using backfitting. The overall procedure is called local scoring

(Hastie and Tibshirani, 1990, p140), which generalizes the Fisher scoring procedure

described in McCullagh and Nelder (1989, p.42).
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Local scoring splits the multivariate regression into a sequence of univariate regres-

sions that are easier to compute. Therefore, we use local scoring algorithm, displayed

in Table (4.1) reproduced from Hastie and Tibshirani (1990) to fit the local linear

model.

4.4 Asymptotic properties

In this Section, we present the mean and variance asymptotical calculations of ρ̂(x)

in the case of locally fitted generalized linear model.

Ruppert & Wand (1994) have derived the asymptotic properties of bias and variance

terms for general multivariate kernel weights using weighted least squares matrix the-

ory. Fan et al. (1995) have investigated the extension of the nonparametric regression

technique of local polynomial fitting with a kernel weight to generalized linear mod-

els. Staniswalis (1989a) carried out a similar generalization of the Nadaraya-Watson

kernel estimator (Nadaraya 1964; Watson 1964), which is equivalent to local fitting

with a kernel weight. Signorini & Jones (2004) have presented a rather thorough

investigation of the use of kernel based nonparametric estimators of the binary re-

gression function in the case of a single covariate.

Fan (1992a, 1993) and Ruppert & Wand (1994) showed that in the ordinary regres-

sion context, local polynomial kernel regression has many attractive mathematical

properties. This is particularly true when the polynomial is of odd degree, because

the asymptotic bias close to the boundary of the support of the covariates can be

shown to be of the same order of magnitude as that of the interior. This is not true
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for the Nadaraya-Watson kernel estimator, because it corresponds to the zero degree

fitting. In addition, the asymptotic bias of odd degree polynomial fits at a point x

depends on x only through a higher order derivative of the regression function itself,

which allows for simple interpretation and expressions for the asymptotically optimal

bandwidth. They have showed that these properties carry over to generalized linear

models. See Fan et al. (1995) for more details.

In order to obtain the asymptotic properties of bias and variance of ρ̂, we need to

make the following assumptions.

(i) The kernel K is a spherically symmetric continuous density function with bounded

support such that
∫
uuTK(u)du = µ2(K)I, where µ2(K) 6= 0 is scalar and I is the

identity matrix of degree 2. As K is spherically symmetric kernel, all odd moments

of K vanish, that is,
∫
ul11 u

l2
2 K(u)du = 0 for all non-negative integers l1 and l2 such

that their sum is odd.

(ii) The bandwidth h→ 0 and nh2 →∞ as n→∞ (n = n1+n2), and that
n1

n2

is fixed.

(iii) The point x is interior to R.

(iv) f(x) > ε and g(x) > ε for all x ∈ R.

We consider here only the linear case of the polynomial regression. That is,
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log

[
p̂(z)

1− p̂(z)

]
= β̂0 + β̂1(z1 − x1) + β̂2(z2 − x2) (4.4.1)

Theorem 4.4.1. Assume that the conditions (i)-(iv) are satisfied. Then

E{ρ̂LL(x;h)} = ρ(x) +
1

2
h2µ2(K)∇2ρ(x) + o(h2). (4.4.2)

and

Var{ρ̂LL(x;h)} = h−2R(K)

[
1

n1f(x)
+

1

n2g(x)

]
+ o

(
1

n1h2
+

1

n2h2

)
. (4.4.3)

These results can be derived from the theorems in Fan et al. (1995). A direct proof

of the above theorem is given in the Appendix B.

These expressions of bias and variance of local linear estimator have a simple interpre-

tation. The leading bias term (4.4.2) depends x only through ∇2ρ(x) which reflects

the error of the linear approximation. If ρ is close to being linear at x then ∇2ρ(x) is

relatively small, which is consistent with the concept of local fits having less bias in

this case. On the other hand, if ρ has a high amount of curvature at x then ∇2ρ(x) is

higher and local linear fits tend to produce more biased estimates. The fact that the

bias depends on h2 also reflects the idea that bias is increased with more smoothing.

Indeed, the expression 4.4.2 is a direct analogue of the bias approximation for kernel

density estimation given by 2.4.4 in Chapter 2.
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Comparing the leading local linear (LL) bias term of ρ̂ in equation (4.4.2) to (2.4.5),

bias estimator for the density ratio method, we see that the local linear method is

unbiased at the points where ρ is linear, whereas the density ratio method is generally

biased in that situation. This helps to explain why we might expect the local linear

method to be preferable when the trend is large scale and relatively slow varying.

We note that the asymptotic variance of LL estimator (4.4.3) is the same as for

the density ratio estimator (2.4.6). As expected, it produces high variability at the

locations where the population density is extremely low.

4.5 Methods of bandwidth selection

The bandwidth of course has a crucial effect on the quality of the kernel smoothing

estimators. As mentioned in Chapter 3, it can be chosen either subjectively by users

or objectively by the data. One can opt for a fixed bandwidth also referred to as

a estimation-point adaptive bandwidth or a sample point adaptive bandwidth.See

Jones (1990). The theoretical selection of a variable bandwidth was discussed in Fan

& Gijbels (1992) in the context of standard regression in detail. Here in this chapter,

we do not elaborate on this but focus on the choice of a fixed bandwidth.

In principle both the cross-validation methods described in Chapter 3 can be used

with the local linear estimator ρ̂LL. However, through a simulation study (in the sec-

tion 4.6.2), we found that the results are disappointing. This motivates us to develop

a new plug-in bandwidth selection method as follows.
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4.5.1 Plug-in bandwidth selector

The performance of the relative risk estimator (in log scale) require the specification

of appropriate error criteria for measuring the error when estimating the density at

a single point as well as the error when estimating the density over the region. So

as usual, we consider an error criterion that globally measures the distance between

the functions ρ̂(x) and ρ(x). Recall that the mean and variance in the asymptotic

properties of ρ̂ for LL method are

E[ρ̂LL(x)] = ρ(x) +
h2

2
µ2(K)∇2ρ(x) + o(h2) (4.5.1)

and

Var[ρ̂LL(x)] =
R(K)

h2

[
1

n1f(x)
+

1

n2g(x)

]
+ o(n−1

1 h−2 + n−1
2 h−2). (4.5.2)

Therefore,

MISE(h) ≈
∫
R

[
h2

2
µ2(K)∇2ρ(x)

]2

dx +

∫
R

R(K)

h2

[
1

n1f(x)
+

1

n2g(x)

]
dx.

≈ h4

4
µ2(K)2

∫
R

[
∇2ρ(x)

]2
dx +

R(K)

h2

∫
R

[
1

n1f(x)
+

1

n2g(x)

]
dx.

(4.5.3)

The integrated variance (second term of 4.5.3) may become huge if f or g are very

small in some parts of the study region. In such cases, minimization of MISE(h)

will produce a very large bandwidth in order to stabilize the estimate where the data

are sparse, at the expense of oversmoothing elsewhere. An alternative is to use a

population weighted version of MISE,

WMISE(h) =

∫
R

[ρ̂(x)− ρ(x)]2g(x)dx.
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See Hazelton (2008) for more details. This performance criterion will obviously be

similar to MISE when the controls are distributed in a fairly uniform manner over

R. When the control distribution is markedly heterogeneous then WMISE reduces

(in comparison to MISE) the weight given to errors in areas where the (control) data

are sparse.

A standard asymptotic expansion of WMISE(h) leads to the approximation

WMISE(h) ≈ h4

4
µ2(K)2

∫
R

[∇2ρ(x)]2g(x)dx +
R(K)

h2

∫
R

[
1

n1f(x)
+

1

n2g(x)

]
g(x)dx.

(4.5.4)

A problem in developing a plug-in bandwidth selector based on this expression is that

it is difficult to obtain stable estimates of the integrated variance (IV), the second

term of the equation (4.5.4) because of the need for a pilot estimate of the reciprocal

of f . We therefore make a further assumption that f(x) ≈ g(x) over most of R, that

is, the relative risk is close to one for the most part, then the IV becomes,

IV ≈ h−2R(K)

∫
R

[
1

n1

+
1

n2

]
1

g(x)
g(x)dx

≈ h−2R(K)

[
1

n1

+
1

n2

]
| R |

where | R | is the area of the region.

We can estimate the integrated squared bias, ISB (first term of equation 4.5.4) by

replacing ρ with a pilot estimate thereof, and changing integration with respect to g

by averaging over the observed control data. We then get the estimate

ÎSB =
h4

4
µ2(K)2 1

n2

n∑
i=1

(1− yi)[∇2ρ̄(xi)]
2 (4.5.5)
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where ρ̄ is a pilot estimate of ρ. In practice, we obtain this using the density ratio

estimator with bandwidth 5hOS, where hOS is the oversmoothing bandwidth of Terrell

(1990). This would be a very large bandwidth for estimating a density per se, but we

are interested here in estimating a functional of derivatives of densities, which require

much greater amounts of smoothing (e.g. Wand & Jones, 1995). ∇2ρ̄ is computed

using numerical differentiation. Our precise choice of pilot bandwidth is ad hoc, but

it performs well in numerical experiments (and uses in the simulation study, to be

presented in the next Section).

We apply the approximations for IV and ISB, then we get

WMISE(h) ≈ h4

4
µ2(K)2 1

n2

n∑
i=1

(1− yi)[∇2ρ̄(xi)]
2 + h−2R(K)

[
1

n1

+
1

n2

]
|R|

By differentiating this with respect to h and setting the derivative equal to zero,

0 = h3µ2(K)2 1

n2

n∑
i=1

(1− yi)(∇2ρ(xi))
2 − 2R(K)|R|

h3
[(n−1

1 + n−1
2 )]

Hence our plug-in bandwidth selector (hLL.PI) for the local linear method is

ĥLL.PI =

 2|R|R(K)(n−1
1 + n−1

2 )

µ2(K)2 1
n2

n∑
i=1

(1− yi)
[
∇2ρ̄(xi)

]2


1/6

.

Note that the assumption f(x) ≈ g(x),x ∈ R violates when there is a large scale

trend. We can estimate ISB as appeared in equation (4.5.5), but the estimate for IV

should be changed. Then IV from equation (4.5.4) becomes,

IV ≈ h−2R(K)

∫
R

[
1

n1f(x)
+

1

n2g(x)

]
g(x)dx.
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When estimating this, it is hard to get the stable estimates for IV since it contains the

reciprocal of f . Therefore, we further assume that f(x) > 0, for every x ∈ R. We

can estimate this by replacing f and g with pilot estimates f̄ and ḡ, then changing

the integration with respect to g by averaging over the observed control data.

4.6 Simulation study to compare local linear against

density ratio estimator

In order to explore the practical performance of density ratio estimator ρ̂ with local

linear estimator ρ̆LL, we present the results of two simulation studies. In the first

study, the optimal smoothing is used to compute both estimators while a data-driven

bandwidth is used in the latter study.

4.6.1 Simulation results: with optimal smoothing

We consider four synthetic problems (a)-(d), containing different case (f) and control

(g) densities over the square region R=[0,10] × [0,10]. Table 4.2 provides definitions

of case and control densities, while contour plots of the densities and corresponding

log-relative risk functions are depicted in Figure 4.1. Problems (a) and (c) are ex-

treme settings in terms of the pattern of risk, with the former involving a global linear

trend in ρ over R, and the latter containing two local disease hot spots. The trend

in problem (d) is also rather large scale in nature, while in Problem (b) the function

ρ has a more complex local structure.
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Table 4.2: Case and control densities for four synthetic problems. The function φσ is
a bivariate normal density with zero mean vector and covariance matrix σ2I, where I
is the 2×2 identity matrix. In addition, φRσ denotes φσ truncated to R. The location
parameters are µ1 = [5, 5]T , µ2 = [8, 6]T , µ3 = [3, 3]T and µ4 = [5, 4]T .

Problem (a) f(z) = 1

600(z1 + 1)

g(z) = 0.01

Problem (b) f(z) = 0.001 + 0.7φR2 (z − µ1) + 0.1φR2 (z − µ2) + 0.1φR1 (z − µ3)
g(z) = 0.001 + 0.4φR2 (z − µ1) + 0.5φR2 (z − µ2)

Problem (c) f(z) = 0.001 + 0.7φR3 (z − µ1) + 0.1φR0.5(z − µ2) + 0.1φR0.5(z − µ3)
g(z) = 0.001 + 0.9φR3 (z − µ1)

Problem (d) f(z) = 0.001 + 0.6φR3 (z − µ1) + 0.3φR2 (z − µ4)
g(z) = 0.01

For each problem, we considered sample sizes n1 = n2 = 100 and n1 = n2 = 500.

We generated 400 case-control data sets for each combination of problem and sample

size, and then estimated the log-relative risk function using both density ratio and

local linear methods.

The estimation methods were implemented using optimal bandwidths in all cases.

These were computed through a pilot study in which we found the bandwidth for

each method and sample size which minimizes the mean integrated squared error of

the log-relative risk estimates over the pilot data sets. They are tabulated in Table

4.3. As a result, our methods in the simulation study are operating with unrealis-

tically good bandwidths, but we have controlled for differences in the performance
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Table 4.3: Optimal bandwidths for the Problems for density ratio (DR) and local
linear (LL) estimators.

Data DR LL
Problem (a) n = 100 1.97 6.02

n = 500 1.28 2.96

Problem (b) n = 100 2.34 6.58
n = 500 1.52 2.11

Problem (c) n = 100 6.25 6.40
n = 500 1.52 6.34

Problem (d) n = 100 1.42 2.65
n = 500 0.89 2.07

Table 4.4: MISE estimates in the simulation study to compare DR over LL methods.

Data DR LL
Problem (a) n = 100 52.74 36.56

n = 500 25.46 15.18

Problem (b) n = 100 51.28 117.68
n = 500 32.76 53.06

Problem (c) n = 100 43.71 70.07
n = 500 41.85 48.62

Problem (d) n = 100 141.25 88.34
n = 500 82.46 33.82
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Figure 4.1: Contour plots of case density f , control density g, and log relative risk
function ρ for the four synthetic problems.

of the bandwidth selectors for both methods. We computed the integrated squared

error (ISE) for each estimate of ρ. MISE estimates are given in Table (4.4) and

the results are displayed (on the log-scale) as boxplots in Figure 4.2, where DR and

LL distinguish density ratio from local linear results, and where 1 and 5 distinguish

n1 = n2 = 100 from n1 = n2 = 500 cases.

Overall, the results match our expectations well. When the trend in the log-relative
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Figure 4.2: Boxplots of log(ISE) for DR and LL estimates of ρ. The suffix 1 indicates
sample sizes n1 = n2 = 100 and similarly for 500.

risk varies relative slowly over R, as in Problems (a) and (d), the local linear esti-

mator is to be preferred. In some cases the advantage of the local linear estimator

is substantial, it improves over the density ratio estimator by about three times the

median ISE for the larger sample size in Problem (d), for example. In Problems (b)

and (c), where the trend in ρ has a more complex local structure, the density ratio

method performs better than the local linear. This is most likely due to the presence

of circular risk hotspots. Also LL produces an over smoothing estimator while DR

an under smoothing estimator during this estimation.
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Identifier Description Formula

1 Mild circular clustering: r(z) ∝ 1 + e−θ ‖ z− [5, 5]T ‖

2 Strong circular clustering: r(z) ∝ 1 + 4× e−θ ‖ z− [5, 5]T ‖

3 Mild linear clustering: r(z) ∝ 1 + 1× e−θ ‖ z2 − 5 ‖

4 Strong linear clustering: r(z) ∝ 1 + 4× e−θ ‖ z2 − 5 ‖

Table 4.5: Relative risk functions for test problems.

4.6.2 Simulation results: with data-driven bandwidths

In this study, we omit LSCV bandwidth selector in the estimation of ρLL since it is a

worse performer than that of LCV in preliminary study. Therefore we use LCV and

plug-in (PI) bandwidth selector in the LL estimation of relative risk function. LSCV

is used to compute density ratio estimator.

In this study, we contrast the finite sample performance of the local linear estimator

ρ̆LL with that of the density ratio estimator ρ̂. We consider sixteen synthetic prob-

lems, generated by a 24 factorial design. The first two factors are the type of clustering

(circular or linear) and strength of clustering (mild or strong). The corresponding

forms of the relative risk functions are displayed in Table 4.5, where the region R is

defined to be the square [0, 10]× [0, 10]. The next factor that we consider is the scale

of the cluster, which is defined by the parameter θ in the expressions in the Table.

Specifically, we examine the cases θ = 1 (short range) and θ = 0.5 (wide range).

Greyscale plots of the relative risk functions from Table 4.5 when θ = 1 are presented
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in Figure 4.3. Our final factor is the form of the control density, which is either uni-

form on R or bivariate normal density with mean µ = (5, 5)T and covariance matrix

Σ = 2I (truncated at the boundaries of R). Here we consider the control densities in

a single mode, the results provide guidance to cases where multiple modes are very

well separated as we might expect to see with city and towns with real applications.

Risk surface 1 involves a mild circular clustering over the region R whilst a strong

circular clustering is displayed in risk surface 2. There is a linear clustering in risk

surfaces 3 and 4 respectively varying from low to higher.

For each problem, we considered sample sizes n1 = n2 = 100 and n1 = n2 = 400.

Since the computation of LL estimator is computationally expensive, we restrict the

number of iterations to 100. Then we estimate the log-relative risk function using

density ratio estimators implemented with the bandwidth ĥDR.CV , and local linear

estimators implemented with bandwidths ĥLL.LCV and ĥLL.PI . We computed the in-

tegrated squared error (ISE) for each estimate of ρ.

The results from 100 case-control data sets for each problem scenario are summarized

(on the log-scale) in the form of boxplots in Figures 4.4, 4.5, 4.6 and 4.7. In these

plots DR and LL distinguish the density ratio from local linear results and CV, LCV

and PI indicate least squares cross validation, likelihood cross validation and plug-in

bandwidth estimators. The average of ISE of log relative risk is displayed in Table

4.6.

Perhaps the most striking feature of the results is the poor performance of the local-

linear method implemented using the likelihood-cross validation bandwidth. The
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Figure 4.3: Filled contour plots for the test relative risk functions (on the log scale).

local-linear method fares much better with our plug-in bandwidth, and produces the

smallest estimation errors in some of the scenarios with linear risk sources. Nonethe-

less, the density ratio estimators perform better in more than half the scenarios,

including all cases with circular risk clusters and (perhaps surprisingly) some with

linear risk clusters. The reason for the poor performance of LL estimator may be

due to the optimal bandwidth. This bandwidth is inversely proportional to a second
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Figure 4.4: Boxplots of log(ISE) for estimates of the log-relative risk for test problem
1 from Table 1. Short and long ranges indicate values θ = 1 and θ = 0.5 respectively;
the control density is specified as uniform or normal as described in the text.

derivative term, which seems complex in the estimation. So we compute it numeri-

cally.

However, it is important to note that with all the cross validation bandwidth selectors,

the chosen value of h occurred at a boundary of the search interval [h0, 4h0] in over

25% of the simulated data sets in some scenarios. This indicates a somewhat worrying

degree of variability in the cross-validation bandwidth selectors.
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Table 4.6: MISE estimates in the simulation study to compare DR over LL methods.
Medians are displayed inside brackets.

Problem: Data DR—CV LL—LCV LL—PI

1 100 37.2 (31.4) 286.7 (128.9) 133.7 (85.6)
400 27.6 (24.9) 82.2 (57.0) 48.8 (38.3)

2 100 179.9 (171.2) 1549.6 (356.9) 259.9 (235.5)
400 151.3 (156.6) 245.0 (204.6) 165.1 (159.0)

3 100 140.8 (132.3) 1785.8 (269.1) 219.6 (183.2)
400 115.4 (121.9) 167.7 (139.0) 134.4 (128.5)

4 100 697.9 (687.3) 1.4E+72 ( 1488.1) 805.3 (768.9)
400 495.8 (499.7) 497.9 (390.9) 557.6 (558.3)

5 100 398.5 (53.3) 16325.4 ( 378.3) 282.6 (207.1)
400 80.4 (38.1) 1694.0 (349.7) 93.8 (80.7)

6 100 1660.6 (426.4) 66603.9 (12764.4) 602.2 (496.1)
400 367.7 (296.9) 12494.8 ( 8067.3) 324.4 (276.2)

7 100 478.7 ( 188.3) 18099.6 ( 1050.2) 427.5 (326.4)
400 198.6 (171.6) 3003.6 ( 1227.8) 210.8 (196.2)

8 100 2647.1 (1384.9) 132497.9 (70218.9) 1089.3 (1055.3)
400 849.7 (795.7) 23987.2 (12056.3) 548.2 (528.2)

9 100 62.3 ( 48.9) 640.7 (156.1) 146.3 (117.7)
400 45.8 (42.4) 113.5 (77.0) 68.1 (56.3)

10 100 302.8 (300.5) 2614.1 (587.3) 365.9 (329.0)
400 204.3 (200.5) 275.9 (246.5) 236.6 (234.4)

11 100 158.1 (154.6) 664.4 (269.5) 246.6 (209.4)
400 123.3 (121.6) 190.4 (153.4) 147.7 (145.5)

12 100 731.3 (679.5) 6501.5 (2146.8) 866.7 (843.7)
400 446.0 (436.1) 487.3 (371.1) 533.8 (522.5)

13 100 425.1 (110.7) 11196.0 (450.9) 313.1 (230.5)
400 134.9 (97.3) 2251.9 (870.3) 121.1 (101.2)

14 100 2609.9 (794.6) 93685.5 (42137.1) 718.5 (612.5)
400 562.2 (432.4) 18388.2 (10624.9) 445.1 (355.2)

15 100 665.2 (251.9) 22404.4 (714.1) 432.7 (375.9)
400 241.6 (225.0) 3607.1 (1152.3) 200.8 (193.4)

16 100 3098.9 (1661.3) 83273.3 (25256.6) 1189.6 (1219.7)
400 813.4 (773.9) 18122.8 (12432.5) 494.4 (467.9)
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Figure 4.5: Boxplots of log(ISE) for estimates of the log-relative risk for test problem
2 from Table 1. Short and long ranges indicate values θ = 1 and θ = 0.5 respectively;
the control density is specified as uniform or normal as described in the text.

4.7 Tolerance contours of local linear estimators

The benefits of kernel smoothing based relative risk functions in exploratory analysis

and data visualization is enhanced if one is able to highlight the areas of significantly

elevated risk. In this section, we present tolerance contours to distinguish significant

features of the relative risk function for the local linear method. As before, we use

p-values derived from z-tests for constructing tolerance contours for the local linear
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Figure 4.6: Boxplots of log(ISE) for estimates of the log-relative risk for test problem
3 from Table 1. Short and long ranges indicate values θ = 1 and θ = 0.5 respectively;
the control density is specified as uniform or normal as described in the text.

estimator be obtained by using the statistic

Z(x) =
ρ̂(x)

SE{ρ̂LL(x)}
,

where the standard error of ρ̂LL(x) is

SE{ρ̂LL(x)} =

√
1

h2
R(K)

1

ĝp(x)

[
1

n1

+
1

n2

]
.
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Figure 4.7: Boxplots of log(ISE) for estimates of the log-relative risk for test problem
4 from Table 1. Short and long ranges indicate values θ = 1 and θ = 0.5 respectively;
the control density is specified as uniform or normal as described in the text.

From equation (4.5.2) with the additional assumption (from H0) that f = g. The

density estimate ĝp(x) is a pooled estimator, constructed from a combined data set

comprising both cases and controls. We note that if x is close to the boundary of

R then it is necessary to edge correct the density estimator ĝp(x), and to replace

R(K) by
∫
R{Kh(x)}2 dx. The test statistic Z has an asymptotic standard normal

distribution under H0 (Fan et. al, 1995), and so we may hence compute the requisite

field of p-values over R.
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4.8 Real applications

In this Section, we illustrate the estimation of spatial relative risk in three particular

applications using the local linear and density ratio methods.
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Figure 4.8: Estimates of the log-relative risk of disease from the Myrtle Beech data.
The left-hand panel shows the estimate using the density ratio method with least-
squares cross-validation bandwidth h = 64, and the right-hand one the local linear
estimator using our plug-in bandwidth h = 197.3. The dashed lines indicate 95%
tolerance contours for areas of elevated risk.

4.8.1 Myrtle tree data

The first application that we analyze is related to the disease Myrtle Wilt for trees

growing in Tasmania, Australia, as discussed in Chapter 2. There are a number of

spatial models that might be applied to data such as these. Our aim is to estimate

the relative risk function (along with associated tolerance contours) as a tool for ex-

ploratory data analysis.
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We computed log-relative risk estimates on data using both density ratio and local

linear methods. Bandwidths 64.0 and 197.3 respectively were obtained using the least

squares cross-validation and plug-in methods respectively. The resulting estimates are

displayed as contour plots in Figure 4.8, along with 95% tolerance contours. The local

linear method is arguably preferable in this case. Certainly it is noticeable that the

density ratio method indicates a rather shallow slope in the risk surface from left to

right (corresponding to a difference of less that one unit on the log-relative risk scale

from left hand to right edges), whereas the trend seems rather stronger than this

when one eyeballs the data. An explanation is that a large bandwidth is required for

the density ratio method in order to produce a sufficiently smooth estimate, but the

resulting bias flattens the gradient of ρ̂.

4.8.2 Chorley-Ribble cancer data

Our second example is concerned with cancer data in Chorley Ribble as discussed

earlier.

As in the previous example, we estimated the log-relative risk functions using both

density ratio and local linear methods. Bandwidths 0.78 and 16.66 respectively were

obtained using the least squares cross-validation for DR method and plug-in for LL

method respectively. The resulting estimates are displayed in Figure 4.9. The two

methods provide rather different interpretations of the data. The density ratio ap-

proach indicates modest fluctuations in the relative risk over the region, none of which
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Figure 4.9: Estimates of the log-relative risk of larynx cancer in the Chorley-Ribble
region of Lancashire, England. The left-hand panel shows the estimate using the
density ratio method with least-squares cross-validation bandwidth h = 0.78, and the
right-hand one the local linear estimator using our plug-in bandwidth h = 16.66. The
dashed lines indicate 95% tolerance contours for areas of elevated risk.

are significant (in terms of tolerance limits) except for the areas close to the afore-

mentioned incinerator. The local linear method, on the other hand, suggests a very

flat relative risk profile over the study region. It could be argued that a real effect of

the incinerator has been missed in this case.

4.8.3 Foot and mouth disease (FMD) data

The third data set we use is from foot-and-mouth disease (FMD) data from the 1967

outbreak in Cheshire, UK. FMD is a highly infectious viral disease of farm livestock.

The virus can be spread directly between animals over short distances in contam-

inated airborne droplets, and indirectly over longer distances, for example via the

movement of contaminated material.
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Figure 4.10: Spatial distribution of FMD data. 100 cases (•), 2129 controls (+).

The spatial distribution of reported cases and controls of FMD can be seen in Figure

4.10. The cases comprise 100 individual with FMD confirmed from daily inspections.

There are 2129 control farms thought to be at high risk of acquiring the disease.

These data have been collected over a period of 16 days.

As in both previous data sets, we investigate the spatial distribution of this data

set, compute the relative risk surface and hence highlight the farms which corre-

spond to significantly high or low risk using the 95% tolerance contours using the
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Figure 4.11: These Figures show the estimates of log-relative risk of disease from
FMD data. The left panel is used DR method with LSCV bandwidth h = 1.74, while
the right panel shows the estimate using LL method with PI bandwidth h = 13.65.
The dashed lines indicate 95% tolerance contours for areas of elevated risk.

DR and LL methods with the help of LSCV and PI bandwidth selectors respectively.

Bandwidths 1.74 and 13.65 were respectively obtained using LSCV and PI band-

width selectors for DR and LL methods respectively. The resulting DR (left panel)

and LL estimates (right panel) are displayed in Figure 4.11. Tolerance contours for

both methods indicate the regions at central to northeastern region exhibit the most

risk. The DR approach produces a risk surface showing significance in the middle of

the region while LL suggests a flatter risk surface compared to the former estimator

over the study region. The local linear method is arguably oversmoothing in this case.
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4.9 Conclusion

In this chapter, we have compared and contrasted the density ratio and local linear

estimators of the log-relative risk function in geographical epidemiology. In previous

studies (e.g. Clark & Lawson, 2004) the local-linear approach has appeared highly

competitive for estimating the conditional probability function. However, our results

overall suggest that the density ratio method is generally better when estimating the

log-relative risk function, although the LL method can be preferable when there is a

linear source of risk. We obtained asymptotic formula for the bias and variance of

local linear estimator.

As with all kernel smoothing problems, the choice of bandwidth is critical. Likelihood

cross-validation bandwidth selection has proven successful when the target function

is the conditional probability, but is much less attractive when we seek to estimate

the log-relative risk function. Indeed, the worse performance of the local-linear es-

timator implemented with the likelihood cross-validation bandwidth is perhaps the

most striking outcome of our numerical experiments.



Chapter 5

Estimation of spatio-temporal

relative risk function

5.1 Introduction

Abellan, Richardson & Best (2008) have mentioned in the past two decades, that geo-

graphic information systems and statistical methods for analyzing spatially referenced

data allowed epidemiologists to re-evaluate spatial epidemiology from the perspective

of visualizing the trajectory of disease risk across space and time. So there is a grow-

ing interest in integrating temporal information in geographic information systems,

while advances in computing technologies have made it possible to implement many

of the new concepts developed to address temporal problems (Lo & Yeung, 2007).

The general aim of this chapter is to display temporal changes in the spatial pattern

of disease. As in other chapters, we use kernel density estimation to compute the

spatio-temporal estimators.
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This chapter has two parts. The first part is organized as follows. In Section 5.2, we

extend spatial relative risk function (Bithel, 1990) to a spatio-temporal relative risk

function. Spatio-temporal kernel density estimation is defined in the context of mul-

tivariate data in Section 5.3. It is usual to observe some observations at the boundary

of the region. So we employ the edge correction techniques detailed in Section 5.4. In

Section 5.5, we derive formulae for the asymptotic properties of bias and variance of

the spatio-temporal kernel estimates and relative risk estimates. The proofs of theo-

rems can be found in the Appendix C. We next discuss the tolerance contours of log

relative risk in Section 5.6. After that, we describe two cross-validation bandwidth

selectors (LSCV and LCV) in the relative risk estimation and obtain the formulae of

the optimal bandwidth combination (spatial and temporal) in Section 5.7. In Section

5.8, we illustrate these estimates using the foot and mouth disease data from the 1967

outbreak.

The second part of this Chapter concerns time derivative relative risk estimation

since it is very important to see how the rate of a particular disease risk change with

time. Some articles regarding kernel density derivative estimation can be found in the

literature. Chacón, Duong and Wand (2010) have worked on the kernel estimators

of multivariate density derivative functions using general bandwidth matrix selectors.

Borla & Protopopescu (2010) have proposed a nonparametric estimator of a fractional

derivative of a distribution function. However, the time derivative of log relative risk

estimation has not been examined. So our work in this section is a novel contribution.
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We organize the rest of the sections as follows. We define the time derivative of log

relative risk function in Section 5.9.1. The asymptotic properties of bias and variance

of this estimators are obtained in the Section 5.5. Then we derive the tolerance

contours of these time derivative density estimators in Section 5.9.2. We revisit the

FMD application to illustrate these derivative density estimators in Section 5.9.3.

5.2 Spatio-temporal relative risk function

The basic format of spatio-temporal data is (xi, ti); (i = 1, ..., n) where each xi =

(xi1, xi2) ∈ R represents the continues variables of spatial locations, and ti ∈ T de-

notes the time of occurrence of an event of interest as an ordered continuous variable.

One general approach to analysing spatio-temporal data is to extend existing methods

for purely spatial data by considering the time of occurrence as a distinguishing

feature, attached to each event. So here, we use spatial relative risk function (Bithel,

1990) to extend in the form of space-time. Conditional on the sample sizes n1 and

n2, we define

r(z, t) =
f(z, t)

g(z, t)
; t ∈ T, z ∈ R (5.2.1)

to be the spatio-temporal relative risk function for z ∈ R occured at time t ∈ T ,

where f and g represent respectively trivariate probability density functions of cases

and controls at spatial coordinates and time of occurence. The average value of

relative risk (r), with respect to the control density g is
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Ez∼g,t∼g[r(z, t)] =

∫
R

∫
T

r(z, t)g(z, t)dzdt

=

∫
R

∫
T

f(z, t)

g(z, t)
g(z, t)dzdt

= 1.

This implies that the average value of r(z, t) with respect to the space-time control

density over R and T is one. That is, r(z, t) > 1 indicates the elevated risk of disease

at the point z as compared to the study area as a whole.

It will usually be the case that the control density can be considered unchanging

throughout the observational period. We therefore assume g(z; t) = g(z)g(t) =

g(z) 1
|T | = g(z)

|T | , where T represents the time interval and hence |T | the length thereof.

Thus, the relative risk function (5.2.1) becomes

r(z; t) =
f(z; t)

g(z)
|T | ; t ∈ T, z ∈ R. (5.2.2)

However, there may be some situations when the disease at-risk varies substantially

over time, for e.g. when those that have been infected do not become susceptible after

infection. In this way, the size of control population will reduce in size and exhibit

more spatial variation over time depending on where previous cases have been. In

this case, since time (t) is varying, we can apply the theoretical results, obtained in

Chapter 6 by replacing the covariate (z) with time (t) to compute the control density

g(x, t). However, in this Chapter, we focus on the prior assumption regarding the

control density.
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As mentioned in previous chapters we will usually work with risk on the log scale; i.e

focus will be on the space-time log-relative risk function:

ρ(z, t) = log[r(z, t)]

= log[f(z, t)]− log[g(z)] + log[|T |] (5.2.3)

Throughout this Chapter as in Chapter 2, we prefer estimating ρ to r. A straight-

forward estimate of ρ (or r) can be obtained by substituting f and g from trivariate

kernel density estimates constructed from case and control data respectively, as we

now explain.

5.3 Spatio-temporal kernel density estimation

The trivariate kernel density estimate constructed from independent, identically dis-

tributed bivariate spatial observations x1, . . . ,xn1 and univariate temporal data t1, . . . , tn1

of size n1 is given by

f̂(z; t) = n−1
1

n1∑
i=1

Kh (z− xi)Lλ (t− ti) , (5.3.1)

where Kh(u) = h−2K(h−1u) and Lλ(t) = λ−1L(λ−1t). In this study as in Chapter

2, the kernel functions K and L are defined using a spherically symmetric proba-

bility density function satisfying
∫
K(u)du = 1 and a univariate probability density

function satisfying
∫
L(t)dt = 1, respectively. The scalars h and λ determine the

bandwidths for spatial and temporal components respectively and these bandwidths

control the smoothness of respective density estimators. See Wand & Jones (1995)

and Duong & Hazelton (2003) for more details.
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Since

ĝ(z, t) =
ĝ(z)

|T |
,

the kernel density estimator ĝ of g can be expressed as

ĝ(z; t) =
n−1

2

|T |

n1+n2∑
i=n1+1

Khg (z− xi) , (5.3.2)

where hg is the smoothing parameter of the kernel density estimate and xn1+1, . . . ,xn1+n2

represents the control observations of size n2. If we assume that hf be the bandwidth

for the kernel estimate computed from case data, a plug-in estimator of space-time

log-relative risk function from (5.2.3) is then given by

ρ̂(z, t) = log[f̂(z, t;hf , λ)]− log[ĝ(z;hg)] + log[|T |]. (5.3.3)

A major problem we have to overcome is selecting the bandwidths. As there is no

prior research in the estimation of the spatio-temporal relative risk function, we use

a common bandwidth which is preferred in most applications since there are some

substantial complication when dealing with separate bandwidths. The time/spatial

scale are entirely arbitrary, so non-equal bandwidths can easily be resolved with

appropriate rescaling anyway. That is, (hf = hg = h) in deriving f̂ and ĝ.

5.4 Edge correction

As mentioned in Chapter 2 in the context of spatial analysis, edge correction tech-

niques can be applied to avoid the bias near boundaries when estimating the log

relative risk function. In the context of space-time, because there may be data points

that fall close to the boundary of R, and or to the ends of the observational time
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window.

Fixed bandwidth edge corrected spatio-temporal kernel density estimate constructed

from case data can be defined as

f̃hf (z, t) =
f̂hf (z, t)

q(z, t)

where q is the explicit edge correction term and

q(z, t) =
∫
T

∫
RKhf (y− z)Lλ(s− t)dyds (5.4.1)

=
∫
RKhf (y− z)dy

∫
T
Lλ(s− t)ds. (5.4.2)

The integral in the left side of equation (5.4.2) represents the bivariate edge-correction

term due to the spatial locations while the right side is a univariate term due to the

time component. Regarding the latter, we explain some issues. If we observe all

cases in some specific epidemic then we know that there are no cases outside the time

interval T , and hence no boundary correction in time is required. If we only observe

cases over T and there may be cases before or after, and then boundary correction in

time is required. The former is appropriate for the FMD data, for example. When we

ignore the boundary correction in time, q(z, t) becomes q(z). From equation (5.2.2),

the boundary corrected relative risk estimate can then be revised as

r̃(z; t) =
f̃(z; t) |T |
g̃(z)

; t ∈ T, z ∈ R.

=
f̂hf (z, t) |T |qhg(z)

qhf (z)ĝ(z)

= r̂(z; t)
qhg(z)

qhf (z)
(5.4.3)

The top and bottom edge correction terms in equation (5.4.3) cancels out if common
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spatial bandwidths (hf = hg = h) are used for case and control densities. So the

equation (5.4.3) then reduces to r̂(z, t).

5.5 Asymptotic properties of spatio-temporal rel-

ative risk estimators

In this Section, we derive the asymptotic properties of bias and variance of space-time

kernel density estimates, i.e. f̂(z, t), and log RR estimates ρ̂(z, t) for z lying in the

interior of the study region R. We assume common bandwidths for case and control

data in the estimation.

Lemma 5.5.1. If z be an interior point of the region R then at a particular time t,

Bias[f̂(z, t)] =
1

2
h2µ2(K)∇2

zf(z, t) +
1

2
λ2µ2(L)∇2

tf(z, t) + o(h2 + λ2) (5.5.1)

and

Var[f̂(z, t)] =
f(z, t)R(K)R(L)

n1h2λ
+ o(n−1

1 h−2λ−1). (5.5.2)

Here ∇, µ2(K), K and R(K) have already been defined in Chapter 4, while µ2(L) =∫
s2L(s)ds and R(L) =

∫
L(s)2ds.

The proof of this lemma follows from the standard results for multivariate density

estimation (e.g. Wand & Jones, 1995).

Theorem 5.5.2. If z be an interior point of R then

Bias[ρ̂(z, t)] =
1

2

[
h2µ2(K)∇2

zf(z, t) + λ2µ2(L)∇2
tf(z, t)

f(z, t)
− h2µ2(K)∇2

zg(z)

g(z)

]
+o(h2+λ2)

(5.5.3)
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and

Var[ρ̂(z, t)] =
R(K)R(L)f(z, t)−1

n1h2λ
+
R(K)g(z)−1

n2h2
+ o(n−1

1 h−2λ−1 + n−1
2 h−2) (5.5.4)

at time t.

The proof of this theorem can be seen in the Appendix C.1. According to these

asymptotic properties, we should avoid the possibility of being g = 0 and f = 0. As

in Chapters 2 and 4, we assume that f(z, t) > ε and g(z) > ε for all z ∈ R and t ∈ T ,

where ε is assumed known.

Here the variance formulae (5.5.4) of ρ̂ is important since we use it to compute z-test

statistics for tolerance contours.

It will sometimes be the case that time is recorded at a relatively coarse level, so that

there are only a modest number of unique values for t. When that occurs, the time

bandwidth (λ) will be larger than spatial bandwidth, h. In that case, the second term

in (5.5.1) and (5.5.3) will be the dominant element in both bias expressions.

5.6 Tolerance contours of ρ̂

Tolerance counters are often appropriate the analysis of relative risk function to be

able to spot statistically significant variations in the risk itself. See Kelsall & Diggle

(1995a) in the context of spatial analysis and the discussion in Chapter 2. So we

extend the work in Chapter 2 regarding tolerance contours into the context of space-

time. We aim to identify the subregions which produce the elevated risk surface by
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considering the null hypothesis

H0 : ρ(z, t) = 0 (i.e. r(z, t) = 1)

against the alternative hypothesis

H1 : ρ(z, t) > 0 (i.e. r(z, t) > 1).

As mentioned in Chapter 2, this produces a p-values surface p(z, t) over the region R

at time t. If we compute the contour relevant to p = 5%, then all space-time points

within this contour (i.e. with p(z; t) ≤ 5% ) can be considered to have significantly

elevated risk. Here we therefore suggest that the p-values for constructing space-time

tolerance contours for the density ratio estimator be obtained by using a normal ap-

proximation to the sampling distribution of ρ̂(z; t).

Under the null hypothesis H0, r(z, t) = 1, i.e., f(z, t) = g(z) 1
|T | . Then the asymptotic

bias of ρ̂(z; t) in equation (5.5.3) becomes zero and the asymptotic variance from

equation (5.5.4) reduces to

Varρ̂(z, t) ≈ R(K)R(L)f(z; t)−1

n1h2λ
+
R(K)g(z)−1

n2h2

≈ R(K)R(L)|T |g(z)−1

n1h2λ
+
R(K)g(z)−1

n2h2

≈ R(K)g(z)−1

h2

[
|T |R(L)

n1λ
+

1

n2

]
.

If g(z) is unknown, we use pooled estimate ĝρ(z), constructed from all data consist of

both cases and controls. Hence an appropriate z-test statistic at the point z at time

t can be obtained by using

Z(z; t) =
ρ̂(z; t)

SE{ρ̂(z; t)}
; under H0,
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where

SE{ρ̂(z, t)} =

√
R(K)ĝρ(z)−1

h2

[
|T |R(L)

n1λ
+

1

n2

]
.

5.7 Bandwidth selection

The choice of smoothing parameter is a crucial element in spatial relative risk esti-

mation (see Chapter 3). This selection problem is more difficult in the context of

space-time since the temporal bandwidth needs to be incorporated in addition to the

usual spatial bandwidth. One can interactively choose suitable bandwidths by look-

ing at different bandwidths. Automatic bandwidth estimators can also be applied in

this case.

The MISE of log RR estimate at a point z at time t is given by

MISE(h, λ) = E
[∫

T

∫
R

[ρ̂(z, t)− ρ(z, t)]2dzdt

]
where h is the common case and control spatial bandwidth and λ is the temporal

bandwidth. Using the standard properties of mean and variance,

MISE(h, λ) =

∫
T

∫
R

[Bias{ρ̂(z, t)}]2 dzdt+

∫
T

∫
R

Var{ρ̂(z, t)}dzdt. (5.7.1)

Using the equations (5.5.3) and (5.5.4) for the mean and variance of ρ̂, we reach to

an asymptotic approximation to the MISE, given by

MISE(h, λ) ≈ 1

4

∫
T

∫
R

[
h2µ2(K)∇2

zf(z, t) + λ2µ2(L) ∂
2

∂t2
f(z, t)

f(z, t)
− h2µ2(K)∇2

zg(z)

g(z)

]2

dzdt

+

∫
T

∫
R

[
R(K)R(L)f(z, t)−1

n1h2λ
+
R(K)g(z)−1

n2h2

]
dzdt.
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Here our aim is to obtain the optimal bandwidth combination (h, λ) by minimizing

MISE. So we get the optimal bandwidths,

(̂h, λ)
MISE

= arg minh,λ[MISE].

In principle the LSCV and LCV bandwidth selectors can be used in space-time relative

risk estimation. These two methods are briefly described in the context of space-time

in the following two subsections.

5.7.1 Least squares cross validation

The space-time log relative risk function from equation (5.2.3) is,

ρ(z, t) = log

[
f(z, t)

g(z)
|T |
]

; t ∈ T, z ∈ R. (5.7.2)

We obtain the LSCV formula for spatio-temporal case, derived from Chapter 3 equa-

tion (3.3.3) as follows:

L̂SCV (h, λ) = −
∫ ∫

{ρ̂h,λ(x, t)}2dxdt− 2n−1
1

n1∑
i=1

log

[
(f̂−ih,λ(xi, ti))|T |

ĝh(xi)

]
{f̂−i(xi, ti)}−1

+2n−1
2

n1+n2∑
j=n1+1

log

[
(f̂h,λ(xj, tj))|T |

ĝ−jh (xj)

] [
ĝ−j(xj)

|T |

]−1

. (5.7.3)

When x lies at the boundary of the region, the equation (5.7.3) needs to be revised

as

L̂SCV (h, λ) = −
∫ ∫

{ρ̃h,λ(x, t)}2dxdt− 2n−1
1

n1∑
i=1

log

[
(f̃−ih,λ(xi, ti))|T |

g̃h(xi)

]
{f̃−i(xi, ti)}−1 +

2n−1
2

n1+n2∑
j=n1+1

log

[
(f̃h,λ(xj, tj))|T |

g̃−jh (xj)

][
g̃−j(xj)

|T |

]−1

. (5.7.4)
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As mentioned in Section 5.4, under common case and control bandwidths, ρ̃ = ρ̂,

so the first term of equation (5.7.3) remains as it is. The second term of equation

(5.7.4) is reduced to the second term in equation (5.7.3) multiplied by q(z). Similarly,

the third term of equation. (5.7.4) is reduced to the third term in equation (5.7.3)

multiplied by q(z), where

q(z) =

∫
R

1

h2
K

(
x− z

h
dx

)
.

The minimization of the estimate L̂SCV over h and λ produces the LSCV optimal

combination of the spatial and temporal bandwidths.

5.7.2 Likelihood cross-validation

We present in this section an alternative method, LCV for choosing the optimal band-

width combination. See Clark and Lawson (2004) for spatial analysis.

Let f and g be spatio-temporal bivariate density functions constructed from case

and control data sets respectively. This is an extension of the LCV discussion in

the estimation of spatial relative risk in Section 3.3.2 to the spatio-temporal context.

Let us define the regression function p(z, t) = E[Y |X = z, T = t], in which y is the

binary response function with y = 1 for case data and y = 0 for control data. That

is, p(z, t) = P [Y = 1|X = z, T = t]. Then,

p(z, t) =
πf(z, t)

(1− π)g(z, t) + πf(z, t)
; π =

n1

n1 + n2

=
n1f(z, t)

n2g(z)/|T |+ n1f(z, t)
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To choose spatial (h) and temporal(λ) optimal bandwidths, we use likelihood cross

validation (see Clark and Lawson (2004) for spatial analysis). We define the LCV

function

L̂CV (h, λ) = log

[
n∏
i=1

{p̂−i(xi, ti;h, λ)}yi{1− p̂−i(xi, ti;h, λ)}1−yi

]

=
n∑
i=1

[
yi log[p̂−i(xi, ti;h, λ)] + (1− yi) log[1− p̂−i(xi, ti;h, λ)]

]
=

n1∑
i=1

[
yi log[p̂−i1 (xi, ti;h, λ)] + (1− yi) log[1− p̂−i1 (xi, ti;h, λ)]

]
+

n1+n2∑
i=n1+1

[
yi log[p̂−i2 (xi;h)] + (1− yi) log[1− p̂−i2 (xi;h)]

]
.

Here,

p̂−i1 (xi, ti;h, λ) =
n1f̂

−i(xi, ti, h, λ)|T |
n2ĝ(xi;h) + n1f̂−i(xi, ti, h, λ)|T |

and

p̂−i2 (xi;h) =
n2ĝ

−i(xi;h)

n1f̂(xi;h) + n2ĝ−i(xi;h)
.

By substituting p̂−i1 and p̂−i2 ,

L̂CV (h, λ) =

n1∑
i=1

log

 n1f̂
−i(xi, ti)

n2ĝ(xi)

|T |
+ n1f̂

−i(xi, ti)

+

n1+n2∑
i=n1+1

log

[
n2ĝ

−i(xi)

n2ĝ−i(xi) + n1f̂(xi)

]
.

Here f̂−i and ĝ−i represent the kernel density estimates constructed from all data

points except ith datum. L̂CV needs to be maximized to obtain the optimal band-

width combination.
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5.8 Real application: FMD of 1967 outbreak

In this section, we revisit the data from the 1967 outbreak of FMD in Cumbria, UK.

We have already examined these data in Section 4.8.3, but only with respect to the

spatial locations of cases and controls. In this Section, in addition to spatial points

we include time of infection (measured in days).
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Figure 5.1: The distribution of FMD case data. Day is shown in the title.

According to Figure 5.1, there are clusters of case data, found in the middle and

eastern parts of the region. Note that there were no cases on days 14-20, 22-26 and
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Figure 5.2: Control data distribution of FMD.

28. Figure 5.2 depicts the distribution of 2129 controls, which represent uninfected

farms at risk of the disease. Our primary objective here is to examine the temporal

changes in the spatial pattern of FMD disease.

We compute log relative risk estimates of FMD using the density ratio method in the

context of space-time. Then we highlight the farms which correspond to significantly
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elevated risk using the 95% tolerance contours. Initially, we choose subjective band-

widths, ĥ = 1.2 for spatial component while λ̂ = 1.7 for temporal.

The resultant contour plots representing the log relative risk estimates are given in

Figure 5.3. These four plots depict the spatio-temporal relative risk surface of FMD

on days 1, 6, 16 and 24. The overall impression is that the disease risk has become

more highly dispersed over the region between days 1 and 24, with the highest area

of risk moving eastward a little followed by centralizing again at the end of the period.

Figure 5.4 shows the log relative risk estimates computed on days 1, 6, 16 and 24

as previously, but using LSCV bandwidths 0.83 and 2.15 for spatial and temporal

components respectively. These results seem comparable with the results from using

the subjective bandwidths and this produces an under-smoothed estimate.

5.9 Time derivative relative risk estimation

Estimating time derivatives of the spatio-temporal log relative risk surface is very

important in spatio-temporal analysis, since it can be used to measure the rate of

change of the log relative risk of a disease over time. We build on published results

on kernel estimation of density derivatives (e.g. Chacón, Duong and Wand (2011).

The discussion of this section provides novel contributions with the introduction to

time derivatives of the relative risk function and also its asymptotic properties and

then the computation of the 5% tolerance contours to identify areas where the relative

risk is changing.
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Figure 5.3: Log relative risk estimates(ρ) for FMD data in day 1, 6, 16 and 24.
Subjective bandwidth is used. 5% tolerance contours are displayed in white.

5.9.1 Time derivative density estimation

Bhattacharya (1967) has worked on the estimation of a univariate probability density

function and its derivatives and later by Schuster (1969). Singh (1987) studied on

the MISE of kernel estimates of a density and its derivatives. Hädle, Marron and

Wand (1990) looked for the bandwidth selectors for density derivatives. Jones (1994)

generalized the multivariate kernel density derivative estimation.
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Figure 5.4: Log relative risk estimates (ρ) for FMD data in day 1, 6, 16 and 24. LSCV
bandwidth is used. 5% tolerance contours are displayed in white.

The log relative risk time derivative density function is defined by ∂
∂t
ρ(z; t),where z ∈

R, t ∈ T .

From equation (5.3.3),

ρ(z; t) = log f(z; t) + log |T | − log g(z)
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as the second and third terms are independent of t, we get

∂

∂t
ρ(z; t) =

∂
∂t
f(z; t)

f(z; t)
.

That is, time derivatives of log relative risk function is equal to the ratio of time

derivatives of case density to the density itself. We can derive this explicitly by

plugging in a kernel density estimate of f and its time derivative, to give

∂

∂t
ρ̂(z; t) =

∂
∂t
f̂(z; t)

f̂(z; t)
.

We now derive explicit expressions for the estimators and constants where K and L

are bivariate and univariate Gaussian kernels respectively.

∂

∂t
f̂(z; t) =

1

n1h2λ

n1∑
i=1

K

(
z− xi
h

)
∂

∂t
L

(
t− ti
λ

)
(5.9.1)

with

∂

∂t
L

(
t− ti
λ

)
=

∂

∂t

[
1√
2πλ

exp[− 1

2λ2
(t− ti)2]

]
= −(t− ti)√

2πλ3
exp[− 1

2λ2
(t− ti)2]

= −(t− ti)
λ2

L

(
t− ti
λ

)
From equation (5.9.1),

∂

∂t
f̂(z; t) = − 1

n1h2λ

n1∑
i=1

K

(
z− xi
h

)
(t− ti)
λ2

L

(
t− ti
λ

)
= − 1

n1λ2

n1∑
i=1

Kh(z− xi)(t− ti)Lλ(t− ti).

Theorem 5.9.1. If z be an interior point of R then

Bias

[
∂

∂t
ρ̂(z; t)

]
=

R(K)R(L) ∂
∂t
f(z; t)

2n1h2λ [f(z, t)]2
+ o(n−1

1 h−2λ−1) (5.9.2)
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and

Var

[
∂

∂t
ρ̂(z; t)

]
=

R(K)R(L
′
)

n1h2λ3f(z; t)
+ o

(
1

n1h2λ
+

1

n1h2λ3

)
. (5.9.3)

at time t.

The proof of the above theorem can be found in the Appendix C.2. The term

R(K)R(L
′
)

n1h2λ3f(z; t)
of equation (5.9.3) dominates asymptotically because it relates to the

estimation of a density derivative, which is inherently a more difficult estimation

problem than estimating the density itself.

5.9.2 Tolerance contours of
∂

∂t
ρ̂(z; t)

Tolerance contours are discussed in this section to distinguish significant features of

the time derivative of the log-relative risk estimator. A particular aim is to examine

which parts of the region are seeing real changes in disease risk with time.

As in Section 5.6, we compute 5% tolerance contours. That is, the contours within

the p-value, p = 0.05, then all points within this contour (i.e. with p(z; t) ≤ 0.05)

can be considered to have areas with significant change of risk. We therefore consider

p-values for spatio-temporal tolerance contours by using a normal approximation to

the sampling distribution of
∂

∂t
ρ̂(z; t).

We will test the null hypothesis

H0 :
∂

∂t
ρ(z; t) = 0

against the alternative hypotheses

H1 :
∂

∂t
ρ(z; t) > 0
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and

H2 :
∂

∂t
ρ(z; t) < 0.

However throughout this chapter, we focus on the alternative H1 since it is most

important. Under H0,

Var

[
∂

∂t
ρ̂(z; t)

]
=

R(K)R(L
′
)

n1h
2λ3f(z; t)

.

Since the bias of
∂

∂t
ρ̂(z; t) is zero under the null hypothesis H0, an appropriate z-test

statistic at the point z at time t is given by

Z(z; t) =

∂

∂t
ρ̂(z; t)

SE{ ∂
∂t
ρ̂(z; t)}

; under H0,

where

SE

[
∂

∂t
ρ̂(z; t)

]
=

√
R(K)R(L′)

n1h
2λ3f(z; t)

.

For large n1,
∂

∂t
ρ̂(z; t) will be normally distributed with zero mean and

R(K)R(L
′
)

n1h2λ3f(z; t)

variance. That is,

∂

∂t
ρ̂(z; t) ∼ N

(
0;

R(K)R(L
′
)

n1h
2λ3f(z; t)

)
; under H0

Therefore the test statistic at the point z at time t is,

Z(z; t) =

∂

∂t
ρ̂(z; t)√

R(K)R(L
′
)

n1h2λ3f(z; t)

∼ N(0; 1) (5.9.4)
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In practice, we replace f(z, t) in the denominator of the test statistic by a pilot

estimate thereof. Here

R(K)R(L
′
) =

∫
(K(u))2 du

∫ (
L
′
(s)
)2

ds

= −
∫ (

1

2π
e−(u21+u22)/2

)2

du1du2

∫ (
s√
2π
e−

s2

2

)2

ds

=
1

8π3

∫
e−u

2
1e−u

2
2du1du2

∫
s2e−s

2

ds

=
1

8π3

∫ ∫
e−u

2
1du1

∫
e−u

2
2du2

∫
s2e−s

2

ds

=
1

8π3

√
π
√
π

√
π

4

=
1

32π3/2
.

5.9.3 Revisit to FMD application

This is a revisit to FMD data set. We produce time derivative density estimates of

log relative risk function (
∂

∂t
ρ̂) in this Section. Figures 5.5, 5.6, 5.7, 5.8 and 5.9 show

the derivative density estimates of FMD produced within the rectangular window

[305, 339.1] × [308, 340.1]. The degree of change of risk is represented by the shaded

region. The solid contour white lines depict the 5% tolerance contours, which give

the regions of significant change of risk. Also the case locations are scattered in red in

the plot. In this work, for simplicity, we use spatial bandwidth, h = 1.2 and temporal

bandwidth λ = 1.7 subjectively.

According to the results displayed in these Figures, we make the following brief in-

terpretation. The rate of change in disease risk in Figure 5.5 from day 1 to day 9

shows a decreasing trend though displaying some tiny clusters. On day 10, no cases
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of increasing risk can be seen, reflecting the fact that there are no more cases until

day 20. According to Figure 5.1, there is a case data on day 21 and further cases on

day 27, 29, 30 and 31. Therefore, we can see that there is some significant areas of

the change of risk, starting at day 23. After day 31, there are no further cases found

and hence the rate of disease risk decreases.

We also use LSCV method to compute spatial bandwidth, h = 0.83 and temporal
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Figure 5.5: Derivative density estimation for days 1-9. White lines indicate 95%
tolerance contours. Case data are scattered in red.

bandwidth, λ = 2.15. The resultant plots are displayed in Figures 5.10, 5.11, 5.12,

5.13 and 5.14, produced within the rectangular window [305, 339.1] × [308, 340.1].
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Figure 5.6: Derivative density estimation for days 10-18. White lines indicate 95%
tolerance contours. Case data are scattered in red.

Shaded regions represent the degree of change of risk. The 5% tolerance contours

are given as solid white contours. Cases can be seen in these plots in red. These

resultant plots are very comparable to those with subjective bandwidth. So here, the

interpretation is agreeable with the previous case. Also the estimates produced using

LSCV looks low smoothed compared to those using subjective bandwidth.
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Figure 5.7: Derivative density estimation for days 19-27. White lines indicate 95%
tolerance contours. Case data are scattered in red.

5.10 Conclusion

Modelling spatio-temporal patterns of relative risk should be researched since it is an

important area and also there is not any previous work in the literature. So in this

chapter, we explore the use of kernel density estimation method to identify spatio-

temporal patterns of relative risk surfaces from case-control data. Then we obtain

the asymptotic properties of bias and variance of log relative risk estimates and its

time derivative density estimates. Also we looked at the tolerance contours in order
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Figure 5.8: Derivative density estimation for days 28-36. White lines indicate 95%
tolerance contours. Case data are scattered in red.

to detect the regions of significantly change of disease risk. These relative risk and

time derivative density estimates are illustrated using the FMD data set in 1967 out-

break. Spatial and temporal bandwidths have been chosen subjectively and LSCV to

compute these estimates.
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Figure 5.9: Derivative density estimation for days 37-45. White lines indicate 95%
tolerance contours. Case data are scattered in red.
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Figure 5.10: Derivative density estimation for days 1-9. LSCV bandwidth is used.
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Figure 5.11: Derivative density estimation for days 10-18. LSCV bandwidth is used.
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Figure 5.12: Derivative density estimation for days 19-27. LSCV bandwidth is used.
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Figure 5.13: Derivative density estimation for days 28-36. LSCV bandwidth is used.
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Figure 5.14: Derivative density estimation for days 37-45. LSCV bandwidth is used.



Chapter 6

Non-parametric estimation of

relative risk with covariates

6.1 Introduction

Suppose in a particular epidemiological data set we have some information on a

specific explanatory variable which is non-constant through the whole study. One

may suspect that this particular variable might influence greatly the disease risk. We

want to visualize how spatial patterns of risk vary with the covariate(s) to hand. So

in this Chapter, as a novel work, we propose the generalized relative risk function,

r(x, z) =
f(x, z)

g(x, z)
; x ∈ R, z ∈ Rp. (6.1.1)

In this chapter we use z = (z1, ..., zp)
T to represent the covariate and x = (x1, x2)T

for spatial locations. As in previous chapters, f and g represent the case and control

densities respectively.

124
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For example, in a veterinary epidemiological data set (say FMD), we might have

information on farm size. The natural question then arises is how does the spatial

pattern of disease change with the covariate (e.g. farm size). To answer this question

we can look at the function r(x, z). According to the above definition 6.1.1, both case

and control densities f and g depend on the covariate (z). So larger farms may be

concentrated in one part of the geographical region.

Note that the average of relative risk (6.1.1), is such that r(x, z) is normalized over

x and z, i.e., has a unit expectation with respect to control distribution of x and z.

That is,

E(x,z)∼g[r(x, z)] =

∫
R

∫
Rp

r(x, z)g(x, z)dxdz

=

∫
R

∫
Rp

f(x, z)

g(x, z)
g(x, z)dxdz

= 1.

An alternative is to condition on z, so that the relative risk is given by

r(x|z) =
f(x|z)

g(x|z)
; x ∈ R, z ∈ Rp. (6.1.2)

This is normalized with respect to g(x|z). Of course, in terms of spatial risk, (6.1.2)

is just a rescaling of (6.1.1) by a factor of g(z)/f(z). That is,

r(x|z) =
r(x, z)

r(z)

= r(x, z)
g(z)

f(z)
(6.1.3)
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and

E(x|z)∼g[r(x|z)] =

∫
R

∫
Rp

r(x|z)g(x|z)dxdz

=

∫
R

∫
Rp

f(x|z)

g(x|z)
g(x|z)dxdz

= 1.

The distinction between 6.1.1 and 6.1.2 is hence an issue of what we are comparing

risk against. If we examine spatial plots of r(x, z) for different values of z then we can

get a sense of overall variation in risk as the covariates change. On the other hand,

plots of r(x|z) for different values of z will be directly comparable in terms of spatial

variation of risk.

The rest of the Chapter is organized as follows. We discuss the estimation of relative

risk function with covariates in Section 6.2 and then describe the kernel density es-

timation method in Section 6.3. We develop asymptotic results for both approaches

in Section 6.4. Bandwidth selectors are briefly formulated in Section 6.5. In Section

6.6, the estimators are illustrated with FMD data of 1967 outbreak.

6.2 Relative risk function with a covariate

Let (xT1 , z
T
1 )T , . . . , (xTn1

, zTn1
)T denote the case data with joint density f and (xTn1+1, z

T
n1+1)T

, . . . , (xTn , z
T
n )T the control data with density g, where n = n1 + n2. The relative risk

function, r(x, z) can be estimated by r̂ as follows:

r̂(x, z) =
f̂(x, z)

ĝ(x, z)
; x ∈ R, z ∈ Rp, (6.2.1)
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which is a ratio of kernel density estimates (f̂) and (ĝ) constructed from case and

control data respectively. We discuss the form of these estimates in the next section.

Similarly,

r̂(x|z) =
f̂(x|z)

ĝ(x|z)
; x ∈ R, z ∈ Rp, (6.2.2)

where

f̂(x|z) =
f̂(x, z)

f̂(z)
(6.2.3)

and

ĝ(x|z) =
ĝ(x, z)

ĝ(z)
. (6.2.4)

The functions in 6.2.3 and 6.2.4 are defined for z values for which f̂(z) > 0 and

ĝ(z) > 0 respectively. By substituting 6.2.3 and 6.2.4 in 6.2.2, we get

r̂(x|z) =
r̂(x, z)

r̂(z)
. (6.2.5)

This equation is equal to the eq. 6.2.1 divide by r̂(z), which is the
∫
r̂(x, z)dx.

As before, we prefer to work with log relative risk functions.

ρ̂(x, z) = log[r̂(x, z)]

= log

[
f̂(x, z)

ĝ(x, z)

]
; x ∈ R, z ∈ Rp

and

ρ̂(x|z) = log[r̂(x|z)]

= log

[
f̂(x|z)

ĝ(x|z)

]
; x ∈ R, z ∈ Rp.
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6.3 Kernel density estimation with a covariate

In most general form, higher dimensional kernel density estimator can be expressed

as

f̂(x; z) = n−1
1

n1∑
i=1

Kh (x− xi)Lλ (z− zi)

where xi = (xi1, xi2)T , zi = (zi1, zi2, ..., zip)
T , n1 is the sample size, h and λ are

the bandwidths based on space (x) and the covariate (z) respectively. Kh(v) =

h−2K(h−1v) and Lλ(u) = λ−pL(λ−1u). K is a bivariate kernel function satisfying∫ ∫
K(x)dx = 1 and L is a p-variate kernel function satisfying

∫
...
∫
p
L(z)dz = 1.

Similarly,

ĝ(x; z) = n−1
2

n1+n2∑
j=n1+1

Kh (x− xj)Lλ (z− zj) .

Therefore, from eq. (6.2.1),

r̂(x, z) =
n2

∑n1

i=1 Kh (x− xi)Lλ (z− zi)

n1

∑n1+n2

j=n1+1Kh (x− xj)Lλ (z− zj)
. (6.3.1)

6.4 Asymptotic properties

6.4.1 Bias and variance of ρ̂(x, z)

We derive the asymptotic properties of ρ̂ at the spatial location x and covariate z

as follows. Using standard results from multivariate density estimation, we can show

that

Bias[f̂(x, z)] =
1

2
h2µ2(K)∇2

xf(x, z) +
1

2
λ2µ2(L)∇2

zf(x, z) + o(h2 + λ2). (6.4.1)

Var[f̂(x, z)] =
f(x, z)R(K)R(L)

n1h2λp
+ o

(
1

n1h2λp

)
.
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Standard manipulations then give

Bias[ρ̂(x, z)] =
1

2

[
h2µ2(K)∇2

xf(x, z) + λ2µ2(L)∇2
zf(x, z)

f(x, z)

]
−1

2

[
h2µ2(K)∇2

xg(x, z) + λ2µ2(L)∇2
zg(x, z)

g(x, z)

]
+ o(h2 + λ2).

and

Var[ρ̂(x, z)] =
R(K)R(L)f(x, z)−1

n1h2λp
+
R(K)R(L)g(x, z)−1

n2h2λp
+ o

(
1

n1h2λp
+

1

n2h2λp

)
= R(K)R(L)

[
f(x, z)−1

n1h2λp
+
g(x, z)−1

n2h2λp

]
+ o

(
1

n1h2λp
+

1

n2h2λp

)
As usual, we can construct tolerance contours for the ρ̂. We consider the null hypoth-

esis

H1
0 : ρ(x, z) = 0 (or r(x, z) = 1)

against the alternative hypothesis

H1
1 : ρ(x, z) > 0 (or r(x, z) > 1)

or one can examine ρ(x, z) < 0. This creates a p-value surface over the region R

and support of the covariate z. As in Chapters 2, 4 and 5, we produce 5% tolerance

contours using the same methodology.

An appropriate test statistic at the location x and covariate z, is given by

Z(x, z) =
ρ̂(x, z)√

Var[ρ̂(x, z)]
.
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When H1
0 is true,

Z(x, z) =
ρ̂(x, z)√

R(K)R(L)g(x, z)−1

h2λp

[
1

n1

+
1

n2

] .

One can use pooled estimate ĝp(x, z) here to replace the unknown g in the denomina-

tor of the test statistic. As usual, p-values for Z(x, z) can be computed with respect

to an asymptotically normal null distribution.

6.4.2 Bias and variance of ρ̂(x|z)

We obtain the asymptotic properties of f̂(x, z) and ρ̂(x, z) for x being interior to the

study region R.

Lemma 6.4.1. Let x be an interior spatial location of the region R and z is a spatially

varying covariate, then

Bias[f̂(x|z)] =
1

2

[
h2µ2(K)

∇2
xf(x, z)

f(z)
+ λ2µ2(L)

∇2
zf(x, z)

f(z)
− λ2µ2(L)

f(x, z)∇2
zf(z)

f(z)2

]
+o
(
h2 + λ2

)
.

and

Var[f̂(x|z)] =
f(x|z)R(K)R(L)

f(z)n1h2λp
+ o

(
1

n1h2λp

)
.

Theorem 6.4.2. If x be an interior point of R and z is a spatially varying covariate

then
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Bias[ρ̂(x|z)] =
1

2
h2µ2(K)

[
∇2

xf(x, z)

f(x, z)
− ∇

2
xg(x, z)

g(x, z)

]
+

1

2
h2µ2(L)

[
∇2

zf(x, z)

f(x, z)
− ∇

2
zg(x, z)

g(x, z)

]
−1

2
λ2µ2(L)

[
∇2

zf(z)

f(z)
− ∇

2
zg(z)

g(z)

]
+ o(h2 + λ2)

and

Var[ρ̂(x|z)] =
R(K)R(L)

h2λp

[
1

n1f(x, z)
+

1

n2g(x, z)

]
+ o(n−1

1 h−2λ−p + n−1
2 h−2λ−p).

One noteworthy result is that the variance of ρ̂(x|z) is similar to that of ρ̂(x, z).

Proofs of the Lemma 6.4.1 and the Theorem 6.4.2 are given in the Appendix D.1 and

D.2 respectively. If x is close to the boundary of the region then these estimates need

edge correction as discussed in the previous Chapters.

We construct the tolerance contours for ρ(x|z) over the region R when the covariate

z is given by considering the null hypothesis

H2
0 : ρ(x|z) = 0 (or r(x|z) = 1)

against the alternative hypothesis

H2
1 : ρ(x|z) > 0 (or r(x|zz) > 1).

An appropriate test statistic at the location x when the covariate is z,

Z(x, z) =
ρ̂(x|z)√

Var[ρ̂(x|z)]
.
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When H2
0 is true,

Z(x, z) =
ρ̂(x|z)√

R(K)R(L)

h2λp

[
1

n1f(x, z)
+

1

n2g(x, z)

] .

Here we cannot assume that f(x, z) = g(x, z) and so we use pilot estimates for f

and g, which can be computed from multivariate kernel density estimates. Also it is

necessary to apply edge correction criteria for the estimates when the observations

are close to the boundary.

6.5 Bandwidth Selection

Using standard properties of bias and variance, we derive from eq. (5.7.1),

MISE(ρ̂(x; z)) =

∫ ∫
[Bias{ρ̂(x, z)}]2 dxdz +

∫ ∫
Var{ρ̂(x, z)}dxdz.

By minimizing MISE, we get the optimal bandwidth combination,

(h, λ)opt = arg minh,λ[MISE(ρ̂(x, z))].

Subjective bandwidth and automatic bandwidth can be applied here. We prepare

using the LSCV bandwidth selector since it performs relatively well in density ratio

method. We derive the LSCV bandwidth formulae from eq. (5.7.3) as follows:

ĈV (h, λ) =−
∫
R

∫
Rp

{ρ̂h,λ(x, z)}2dxdz− 2n−1
1

n1∑
i=1

log

[
f̂−ih,λ(xi, zi)

ĝh,λ(xi, zi)

]
{f̂−i(xi, zi)}−1

+ 2n−1
2

n1+n2∑
j=n1+1

log

[
f̂h,λ(xj, zj)

ĝ−jh,λ(xj, zj)

]
{ĝ−j(xj, zj)}−1.
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The optimal bandwidth combination (h, λ) can be obtained by minimizing the objec-

tive function ĈV over h and λ.

Now we look at how this bandwidth selector works for ρ̂(x|z). The MISE is defined

as follows:

MISE(ρ̂(x|z)) =

∫ ∫
[Bias{ρ̂(x|z)}]2 dxdz +

∫ ∫
Var{ρ̂(x|z)}dxdz.

then we get the optimal bandwidth

(h, λ)opt = arg minh,λMISE[ρ̂(x|z)].

The LSCV bandwidth selector can be defined as the minimizer of

ĈV (h, λ) =−
∫ ∫

{ρ̂h,λ(x|z)}2dxdz− 2n−1
1

n1∑
i=1

log

[
f̂−ih,λ(xi|zi)
ĝh,λ(xi|zi)

]
{f̂−i(xi|zi)}−1

+ 2n−1
2

n1+n2∑
j=n1+1

log

[
f̂h,λ(xj|zj)
ĝ−jh,λ(xj|zj)

]
{ĝ−j(xj|zj)}−1.

The optimal bandwidth combination (h, λ) can be obtained by minimizing the objec-

tive function ĈV over h and λ.

6.6 Real application: The 2001 outbreak of FMD

These particular counts of cases of FMD were available for parishes within the county

of Cumbria, Northern England for the period February 2001 to August 2001, as ana-

lyzed by Lawson and Zhou (2005). The dataset includes locations of individual farms

(x.coord,y.coord) which is either a case farm or a control farm (status, 1 for case farm,

0 for control farm), their date of infection (days, if a case otherwise coded to 241)
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and the total population (total), which is the total number of cattles, sheep, goats,

pigs and mixed animals. We use this total animal population (total), z as a covariate

for the relative risk function, r.

The data include the locations of 418 cases of FMD identified within the study region

during February 2001 to August 2001, along with the locations of 2395 controls. The

spatial distribution is shown as separate plots for cases (left panel) and controls (right

panel) in Figure 6.1. It is clear that case farms are clustered in the northwest part of

the region.

Figure 6.2 shows the log relative risk estimators (ρ̂(x|z)) for different farm sizes using

LSCV bandwidth, in which spatial and temporal components, h = 27512 and λ =

118 respectively, are used. Solid lines represent the 5% tolerance contours. This

plot produces sensible tolerance contours in the northwest region. In particular, the

pattern of spatial risk seems to change with farm size.

6.7 Conclusion

The use of relative risk estimation (using density ratio method) in geographical epi-

demiology including a spatially varying covariate is a potentially useful tool in epi-

demiology.

In this chapter, we have proposed two versions of the log relative risk function with a

covariate. One can use either depending on the comparison that one wishes to focus

on. We propose estimators and obtain the asymptotic properties of bias and variance
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Figure 6.1: Cases and controls for the FMD dataset, including the defined region.
Each bullet point represents a farm.

of ρ̂ in both cases.

The selection of smoothing parameter is critical in all kernel smoothing estimation

problems. We obtain a formulae using LSCV bandwidth selector in density ratio

estimation. As FMD data set is used to illustrate log relative risk estimates with

tolerance contours to identify the regions having significantly elevated risk where we

use LSCV as the bandwidth.
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Figure 6.2: Heatplots of FMD relative risk surfaces (on log scale), with 5% tolerance
contours (solid internal lines). The covariate (total population) is displayed as the
title at each plot. LSCV bandwidth is used.



Chapter 7

General Discussion

In this Chapter, I summarize my research work in Section 7.1 and describe possible

future work in Section 7.2.

7.1 Summary of my work

This PhD thesis is primarily based on the work on non-parametric estimation of ge-

ographical relative risk function (r(x) =
f(x)
g(x)

;x ∈ R), which is a useful tool for

investigating the spatial variation of disease risk based on case and control data. The

standard method of estimating this function in a geographical region is known as den-

sity ratio which is defined as the ratio of bivariate kernel density estimates (Bithel,

1990), constructed from the locations of cases and the controls respectively. Following

the argument made by Kelsall and Diggle (1995 a,b), we focused on estimating the

relative risk function on log scale (ρ(x) = log r(x);x ∈ R).

The intention of this thesis is twofold. First, we work on spatially varying relative
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risk surfaces. Then we extend it to time varying spatial relative risk function and also

investigate the properties of relative risk function when there is a spatially varying

covariate.

The kernel density estimator (f̂) for a generic function f depends on the bandwidth

(h) and the kernel (K). There is no much difference in performance between kernels,

but the choice of bandwidth is crucial. We conducted a simulation study to compare

cross-validation bandwidth selectors LCV and LSCV in the estimation of ρ using

density ratio method. We found the LSCV method to be preferable, although its

performance was moderately sensitive to the choice of search interval for the optimal

bandwidth.

The density ratio estimator of the relative risk function has proved adept at detect-

ing approximately circular or elliptical areas of having high risk often around chosen

point sources of risk (Hazelton and Davies, 2009). However, this method can be less

natural when the relative risk has a more global trend such as a linear source of risk.

So we examined local linear regression as an alternative to estimate the log-relative

risk function.

We carried out a simulation study to compare the performance of the density ratio

estimator with that of the local linear estimator in the estimation of relative risk.

Here we chose the synthetic problems, generated by a 24 factorial design. Overall,

our results suggests that the density ratio is far better in most of the scenarios in the

estimation of relative risk function while local linear method performs well if there is
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a linear source of risk.

Bandwidth selection is crucial in every kernel smoothing problem. Our overall recom-

mendation about bandwidth selectors is that LSCV is the best choice for density ratio

estimation while plug-in bandwidth selector is preferred with local linear estimator

where we expect long range trends in risks.

We extend the previous work to the context of space-time. According to previous

research, fields such as epidemiology, geology, meteorology and ecology generate data

which consist of both spatial location and time components, but the change in risk

pattern in time dimension has often been neglected in the research. So nowadays

there is a growing interest in integrating temporal information in the relevant re-

search. Therefore, we define spatio-temporal relative risk function over a geographical

region. After that multivariate kernel density estimator was introduced in the context

of space-time to compute unknown densities. We obtained the asymptotic proper-

ties of the kernel density estimators and relative risk estimators. Also, we describe

the tolerance contours of relative risk estimators. It is generally accepted that the

choice of bandwidth is critical in any dimensional kernel density estimators. So here

we discuss cross-validation bandwidth selectors, LCV and LSCV to compute optimal

spatial and temporal bandwidths.

We expand the previous work into time derivative density estimation and its proper-

ties since it is important to distinguish the rate of change of relative risk of a disease

over time. We derived formulas for the asymptotic properties of these time derivative



140

estimators.

Our purpose in proposing the spatio-temporal relative risk function is primarily to

provide a tool for visualizing the evaluation of a disease outbreak in time and space.

We illustrate this using FMD data, from the 1967 outbreak in Cumbria, UK. We

produce log relative risk estimators and its time derivative estimators and use 5%

tolerance contours to highlight significant features of the elevated risk surfaces.

The geographical relative risk function including a spatially varying covariate has

been not studied in the literature. We propose such a function so as to visualize

how the patterns of risk vary with covariates. We defined kernel estimates for this

function, and obtained its asymptotic properties. We discuss LSCV to estimate the

bandwidth. We apply this methodology to data from the 2001 outbreak of FMD in

the UK by using farm population as a covariate.

7.2 Suggestions for future work

The dissertation focuses on the non-parametric estimation. But in some situations,

semi-parametric statistical models might be appropriate. For example, we might

have a parametric model for the effect of some point source of risk, or some covariate,

that we want to incorporate into or otherwise non-parametric approach to estimation.

We have developed a plug-in bandwidth selector in the estimation of local linear

method. The possibility of using plug-in bandwidth in density ratio selector is at-

tractive, though a challenging research problem.
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Selection of bandwidths for spatio-temporal relative risk estimation and the estima-

tion with covariates is another research direction that warrants attention. Again the

development of a plug-in bandwidth selection methodology is attractive in principles,

although challenging. We work on density ratio methodology in spatio-temporal rel-

ative risk estimation, but wish to investigate other possible methods starting from

local linear method. We might also consider semi-parametric approaches in which

at least some of the temporal variation is modelled parametrically. For example, we

might introduce parametric models to handle seasonality.



Appendix

A.1: Proof of Theorem 2.4.1

Following Kelsall & Diggle (1995a), we wish to estimate ρh1,h2(x) = log{fh1(x)/gh2(x)},

where n1, n2 are sample sizes of cases and controls while h1, h2 are respective band-

widths. For our asymptotic approximations to be valid, we assume that n1 and n2

are large and that h1 and h2 are small, decreasing as the sample sizes increase. We

also assume that f and g are both bounded away from zero and twice differentiable

on the interval I.

We define the relative error term for f̂h1(x) as

εf (x;h1) = {f̂h1(x)− f(x)}/f(x),

for x ε I, and similarly εg(x;h2) for ĝh2(x). According to the assumptions we made,

these error terms will be small. Rearranging the above error term gives

f̂h1(x) = f(x){1 + εf (x;h1)},

and similarly for ĝh2(x). Using first order Taylor expansion of ρ̂h1,h2(x) function, we
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get

ρ̂h1,h2(x) = log

[
f(x)

g(x)

(1 + εf (x;h1))

(1 + εg(x;h2))

]
= ρ(x) + log(1 + εf (x;h1))− log(1 + εg(x;h2))

= ρ(x) + εf (x;h1)− εg(x;h2) + o(ε2),

where ε denotes either εf (x;h1) or εg(x;h2). Using the asymptotic formulae in equa-

tion (2.4.1) of f̂ and similarly for ĝ we get

E[ρ̂h1,h2(x)] = ρ(x) + µ2(K)
1

2

[
h2

1

f ”(x)

f(x)
− h2

2

g”(x)

g(x)

]
+ o

(
h2

1 + h2
2

)
and substituting the equation (2.4.2), we get

Var[ρ̂h1,h2(x)] = R(K)
[
n−1

1 h−1
1 f(x)−1 + n−1

2 h−1
2 g(x)−1

]
+ o

(
n−1

1 h−1
1 + n−1

2 h−1
2

)
.

A.2 : Proof of Theorem 2.4.6

Following Kelsall & Diggle (1995b), we can derive the bias and variance of ρ̂(x) as

follows: As

ρ̂(x) = log[f̂(x)]− log[ĝ(x)]

Let’s define the relative error term, εf (x) of f̂(x)

εf (x) =
f̂(x)− f(x)

f(x)

Therefore,

f̂(x) = f(x){1 + εf (x)}.

Similarly,

ĝ(x) = g(x){1 + εg(x)}.
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Therefore,

ρ̂(x) = log

[
f(x){1 + εf (x)}
g(x){1 + εg(x)}

]
= ρ(x) + log{1 + εf (x)} − log{1 + εg(x)}

≈ ρ(x) + εf (x)− εg(x).

Then the expectation of ρ̂(x) is

E[ρ̂(x)] ≈ ρ(x) + E[εf (x)]− E[εg(x)].

where

E[εf (x)] =
E[f̂(x)− f(x)]

f(x)

≈ 1

2
h2µ2(K)∇2f(x)/f(x)

Similarly,

E[εg(x)] ≈ 1

2
h2µ2(K)∇2g(x)/g(x).

Therefore,

E[ρ̂(x)] ≈ ρ(x) +
1

2
h2µ2(K)

[
∇2f(x)/f(x)−∇2g(x)/g(x)

]
.

The variance term is

Var[ρ̂(x)] = Var(εf ) + Var(εg) + Cov(εf , εg)

=
Var{f̂(x)}
f(x)2

+
Var{ĝ(x)}
g(x)2

(∵ By assuming the error terms are independent)

≈ R(K)

n1h2f(x)
+

R(K)

n2h2g(x)

≈ R(K)

h2
[n−1

1 f(x)−1 + n−1
2 g(x)−1]
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Assume that the bandwidths of case and control densities are h1 and h2. Then

E[ρ̂(x)] = ρ(x) +
1

2
µ2(K)

[
h2

1

∇2f(x)

f(x)
− h2

2

∇2g(x)

g(x)

]
+ o(h2

1 + h2
2)

and

Var[ρ̂(x, h1, h2)] = R(K)
[
n−1

1 h−2
1 f(x)−1 + n−1

2 h−2
2 g(x)−1

]
+ o(n−1

1 h−2
1 + n−1

2 h−2
2 ).

B: Direct Proof of the Theorem 4.4.1

Proof. Kernel weighted log-likelihood function for local linear regression, given in the

equation (4.2.3) is used to derive the asymptotic bias and variance of the local linear

relative risk estimator. The equation (4.2.3) is written in matrix form as follows:

L̄(β;h;x) = yTWx(Xxβ)− 1TWxb(Xxβ)

where y = (y1, y2, . . . , yn)T , Wx = diag(κ1, . . . , κn), where κi = Kh(Xi − x). and

β = (β0, β1, β2)T . Here Xi = (X1i, X2i), i = 1(.)n represents the locations of data

while x = (x01, x02), any generic point. h is the smoothing parameter. Xx is known

as the n× 3 design matrix

Xx =


1 (X11 − x01) (X21 − x02)

...
...

...

1 (X1n − x01) (X2n − x02)

 .

Here b(x) = log(1 + ex) corresponds to binary regression with a logit link function.

Note that the function b is to be interpreted element-wise. To obtain the local poly-

nomial estimator of relative risk function, we need to maximize the function L̄. By
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differentiating the above L̄ function with respect to β,

L̄
′
(β, h,x) = yTWxXx − 1TWxdiag{b′(Xxβ)}Xx

=
[
yTWx − (κ1, . . . , κn)diag{b′(Xxβ)}

]
Xx

=
[
yTWx − b

′
(Xxβ)T diag(κ1, . . . , κn)

]
Xx

=
[
y− b′(Xxβ)

]T
WxXx

We get the second derivative of L̄ with respect to β.

d2L̄(β;h,x) = d
[
y− b′(Xxβ)

]T
WxXxdβ

= −
[
diag(b

′′
(Xxβ))Xxdβ

]T
WxXxdβ

= (dβ)TXT
x

[
−diag(b

′′
(Xxβ))

]
WxXxdβ

By the definition of Hessian matrix,

H(L̄(β;h,x)) = −XT
xdiag(b

′′
(Xxβ))WxXx.

That is,

L̄
′′
(β;h,x) = −XT

xdiag(b
′′
(Xxβ))WxXx

Multivariate Taylor’s theorem gives

0 = L̄
′
(β̂, h,x) +

[
β̂(x)− β(x)

]T
L̄
′′
(β̂;h,x) + Remainder term

⇒
[
β̂(x)− β(x)

]T
= −L̄′(β̂, h,x){L̄′′(β̂;h,x)}−1 + Remainder term

⇒ β̂(x)− β(x) = −{L̄′′(β̂;h,x)}−1XT
xWx(y− b′(Xxβ̂)) + Remainder term

By substituting L̄
′

and L̄
′′
, we get

β̂(x)− β(x) =
[
XT

xdiag(b
′′
(Xxβ̂))WxXx

]−1

XT
xWx(y− b′(Xxβ̂))



147

Since the estimator of β(x) is the intercept coefficient, we obtain

E
[
β̂(x)− β(x)|X1, ..,Xn

]
= eT1

[
XT

xdiag(b
′′
(Xxβ̂))WxXx

]−1

XT
xWxE[y−b′(Xxβ̂)|X1, ...,Xn]

(7.0.1)

where e1 is the 2× 1 vector having 1 in the first entry and zero elsewhere.

y− b′(Xxβ̂) can be expanded as follows:

y− b′(Xxβ̂) =


y1 − b

′
(Xxβ̂1)

...

yn − b
′
(Xxβ̂n)


where

b
′
(Xxβi) =

exp(Xxβi)

1 + exp(Xxβi)

=
1

exp(−Xxβi) + 1
. (7.0.2)

Here Xxβi = β0 + β1(xi1 − x01) + β2(xi2 − x02) and from equation (4.4.1),

log

[
p(xi)

1− p(xi)

]
= Xxβi.

By applying the second order Taylor expansion, we get

log

[
p(xi)

1− p(xi)

]
= log

[
p(x)

1− p(x)

]
+ (xi − x)TD(x) +

1

2
(xi − x)TH(x)(xi − x) + ...

where D and H represent the first order partial derivatives and the Hessian matrix
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respectively. By substituting this in equation (7.0.2),

b
′
(Xxβi) =

1

exp
[
−log[ p(x)

1−p(x)
] + 1

2
(xi − x)TH(x)(xi − x)− o‖xi − x‖2

]
+ 1

=
p(x)

[1− p(x)]exp
[

1
2
(xi − x)TH(x)(xi − x)− o‖xi − x‖2

]
+ p(x)

=
p(x)

[1− p(x)][1 + 1/2 (.)− o‖.‖2] + p(x)

=
p(x)

1 + [1− p(x)][1/2(.)− o‖.‖2]

= p(x)

[
1− (1− p(x))

[
1

2
[xi − x]TH(x)[xi − x]− o‖xi − x‖2

]]
= p(x)− 1

2
p(x)(1− p(x))Bi + p(x)(1− p(x))o‖xi − x‖2,

where Bi = [xi − x]TH(x)[xi − x]. Now,

b
′′
(Xβi) =

exp(Xβi)

[1 + exp(Xβi)]2

=
exp(Xβi)

[1 + exp(Xβi)]

1

[1 + exp(xβi)]

= b
′
(Xβi)[1− b

′
(Xβi)]

= p(x)[1− p(x)] + o‖xi − x‖2.

Since E[y− b′(Xβ)|X1, ...,Xn] = p(x),

E
[
y− b′(Xβ)|X1, ...,Xn

]
≈


1
2
p(x)(1− p(x))B1

...

1
2
p(x)(1− p(x))Bn


Let B(x) = [B1(x), . . . , Bn(x)]T be the n× 1 vector. Therefore,

E[y − b′(Xβ)|X1, ...,Xn] ≈ 1

2
p(x)(1− p(x))B(x).
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Then from equation (7.0.1),

E
[
β̂(x)− β(x)|X1, ...,Xn

]
=

1

2
eT1

[
XT

xdiag(b
′′
(Xxβ̂))WxXx

]−1

XT
xWxp(x)(1−p(x))B(x).

To compute the leading bias term for β̂, let’s derive n−1XT
xdiag(b

′′
(Xxβ̂))WxXx and

n−1XT
xWxp(x)(1− p(x))B(x).

n−1XT
xdiag{b′′(Xxβ̂)}WxXx =


1 . . . 1

X11 − x01 . . . X1n − x01

X21 − x02 . . . X2n − x02




p(1− p) · · · 0

...
. . . 0

0 · · · p(1− p)




Kh(X1 − x) · · · 0

...
. . . 0

0 · · · Kh(Xn − x)




1 X11 − x01 X21 − x02

...
...

...

1 X1n − x01 X2n − x02

 .

After applying theory of matrix multiplication, this is simplified to p(x)(1− p(x))×

 n−1
∑n

i=1 κi n−1
∑n

i=1 κi(xi1 − x01) n−1
∑n

i=1 κi(xi2 − x02)

n−1
∑n

i=1 κi(xi1 − x01) n−1
∑n

i=1 κi(xi1 − x01)2 n−1
∑n

i=1 κi(xi1 − x01)(xi2 − x02)

n−1
∑n

i=1 κi(xi2 − x02) n−1
∑n

i=1 κi(xi1 − x01)(xi2 − x02) n−1
∑n

i=1 κi(xi2 − x02)2


Using standard results from density estimation (See Ruppert & Wand, 1994),

n−1

n∑
i=1

κi = n−1

n∑
i=1

Kh(Xi − x)

= f̃(x); where

f̃(x) = (n1f̂(x) + n2ĝ(x))/n

n−1

n∑
i=1

κi(Xi − x) = n−1

n∑
i=1

Kh(Xi − x)(Xi − x)

= h2µ2(K)Df̃ (x) + o(h2); where
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Df̃ (x) denote the 2×1 vector of first order partial derivatives of f̃ and

Df̃ (x) = (n1Df (x) + n2Dg(x))/n.

n−1

n∑
i=1

κi(Xi − x)(Xi − x)T = n−1

n∑
i=1

Kh(Xi − x)(Xi − x)(Xi − x)T

= h2µ2(K)f̃(x) + o(h2).

Following these approximations, we get

(n−1XT
xdiag{b′′(Xxβ̂)}WxXx)−1 =[p(x)(1− p(x))]−1

×


f̃(x) h2µ2(K)Df̃ (x) h2µ2(K)Df̃ (x)

h2µ2(K)Df̃ (x) h2µ2(K)f̃(x) h2µ2(K)f̃(x)

h2µ2(K)Df̃ (x) h2µ2(K)f̃(x) h2µ2(K)f̃(x)


−1

.

Denote the above matrix M . Then we get,

(n−1XT
xdiag{b′′(Xxβ̂)}WxXx)−1 =[p(x)(1− p(x))]−1 ×M−1,

where

M =


f̃(x) h2µ2(K)Df̃ (x) h2µ2(K)Df̃ (x)

h2µ2(K)Df̃ (x) h2µ2(K)f̃(x) h2µ2(K)f̃(x)

h2µ2(K)Df̃ (x) h2µ2(K)f̃(x) h2µ2(K)f̃(x)

 .

We use the theory of partitioned matrix to derive the inverse of M . Suppose

M =

 A2×2 B2×1

C1×2 D1×1


where

A =

 f̃(x) h2µ2(K)Df̃ (x)

h2µ2(K)Df̃ (x) h2µ2(K)f̃(x)

 ,
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B =

 h2µ2(K)Df̃ (x)

h2µ2(K)f̃(x)

 ,

C = [h2µ2(K)Df̃ (x), h2µ2(K)f̃(x)]T

and

D = h2µ2(K)f̃(x).

Then

M−1 =

 A B

C D


−1

.

According to the theory of partition matrices we get,

M−1 =

 A−1 + FE−1F
′ −FE−1

−E−1F
′

E−1


where E = D − CA−1B and F = A−1B. Here we show that

A−1 =

 h2µ2(K)f̃(x) −h2µ2(K)Df̃ (x)

−h2µ2(K)Df̃ (x) f̃(x)

[h2µ2(K)f̃(x)2 − h4µ2(K)2D2
f̃
(x)
]−1

=

 f̃(x)−1 −Df̃ (x)f̃(x)−2

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1


F = A−1B = [0 (1− h2µ2(K)2D2

f̃
(x)f̃(x)−2)]1×2

CA−1B = h2µ2(K)f̃(x)

and

E = D − CA−1B = 0.
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Therefore,

M−1 =


f̃(x)−1 −Df̃ (x)f̃(x)−2 0

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1 0

0 0 0

 . (7.0.3)

From equation (7.0.1),

n−1XT
xWxE[y− b′(Xβ)|X1, ...,Xn] =(n−1XT

xWx
1

2
p(x)(1− p(x))B(x)

=(n−1XT
xWx

1

2
p(x)(1− p(x))B(x).

n−1XT
xWxE[y − b′(Xβ)|X1, ...,Xn] =

1

2
p(x)(1− p(x))n−1


1 . . . 1

(x11 − x01) . . . (x1n − x01)

(x21 − x02) . . . (x2n − x02)




κ1 . . . 0

...
. . .

...

0 . . . κn




(X1 − x)TH(x)(X1 − x)

...

(Xn − x)TH(x)(Xn − x)

 .

That is, n−1XT
xWxE[y− b′(Xxβ)|X1, ...,Xn] is equal to 1

2
p(x)(1− p(x))×

n−1
∑n

i=1Kh(Xi − x)(Xi − x)TH(x)(Xi − x)

n−1
∑n

i=1{Kh(Xi − x)(Xi − x)TH(x)(Xi − x)}(X1i − x01)

n−1
∑n

i=1{Kh(Xi − x)(Xi − x)TH(x)(Xi − x)}(X2i − x02)

 .

Using Ruppert & Wand (1994), we get

n−1

n∑
i=1

{Kh(Xi − x)(Xi − x)TH(x)(Xi − x)}(X1i − x01) ≈ o(h2).
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Therefore, n−1XT
xWxE[y− b′(Xxβ)|X1, ...,Xn] is equal to 1

2
p(x)(1− p(x))×

n−1
∑n

i=1Kh(Xi − x)(Xi − x)TH(x)(Xi − x)

o(h2)

o(h2)

 .

By substituting the above results in equation (7.0.1),

E[β̂(x)− β(x)] =
1

2
eT1 [XT

xdiag(b
′′
(Xxβ̂))WxXx]−1XT

xWxp(x)(1− p(x))B(x)

=
1

2
eT1 [p(1− p)]−1M−1[p(1− p)]

 n−1
∑n

i=1Kh(Xi − x)(Xi − x)TH(x)(Xi − x)

o(h2)

o(h2)


=

1

2
f̃(x)−1n−1

n∑
i=1

Kh(Xi − x)(Xi − x)TH(x)(Xi − x)

≈1

2
f̃(x)−1

∫ ∫
Kh(y− x)(y− x)TH(x)(y− x)f̃(y)dy.

By substituting z = y−x
h

, we get

E[β̂(x)− β(x)] =
1

2
f̃(x)−1

∫ ∫
1

h2
K(z)(zh)TH(x)(zh)f̃(x + hz)h2dz

=
1

2
f̃(x)−1f̃(x)

∫ ∫
hTH(x)h{K(z)zzT}dz

=
1

2
tr[hTH(x)h

∫ ∫
K(z)zzTdz]

=
1

2
h2µ2(K)trH(x)

=
1

2
h2µ2(K)

[
∂2

∂x2
1

β(x) +
∂2

∂x2
2

β(x)

]
.

Recall that the local linear log relative risk estimator, ρ̆LL = β0 − Constant, where

Constant = log(
n1

n2

). Therefore,

E[ρ̂(x)− ρ(x)] =
1

2
h2µ2(K)

[
∂2

∂x2
1

ρ(x) +
∂2

∂x2
2

ρ(x)

]
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E[ρ̂(x)− ρ(x)] =
1

2
h2µ2(K)∇2ρ(x)

as required, where ∇2 is the Laplacian operator.

Now we obtain the approximation to the variance term. Note that

Var(β̂0) = eT1

[(
XT

xdiag(b”(Xxβ))WxXx

)−1
XT

xWxVar[y− b′(Xβ)|X1, ...,Xn]

WxXx

(
XT

xdiag(b”(Xxβ))WxXx

)−1
]
e1.

We first derive n−1XT
xWxVar[y− b′(Xxβ)|X1, ...,Xn]WxXx (3×3 matrix).

Since Var
[
y− b′(Xxβ)|X1, ...,Xn

]
= diag{p(x1)(1−p(x1)), . . . , p(xn)(1−p(xn))} (= V ),

where V (xi) = p(xi)(1− p(xi)).

n−1XT
xWxVWxXx = n−1


1 . . . 1

(X11 − x01) . . . (X1n − x01)

(X21 − x02) . . . (X2n − x02)




Kh(X1 − x) · · · 0

...
. . .

...

0 · · · Kh(Xn − x)




v(x1) · · · 0

...
. . .

...

0 · · · v(xn)




Kh(X1 − x) · · · 0

...
. . .

...

0 · · · Kh(Xn − x)




1 (X11 − x01) (X21 − x02)

...
...

...

1 (X1n − x01) (X2n − x02)

 .

After using matrix multiplication several times, n−1XT
xWxVWxXx reaches to the fol-

lowing single matrix.

 Σn
i=1n

−1κ2i v(xi) Σn
i=1n

−1κ2i (xi1 − x01)v(xi) Σn
i=1n

−1κ2i (xi2 − x02)v(xi)

Σn
i=1n

−1κ2i (xi1 − x01)v(xi) Σn
i=1n

−1κ2i (xi1 − x01)2v(xi) Σn
i=1n

−1κ2i (xi1 − x01)(xi2 − x02)v(xi)

Σn
i=1n

−1κ2i (xi2 − x02)v(xi) Σn
i=1n

−1κ2i (xi1 − x01)(xi2 − x02)v(xi) Σn
i=1n

−1κ2i (xi2 − x02)2v(xi).

 .
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For the convenience, we label the components of this by cij; where i represents the

row number while j, the column number. Then,

c11 =
n∑
i=1

n−1κ2
i v(xi)

≈
∫ ∫

1

h4
K(

y− x

h
)2v(y)f̃(y)dy

=

∫ ∫
1

h2
K(z)2{v(x) + (hz)TDv(z) + . . .}{f̃(x) + (hz)TDf̃ (x) + . . .}dz

=h−2v(x)f̃(x)R(K) + o(h2)

≈h−2v(x)f̃(x)R(K)

c12 =
n∑
i=1

n−1κ2
i v(xi)(xi1 − x01)

≈
∫ ∫

1

h4
K(

y− x

h
)2v(y)(y1 − x01)f̃(y)dy

=

∫ ∫
1

h2
K(z)2{v(x) + (hz)TDv(z) + . . .}(hz1){f(x) + (hz)TDf̃ (x) + . . .}dz

=

∫ ∫
K(z)2h−1z2

1v(x)f(x) + o(h2)

≈o(h2)

Similarly we can show that c13, c21 and c31 are same as c12.

c22 =
n∑
i=1

n−1κ2
i v(xi)(xi1 − x01)2

≈
∫ ∫

1

h4
K(

y− x

h
)2v(y)(y1 − x01)2f̃(y)dy

=

∫ ∫
1

h2
K(z)2{v(x) + (hz)TDv(z) + . . .}(hz1)2{f(x) + (hz)TDf̃ (x) + . . .}dz

=

∫ ∫
K(z)2z2

1v(x)f(x) + o(h2)

≈o(h2)
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Similarly we can show that c33 = c22.

c23 =
n∑
i=1

n−1κ2
i v(xi)(xi1 − x01)(xi2 − x02)

≈
∫ ∫

1

h4
K(

y− x

h
)2v(y)(y1 − x01)(y2 − x02)f̃(y)dy

=

∫ ∫
1

h2
K(z)2{v(x) + (hz)TDv(z) + . . .}(hz1)2{f(x) + (hz)TDf̃ (x) + . . .}dz

=

∫ ∫
K(z)2z1z2v(x)f(x)dz + o(h2)

≈o(h2)

By symmetry, c32 = c23. Therefore,

n−1XT
xWxVWxXx =


h−2v(x)f̃(x)R(K) o(h2) o(h2)

o(h2) o(h2) o(h2)

o(h2) o(h2) o(h2)





157

By using these results we obtained the approximation to the variance.

Var(β̂0) =n−1{p(x)(1− p(x))}−2eT1


f̃(x)−1 −Df̃ (x)f̃(x)−2 0

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1 0

0 0 0




h−2v(x)f̃(x)R(K) op(h2) op(h2)

op(h2) o(h2) o(h2)

op(h2) o(h2) o(h2)




f̃(x)−1 −Df̃ (x)f̃(x)−2 0

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1 0

0 0 0

 e1 + . . .

=n−1{p(x)(1− p(x))}−2
(
f̃(x)−1 −Df̃ (x)f̃(x)−2 0

)
h−2v(x)f̃(x)R(K) op(h2) op(h2)

op(h2) op(h2) op(h2)

op(h2) op(h2) op(h2)




f̃(x)−1 −Df̃ (x)f̃(x)−2 0

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1 0

0 0 0

 e1 + . . .

=n−1{p(x)(1− p(x))}−2
(
h−2v(x)R(K) o(h2) o(h2)

)
f̃(x)−1 −Df̃ (x)f̃(x)−2 0

−Df̃ (x)f̃(x)−2 (h2µ2(K)f̃(x))−1 0

0 0 0

 e1 + . . .

=n−1{p(x)(1− p(x))}−2h−2v(x)R(K)f̃(x)−1 + . . .

=n−1[p(x)(1− p(x))]−2h−2[p(x)(1− p(x))]R(K)
n

n1f(x) + n2g(x)
+ . . .

=h−2R(K)[p(x)(1− p(x))]−1 1

n1f(x) + n2g(x)
+ . . .

=h−2R(K)
1

n1f(x) + n2g(x)

[n1f(x) + n2g(x)]2

n1f(x) n2g(x)
+ . . .

=h−2R(K)

[
n1f(x) + n2g(x)

n1f(x) n2g(x)

]
+ . . .

=h−2R(K)

[
1

n1f(x)
+

1

n2g(x)

]
+ . . . .

Since ρ̆LL = β̂0 − Constant,

Var(ρ̆LL) = h−2R(K)

[
1

n1f(x)
+

1

n2g(x)

]
+ o(n−1

1 h−2 + n−1
2 h−2).
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C.1: Proof of Theorem (5.5.2)

Proof. As

ρ̂(z; t) = log

[
f̂(z; t)|T |
ĝ(z)

]
(7.0.4)

Let us define the relative error term, εf (z; t) of f̂(z; t)

εf (z; t) =
f̂(z; t)− f(z; t)

f(z; t)
.

Therefore,

f̂(z; t) = f(z; t){1 + εf (z; t)}.

Similarly,

ĝ(z) = g(z){1 + εg(z)}.

Therefore the equation (7.0.4) becomes,

ρ̂(z; t) = log

[
f(z; t){1 + εf (z; t)}|T |

g(z){1 + εg(z)}

]
= ρ(z) + log{1 + εf (z; t)} − log{1 + εg(z)}

= ρ(z; t) + εf (z; t)− εg(z) + o(ε2f + ε2g).

Assuming that the error terms are small, the expectation of ρ̂(z; t) gives

E[ρ̂(z; t)] ≈ ρ(z; t) + E[εf (z; t)]− E[εg(z)] (7.0.5)

where

E[εf (z; t)] =
E[f̂(z; t)− f(z; t)]

f(z; t)

=
Bias[f̂(z; t)]

f(z; t)

=
1

2

[
h2µ2(K)∇2

zf(z; t) + λ2µ2(L)∇2
tf(z; t)

f(z; t)

]
+ o(h2 + λ2).
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Similarly,

E[εg(z)] =

[
1

2
h2µ2(K)

∇2
zg(z)

g(z)

]
+ o(h2).

Therefore from equation (7.0.5),

E[ρ̂(z; t)] = ρ(z; t) +
1

2

[
h2µ2(K)∇2

zf(z; t) + λ2µ2(L)∇2
t (z; t)

f(z; t)
− h2µ2(K)∇2

zg(z)

g(z)

]
+o(h2 + λ2).

The variance term of ρ̂ is

Var[ρ̂(z; t)] = Var(εf ) + Var(εg) + Cov(εf , εg)

=
Var{f̂(z; t)}
f(z; t)2

+
Var{ĝ(z)}
g(z)2

(Error terms are independent.)

=
R(K)R(L)

n1h2λf(z; t)
+

R(K)

n2h2g(z)
+ o(n−1

1 h−2λ−1 + n−1
2 h−2).

In conclusion,

Bias[ρ̂(z; t)] =
1

2

[
h2µ2(K)∇2

zf(z; t) + λ2µ2(L)∇2
tf(z; t)

f(z; t)
− h2µ2(K)∇2

zg(z)

g(z)

]
+o(h2 + λ2)

and

Var[ρ̂(z; t)] =
R(K)R(L)

n1h2λ
{f(z; t)}−1 +

R(K)

n2h2
{g(z)}−1 + o(n−1

1 h−2λ−1 + n−1
2 h−2).
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C.2: Proof of Theorem (5.9.1)

Proof. By using the second order ‘delta method’, we get

E

[
∂

∂t
ρ̂(z; t)

]
= E

[
∂
∂t
f̂(z; t)

f̂(z; t)

]

≈
∂
∂t
f(z; t)

f(z; t)
−

Cov[ ∂
∂t
f̂(z; t), f̂(z; t)]

[f(z, t)]2
+

Var[f̂(z, t)] ∂
∂t
f(z; t)

[f(z, t)]3
.

(7.0.6)

Recall from equation (5.5.2),

Var[f̂(z, t)] =
1

n1h2λ
R(K)R(L)f(z; t) + o

(
1

n1h2λ

)
.

To derive the asymptotic bias, we first need to derive Cov
[
∂
∂t
f̂(z; t), f̂(z; t)

]
term.

Cov

[
∂

∂t
f̂(z; t), f̂(z; t)

]
= E

[
∂

∂t
f̂(z; t).f̂(z; t)

]
− E

[
∂

∂t
f̂(z; t)

]
E
[
f̂(z; t)

]
=

1

2
E

[
∂

∂t
f̂(z; t)2

]
− 1

2

∂

∂t
(E[f̂(z; t)])2

=
1

2

∂

∂t

[
Var(f̂(z; t))

]
=

1

2

∂

∂t

[
1

n1h2λ
R(K)R(L)f(z; t)

]
=

R(K)R(L)

2n1h2λ

∂

∂t
f(z; t) + o

(
1

n1h2λ

)
.

By substituting equations (7.0.7) and (5.5.2) in (7.0.6), we get

E

[
∂

∂t
ρ̂(z; t)

]
=

∂
∂t
f(z; t)

f(z; t)
+
R(K)R(L) ∂

∂t
f(z; t)

2n1h2λ [f(z, t)]2
+ o(n−1

1 h−2λ−1).

Let us find the variance of
∂

∂t
ρ̂(z; t), which is equal to Var

[
∂
∂t
f̂(z; t)

f̂(z; t)

]
. Here, the

derivation of the variance of a ratio
X1

X2

is somewhat difficult. So we use first order
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‘delta method’ to derive the formula for the variance of a ratio
X1

X2

which is given as

follows.

Var

[
X1

X2

]
=

(
µ1

µ2

)2

×
[

Var(X1)

µ2
1

− 2Cov(X1, X2)

µ1µ2

+
Var(X2)

µ2
2

]
where µ1 = E[X1] and µ2 = E[X2]. So in particular,

Var

[
∂
∂t
f̂(z; t)

f̂(z; t)

]
≈

[
∂
∂t
f(z; t)

f(z; t)

]2

× (7.0.7)[
Var[ ∂

∂t
f̂(z; t)]

( ∂
∂t
f(z; t))2

−
2Cov[ ∂

∂t
f̂(z; t), f̂(z; t)]

( ∂
∂t
f(z; t))f(z; t)

+
Var[f̂(z; t)]

(f(z; t))2

]
.

In order to derive this asymptotic variance formulae, we need first to obtain the

approximation for Var[ ∂
∂t
f̂(z; t)].

Var

[
∂

∂t
f̂(z; t)

]
= Var

[
∂

∂t

∑
i

1

n1

K(z− xi; t− ti)

]

=
1

n1

Var

[
∂

∂t

∑
i

K(z− xi; t− ti)

]

=
1

n1

∫ ∫ (
∂

∂t
Kh(z− y)Lλ(t− s)

)2

f(y)f(s)dyds+ o(n−1
1 )

=
1

n1h4λ4

∫ ∫
K

(
z− y

h

)2

L
′
(
t− s
λ

)2

f(y)f(s)dyds.

By substituting u = (z−y)/h, v = (t−s)/λ and applying first order Taylor expansion,

we get

Var

[
∂

∂t
f̂(z; t)

]
=

1

n1h2λ3

∫ ∫
K(u)2(L

′
(v))2f(z, t)dudv + o(n−1

1 h−2λ−3).

=
1

n1h2λ3
R(K)R(L

′
)f(z; t) + o(n−1

1 h−2λ−3).
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Substituting equations (7.0.7), (5.5.2) and (7.0.8) in (7.0.8),

Var

[
∂

∂t
ρ̂(z; t)

]
≈

(
∂
∂t
f(z; t)

f(z; t)

)2

×

[
1

( ∂
∂t
f(z; t))2

1

n1h2λ3
R(K)R(L

′
)f(z; t)

− 1

n1h2λ
R(K)R(L){f(z; t)}−1 +

1

n1h2λ
R(K)R(L)f(z; t)

]
=

R(K)R(L
′
)

n1h2λ3f(z; t)
− R(K)R(L)

n1h2λ

[ ∂
∂t
f(z; t)]2

[f(z; t)]3
+
R(K)R(L)[ ∂

∂t
f(z; t)]2

n1h2λf(z; t)

+o

(
1

n1h2λ
+

1

n1h2λ3

)
=

R(K)R(L
′
)

n1h2λ3f(z; t)
+ o

(
1

n1h2λ
+

1

n1h2λ3

)
.

D.1: Proof of Lemma 6.4.1

Proof. From equation (6.2.3),

E[f̂(x|z)] = E

[
f̂(x, z)

f̂(z)

]

=
f(x, z)

f(z)
+ E

[
f̂(x, z)

f̂(z)
− f(x, z)

f(z)

]

= f(x|z) + E

[
f̂(x, z)

f̂(z)
− f(x, z)

f̂(z)
+
f(x, z)

f̂(z)
− f(x, z)

f(z)

]

= f(x|z) + E

[
Bias(f̂(x, z))

f̂(z)
+ f(x, z)Bias

(
1

f̂(z)

)]

= f(x|z) +
Bias(f̂(x, z))

f(z)
(1 + o(1)) + f(x, z)Bias

(
1

f̂(z)

)

= f(x|z) +
Bias(f̂(x, z))

f(z)
− f(x, z)Bias(f̂(z))

f(z)2
.
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By substituting the results of 2.4.4 and 6.4.1, we get

Bias[f̂(x|z)] =
1

2

[
h2µ2(K)∇2

xf(x, z)

f(z)
+
λ2µ2(L)∇2

zf(x, z)

f(z)
− λ2µ2(L)f(x, z)∇2

zf(z)

f(z)2

]

+o(h2 + λ2)

Let us obtain the formulae for Var[f̂(x|z)].

Var[f̂(x|z)] = E[f̂(x|z)2]− {E[f̂(x|z)]}2

≈ 1

n1h4λ2p

∫ ∫
K(u)2L(v)2f(x− uh, z− vλ)

f(z)2
h2λp du dv

(by applying second order Taylor expansion to f(x− hu, z− lv)

and simplifying)

=
R(K)R(L)

n1h2λp
f(x|z)

f(z)
+ o

(
1

n1h2λp

)
.

D.2: Proof of Theorem 6.4.2

Proof.

ρ̂(x|z) = log

[
f̂(x|z)

ĝ(x|z)

]
.

We define the relative error term of f̂(x|z) be εf and similarly for εg as follows.

εf =
f̂(x|z)− f(x|z)

f(x|z)

and

εg =
ĝ(x|z)− g(x|z)

g(x|z)
.
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∴ ρ̂(x|z) = ρ(x|z) + log

(
1 + εf
1 + εg

)
(By applying first order Taylor’s expansion).

By assuming the error terms are small,

E[ρ̂(x|z)] ≈ ρ(x|z) + E[εf ]− E[εg]

≈ ρ(x|z) +
Bias[f̂(x|z)]

f(x|z)
− Bias[ĝ(x|z)]

g(x|z)
.

That is,

Bias[ρ̂(x|z)] ≈ Bias[f̂(x|z)]

f(x|z)
− Bias[ĝ(x|z)]

g(x|z)
.

By substituting the equation (6.4.2) and using the formulae for the bias of ĝ and after

some simplifications,

Bias[ρ̂(x|z)] =
1

2f(x|z)

[
h2µ2(K)∇2

xf(x, z)

f(z)
+
λ2µ2(L)∇2

zf(x, z)

f(z)
− λ2µ2(L)f(x, z)∇2

zf(z)

f(z)2

]
− 1

2g(x|z)

[
h2µ2(K)∇2

xg(x, z)

g(z)
+
λ2µ2(L)∇2

zg(x, z)

g(z)
− λ2µ2(L)g(x, z)∇2

zg(z)

g(z)2

]
+o(h2 + λ2)

=
1

2

[
h2µ2(K)∇2

xf(x, z)

f(x, z)
+
λ2µ2(L)∇2

zf(x, z)

f(x, z)
− λ2µ2(K)∇2

zf(z)

f(z)

−h
2µ2(K)∇2

xg(x, z)

g(x, z)
− λ2µ2(L)∇2

zg(x, z)

g(x, z)
+
λ2µ2(L)∇2

zg(z)

g(z)

]
+o(h2 + λ2)

=
1

2
h2µ2(K)

[
∇2

xf(x, z)

f(x, z)
− ∇

2
xg(x, z)

g(x, z)

]
+

1

2
λ2µ2(L)

[
∇2

zf(x, z)

f(x, z)
− ∇

2
zg(x, z)

g(x, z)

]
−1

2
λ2µ2(L)

[
∇2

zf(z)

f(z)
− ∇

2
zg(z)

g(z)

]
+o(h2 + λ2).
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By assuming the error terms are independent,

Var[ρ̂(x|z)] ≈ Var(εf ) + Var(εg)

≈ Var[f̂(x|z)]

f(x|z)2
+

Var[ĝ(x|z)]

g(x|z)2

= R(K)R(L)

[
1

n1h2f(z)f(x|z)
+

1

n2λpg(z)g(x|z)

]
+ o

(
1

n1h2
+

1

n2λp

)
= R(K)R(L)

[
1

n1h2f(x, z)
+

1

n2λpg(x, z)

]
+ o

(
1

n1h2
+

1

n2λp

)
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