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ABSTRACT  

Phylogenetic models generally assume a homogeneous, time reversible, stationary 

process. These assumptions are often violated by the real, far more complex, 

evolutionary process. This thesis is centered on non-homogeneous, lineage-specific, 

properties of molecular sequences. It consist several related but independent studies. 

LineageSpecificSeqgen, an extension to the Seq-Gen program, which allows generation 

of sequences with changes in the proportion of variable sites, is introduced. This 

program is then used in a simulation study showing that changes in the proportion of 

variable sites can hinder tree estimation accuracy, and that tree reconstruction under the 

best-fit model chosen using a relative test can result in a wrong tree. In this case, the 

less commonly used absolute model-fit was a better predictor of tree estimation 

accuracy. This study found that increased taxon sampling of lineages that have 

undergone a change in the proportion of variable sites was critical for accurate tree 

reconstruction and that, in contrast to some earlier findings, the accuracy of maximum 

parsimony is adversely affected by such changes.  

This thesis also addresses the well-known long-branch attraction artifact. A non-

parametric bootstrap test to identify changes in the substitution process is introduced, 

validated, and applied to the case of Microsporidia, a highly reduced intracellular 

parasite. Microsporidia was first thought to be an early branching eukaryote, but is now 

believed to be sister to, or included within, fungi. Its apparent basal eukaryote position 

is considered a result of long-branch attraction due to an elevated evolutionary rate in 

the microsporidian lineage. This study shows that long-branch estimates and basal 

positioning of Microsporidia both correlate with increased proportions of radical 

substitutions in the microsporidian lineage. In simulated data, such increased 

proportions of radical substitutions leads to erroneous long-branch estimates. These 

results suggest that the long microsporidian branch is likely to be a result of an 

increased proportion of radical substitutions on that branch, rather than increased 

evolutionary rate per se.  
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The focus of the last study is the intriguing case of Mesostigma, a fresh water green alga 

for which contradicting phylogenetic relationships were inferred. While some studies 

placed Mesostigma within the Streptophyta lineage (which includes land plants), others 

placed it as the deepest green algae divergence. This basal positioning is regarded as a 

result of long-branch attraction due to poor taxon sampling. Reinvestigation of a 13-

taxon mitochondrial amino acid dataset and a sub-dataset of 8 taxa reveals that site 

sampling, and in particular the treatment of missing data, is just as important a factor for 

accurate tree reconstruction as taxon sampling. This study identifies a difficulty in 

recreating the long-branch attraction observed for the 8-taxon dataset in simulated data. 

The cause is likely to be the smaller number of amino acid characters per site in 

simulated data compared to real data, highlighting the fact that there are properties of 

the evolutionary process that are yet to be accurately modeled.  
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1.1 Candidate’s Note 

This thesis is a collection of research papers, either published, accepted for publication, 

or in preparation for submission. Each of chapters 2-5 is a self-contained paper and can 

be read in a stand-alone manner; the thesis therefore contains some repetition and 

differences in format. I have, however, standardized the format as much as possible and 

added internal referencing where appropriate. No changes were made in the content of 

published papers.  The paper bound at the back of this thesis as an appendix is a result 

of a study which I started as part of my Masters thesis. However, I spent much of the 

first year of my PhD study extending and preparing this work for publication. In 

particular, the work involving corrected-maximum parsimony (including its 

implementation) was done entirely during my PhD study. This paper is thus included 

here and should be included, in part, in the assessment of my PhD research. This thesis 

is a report on the progress made during the three years of my PhD study. Some of the 

projects described are still on-going, and of course further research will stem from this 

work. 

Much of the work presented in this thesis is a result of collaborative projects. 

Nevertheless, this work is my own. I have done the vast majority of the work for each of 

the papers, including all the programming and analyses. I also had the responsibility for 

writing each manuscript. All the papers included here greatly benefited from invaluable 

discussions with my supervisors: Dr. Barbara Holland, Prof. David Penny and Prof. 

Mike Hendy, and discussions with Prof. Pete Lockhart. Discussions with my 

collaborators Prof. David Bryant, Prof. Bill Martin and Prof. Pete Lockhart were 

extremely valuable for the work presented in Chapter 4. In particular, the initial idea and 

formulation of the bootstrap test is of Prof. David Bryant.  
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1.2 Overview 

From the time of Charles Darwin, biologists have sought to reconstruct the evolutionary 

relationships of all life on Earth (both living and extinct) and express it in the form of a 

phylogenetic tree. This requires reliance on mathematical models to describe the 

evolutionary process. A major problem biologists are faced with is that reality is too 

complex for the math to handle. Almost all mathematical models of evolution assume 

that the same processes act over all parts of the tree. They fail to account for the fact 

that sequences in different lineages acquire their own particular properties. This thesis is 

concerned with the effect this over-simplification has on the estimation of evolutionary 

relationships and our understanding of the process of evolution. The aim of this 

introductory chapter is to give a brief overview of the motivation for the work, and to 

describe the progress that is presented in this thesis. 
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1.3 Basic concepts 

1.3.1 Phylogenetic trees 

A phylogenetic tree is a graph composed of nodes and branches, in which any two 

nodes are connected by a unique path. Nodes on the tree represent taxonomic units 

(species, populations, individuals), and branches define the relationship between taxa in 

terms of descent. Internal nodes on the tree correspond to speciation events. In general, 

the process of speciation is assumed to be binary, so that each speciation results in two 

new species and the tree is bifurcating. External nodes, also called terminal nodes, 

leaves, or tips, usually correspond to extant (living) taxonomic units. In molecular 

phylogeny, branch lengths typically represent the number of changes in the molecular 

sequence (DNA, RNA, or amino acids) that have occurred on that branch. The 

branching pattern of the tree is called a topology. A phylogenetic tree can either be 

rooted or unrooted. Rooted trees have a node, called the root, which represents the 

common ancestor from which a unique directed path leads to any other node. An 

unrooted tree characterizes the relationships between taxa; but an evolutionary path and 

a common ancestor are not defined. Figure  1.1 illustrates these concepts. A common 

notation to represent a phylogenetic tree is the Newick format (see 

http://evolution.genetics.washington.edu/phylip/newicktree.html). Using this format, the 

tree in Figure  1.1b can be written as (((A,B),C),D),(E,F)). The work presented in this 

thesis is limited to trees and therefore does not consider lateral gene transfer (transfer of 

genetic material between different species [1]), recombination, or hybridization, which 

cannot be represented by a tree.  
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Figure  1.1 – Examples of unrooted (a) and rooted (b) 6-taxon binary trees. The taxa set {A, B, C, D} 

is the ingroup, the outgroup taxa {E, F} can be used to root the tree (b). 

An unrooted tree can be rooted in two ways. The first is using an additional taxon (or 

group of taxa) called an outgroup; the taxa that do not belong to the outgroup are called 

the ingroup, and the internal node where the outgroup joins the ingroup is designated as 

the root of the ingroup tree. A second way of rooting an unrooted tree is using the 

molecular clock assumption. In this case, the rate of change is assumed to be constant 

and branch lengths therefore correspond to elapsed time. The point on the tree from 

which the distance (branch lengths) to all tips is approximately equal is then named the 

root of the tree [2]. The molecular clock assumption can be relaxed, allowing rates to 

vary across the tree [3, 4, 5]. 

Evolution takes place when the allele frequencies within a population change over time. 

Such changes occur due to mutations and their fixation in the population. Mutations can 

arise as a result of unrepaired copying errors (in the DNA) during cell division or as a 

result of exposure to radiation, chemicals, or viruses. While some mutations become 

fixed (wide-spread) in the population, others do not; this may be random (if the changes 

are neutral) or may be dependent on functional and structural constraints. A common 

mutation is a single nucleotide replacement. Mutations of this type that have reached 

fixation are known as substitutions. In molecular phylogenetics trees are usually 

reconstructed using the observed substitutions in the molecular sequence. 
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1.3.2 Sequence alignments 

Sequence alignments are the typical input data for phylogenetic tree estimation 

methods. A sequence alignment is an arrangement of DNA, RNA, or amino acids 

sequences where each sequence is represented as a row in a matrix. Gaps can be 

inserted between characters in a sequence so that assumed homologous sites (those 

which have evolved from a common ancestor) are aligned in columns.  A site that has 

the same character state for all the aligned sequences is called ‘constant’ or ‘invariant’. 

Alignments are often done by computer programs which are based on dynamic 

programming algorithms, employing an explicit optimization function that rewards 

matches and penalizes mismatches, insertions, and deletions [6, 7]. As sequence 

alignments are at the base of all phylogenetic analysis, their correctness is critical [8]. 

One objective way of assessing the quality of an alignment is the heads-or-tails 

technique [9].  

1.3.3 Tree reconstruction methods 

Existing phylogenetic methods can be classified into three categories: parsimony, 

distance-based, and likelihood-based methods. These methods consist of two 

components: an optimality criterion, and a search strategy. The optimality criterion 

assigns a score to a given tree and data. For parsimony methods the score is the 

minimum number of substitutions required to explain the data assuming the sequences 

evolved on the given tree. In the case of distance methods, two optimality criteria are 

commonly used: minimum evolution (where the score is the length of the tree), and 

least squares (where the score is the some of square differences between expected and 

observed distances). However, in some distance methods (those that use clustering 

algorithms) the optimality criterion is combined with the search strategy (see below). 

For likelihood-based methods, such as maximum likelihood or Bayesian analysis, the 

score is the probability of observing the data assuming the sequences evolved on the 

given tree according to some model of substitution, or vice versa, respectively. Unlike 

other methods (such as maximum parsimony or maximum likelihood), Bayesian 

analysis does not attempt to find a single best-tree; it generates an approximation of the 
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posterior probability distribution of all parameters (i.e. tree shape, branch lengths, and 

model) typically using Markov Chain Monte Carlo (for more information see [10, 11]). 

The search strategy is an algorithm for searching through the space of all trees. 

Exhaustive search is possible when the tree space is small (small number of taxa), 

however it becomes difficult as the number of taxa increases [7]; this is because the 

number of possible trees increases super-exponentially in relation to the number of taxa 

[2]. Therefore a heuristic search is normally used, where an initial tree is constructed 

(typically by a distance method) and is improved upon until a local optimal tree is 

reached. This tree is not guaranteed to be the global optimal tree [12].  

In some distance methods (e.g. neighbor joining) the optimality criterion and the search 

strategy are combined, and the tree is usually constructed using a greedy algorithm. At 

any stage a criterion determines which two taxonomic units should be grouped together. 

The distance matrix is then updated (where the grouped units are represented as a single 

unit), and the process is repeated until only one taxonomic unit exists. See [13], for a 

review, or [2] for more detail on phylogenetic methods. 

1.3.4 Confidence assessment  

Generally (with simulations being the exception), a phylogenetic tree is an estimate of 

an unknown phylogeny.  An important question is how good this estimate is. 

Confidence assessment in phylogenetics is traditionally done using bootstrap analysis. 

Bootstrap is a statistical technique for empirically estimating the variability of an 

estimate [14, 15]. The distribution of variability of the estimate is approximated by 

sampling with replacement from the original dataset, creating multiple datasets of the 

same size and inferring the phylogeny from each. The sample of phylogenies should 

display roughly the same variation as a sample obtained by collecting the same amount 

of new sites [2]. The support for each branch in the original tree is calculated as the 

frequency with which it is observed in the replicate trees. If a branch has strong support, 

it will be supported by at least some positions in each of the bootstrap samples, and all 

the bootstrap samples will yield this branch (for more information see [16]). While 
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bootstrap analysis can detect variability in the estimate due to sampling error (lack of 

data), it is dependent on the method and model used and is thus prone to systematic 

biases; if the method used is biased, the bootstrap support values will be biased too. 

This weakness of the use of bootstrap for confidence assessment has been highlighted 

by Phillips et al. [17] who showed that 100% bootstrap support can be obtained for each 

of two different tree topologies using the same dataset under different substitution 

models.  In a Bayesian framework, the posterior probabilities can be used as support 

measures [10]. However, as in the case of bootstrap, these support values are also 

conditional on the model assumptions [18]. 

1.3.5 Substitution models  

In the context of molecular phylogenetics, statistical models are used to make 

predictions about the substitution process along the branches of the tree. A substitution 

model describes in probabilistic terms the process by which one sequence of characters 

(nucleotides or amino acids) changes into another over time, as well as expected 

character state frequencies. These models are utilized by likelihood-based methods to 

evaluate the probability of the tree and branch lengths given the data and vice versa, and 

by other (generally distance-based, but sometimes parsimony) methods where they are 

used to correct for undetectable multiple substitutions at a site. 

Phylogenetic models typically assume a homogeneous, stationary and time reversible 

Markovian process (the future state at a site depends solely on the current state, not on 

previous states). In the context of phylogenetics, the homogeneity assumption implies 

that the instantaneous rate matrix is constant over an edge (local homogeneity) or over 

the entire tree (global homogeneity). The stationarity assumption implies that the 

marginal probabilities of the characters (nucleotides, or amino acids) remain constant 

over all nodes of the tree. Finally, the reversibility assumption implies that the rate of 

substitution from character i to character j is the same as the rate of substitution from 

character j to character i.  
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Most nucleotide substitution models belong to the general time-reversible (GTR) [19] 

family. For these models there are six possible substitution types for the four 

nucleotides (A, C, G, T). The instantaneous rate matrix for the GTR model is: 



















−ΠΠΠ

Π−ΠΠ

ΠΠ−Π

ΠΠΠ−

=

GGTCCTAAT

TGTCCGAAG

TCTGCGAAC

TATGAGCAC

rrr

rrr

rrr

rrr

Q , where the iΠ  values are the equilibrium 

frequencies of the four nucleotides, ijr = rji  is the rate of substitution between 

nucleotides i and j (this equality is required under the time reversibility assumption), 

and the diagonals are chosen so that the sum of values in each row is 0. Other models 

belonging to the GTR family are special cases of the GTR model with some constraints 

on its rates and frequencies parameters. For a review of models for nucleotide evolution 

see [20]. 

Unlike nucleotides, amino acids substitution models are generally based on empirical 

data. Such empirical matrices include for example the JTT [21], WAG [22], and 

Dayhoff [23] matrices. Other empirical matrices exist, with some being specific for 

mitochondria or chloroplast data. Amino acids substitution matrices usually consist of 

190 relative rates of substitution (reversibility is assumed, and diagonal elements are 

fixed so that each row sums to zero). 

 In addition to the substitution rates and base frequencies, most modern phylogenetic 

reconstruction programs incorporate an option to account for variation in rates across 

sites. This is done using the rates-across-sites (RAS) model, sometimes specifically 

referred to as the ‘gamma model’, which was first introduced for use in phylogenetics 

by Yang [24]. This model allows sites to evolve at different rates by assigning rates to 

sites according to a gamma distribution (other distributions are possible, see [25]). Each 

site remains in the same rate class across the entire tree. For ease of computation, the 

mean rate of all sites is assumed to be 1. The number of sites with the various rates of 

substitutions determines the shape of the distribution which is summarized by the shape 

parameter (α). If the rate variation between sites is large, the shape parameter is 

expected to be small (α<1), whereas if most sites evolve with similar substitution rates 
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the shape parameter is expected to be large (α>20). The special case of equal 

substitution rates across sites implies an infinite shape parameter.  

Sometimes, a proportion of invariable sites (I) is also used to model some rate 

heterogeneity across sites, accounting for sites that are conserved (invariable) in all the 

homologous sequences in the dataset. The covarion model, which was first described by 

Fitch and Markowitz [26], allows for a changing positions of variable sites through 

time; where invariable sites may become variable and vice versa. Tuffley and Steel [27] 

introduced a hidden Markov implementation of this model. However, unlike the original 

description of the covarion model, the heterogeneity between lineages in this 

implementation is limited as it assumes a fixed proportion of invariable sites (Figure 

 1.2). This model has been extended to incorporate variation in rates-across-sites [28, 29, 

30]. 

 

Figure  1.2 – An illustration of the covarion model of Tuffley and Steel [27].  A fixed proportion 

ss
s

1001

01

+
=σ

 of sites are invariable, but invariable sites may become variable (with probabilitys01) 

and vice versa (with probabilitys10 ). 

1.3.6 The nature of the evolutionary process 

The evolutionary process, as it occurs in nature, is one where selective constraints vary 

over time and along the sequence. Such changes in constraints can occur, for example, 

when a protein obtains a new function [31] or as a result of alterations in protein-protein 

interactions [32, 33, 34, 35]. These constraints determine, at any given time, what 

(proportion and positions of) sites are free to vary and the types of substitutions that can 

occur at any site. Unlike the processes described by standard phylogenetic models, the 

process of evolution is non-homogeneous. Although these biological properties have 
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been known since 1970 [26, 36] and seem to be a prevalent feature of molecular data 

[26, 35, 37, 38], existing phylogenetic models do not allow for lineage-specific 

proportions of variable sites and changes in the types of substitutions that can occur at 

each site at any given time. Such lineage-specific processes can cause what is 

sometimes called “heterotachy” [35], where for a specific site lineage-specific rates of 

substitutions are inferred.  

1.3.7 Model misspecification 

Models of character evolution are at the base of all phylogenetic analysis. Even methods 

that do not appear to use an explicit model (such as parsimony methods) make 

assumptions about the evolutionary process [2, 39]. Generally, models are a 

simplification of the true processes. In order to be useful, models should closely 

approximate the unknown reality, rather than describe it exactly. A more exact 

description of a process can always be achieved through the use of additional 

parameters. However, overparameterization should be avoided, as it may result in poor 

estimation of these parameters reducing the power of the model and its usefulness for 

making predictions about additional data [40]. Overparameterization may also lead to 

non-identifiability; a case where a tree and the parameters of a model cannot be 

determined from the expected distribution of the data (for instance, Matsen and Steel 

[41] discuss an example of a mixture model of two trees, with the same topology but 

different branch lengths, that produces identical expected site pattern frequencies as a 

third tree which has a different topology). On the other hand, model misspecification 

(when a model is poor approximation of reality) may systematically bias the analysis 

which can result in inaccurate (but sometimes apparently well-supported) estimations 

[42]. 

As model adequacy is important for correct tree estimation, several methods to evaluate 

model’s fit to the data have been developed. These can be divided into two categories: 

model selection methods and model adequacy assessment methods. Model selection 

methods (such as the likelihood ratio test, Akaike information criterion [43], and 

Bayesian information criterion [44]) choose the relative best-fit model, a model that 
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maximizes the likelihood of the data given the tree considering (and in most cases 

penalizing for) the number of parameters, from a given set of models. It is important to 

note that the relative best-fit model is not necessarily adequate for tree reconstruction. 

Model adequacy assessment methods (such as those described in [45, 46]) evaluate how 

well a certain model performs in predicting future observations. This is usually done by 

simulating predictive observations under the model in question, and comparing these to 

the original data using some test statistic. Unlike model selection methods, these 

evaluate the absolute adequacy of the model and can reject the best-fit model if some 

component of the evolutionary process is not accounted for in the set of models tested 

[47]. Until recently (2009), an implementation for model adequacy assessment methods 

was not available, and researchers wanting to apply these methods needed to write their 

own code. As a result, these methods are not yet in common use in phylogenetic 

analyses. An implementation of a model adequacy assessment method in a Bayesian 

environment is now available [48]. 

1.3.8 Long-branch attraction 

Long-branch attraction [49, 50, 51] is a common systematic error where two non-

adjacent long branches are mistakenly grouped together. This artifact is of particular 

concern when a distant outgroup is used in tree reconstruction for rooting and molecular 

dating. In this case, the long-branch lineages of the ingroup are ‘attracted’ by the 

outgroup lineage. This can cause an artificial early emergence of the long-branch 

lineages of the ingroup [52, 53]. Long-branch attraction has been suggested to affect 

tree reconstruction of many groups, including early Eukaryotes [54] (discussed in 

Chapter 4) and angiosperms [55] (discussed in the appendix). Felsenstein [49] showed 

that unequal rates of substitution can cause long-branch attraction and mislead tree-

building methods based on parsimony. Nevertheless, Hendy and Penny [50] have shown 

that methods can be misled even under the molecular clock assumption (i.e. equal rates). 

They suggested that it is not the unequal rates per se that cause methods to converge to 

the wrong tree, but rather the estimated numbers of substitutions along the edges 

(similar number of substitution in non sister lineages and different number of 

substitutions in sister lineages). This estimation is model-dependent; therefore, long-
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branch attraction is primarily caused by model misspecification (whether the model 

assumptions are explicit or implicit). Although Hendy and Penny [50] have shown that 

unequal rates are not a pre-requisite for long-branch attraction, Felsenstein’s first 

interpretation of long branches, which was captivatingly simplistic, has stuck and long 

branches are often described as fast evolving lineages (e.g. [56, 57]). 
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1.4 A missing piece 

Like several other assumptions (such as site independence, which is not dealt with in 

this thesis), the homogeneity assumption which is incorporated in the vast majority of 

character substitution models is known to be inaccurate. The evolutionary process is 

much more complex than that captured by the models. In particular, the proportion of 

variable sites is known to evolve in a lineage-specific manner (see Figure  1.3) due to 

changes in functional and structural constraints [35, 38]. This violates one of the main 

assumptions of the covarion implementation of Tuffley and Steel [27], but is closer to 

the original covarion idea of Fitch and Markowitz [26]. While other authors have 

studied non-homogeneous models (for example in the context of identifying selection 

[58, 59]), none of these studies allowed non-homogeneous proportion of variable sites 

which is the extension considered in this thesis. Variations in evolutionary constraints 

are also expected to cause changes in the substitution process (see Figure  1.4) leading to 

lineage-specific relative rates of substitutions. These features of the evolutionary 

process are not accounted for by current phylogenetic models. This can lead to over- or 

under-estimation of the number of substitutions along a branch and may cause long-

branch attraction artifact. The extent to which this model misspecification affects tree 

reconstruction is still unknown. This thesis is focused around these lineage-specific 

properties, how they can be simulated, what effect they have on tree reconstruction, and 

perhaps most importantly can they be detected in real datasets?  
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Figure  1.3 – Illustration of lineage specific proportion of variable sites.  ‘i’ = invariable site, ‘v’ = 

variable site. At the root, the proportion of variable sites (Pvar) is 0.1. A change in Pvar (marked as 

X on the tree) occurs on the lineage leading to taxa T1, T2, and T3 where Pvar is 0.4.  The resulting 

Pvar in the 6-taxon sequence alignment is then 0.4. However, this Pvar does not accurately describe 

the evolutionary process for taxon T4, T5, and T6 where Pvar=0.1. 

 

Figure  1.4 - Change in the substitution process. The matrices represent the instantaneous rate 

matrix. When a change in the substitution process occurs (due to changes in constraints), some 

types of substitutions become less frequent, some remain the same, and others become more 

frequent. In this diagram the type size changes illustrate changes in the value of the corresponding 

parameters. 
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1.5 Thesis Outline 

Commonly used phylogenetic sequence generators employ homogeneous models of 

molecular sequence evolution, ignoring lineage-specific proportion of variable sites. In 

Chapter 2, I describe a new simulation tool called “LineageSpecificSeqgen” that allows 

systematic generation of sequences with changes in the proportion of variable sites 

through time. It extends the standard covarion model [27] which assumes a constant 

proportion of variable sites.  This facilitates a more biochemically realistic simulation of 

the evolutionary process. Simulated sequences are used in many applications, including 

hypothesis testing [46], performance comparison of different tree estimation methods 

under various models and parameters [53, 60, 61], testing model misspecification 

effects on tree reconstruction [62, 63, 64], development of new models and methods 

[65, 66], and approximate Bayesian inference [67]. The value of these is greatly 

dependent on the ability of the simulation to generate data in ways that closely model 

the underlying biological processes. The simulator described enables testing of current 

models of evolution on sequences that have undergone lineage-specific evolution, as 

well as development of new methods to identify such processes in real data and means 

to account for such processes. This chapter has been published in BMC Evol. Biol. [68]. 

 

Chapter 3 includes a simulation study which explores the effect of lineage-specific 

proportions of variable sites on model-fit and tree-estimation accuracy. 

Using the LineageSpecificSeqgen simulator described in Chapter 2, this study compares 

tree reconstruction accuracies of five current models of nucleotide sequence evolution 

in a Bayesian framework, as well as the accuracy of maximum parsimony. These are 

applied to data containing increasing levels of change in the proportions of variable sites 

with and without changing positions of variable sites. Such changes can lead to the 

inference of lineage-specific rates of substitution at a site (heterotachy). In a Nature 

paper published in 2004 [63] (see also [69]) Kolaczkowski and Thornton claimed that 

maximum parsimony outperforms maximum likelihood and Bayesian analysis, and 

declared that maximum parsimony is unaffected by heterotachy. However, their 

conclusion was based on one specific case which is considered unrealistic [70]. Later 
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work [71, 72, 73] provided some contradictory evidence. The study presented in this 

chapter establishes that maximum parsimony is adversely affected by a changing 

proportion of variable sites, a biochemically realistic process that leads to heterotachy. 

This type of heterotachy was also found to hinder tree reconstruction estimation in two 

of the five models tested in a Bayesian framework. This study also demonstrates the 

importance of absolute, as opposed to relative, model adequacy assessment. 

Interestingly, the model with the best relative fit was sometimes found to perform worst 

in tree reconstruction. Absolute goodness-of-fit was found to be a good prediction tool 

for tree estimation accuracy. This chapter has been accepted for publication in Syst. 

Biol. (April, 2009) pending some revisions. 

The study presented in Chapter 4 deals with long-branch attraction and its possible 

causes. This study shows that long-branches, rather than being an indication of fast rates 

of substitution, can be a result of relaxation in evolutionary constraints manifested in a 

higher proportion of radical amino acids substitutions (that is, substitutions between 

amino acids with different chemical properties; see chapter). I present a novel test that 

can be used as a tool to identify variations in the substitution process in sequence data. 

This test is then applied to the case of Microsporidia whose tendency to branch deep in 

phylogenetic analysis has been tied to long-branch attraction artifacts. I intend to extend 

this work as part of my post-doctoral research. 

Chapter 5 is centered on the robustness of phylogenetic methods to model 

misspecification, taxon sampling, site sampling, and missing data in the sequence 

alignment. I found that taxon sampling alone cannot explain the early emergence of 

Mesostigma (a species of fresh water green algae) as a sister lineage to all other green 

algae and that missing data in the sequence alignment significantly affects the estimated 

phylogeny. This study identifies a gap between simulated data, based on relative best-fit 

model, and real data. Particular incongruence is noted in the number of different amino 

acids characters per site (smaller averaged number for real data compared to simulated 

data). This is, in part, the result of underestimation of the proportion of invariable sites. 

Evolutionary constraints on the possible types of substitutions, which are unaccounted 

for in the common substitution models, can explain these findings. 
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The paper bound as an appendix describes a simulation study which focuses on tree 

estimation for rapid radiations. Such cases, where there is a combination of short 

internal and long external branches, are known to be prone to long-branch attraction 

artifacts. The performance and accuracy of several phylogenetic methods are evaluated. 

Biases towards specific tree topologies were identified in Maximum-likelihood, 

corrected- and uncorrected-neighbor-joining and corrected- and uncorrected-parsimony. 

This study shows that tree estimation using a single-taxon outgroup often disrupts an 

otherwise correct ingroup topology. Tree estimation using a two-taxon outgroup was 

more accurate than when using a single-taxon outgroup. However, the ingroup was 

most accurately recovered when no outgroup was used. This work has been published in 

Mol. Biol. Evol. [61]. As mentioned earlier, the first part of this work was done for my 

MSc. But the first year of my PhD was spent extending the work and writing it for 

publication. 
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1.6 Future work 

 The simulation study presented in Chapter 3 shows that change in proportion of 

variable sites, which is not yet incorporated in phylogenetic models, can cause model 

misspecification and mislead tree reconstruction methods. It is therefore important to 

design models that account for this feature of the evolutionary process. The simulation 

tool, LineageSpecificSeqgen, described in Chapter 2 can be used to support 

development of models for lineage-specific processes which are yet to be modeled, such 

as changes in the proportion of variable sites. It can be extended to include changes in 

the substitution process, like those that are identified using the newly developed non-

parametric bootstrap test described in Chapter 4. Not only will such models improve 

phylogenetic tree estimation, but they will also allow us to test our understanding of the 

underlying molecular evolutionary process. These lineage-specific properties are 

expected to be present in many molecular datasets; particularly ones for which a long-

branch attraction artifact has been suggested as a cause for unexpected phylogenies e.g. 

Microsporidia. Studying more of these datasets will aid us in understanding the 

evolutionary process and increase phylogenetic reconstruction accuracy. Simulation 

studies are widely used in phylogenetics. For these to be useful, it is essential that the 

processes used to produce the simulated data closely model the underlying biological 

processes. The difficulties doing this for the case presented in Chapter 5 suggest that 

there is much room for development in that area. The combination of accounting for 

lineage-specific evolution and model assessment is expected to be very powerful. 
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2.1 Abstract 

2.1.1 Background 

Commonly used phylogenetic models assume a homogeneous evolutionary process 

throughout the tree. It is known that these homogeneous models are often too simplistic, 

and that with time some properties of the evolutionary process can change (due to 

selection or drift). In particular, as constraints on sequences evolve, the proportion of 

variable sites can vary between lineages. This affects the ability of phylogenetic 

methods to correctly estimate phylogenetic trees, especially for long timescales. To date 

there is no phylogenetic model that allows for change in the proportion of variable sites, 

and the degree to which this affects phylogenetic reconstruction is unknown.  

2.1.2 Results 

We present LineageSpecificSeqgen, an extension to the seq-gen program that allows 

generation of sequences with both changes in the proportion of variable sites and 

changes in the rate at which sites switch between being variable and invariable. In 

contrast to seq-gen and its derivatives to date, we interpret branch lengths as the mean 

number of substitutions per variable site, as opposed to the mean number of 

substitutions per site (which is averaged over all sites, including invariable sites). This 

allows specification of the substitution rates of variable sites, independently of the 

proportion of invariable sites. 

2.1.3 Conclusions 

LineageSpecificSeqgen allows simulation of DNA and amino acid sequence alignments 

under a lineage-specific evolutionary process. The program can be used to test current 

models of evolution on sequences that have undergone lineage-specific evolution. It 

facilitates the development of both new methods to identify such processes in real data, 
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and means to account for such processes. The program is available at: 

http://awcmee.massey.ac.nz/downloads.htm. 
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2.2 Background  

Simulated sequence data are widely used for hypothesis testing [1], for evaluation of 

phylogenetic methods under different parameter settings [2, 3, 4], for testing the effect 

of model misspecification on tree reconstruction [5, 6, 7], for development of new 

models and methods [8, 9], and for approximate Bayesian inference [10]. For these 

applications, it is important that the processes used to produce the simulated data 

closely model the underlying biological processes. Commonly used phylogenetic 

sequence generators employ homogeneous, time reversible, stationary models of 

molecular sequence evolution. These phylogenetic models assume that the overall rate 

of substitution is the only parameter that may change along the tree and do not allow 

changes in other parameters, such as the rate matrix, the distribution of rates across sites 

and the proportion of variable sites.  

It is known, however, that as sequences diverge they can acquire independent 

properties. In particular, the proportion of variable sites can evolve in a lineage-specific 

manner due to changes in evolutionary constraints [11, 12]. The proportion of variable 

sites in a lineage will affect its estimated substitution rate [13]. Failure to account for 

changes in the proportion of variable sites can result in erroneous rate estimates that 

may affect tree estimation [5, 14]. Indeed, change in the proportion of variable sites is 

thought to be one of the main causes of long-branch attraction [12, 15].  

In addition to the possible shift in the proportion of variable sites, it is known that sites 

can switch between variable and invariable states due to drift. Note that invariable sites 

(which we are concerned with in this paper) are sites for which the probability of 

character substitution is zero; as opposed to invariant sites for which the probability of 

character substitution is greater than zero but for a certain group (sample) of taxa no 

substitution is found.  The strict covarion model [16] allows sites to switch between 

variable and invariable states; however, at equilibrium the proportion of variable sites is 

constant over the different lineages. Several extensions of the covarion model [17, 18, 
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19] are implemented in the sequence generator seq-gen-aminocov [19]. However, to 

date, there is no model that allows for change in the proportion of variable sites.  

Using partitions (a partition is a group of consecutive sites that are simulated on the 

same underlying tree), lineage-specific proportions of variable sites have been simulated 

with sequence generators such as seq-gen [20], seq-gen-cov [21], and seq-gen-aminocov 

[19]. These simulations have proven to be very useful in facilitating our understanding 

of the process of lineage-specific evolution. However, the use of these programs for the 

purpose of simulating changes in the proportion of variable sites is limited to trees with 

very few ‘events’, where an event is defined as a position on the tree where a change in 

the process of evolution occurs, e.g. a change in the proportion of variable sites. This is 

because different proportions of variable sites are generated using pre-defined 

partitions, where each partition is simulated on a tree with different branch lengths (zero 

branch lengths are used for invariable sites). For two events, in which the proportion of 

variable sites changes, there are 8 partitions [5]. In general there are 2(1+number of events) 

partitions (M. Steel, personal communication), so creating the input for such 

simulations becomes a difficult task.  

Furthermore, in seq-gen, invariable sites can be incorporated into sequences by either 

simulating on different partitions (where a partition for invariable sites is simulated on a 

zero length tree), or specifying a proportion of invariable sites (Pinv) using the –i 

option. Intuitively, one might expect the processes of evolution simulated by these two 

methods to be equivalent, but this is not the case. In seq-gen and its modifications 

published to date, branch lengths are defined as the mean expected number of 

substitutions per site. When sequences are simulated with a specified proportion of 

invariable sites, the branch lengths specified by the user are rescaled (increased) by the 

program to compensate for the proportion of invariable sites. Hence, increasing the 

proportion of invariable sites (for which the substitution rate is zero) forces a greater 

substitution rate on the variable sites. For example, with 80% invariable sites and an 

expected mean number of substitutions of 0.02, the mean number of substitutions of the 

variable sites will be rescaled to 0.1. Although this branch rescaling is consistent with 
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the definition of branch lengths as the mean expected number of substitutions per site, 

we found that many researchers are not aware of it. 

Moreover, using partitions does not allow changes in the on/off switch rate of the 

covarion model. We have developed a program that allows the user to simulate 

sequence data containing changes in the proportion of variable sites, and changes in the 

covarion switch rate, without the need to specify partitions or rescale branch lengths.  
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2.3 Implementation 

LineageSpecificSeqgen is a command-line controlled program written in C. The 

program uses, as much as possible, the code from seq-gen and its derivatives [19, 20, 

21]. Given a rooted tree, specified events (in which changes in the process occur), and a 

set of parameters, the program generates a user-specified number of datasets (nucleotide 

or amino-acid). An example workflow of the program is illustrated in Figure  2.1. The 

input is two text files - a tree file and a parameter file. The tree file contains one or more 

trees in a format which is based on the Newick format. Events on the tree are marked 

using a $ sign and are given names. Lengths are specified for all branches of the tree; 

for branches with events, the length before and the length after the event must both be 

specified. The parameter file contains the changes in the proportion of variable sites, 

and/or the switch rate of the covarion process, at each event. Any number of events can 

be specified. A change in the proportion of variable sites is specified using two 

parameters; the proportion of sites that were invariable and became variable at the 

event, and the proportion of sites that were variable and became invariable at the event.  
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Figure  2.1 - An example workflow of LineageSpecificSeqgen. For each tree, the program creates a 

random root sequence according to the parameters specified. The program then evolves the 

sequences, according to the parameters given for the root, along the subtree beneath the root 

(excluding parts of the tree that are beneath events). The resulting sequence at each event is then 

used as an ancestral sequence for the subtree beneath that event, and the sequences are evolved 

along that subtree according to the parameters specified for that event. The output is an alignment 

of the resulting sequences at the tips. 

For each input tree, the program will generate n subtrees (n = 1+number of events), with 

each event on the tree defining a cutting point (see Figure  2.1).  For each input tree and 

each dataset, sequences are first simulated on the subtree under the root and then on the 

subtree under each event in an iterative manner. An array holding the state 

(variable/invariable) of each position is updated at each event according to the change in 

the proportion of variable sites specified by the user. Events can be specified as 

correlated, although by default they are non-correlated. For correlated events the 

positions of sites that switch state are identical, for non-correlated events these positions 

are independent. An array holding the hidden states of the covarion model is also passed 

down the tree. For each site, along each branch, exponential times for switches are 

generated; the hidden states array is updated at the internal nodes of each subtree 

according to the specified covarion model and  the switch rate for each event. The 

sequence at each event is used as the ancestral sequence for the subtree beneath it. The 

output is an alignment of the resulting tip sequences.  
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For the reasons described in the Background, we added a default option where branch 

lengths are defined as the mean expected numbers of substitutions per variable site. This 

definition allows the substitution rate across variable sites to be independent of the 

proportion of invariable sites. When branch lengths are defined as the mean expected 

numbers of substitutions per variable site, the processes of evolution simulated by both 

specified partitions and specified Pinv are equivalent. 
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2.4 Results And Discussion 

2.4.1 Example 1 – generating data containing a change in the proportion of 

variable sites 

To demonstrate the use of the program for generating datasets containing a change in 

the proportion of variable sites, the Jukes-Cantor (JC) model was used to generate 

sequences of length 10,000bp on the 16-taxon rooted balanced tree shown in Figure  2.2.  

 

Figure  2.2 - 16-taxon rooted balanced tree used for simulation. Sequences were generated on a 16-

taxon rooted balanced tree. The tree is comprised of four groups of four taxa each. There are two 

correlated events on the tree in which the proportion of variable sites changes. The events are 

located on the two non-sister lineages 2 and 3. 

This tree is input as: 

((((A:0.1,B:0.1):0.1,(C:0.1,D:0.1):0.1):0.2,((E:0.1,F:0.1):0.1,(G:0.1,H:0.1):0.1):0.1$1st_

event:0.1):0.02,(((I:0.1,J:0.1):0.1,(K:0.1,L:0.1):0.1):0.1$2nd_event:0.1,((M:0.1,N:0.1):0

.1,(O:0.1,P:0.1):0.1):0.2):0.02); 
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 In this example, the proportion of invariable sites (Pinv) at the root was set to 0.8. At 

each of the two events 0.2 of the invariable sites were “switched on” (became variable). 

The two events were set to be correlated so that the positions of sites that are turned on 

in the two events are identical. The expected proportion of variable sites in groups 1 and 

4 is thus 0.2, and the expected proportion of variable sites in groups 2 and 3 is 0.36. 

Consequentially, 0.64 of the sites are invariable across all four groups, and 0.16 of the 

sites are variable in groups 2 and 3 and invariable in groups 1 and 4. For comparison, 

two control datasets were generated on a 16-taxon rooted balanced tree without the two 

events; the same branch lengths were used as before, and Pinv was set to either 0 or 0.8. 

For each group, and each pair of groups, the number of sites that varied in each of the 

three simulated sequence alignments is shown in Table  2.1.  

Table  2.1 - Number of sites that vary in each of the four groups, and each pair of groups, for the 

three datasets. 

Group/s 
No events 

Pinv=0 (all sites are variable) 

No events 

Pinv=0.8 

Pinv=0.8 

Two correlated events Pvar+=0.2 

1 4509 905 911 

2 4363 922 1574 

3 4347 925 1635 

4 4410 913 919 

1 and 2 1947 404 375 

1 and 3 1930 410 416 

1 and 4 2003 411 417 

2 and 3 1915 426 709 

2 and 4 1901 431 409 

3 and 4 1898 421 408 

2.4.2 Example 2 – testing tree reconstruction accuracy for data containing a 

change in the proportion of variable sites 

To demonstrate the use of the program for testing tree reconstruction accuracy for 

datasets containing a change in the proportion of variable sites, the JC model was used 
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to generate 100 datasets of length 10,000bp on the 4-taxon rooted balanced tree shown 

in Figure  2.3.  

 

Figure  2.3 - 4-taxon rooted balanced tree used for simulation. Sequences were generated on a 4-

taxon rooted balanced tree. There are two correlated events on the tree in which the proportion of 

variable sites changes. The events are located on the two non-sister lineages 2 and 3. 

This tree is input as: 

((A:0.4,B:0.3$1st_event:0.1):0.02,(C:0.3$2nd_event:0.1,D:0.4):0.02); 

 As in the former example, Pinv at the root was set to 0.8 and the two events were set to 

be correlated. At each of the two events Pvar+
 = (0,5,10,15,20,25,30) percent of the 

invariable sites were “switched on”. The program MrBayes [22] was used to reconstruct 

the trees, assuming a JC model with invariable sites and a covarion process 

(JC+I+covarion). The number of times with which each of the three possible 4-taxon 

trees was reconstructed with the highest proportional frequency in the Bayesian analysis 

were compared to determine tree reconstruction accuracy. As shown in Figure  2.4, the 

higher the increase in the proportion of variable sites in lineages B and C, the lower the 

tree reconstruction accuracy. These results suggest that, at least for some parts of the 

parameter space, a covarion model which assumes a constant proportion of variable 
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sites is not adequate for tree reconstruction from data containing changes in the 

proportion of variable sites. 

 

Figure  2.4 - Tree reconstruction accuracy for the simulated 4-taxon datasets, using JC+I+covarion 

model. The number of times with which each of the three possible 4-taxon trees was reconstructed, 

with the highest proportional frequency in the Bayesian analysis, assuming JC+I+covarion model. 

The higher the increase in the proportion of variable sites in lineages B and C, the lower the tree 

reconstruction accuracy. 
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2.5 Conclusions  

LineageSpecificSeqgen is a sequence generator that allows simulation of changes in the 

proportion of variable sites, a biochemically realistic process of evolution. It is useful 

for testing current models of evolution on sequences that have undergone lineage-

specific evolution, developing methods to identify such processes in real data, and 

developing means to account for such processes.  
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2.6 Availability and requirements 

• Project name: LineageSpecificSeqgen 

• LineageSpecificSeqgen, including the source code and documentation, 

can be downloaded from http://awcmee.massey.ac.nz/downloads.htm. 

• Operating System: The program can be compiled and run on Unix, 

Linux, and Mac OS. 

• Programming Language: ANSI C. 

• Other requirements: None. 

• License: GNU GPL. 

• Any restrictions to use by non-academics: None. 

• LineageSpecificSeqgen is provided with no guarantee or warranty of 

any kind, although the authors are happy to provide assistance if 

needed. 
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2.10 Correction 

Since publication of our article [1], we discovered an error in the second example. For 

this example, we state in the paper, we used the program MrBayes [2] with the 

JC+I+Cov model. However, we now found that, albeit appearances, this model is not 

implemented in MrBayes [2]. In fact, no combination of I+Cov (e.g. HKY+I+Cov, 

GTR+G+I+Cov) is currently implemented in MrBayes [2]. Instead, the program ignores 

the I parameter, so tree reconstruction in this example was therefore effectively done 

using the JC+Cov model. This does not affect the conclusion of our paper that 

phylogenetic estimation can be misleading for sequence data simulated with lineage-

specific properties. 
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Chapter 3 

Phylogenetic tree reconstruction 

accuracy and model fit when proportions 

of variable sites change across the tree 

Manuscript; accepted for publication, pending revisions, in Systematic Biology. 

(Note: most suggested revisions have been incorporated in this chapter) 

Ref: Shavit Grievink, L., D. Penny, M. D. Hendy, and B. R. Holland. 2009. 

Phylogenetic tree reconstruction accuracy and model fit when proportions of variable 

sites change across the tree. Syst Biol. 
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3.1 Abstract 

Commonly used phylogenetic models assume a homogeneous process through time in 

all parts of the tree. However, it is known that these models can be too simplistic as they 

do not account for non-homogeneous lineage-specific properties. In particular, it is now 

widely recognized that as constraints on sequences evolve the proportion and positions 

of variable sites can vary between lineages causing heterotachy. The extent to which 

this model misspecification affects tree reconstruction is still unknown. Here, we 

evaluate the effect of changes in the proportions and positions of variable sites on model 

fit and tree estimation. We consider five current models of nucleotide sequence 

evolution in a Bayesian MCMC framework, as well as maximum parsimony. We show 

that for a tree with 4 lineages where 2 non-sister taxa undergo a change in the 

proportion of variable sites tree reconstruction under the best-fitting model, which is 

chosen using a relative test, often results in the wrong tree. In this case we found that an 

absolute test of model-fit is a better predictor of tree estimation accuracy. We also found 

further evidence that maximum-parsimony is not immune to heterotachy. In addition, 

we show that increased sampling of taxa that have undergone a change in proportion 

and positions of variable sites is critical for accurate tree reconstruction. 

Key Words: [Phylogenetics, Heterotachy, Covarion model, Model fit, Taxon sampling, 

Simulation] 
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3.2 Introduction 

Commonly used phylogenetic models assume a homogeneous, time reversible, 

stationary process, at each site, throughout the tree. However, it is known that these 

assumptions are a simplification of the true evolutionary process. In particular, a site 

can display lineage-specific rates of substitution, an observation that has been termed 

heterotachy [1]. This type of variation appears to be a prevalent feature of molecular 

sequence data [2, 3, 4, 5]; however some evolutionary processes that can cause 

heterotachy are not accounted for in phylogenetic models. Such model misspecification 

can mislead model-based tree reconstruction [6, 7]. 

Heterotachy arises from different evolutionary processes including changes in (1) the 

overall rates of substitutions, (2) the positions of variable sites, and/or (3) the 

proportions of variable sites. These processes are likely to be correlated and reflect 

variations, over time, in the underlying evolutionary constraints that are acting on the 

sequences.  Importantly, the latter two processes, which can be explained biochemically 

by changes in the evolutionary constraints acting on the secondary and tertiary 

structures, can explain the observed changes in overall rates as well as variations in 

rates across sites. 

Here we focus on changes in the proportions and positions of variable sites, and their 

effect on model fit and tree reconstruction. Although such changes are known to occur 

over time independently in different lineages [2, 3, 4, 5, 8] and have been shown to 

mislead tree reconstruction [6, 9, 10], the extent of their effects on phylogenetic 

reconstruction is still uncertain. Using simulated data, we measured and compared tree 

reconstruction accuracies of five current models of nucleotide sequence evolution in a 

Bayesian MCMC framework, as well as the accuracy of maximum parsimony (MP), 

when applied to data containing increasing levels of change in the proportions of 

variable sites (Pvar) with and without additional changing positions of variable sites.  
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We explore the effect of taxon sampling on the estimation of the inner-most branch. The 

number of possible trees increases super-exponentially with the number of taxa. 

Therefore, phylogenetic analysis using a large number of taxa is computationally 

difficult. However, the inclusion of appropriate additional taxa has previously been 

found to increase the reconstruction accuracy of underlying relationships particularly 

when the additional taxa break up long branches [11, 12]. 

We also examine the relative and absolute adequacy of these models for such data. It is 

important to note that the best-fit model is not necessarily adequate for tree 

reconstruction [13]. Model selection methods chose a model, from a given set of 

models, that maximizes the likelihood of the data given the tree (considering, and in 

some cases penalizing for the number of parameters). Model adequacy assessment 

methods (such as [14, 15]) evaluate how well a certain model performs in predicting 

future observations. This is usually done by simulating predictive observations under 

the model in question, and comparing these to the original data using some test statistic. 

Unlike model selection methods, these evaluate the absolute adequacy of the model and 

can reject the best-fit model if some component of the evolutionary process is not 

accounted for in the set of models tested [16].  
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3.3 Material and Methods 

3.3.1 Simulations 

We generated data using our newly developed simulator LineageSpecificSeqgen [17] 

(Chapter 2 in this thesis); an extension to the seq-gen program [18] that allows 

generation of sequences with both changes in the proportions of variable sites (Pvar) 

and changes in the variable/invariable switch rate of the covarion model [19]. One 

hundred DNA datasets of 10,000 nucleotides each were generated along the 4-, 6-, 8-, 

and 16-taxon trees depicted in Figure  3.1. We used the default option of 

LineageSpecificSeqgen where branch lengths are defined as the expected number of 

substitutions per variable site; as opposed to the expected number of substitutions per 

site (which is averaged over all sites, including invariable sites). The advantage of this 

setting is that it is more intuitive; the input branch lengths are used directly and the rate 

of variable sites is not increased (rescaled) to compensate for the invariable sites when 

the data is generated. This results in simulation of more moderate rates than in the 

alternative setting of branch lengths being the expected number of substitutions per site 

(see [17], Chapter 2 in this thesis, for further detail). The setting used does not affect 

tree estimation as the expected number of substitution per site will be estimated from 

the data.  
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Figure  3.1 - Simulations were done on a 4-taxon tree: T4=((A,H),(I,P)) [solid lines], two 6-taxon 

trees: T6a=((A,(E,H)),((I,L),P)) [solid and light dashed lines] and T6b=(((A,D),H),(I,(M,P))) [solid 

and dark dashed lines], an 8-taxon tree T8=((A,D),(E,H)),((I,L),(M,P))) [solid and both dashed 

lines], and a 16-taxon tree  

T16=(((A,B),(C,D)),((E,F),(G,H))),(((I,J),(K,L)),((M,N),(O,P)))) [all lines]. 

The Jukes-Cantor model [20] of nucleotide substitution was used both with and without 

the covarion model of Tuffley and Steel [19]; the proportion of sites that are variable 

under the covarion model was set to 0.6 and the rate of change from variable to 

invariable and vice versa was set to 0.1). As illustrated in Figure  3.2, a site can be 

invariable at a certain section of the tree if a) it is part of the proportion of sites that are 

invariable (Pinv) or b) it is part of the proportion of sites that are variable (Pvar) but is 

invariable ('off') under the covarion model. At the root 80% of the sites were set as 

invariable (i.e. Pinv=0.8, Pvar=0.2). Changes in the proportion of variable sites (Pvar), 

'events', were introduced in two positions on the trees marked as '1st_event' and 

'2nd_event' (Figure  3.1); Pvar+ = (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50) percent of the 
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invariable sites were reset to be variable in two events. Unless otherwise stated, these 

two events were set to be correlated, so that the positions of sites that switch state are 

identical.  

 

Figure  3.2 - A description of the variable and invariable sites in the simulated data. When 

sequences are simulated without the covarion model, the number of variable sites is equal to the 

proportion of variable sites (Pvar) multiplied by the number of sites and thus the number of 

invariable sites is equal to the proportion of invariable sites (Pinv) multiplied by the number of 

sites. However, when sequences are simulated with the covarion model, the number of variable sites 

is equal to the proportion of variable sites (Pvar) multiplied by the proportion of sites that are "on" 

(i.e. variable) under the covarion model (Cov "on") and the number of sites; the number of 

invariable sites is then equal to the proportion of invariable sites (Pinv) multiplied by the number of 

sites plus the proportion of variable sites (Pvar) multiplied by the proportion of sites that are "off" 

(i.e. invariable) under the covarion model (Cov "off") and the number of sites. A site can therefore 

be invariable at a certain time if a) it is part of Pinv or b) it is part of Cov "off". 

3.3.2 Phylogenetic Analyses 

For each simulated dataset, we conducted a Bayesian analysis using MrBayes version 

3.1 [21] under five different models: JC, JC with invariable sites (JC+I), JC with a 

gamma distribution of rates across sites (JC+G), JC with invariable sites and a gamma 

distribution (JC+I+G), and JC with the covarion model (JC+Cov). Four chains (three 

heated) were run for 2,000,000 generations with the default settings. Pilot runs using the 

more complex models (JC+I+G and JC+Cov) were examined for convergence in Tracer 

version 1.4 [22] and used to choose an appropriate burnin (sump and sumt burnin=5000; 

this equals 50,000 generations). Maximum parsimony (MP) analysis was conducted 

using PAUP* version 4.0b10 (with default settings except for HSEARCH NBEST=1). 
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For the model incorporating covarion evolution (JC+Cov), we used the covarion model 

of Tuffley and Steel [19]. Huelsenbeck [23] described an extension to this model with 

an underlying variable rates across sites (a rate for each site is first drawn from a gamma 

distribution) and an overlaying covarion process. Under this model a site can be 

variable, in which case its rate is taken from the gamma distribution, or invariable; an 

invariable site can become variable and vice versa. This model is implemented in a 

Bayesian framework in MrBayes. However, we encountered problems when using JC 

with variable rates across sites and covarion (JC+Hue). In many cases, the application 

of both these models to our data resulted in convergence on positive log likelihoods! 

Similar problems with MCMC using parameter rich models have been previously 

reported [24]. We reported these problems in April 2008 using the MrBayes bug report 

tool 

(http://sourceforge.net/tracker/index.php?func=detail&aid=1945304&group_id=129302

&atid=714418). 

3.3.3 Reconstruction Accuracy 

We evaluated the accuracy of the different analyses in reconstructing the tree 

T=((Group 1, Group 2),(Group 3, Group 4)) i.e. the inner-most edge splitting groups 1 

and 2 from groups 3 and 4 (see Figure  3.1). The tree T is one of three possible trees 

splitting the four groups into two bipartitions (1+2 vs. 3+4, 1+3 vs. 2+4, and 1+4 vs. 

2+3). For the Bayesian analyses, the support for each of the three possible trees was 

calculated as the number of datasets for which the tree had the highest frequency in the 

posterior distribution. For MP, the support for each of the three possible trees was 

calculated as the number of datasets for which the tree was inferred. 

3.3.4 Model fit 

There is no agreed-upon method for objective model selection in a Bayesian framework 

[25]. Therefore, we used several procedures to determine the best-fit model: (1) The 

Akaike Information Criterion (AIC; [26]) applied to the arithmetic mean of the 

estimated marginal likelihoods (as in [27]), (2) the AIC applied to the maximum 
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likelihood found for the cold chain (3) Bayesian Information Criterion (BIC; [28])  

applied to the maximum likelihood found for the cold chain, and (4) Bayes factors (BF) 

applied to the harmonic mean of the estimated marginal likelihoods. The adequacy of 

each of the models was also evaluated using our own implementation of the method 

described by Bollback [15], which uses the posterior predictive distributions to account 

for uncertainty in the phylogeny and model parameters (the code is available from 

l.shavit@massey.ac.nz). This method assumes that an adequate model should perform 

well in predicting future observations. In absence of future observations (which is 

generally the case), predicted observations are simulated under the model in question by 

sampling from the joint posterior density of trees and parameters as approximated using 

MCMC. A test statistic is then used to evaluate the difference between the simulated 

and original data. This is a Bayesian analog of frequentist methods such as the classic 

parametric bootstrap [15]. We used the multinomial test statistic 

( ) ( )NNNNXT
S

lnln)( −







= ∑

∈ξ
ξξ , where S  is the set of (unique) possible site patterns, 

N is the number of sites, and ξN  is the number of sites in which pattern ξ  was 

observed. This is a general statistic which is used to test the overall predictive 

performance of the model rather than the performance of a specific aspect of the model. 

As in the phylogenetics analysis, the first 50,000 generations were discarded from the 

posterior distribution before conducting this analysis. 
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3.4 Results and Discussion 

We evaluated tree reconstruction accuracies of Bayesian analyses using each of the five 

models (JC, JC+I, JC+G, JC+I+G, and JC+Cov), when applied to data where Pvar+ = 

(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50) percent of the invariable sites were reset to be 

variable in two events defined on the tree (Figure  3.1). 

3.4.1 Tree Reconstruction Accuracy with Changing Proportions of Variable Sites 

– 4-taxa 

Figure  3.3 shows the ability of the analyses to reconstruct the correct phylogeny for data 

that was simulated under JC without the covarion model, for the 4-taxon simulations. 

The only change in the evolutionary process is introduced (at the two events; see Figure 

 3.1) by an increased proportion of variable sites. In general, the higher the percentage of 

sites that become variable in the two events (Pvar+) the less accurate the tree 

reconstruction is. None of the five models used for phylogenetic inference describe the 

data accurately (they do not account for the changing Pvar). Nevertheless, one might 

consider the JC+Cov model as the closest to the simulated data, as the changing 

proportions of variable sites are expected to produce covarion-like site patterns. 

However, the accuracy with which Bayesian analysis using this model (as well as JC) 

reconstructs the correct phylogeny is strongly impaired when Pvar+ increases. For Pvar+ 

≥ 20% the wrong tree (where the two non-sister lineages H and I, in which the change in 

Pvar occurred, are grouped together) is chosen most often. This may be, in part, due to 

the proportion of sites that are invariable across all taxa which is not accounted for by 

this model. For the JC+I model, the correct tree is chosen most often, although 

decreased accuracy is observed. The models allowing for variable rates across sites 

(JC+G and JC+I+G) are the most accurate in reconstructing the correct phylogeny for 

the parameters used in this simulation. Nevertheless, tree reconstruction under these 

models has been shown to be inconsistent when applied to other types of heterotachy 

[29, 30]. 
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Figure  3.3 - Tree reconstruction accuracy for the 4-taxon simulations without the covarion model. 

Bayesian analysis was done using Jukes-Cantor (JC), JC with invariable sites (JC+I), JC with a 

gamma distribution (JC+G), JC with invariable sites and a gamma distribution (JC+I+G), and JC 

with the covarion model (JC+Cov). For each model, the sum of the proportional frequencies of each 

of the three possible splits of the groups (1+2 vs. 3+4, 1+3 vs. 2+4, and 1+4 vs. 2+3) is shown for an 

increasing Pvar+ = (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50) percent of the invariable sites that were 

reset to be variable in the two events. 

 

3.4.2 Correlated vs. Uncorrelated Events  

Next we tested the effect of the correlation between the two events. Correlated events, 

where the positions of sites that switch state are identical, might occur if a similar 

change in function (and therefore functional constraints) takes place in separate 

lineages. Conversely, uncorrelated events, where the positions of sites that switch state 

are independent, might occur when the change in constraints acting on the lineages is 

different. Tree reconstruction accuracies for the 4-taxon tree T4 in the case of correlated 

events (Figure  3.3) were compared with the case of uncorrelated events (results not 

shown). We found that the effect of changing Pvar is much less pronounced in the case 

of uncorrelated events. In fact, the tree reconstruction accuracy of Bayesian analysis 

using any of the five models tested was higher than 86% for all values of Pvar+. These 

results are expected, as the positions of sites that become variable at the events, in the 

two non-sister lineages (taxa H and I), are likely to be much less similar in this case 

(compared with the identical positions in the correlated case).  
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3.4.3 Adding the Covarion Model 

Under the settings used in our simulations, having sites evolve under the covarion 

model raises the overall number of invariable sites (see Figure  3.2). This is done in a 

random manner (effectively reducing the correlation between the events) and therefore 

decreases the similarity between the positions of invariable sites in the two non-sister 

taxa H and I. This can be seen as an intermediate case between correlated and un-

correlated events. We compared the tree reconstruction accuracies for data that was 

simulated with and without the covarion model (Figure  3.3 and Figure  3.4). The results 

show that when data is simulated without the covarion model (Figure  3.3) the effect of 

change in Pvar on phylogenetic inference is twice as strong as that when data is 

simulated with the covarion model (Figure  3.4). The inclusion of the covarion models 

delays, but does not change the nature of, the effect of changes in Pvar on tree 

reconstruction accuracy. 

 

Figure  3.4 - Tree reconstruction accuracy for the 4-taxon simulations with the covarion model. 

Bayesian analysis was done using JC, JC+I, JC+G, JC+I+G, and JC+Cov. For each model, the sum 

of the proportional frequencies of each of the three possible splits of the groups (1+2 vs. 3+4, 1+3 vs. 

2+4, and 1+4 vs. 2+3) is shown for an increasing Pvar+ = (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). 

3.4.4 Model Fit 

Reconstructing trees under the best-fit model found using selection methods (e.g. as 

implemented in ModelTest [31] is a common procedure in phylogenetic inference. 
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However, model selection in a Bayesian framework is not straightforward. BF evaluate 

the evidence provided by the data in favor of one model over another [32]. Such pair-

wise comparisons are useful, but model selection from a larger set of models is difficult 

and the results might depend on the order of pair-wise comparisons (the same problem 

is encountered when using likelihood ratio tests in a maximum likelihood framework 

[33]. In addition, the interpretation of BF is subjective. We therefore used the AIC and 

BIC, in addition to BF, to determine the best-fit model for each data set and compared 

their outcomes. The numbers of times with which each of the five models was found as 

the best-fit model using the AIC and BIC are shown in Figure  3.5.  

For data simulated without the covarion model (Figure  3.5a), when Pvar+ (the 

percentage of invariable sites that become variable in the two events) is zero or very 

small JC+I is chosen most frequently as the best-fit model. Indeed, for Pvar+=0 this is 

the correct model. However, as Pvar+ increases, the JC+Cov model is selected most 

often using both the AIC (Pvar+>15%) and BIC (Pvar+>25%). For data simulated with 

the covarion model (Figure  3.5b) when Pvar+ is zero or very small JC+I is selected most 

frequently. For larger Pvar+ using BIC (Pvar+>20%), JC+Cov and JC+G are 

alternatively chosen as the best fit model; using AIC, the JC+Cov and JC+G models are 

alternatively chosen as the best fit model for the middle range Pvar+, and when Pvar+ ≥ 

35% JC+Cov is most frequently chosen. The Bayes factor in favor of model 1 over 

model 0, B10, was calculated for each dataset and each pair of models. The resulting BF 

were then interpreted according to the Kass and Raftery [32] version of the guidelines 

presented by Jeffreys [34]. The number of times a positive (2ln(B10)>2) or strong 

(2ln(B10)>6) support for favoring one model over another was summarized (online 

appendix 1). Overall, the larger Pvar+ was, the higher the number of dataset for which 

the JC+Cov model was favored (this is congruent with the AIC and BIC results). 
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Figure  3.5 - Best-fit model for the 4-taxon simulations without (a) and with b) the covarion model. 

Comparison of the number of times each of the five models (JC, JC+I, JC+G, JC+I+G, and 

JC+Cov) was found to be the best-fit model using the Akaike Information Criterion (AIC) applied 

to both the arithmetic mean of the estimated marginal likelihoods and the maximum likelihood 

found for the cold chain, and the Bayesian Information Criterion (BIC) applied to the maximum 

likelihood found for the cold chain. 

In our simulations, for Pvar+ ≥ 20% with no covarion and Pvar+ ≥ 35% when covarion 

was incorporated, using the best-fit model (JC+Cov) resulted in erroneous phylogenetic 

estimates more frequently than correct estimates. We then determined the adequacy of 

the best-fit model JC+Cov, as well as the other models, using the posterior predictive 

distributions (Figure  3.6; see methods for more detail). As the simulated change in Pvar 

increases, so does the number of datasets for which the JC+Cov model was rejected. 

Even when no change in Pvar was simulated (Pvar+=0), these models were rejected for 

more than 29% of the datasets at the 1% level and 82% at the 5% level (not shown). 

a) 

b) 
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Figure  3.6 - Absolute model adequacy assessment for data simulated with and without the covarion 

model for an increasing Pvar+ = (0, 10, 30, 50). The number of times each model (JC, JC+Cov)  was 

rejected at the 1% level. The JC+I, JC+G, and JC+I+G were never rejected. 

These results, together with our tree reconstruction results in Figure  3.3 and Figure  3.4, 

suggest that the covarion model used (which assumes a constant number of variable 

sites) is inadequate at capturing change in proportions of variable sites. This simple 

covarion model is a priori disadvantaged in the case of our simulated data, as it does not 

account for the proportion of sites that is invariable throughout the tree. Unfortunately 

(and although not apparent), the JC+I+Cov model which is expected to fit our data 

relatively well is not implemented in MrBayes (in fact, any combination of I+Cov is not 

implemented. Several published papers, including our own, state that the model used 

was the I+Cov [17] (Chapter 2 in this thesis) or G+I+Cov  [35, 36] but in practice the 

program ignores the I parameter only accounting for invariable sites under the covarion 

model).  

When the covarion model was not used in simulations, the number of datasets for which 

the JC model was rejected decreased as the change in Pvar increased. When the 

covarion model was used, this trend was less pronounced. This might be predicted, 

considering that the JC model does not account for a constant proportion of invariable 

sites. The increased Pvar effectively decreases the number of invariable sites in the 
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dataset. In contrast, the addition of covarion sites effectively increases the number of 

invariable sites in the dataset. Notably, the three models that were found adequate for 

the data also performed well in tree reconstruction, whereas the two models that failed 

the absolute adequacy assessment all displayed lower tree reconstruction accuracy. The 

simple multinomial statistic used was able to identify model inadequacy, which was 

probably a result of these models inability to correctly account for the proportion of 

invariable sites. 

3.4.5 Taxon Sampling 

We investigated the effect of taxon sampling on the accuracy of the Bayesian 

phylogenetic inference by comparing the reconstruction accuracies of the tree 

T=((Group 1, Group 2),(Group 3, Group 4)) for the 4-, 8-, and 16-taxon simulations. 

The performance of all five models was evaluated for the 4- and 8-taxon simulation. For 

the 16-taxon simulations however only the best-fit model JC+Cov was evaluated.  A 

comparison of the reconstruction accuracies using JC+Cov model is shown in Figure 

 3.7. Reconstruction accuracies using JC+Cov were similar (not shown). With the 

addition of taxa, the accuracy with which the correct split (Groups 1+2 vs. Groups 3+4) 

is found increases significantly. For the 8-taxon simulations, the correct split is found 

most often using any of the six models (results not shown). These findings are in 

agreement with earlier observations [12, 29, 37]. 
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Figure  3.7 - The effect of taxon sampling on reconstruction accuracy of the main split of the tree T 

(Groups 1+2 vs. Groups 3+4). The reconstruction accuracy for the 4-, 8-, and 16-taxon simulations 

using the JC+Cov model is shown for an increasing Pvar+ = (0, 5, 10, 15, 20, 25, 30). 

In order to distinguish between improved accuracy due to increased taxon sampling in 

general versus more extensive sampling of taxa subsequent to the two events, we 

evaluated the accuracy of phylogenetic inference using the JC+Cov model when applied 

to two different 6-taxon trees. Tree T6a contains two taxa under each of the two events 

(Groups 2 and 3) and one taxon under each of the other two lineages (Groups 1 and 4), 

whereas tree T6b contains only one taxon under each of the two events and two taxa 

under each of the other two lineages (Figure  3.1). We found (Figure  3.8Figure  3.) that 

increased taxon sampling in lineages that did not undergo change in Pvar (T6b) does not 

improve the reconstruction accuracy of the main split of the tree T (in comparison to 

tree reconstruction accuracy for the 4-taxon simulations), whereas increased taxon 

sampling in the lineages under the two events (T6a) improves the tree reconstruction 

accuracy and delays the accuracy hindering effect of change in Pvar. 
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Figure  3.8 - Comparison of reconstruction accuracy of the main split of the tree T (Groups 1+2 vs. 

Groups 3+4) for general increased taxon sampling versus increased taxon sampling under the two 

events. The tree reconstruction accuracy for the data simulated under T6a=((A,(E,H)),((I,L),P)) and 

T6b=(((A,D),H),(I,(M,P))) using the JC+Cov model is shown for an increasing Pvar+ = (0, 10, 20, 30, 

40, 50). 

3.4.6 Maximum Parsimony vs. Bayesian Analysis 

Kolaczkowski and Thornton [30] reignited a two-decades long debate when they 

claimed that Maximum Parsimony (MP) performs better than Maximum Likelihood 

(ML) and Bayesian analysis for a range of parameters. The authors' conclusion was 

based on a very specific case of heterotachy (convergent change in overall rates in non-

sister lineages) with a specific combination of parameters and tree topology. Several 

contradicting results were later published [38, 39, 40] and the biological realism of the 

original work has been questioned [41] (but see [42]). Kolaczkowski and Thornton 

further declared that MP is unaffected by heterotachy [30, 42]. However, Philippe et al. 

[40] later showed that when the level of rate variation across lineages (level of 

convergent change in overall rates in non-sister lineages) increases, MP accuracy can 

either decrease or increase depending on the relative branch lengths. To shed further 

light on this debate, we present a comparison of the accuracy of MP with that of 

Bayesian analysis using JC+Cov in reconstructing the correct tree T (see Figure  3.1).  
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Phylogenetic inference using MP was applied to the 4-, 8-, and 16-taxa simulations. The 

accuracy with which MP reconstructs the correct phylogeny is greatly hindered by the 

increased Pvar+ (Figure  3.9a). The increase in taxon sampling does improve MP 

accuracy, however, the Bayesian analyses (Figure  3.7) were found to be more accurate 

than MP and less affected by the increased Pvar+. We also tested the ability of MP to 

reconstruct the 4-taxon tree (T4) in the case of uncorrelated events. MP is clearly 

affected by the increased Pvar+ (Figure  3.9b) with the wrong tree where the two non-

sister lineages are grouped together reconstructed most frequently when Pvar+>0.35.  

 

Figure  3.9 - Tree reconstruction accuracy using maximum parsimony (MP). a) The effect of taxon 

sampling on reconstruction accuracy of the main split of the tree T (Groups 1+2 vs. Groups 3+4). b) 

tree estimation for the 4-taxon simulations with uncorrelated events (the positions of sites that 

switch state are independent). The tree reconstruction accuracy is shown for an increasing Pvar+ = 

(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). 

a) 

b) 
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3.5 Conclusions 

Change in the proportions of variable sites causes a model misspecification that can 

mislead phylogenetic methods. We found that a simple covarion model is inadequate at 

capturing such changes. A model combining a proportion of sites that are invariable 

across the tree and covarion evolution is not currently implemented in MrBayes. 

Although this model does not account for changes in the proportion of variable sites, it 

is expected to fit such data relatively well. Testing the ability of this model to 

reconstruct trees from simulated data containing change in the proportion of variable 

sites is important for our understanding of the effects of model misspecification of this 

kind.  

Our results show that the use of the best-fit model, chosen by a relative criterion, does 

not guarantee correct tree reconstruction. In fact, the best-fit model for our data 

performed poorly, while other models performed better, and absolute model-fit 

assessments confirmed that this best-fit model is inadequate for our data. Although none 

of the tested models accounts for changes in Pvar, some of the models could not be 

rejected by the absolute model-fit assessment. Importantly, these models were more 

accurate in tree reconstruction. Further work to test the performance of relative and 

absolute model-fit tests for a large number of trees and a wide range of parameters is 

needed before a general conclusion can be drawn. We therefore recommend the use of 

absolute model-adequacy tests [14, 15], alongside relative-fit tests, as an integral part of 

phylogenetic analysis.  

We found that taxon sampling has a strong effect on tree reconstruction accuracy. In 

particular, greater taxon sampling under the events in which a change in Pvar occurred 

resulted in improved accuracy. Our results imply that more accurate phylogenetic 

inference can be achieved by inclusion of larger numbers of taxa from lineages for 

which prior knowledge suggests that a change in the evolutionary process occurred.  
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In contrast with the reports of Kolaczkowski and Thornton [30, 42], we establish that 

the accuracy of MP can be adversely affected by heterotachy. Increase in taxon 

sampling did improve the accuracy of MP, yet it was still the least accurate in tree 

reconstruction.  

Currently implemented phylogenetic models do not account for changes in the 

proportions of variable sites. This model misspecification can result in erroneous tree 

reconstruction. However, the accuracies of tree estimation using different models vary; 

and although not accounting for heterotachy, a model can sometimes be adequate for 

heterotachous data. An absolute goodness of fit test is useful in evaluating model 

adequacy and can help differentiate cases in which tree reconstruction is expected to be 

accurate, from cases in which the model is inadequate and its use is likely to result in 

incorrect tree estimation. Branch-length mixture models that aim to account for 

heterotachy [10, 43] exist. Testing the accuracy of such models to the data containing 

changes in Pvar (such as that simulated here) would be an interesting extension of the 

present study. 
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Change in evolutionary constraints and 

the long-branch attraction artifact 
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4.1 Abstract 

Long-branch attraction is a well known phenomenon in molecular phylogenetic 

analysis. It is thought to affect tree reconstruction of many groups. Long branches 

(which cannot be attributed to time) are generally assumed to be fast evolving lineages. 

Therefore, much effort has been put towards accounting for differences in overall 

evolutionary rates across sites and across lineages. Focusing on the case of 

Microsporidia, a parasite whose basal positioning to Eukaryotes was suggested to be a 

result of long-branch attraction artifact, we address the problem of long-branch 

attraction from a novel perspective. Using a non-parametric bootstrap test, we identify 

changes in the evolutionary process manifested in the types of substitutions that take 

place along the Microsporidia branch. We found that long-branch estimates and basal 

positioning of Microsporidia both correlate with increased proportions of radical 

substitutions in the microsporidian lineage. We show that such changes in the 

substitution process can lead to erroneous inference of long branches. We conclude that 

erroneous long-branch inferences are likely to be the result of changes in the 

substitution process, which are not accounted for by commonly used phylogenetic 

models. 
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4.2 Introduction 

Despite the immense progress that has been made in molecular phylogenetics over the 

last few decades, many phylogenies remain unresolved. A major obstacle in 

reconstructing reliable phylogenies from molecular data is long-branch attraction [1, 2, 

3], a common systematic error where two non-adjacent long branches are mistakenly 

grouped together. Long-branch attraction (LBA) has been suggested to affect tree 

reconstruction of many groups, including angiosperms [4], birds [5], bees [6], fishes [7], 

and mammals [8]. It was also suggested to be the reason why some early phylogenetic 

analyses failed to recover unquestioned relationships such as the monophyly of rodents 

[9]. The long-branch attraction artifact is of particular concern when a distant outgroup 

is used in tree reconstruction for rooting and molecular dating. In this case, the long-

branch lineages of the ingroup are ‘attracted’ by the outgroup lineage causing an 

artificial early emergence of the long-branch ingroup lineages [10, 11, 12 (Appendix in 

this thesis)].  

How should these ingroup long branches be interpreted? Most researchers consider long 

branches an indication of fast rates of substitution and the long-branch lineages as “fast 

evolving lineages” [13, 14]. In contrast, the study presented here aims to test the 

hypothesis that long branches, rather than being an indication of fast rates, are the result 

of reduced functional and structural constraints on the sequence. These constraints, as 

initially suggested by Dickerson [15], can vary with change in 3D structure over time 

and along the sequence; they determine, at any given time, what (proportion and 

positions) of sites are free to vary and the types of substitutions that can occur at any 

site.  

We focus on the intriguing case of Microsporidia, highly reduced intracellular parasites 

of eukaryotes, which are known to cause diseases in many animals including humans. 

Microsporidia lack several eukaryotic features such as peroxisomes, flagella, and Golgi 

membranes but they possess remnant mitochondria (mitosomes) [16]. Until recently 

they were considered to be primitive and early branching eukaryotes [17, 18, 19, 20], 
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but this view changed as analyses of many other protein-coding genes have positioned 

Microsporidia as sister to, or included within, Fungi [19, 20, 21, 22, 23, 24]. The within-

eukaryotic crown position is now widely accepted to be correct; and the basal placement 

of Microsporidia in earlier analyses is considered to be the result of a LBA artifact, 

where the long Microsporidia branch is attracted to the long branches leading to the 

Archaea outgroup [25]. Inagaki et al. [25] have suggested that this long-branch 

attraction is caused by site-specific rate variation through time. Brinkmann et al. [35] 

assembled a relatively large dataset containing 44 species and 133 genes; the 

Microsporidian Encephalitozoon cuniculi is included in 122 of these genes. Analysis of 

this dataset [26] has revealed changes in the base frequencies along the sequences. Rate 

variations through time and changes in base frequencies could both be explained by the 

process of changing constraints on the possible types of amino acids substitutions. 

We speculate that the branch length of Microsporidia is over-estimated due to relaxation 

of constraints in the Microsporidia lineage, causing an increased degree of freedom for 

the possible types of amino-acid substitution at a site. This is manifested in a higher 

proportion of radical substitutions (Prad), i.e. substitutions between amino acids with 

different chemical properties. In order to test whether long branches can be attributed to 

higher Prad we develop a non-parametric bootstrap test to identify changes in the 

relative rates of amino-acid substitutions.  
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4.3 Materials and Methods 

4.3.1 Identifying variations in the types of amino acids substitutions 

We introduce a non-parametric bootstrap test which is based on the estimated 

normalized instantaneous rate matrices for each pair of taxa. These matrices can be 

calculated (from an alignment) in different ways, one of which is described in 

supplementary I. The matrices are then normalized in order to eliminate the variation in 

the overall molecular substitution rates. The test considers one taxon at a time; this 

enables us to identify the taxa in which changes have occurred. First, the average of all 

pairwise instantaneous rate matrices is calculated. Then, for each taxon, the average of 

pairwise instantaneous rate matrices that do not involve that taxon is calculated. The 

matrix describing the difference between these two average matrices is used to calculate 

a distance measure. This distance measure is calculated for the observed dataset and 

each of the bootstrap alignments. Informally, the further this distance measure deviates 

from zero the more different the process of substitution is for the taxon under 

consideration. To evaluate the significance of this distance we utilize the bootstrap 

technique. 

The null hypothesis is that the taxon under examination has evolved under the same 

evolutionary constraints (the same substitution rate matrix) as the rest of the taxa in the 

dataset. If the null hypothesis is true than the distance measure for the observed data 

should not differ significantly from zero. The distribution of the distance measures of 

the bootstrap alignments, around the estimated distance measure (for the observed data), 

is approximately the same as the variance of the estimated distance measure and the 

actual distance for the observed data. We can therefore compare the estimated distance 

measure for the observed data (minus the actual distance measure, which is assumed to 

be zero) to this distribution. If the estimated distance measure for the observed data falls 

outside of the distribution then the null hypothesis can be rejected, and the taxon is said 

to display different types of amino-acid substitutions than the rest of the taxa in the data 

set. The power of the test can be increased by clustering the amino acids according to 
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their chemical properties (for example, using the Dayhoff classification as is done later 

in this chapter), thus reducing the size of the matrices and the number of empty or near-

empty cells. Though not developed here, this test can also be applied to nucleotide 

instantaneous rate matrices.  

The non-parametric bootstrap test can be described more formally as follows. 

a. For each pair of taxa, x and y, estimate Qx,y and Qy,x, where Qi,j is the Q 

matrix from taxon i to taxon j (see supplementary I); 

b. Calculate ( )ΧQ  and  ( )ΧzQ , where Χ  is the observed alignment, and  
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z , where N is the number of taxa, z is the taxon 

under examination and x, y ≠ z; 

c. Calculate the difference measure( )Χd , where Χ  is the observed 

alignment and ( ) ( ) ( )Χ−Χ=Χ zQQd . 

d. Compute the test statistic ( )
F

dt 0−Χ= , where 
F

. denotes the sum of 

squares of matrix entries. 

e. Compute n non-parametric bootstrap alignments (resampling with 

replacement). 

f. For each bootstrap alignment nii ≤≤Χ 1, , calculate 

( ) ( )
Fii ddd Χ−Χ= . This results in a distribution id of values.  
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g. Compare t  to the distribution of id  values.  

The distribution of ( )id Χ  around ( )Χd  is approximately the same as the distribution of 

( )Χd  around the true distance between the Q matrices ( )trued . If there is no significant 

difference between the Q matrices, then ( )trued  should be close to 0 and so t  should 

fall within the distribution of id  values.  If t  falls outside or in the 5% tail of the 

distribution then we can reject the null hypothesis that taxon z has the same substitution 

process as the other taxa in the dataset. 

For each taxon z, the proportion of radical substitutions (Prad) was calculated as 

follows: 

( )
( )
( )∑

∑
Χ

Χ
=ΧΡ

sr srz

kl klz

z Q

Q
rad

, ,

, ,
, where l and r are row indices, and k and s are column 

indices of the rate matrix ( )ΧzQ ; kl ≠ , sr ≠  and the amino acids corresponding to 

indices l and k belong to different Dayhoff classes. 

4.3.2 Simulations 

4.3.2.1 Test validation 

To validate our test we conducted simulations where a known change in process was 

introduced. Sequences were generated using our own R script, which makes use of the 

simSeq method in the R package Phangorn [27]. One hundred datasets of 10,000 amino 

acids were generated along the 8 taxon tree shown in Figure  4.1, with branch lengths 

interpreted as the expected number of substitutions per site. At the root the substitution 

rate matrix was set to be either the Dayhoff rate matrix, or one of five matrices each of 

which defines a different proportion w of within-Dayhoff-classes substitutions where w 

= (14.73 [equal relative rates], 20, 40, 60, 80) percent. The overall rate was assumed to 

be 1. The relative rate of each of the 28 types of within Dayhoff-classes substitutions 
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was calculated as 28w  and the relative rate of each of the 162 between Dayhoff-classes 

substitutions was calculated as ( ) 1621 w− . A change in the substitution process (the 

relative rates within the rate matrix) was introduced in taxon T4 (Figure  4.1), which was 

(in all cases) simulated under equal relative rates. This simulates a relaxation in 

evolutionary constraints on the branch leading to taxon T4. 

 

Figure  4.1 - The 8-taxon tree used for simulations. A change in the substitution process 

(marked with X) was introduced in taxon T4. 

4.3.2.2 The effect of change in process on branch length 

To demonstrate the effect of change in evolutionary process on tree reconstruction and 

branch estimation we simulated one hundred datasets, of 10,000 amino acids, under two 

different matrices (Dayhoff and equal relative rates) on the unrooted tree shown in 

Figure  4.2. We then reconstructed the trees using a (single) Dayhoff substitution matrix 
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and the average branch lengths (for the 100 trees) were compared with those of the tree 

used for simulation. 

 

Figure  4.2 – The unrooted tree on which the sequences were simulated. The Dayhoff substitution 

matrix was used to simulated on all branches except for the branch of taxon T4 for which a matrix 

with equal relative rates was used. 

4.3.3 Microsporidia data set 

Brinkmann et al. [14] assembled a dataset  containing 44 species and 133 genes with 

sequence lengths summing to 24,294 amino acid positions. We used 122 of these 

alignments in which the Microsporidian Encephalitozoon cuniculi is included. Taxa 

with more than 25% of the sites missing or unknown were removed from these 

alignments, as well as all sites with missing data.  
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4.3.4 Phylogenetic Reconstruction 

Trees were estimated under the maximum likelihood criterion using the program 

PhyML (version 2.4). For the Microsporidia data the JTT+I+G substitution model was 

used. For the simulated data the Dayhoff+I+G substitution model was used.  
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4.4 Results and Discussion 

4.4.1 Test validation 

Simulated sequences were used to validate the level and power of the non-parametric 

bootstrap test. Figure  4.3 shows that the test can identify the introduced change in the 

substitution rate matrix of taxon T4. As the proportion of within-Dayhoff-classes 

substitutions, w, increases (i.e. the constraints on all other taxa are tightened), the equal 

relative rates of taxon T4 deviate more and more from the process in the rest of the taxa. 

Indeed the test detects more change in the substitution process in taxon T4 as the w in 

the other taxa increases (Figure  4.3).  

 

Figure  4.3 – The number of datasets in which a change in the substitution process was detected, for 

each taxon, as the proportion of within-class substitutions in all taxa but taxon T4 increases. 

When all taxa evolve under equal relative rates (w = 14.73%), very little change is 

detected, i.e. there is a low number of false positives. The test is most accurate for the 
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moderate changes in process (w=40%, 60%). For w = 80%, the process under relaxed 

constraints in taxon T4 is extremely different from the process under very strong 

constraints in the rest of the taxa. Such an extreme difference causes a large number of 

false positives and change is detected in more taxa than just T4. This is due to the nature 

of the test; for any taxon apart for taxon T4, as all matrices involving the taxon under 

examination (z) are excluded to create ( )ΧzQ , one matrix is the comparison of that 

taxon with T4. As T4 is very different from the other taxa, removing this matrix will 

significantly change the average and will lead to an erroneous inference of change in the 

examined taxon. For the simulated datasets above, taxon T3 is relatively close to taxon 

T4 and so the inferred rate matrix for this pair of taxa does not affect the average matrix 

as in the case of other taxa and no change is detected for T3. Therefore the results of 

this test should be interpreted with caution, and when a change in process is detected in 

a large number of taxa we suggest removing the taxon (or group of taxa) for which prior 

knowledge (such as known change in functionality) suggest that a change in the 

substitution process has occurred and then applying the test to the rest of the data.  

4.4.2 Test case: Microsporidia 

The non-parametric bootstrap test using the full matrices (20*20) is not powerful 

enough for the Microsporidia dataset. Therefore, the matrices were reduced to 6*6 

matrices (for the 6 Dayhoff classes). We detected a significant change in the substitution 

processes in the Microsporidia lineage in 85 of the 122 genes (see supplementary II). 

For each of these 85 genes, we also looked at the nature of the identified change. In 

particular, we have estimated Prad for each taxon and compared it to that of the other 

taxa (radical substitutions were defined to be substitutions between different Dayhoff 

classes). This was done by calculating Prad within the averaged rate matrix of all 

pairwise comparisons involving the taxon under consideration, and comparing it to Prad 

within the averaged matrix of all pairwise comparisons (i.e.( )ΧQ ).  

An increase in the Prad was found in 80 out of the 85 genes in which a significant 

change was detected. In the other 5 genes slightly lower Prads were found for 
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Microsporidia. A higher Prad was detected in 59 out of the 66 genes in which 

Microsporidia is the longest terminal branch (Figure  4.4) and in 60 out of 72 genes in 

which Microsporidia is basal (Figure  4.5). For the 6 genes in which Microsporidia 

groups with Fungi, the test only detects one case in which Microsporidia has an 

increased proportion of radical substitutions. The Microsporidia branch for that gene is 

extremely long (Figure  4.6) explaining the identified change in process. 

 

Figure  4.4 – An example of a gene (A-cct) where Microsporidia has the longest terminal branch on 

the tree (and is the basal eukaryote).  Fungal species are underlined. 
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Figure  4.5 – An example of a gene (D-mcm) where Microsporidia is basal on the eukaryote tree (but 

is not the longest terminal branch). Fungal species are underlined. 
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Figure  4.6 – The gene (E-psma) for which Microsporidia groups within Fungi and the Q matrix for 

Microsporidia is significantly different from the others. Fungal species are underlined. 

4.4.3 A change in process can cause long branches 

Our test can detect changes in the substitution process from which an increase in Prad in 

long branches can be inferred. Such changes are not accounted for by the models 
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currently used for tree reconstruction. Phylogenetic methods are known to fail in 

reconstructing the correct phylogeny when the assumptions they encompass are violated 

by the actual biochemical evolutionary process underlying gene and protein evolution 

[28, 29]. Changes in the substitution process are therefore expected to cause model 

misspecification when a single substitution matrix is applied to the entire dataset.  

To demonstrate the effect of this type of model misspecification on tree reconstruction 

and branch estimation we simulated sequences, with an introduced change in the 

substitution process (see material and methods), along the tree shown in Figure  4.2. 

Tree reconstruction was then done using a single substitution matrix. Figure  4.7 shows 

the unrooted tree with the average estimated branch lengths. While most branches are 

estimated correctly, the branch length leading to taxon T4 which evolved under a 

different substitution process (equal relative rates vs. Dayhoff matrix) is mistakenly 

estimated as one and a half times its actual (simulated) length. 

 

Figure  4.7 – The tree with average branch lengths as estimated for the 100 datasets 

using the Dayhoff substitution matrix (compare edge lengths to those in Figure  4.2).   
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4.5 Conclusions 

We introduced and validated (Figure  4.3) a non-parametric bootstrap test to detect 

changes in evolutionary processes. When applying the test to the Microsporidia data we 

found that increased proportions of radical substitutions are linked with long terminal 

branches for the Microsporidia lineage in about 90% of the cases, and with a basal 

eukaryote position for the Microsporidia branch in about 84% of the cases. Our results 

support the conclusions from earlier studies that the basal placement of Microsporidia is 

the result of a LBA artifact [19, 20, 21, 22, 23, 24, 25], where the long Microsporidia 

branch is attracted to the long branches leading to the Archaea outgroup. However, we 

found that the long Microsporidian branch is likely to be an erroneous estimation due to 

an increased proportion of radical substitutions on that branch, rather than an increased 

evolutionary rate. Additional work needs to be done to investigate whether sampling 

error can bias the bootstrap test (through the rate matrix estimation) towards 

identification of change in process in long branches.  

Using simulated data we found that tree reconstruction under a single substitution 

matrix, when the sequences evolve under multiple matrices (a change in the 

evolutionary process occurs), can cause erroneous estimate of branch lengths (Figure 

 4.2 and Figure  4.7). One can rank the sites in the alignment according to their deviation 

from a homogeneous process (i.e. the average rate matrix) and assign a weight for each 

site (where the weight can be larger or equal to zero) prior to the phylogenetic 

reconstruction. This procedure would be similar to the  slow-fast (S-F) method [30] 

currently used for "fast evolving sites"; however rather than removing (or down-

weighting) sites according to their overall rate of substitution, sites are excluded (or 

down-weighted) if they exhibit change in the substitution process. Although we do not 

advocate the use of such a method as a means of improving phylogenetic accuracy, it 

might be useful as an exploratory method to determine the effect of the non-

homogeneous substitution process on the phylogenetic analysis. One way of dealing 

with such changes in the evolutionary process may be the use of a general Markov 

model [31, 32], with several rate matrices, for phylogenetic inference where different 
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matrices are applied to edges on the path to aberrant taxa. Change in the substitution 

process, as reported here, is expected to be correlated with change in the proportion of 

variable sites (as both are manifests of changing evolutionary constraints) which can 

cause model misspecification and LBA [33, 34 (Chapter 3 in this thesis)].  
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4.8 Supplementary Material 

4.8.1 Supplementary I 

We estimate the normalized instantaneous rate matrix Q as follows. 

For two sequences, sequence x and sequence y, let Π  be a diagonal matrix where iiΠ   

is the proportion of sites that have character i in sequence x. Let Fij denote the 

proportion of sites that have an i in sequence x and a j in sequence y. When calculating 

these two matrices, we ignore the sites where one or the other has a missing state or a 

gap. Under the standard model,  

(2)  QteF Π=  

where Q is the instantaneous rate matrix and t is the divergence time between the 

sequences. We will assume that Q has rate 1, which means that ( ) 1=Π− Qtrace . 

We want to estimate Q from F. Inverting (1) gives 

(3) ( )FQt 1log −Π=  

where log is the matrix log. The log is often difficult to calculate. However, following 

Tajima[43], we can consider a series expansion to estimate the log. Define G = П - F so 

that  

(4) ( )FQt 1log −Π=  

(5)      ( )GI 1log −Π−=  



CHAPTER 4  CHANGES IN EVOLUTIONARY CONSTRAINTS 

97 

(6)      
( )

∑
∞

=

−Π
−=

1

1

k

k

k

G
 

(7)      
( )

∑
=

−Π
−≈

K

k

k

k

G

1

1

  

for some K. As t → 0, G → 0, so the series will converge faster the smaller t is.  

Q is then estimated by  
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K=30 was used for normalized instantaneous rate matrices estimation in this chapter. 
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4.8.2 Supplementary  II 

Gene 
Longest 
+=longest 

-=not longest 

Position 
+=basal 

-=not basal 
*=within Fungi 

Change in substitution 
process 

+=change identified 
-=no change identified 

Increased 
proportion of 

radical 
substitutions 

+=increase 
identified 

-=no increase 
identified 

A-cct + + + + 
A-psma + + + + 

B-cct + + + + 
B-psma + + + + 
C-l12e + + + + 
C-psma + + + + 
D-psma + + + + 

E-cct + + + + 
EF1-ef1 + + + + 
EF2-ef2 + + + + 

G-cct + + + + 
G-psma + + + + 
H-psma + + + + 

N-cct + + + + 
T-cct + + + + 

h4 + + + + 
if1a + + + + 
if2b + + + - 
l10a + + + + 
l13a + + + + 
l15e + + + + 
orf2 + + + + 
rpl14 + + + + 
rpl18 + + + + 
rpl2 + + + + 
rpl26 + + + + 
rpl30 + + + + 
rpl39 + + + + 
rps13 + + + + 
rps14 + + + + 
rps15 + + + + 
rps16 + + + + 
rps2 + + + + 
rps20 + + + + 
rps23 + + + + 
rps3 + + + + 
rps3a + + + + 
rps4 + + + + 
rps5 + + + + 
s15a + + + + 
s15p + + + + 
sap40 + + + + 

sra + + + + 
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Gene 
Longest 
+=longest 

-=not longest 

Position 
+=basal 

-=not basal 
*=within Fungi 

Change in substitution 
process 

+=change identified 
-=no change identified 

Increased 
proportion of 

radical 
substitutions 

+=increase 
identified 

-=no increase 
identified 

wrs + + + + 
A-nsf2 + + - - 
J-nsf1 + + - - 
J-psma + + - - 

rpl5 + + - - 
E-psma + * + + 
C-rpo + * - - 
A-rla2 + - + + 

B-pace2 + - + + 
B-rrp46 + - + + 
D-cct + - + + 

F-psma + - + + 
N-psmb + - + + 
RF3-ef1 + - + + 

Z-cct + - + + 
mra1 + - + + 
pace5 + - + + 
rpl17 + - + + 
rpl9 + - + + 

rps19 + - + + 
s27e + - + + 

D-l12e + - - - 
l28e + - - - 

A-rpl7 - + + + 
D-mcm - + + + 
I-psma - + + + 

if2g - + + + 
l11b - + + + 
l19e - + + + 
l37a - + + - 
rpl1 - + + + 
rpl11 - + + + 
rpl27 - + + + 
rpl3 - + + - 
rpl34 - + + - 
rpl44 - + + + 
rps11 - + + + 
rps17 - + + + 
rps8 - + + + 
B-rpo - + - - 

C-mcm - + - - 
I-nsf1 - + - - 
K-nsf1 - + - - 
L-nsf1 - + - - 
rpl32 - + - - 
srp54 - + - - 
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Gene 
Longest 
+=longest 

-=not longest 

Position 
+=basal 

-=not basal 
*=within Fungi 

Change in substitution 
process 

+=change identified 
-=no change identified 

Increased 
proportion of 

radical 
substitutions 

+=increase 
identified 

-=no increase 
identified 

vata - + - - 
B-mcm - * - - 

fibri - * - - 
vatb - * - - 
xpb - * - - 

A-rpo - - + + 
B-l12e - - + - 

C-pace2 - - + + 
E-mcm - - + + 

if6 - - + + 
l10b - - + + 
l35a - - + + 
l37e - - + + 
rpl10 - - + + 
rpl25 - - + + 

A-mcm - - - - 
A-rad51 - - - - 
B-rpl24 - - - - 
F-mcm - - - - 
F-nsf2 - - - - 
G-nsf1 - - - - 
K-psmb - - - - 
L-psmb - - - - 
M-nsf1 - - - - 
M-psmb - - - - 

crfg - - - - 
if2p - - - - 
rf1 - - - - 

rpl21 - - - - 
rps29 - - - - 
rps6 - - - - 
srs - - - - 
tfiid - - - - 
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Chapter 5 

The Enigma of Mesostigma 

Manuscript in preparation; in collaboration with Barbara Holland, David Penny, Mike 

Hendy, and Peter Lockhart.  
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5.1 Abstract 

 Mesostigma is a fresh-water green alga. It is an isolated taxon for which contradictory 

phylogenetic relationships have been inferred; while some analyses placed it as sister to 

all green plants, others have placed it within the Streptophyta lineage. Previous work 

suggested that the basal placement of Mesostigma is a result of a long-branch attraction 

artifact due to poor taxon sampling. Using mitochondrial amino acid sequence data, we 

show that in this case site sampling (and in particular the treatment of missing data) is 

just as important a factor for tree reconstruction accuracy. Nevertheless, when a 13-

taxon sample was used the results were less sensitive to model choice in comparison to 

an 8-taxon sample. We found that recreating the long-branch attraction observed for the 

8-taxon sample in simulated data is difficult. This is likely to be a result of biochemical 

properties of proteins that are unaccounted for in current models, such as the low 

number of amino acid character states per site which we observed in the real dataset.   
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5.2 Introduction 

Green plants comprise two major phyla: Streptophyta (land plants and their closest 

green algal relatives) and Chlorophyta (other extant green, mostly aquatic, algae) [1]. 

Molecular studies have revealed phylogenetic relationships among major green plant 

lineages [1, 2]. Nevertheless, some incongruence still remains. One such case is that of 

Mesostigma viride (common name Mesostigma), the only known member of 

Mesostigmatales [1]. Because it is such an isolated taxon, with a lineage which is likely 

to extend back a billion years, it is unsurprising that Mesostigma is difficult to place 

accurately as it is expected to be prone to long-branch attraction (LBA; where two non-

sister long-branch lineages are incorrectly grouped together in a phylogeny) [3, 4]. 

Mesostigma is a fresh-water, unicellular, green, scaly bi-flagellate. It was first classified 

as a member of Chlorophyta (belonging to its earliest diverging lineage Prasinophyceae) 

[5]. More recently, some phylogenetic analyses have placed it as basal to all other 

greens [6, 7, 8, 9, 10], before the split of Streptophyta and Chlorophyta, while others [2, 

5, 11, 12, 13, 14, 15] have suggested that it is the earliest divergence within 

Streptophyta.  

Mesostigma represents the earliest divergence of the Streptopyta in phylogenies based 

on large multigene analyses of nuclear, plastid, and mitochondrial datasets [11], four 

genes (nuclear 18S rRNA gene, chloroplast atpB and rbcL, and mitochondrial nad5) [5], 

three genes (nuclear 18S rDNA, chloroplast atpB and rbcL) [12], and in trees based on 

18S rDNA [13], actin genes [14], chloroplast genes [15], and chloroplast genomes [2]. 

In contrast, phylogenies based on other datasets of either multiple mitochondrial genes 

[6] or multiple chloroplast genes [7, 8, 9, 10] placed Mesostigma as basal to 

Streptophyta and Chlorophyta.  

Other evidence is also conflicting. All Streptophyta were shown to have elongation 

factor-1 alpha (EF-1α), whereas Mesostigma possess elongation factor-like (EFL) [16]. 

Mesostigma’s photosynthetic pigment composition also supports its basal position [17]. 

On the other hand, Mesostigma was shown to share more ESTs (i.e. expressed sequence 
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tag; see [18] for more information) with land plants than with the chlorophyte 

Chlamydomonas reinhardtii [19]. Nevertheless, the within Streptophyta position now 

seems to be generally accepted [20]. Whatever its final phylogenetic position, as one of 

the most primitive green algae, Mesostigma is essential for the understanding of the 

evolution of green plants. 

The specific causes for the incongruence between different phylogenetic studies, 

regarding the position of Mesostigma, are unclear, and are the topic of the present study.  

Turmel et al. [6] analyzed a mitochondrial dataset of concatenated protein sequences 

based on 19 genes (4,139 amino acid positions) from 8 taxa (Mesostigma, 4 green algae, 

and 3 red algae). The resulting trees (using maximum likelihood and distance trees with 

the JTT model of amino acid substitution, as well as maximum parsimony) placed 

Mesostigma as a basal green alga before the divergence of Streptophyta and 

Chlorophyta, with strong (100%) bootstrap support. Rodríguez-Ezpeleta et al. [11] 

analyzed an extended mitochondrial dataset of 33 concatenated protein sequences from 

13 taxa (8 green plants, and 4 red algae and a jakobid flagellate as outgroups). The 

dataset used by Turmel et al. [6] is a subset, both in the taxa and sites, of that used by 

Rodríguez-Ezpeleta et al. [11]. The resulting maximum likelihood tree (using the 

WAG+Г+F model) placed Mesostigma as the earliest divergence within Streptophyta. 

This tree was only weakly supported (and was not found by maximum parsimony). 

Nonetheless, because this tree was congruent with their analysis of nuclear data and 

with previous single gene phylogenies, they concluded that the placement of 

Mesostigma as basal to Streptophyta and Chlorophyta was an artifact [11]. After 

adjusting their dataset to that used by Turmel et al. [6], the authors suggested that the 

likely reason for the discrepancy is poor taxon sampling combined with failure to 

account for rate heterogeneity among sites and that the number of sites used was less 

important.  

In a recent study, we have demonstrated [21] (Chapter 3 in this thesis), using nucleotide 

sequences, that lineage-specific proportions of variable sites can cause model 

misspecification which can lead to LBA. Our findings show that the rates-across-sites 

model (although it is not based on any specific biochemical process) can, at least 
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partially, account for changes in the proportion of variable sites (Pvar), and that an 

increased taxon sample can improve tree reconstruction accuracy under these 

conditions. Lineage-specific proportions of variable sites might therefore explain the 

observations of Rodríguez-Ezpeleta et al. [11], where increased taxon sampling and/or 

the use of rates-across-sites model resulted in seemingly more accurate phylogenies. 

The aim of the study presented here is to gain insight into the discrepancy between 

different studies regarding the positioning of Mesostigma. We focus on the dataset used 

by Rodríguez-Ezpeleta et al. [11] and the subset of taxa from this dataset which was 

used by Turmel et al. [6]. The study presented here was limited by the lack of 

information regarding the sequence alignment (such as which proteins were used and 

what sites comprise which protein).  
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5.3 Materials and Methods 

5.3.1 Mesostigma dataset 

We used the mitochondrial dataset from Rodríguez-Ezpeleta et al. (supplementary 

material) [11], containing 33 proteins, a total of 6622 amino acid positions, from 13 taxa 

(8 green plants: Mesostigma, 5 Streptophyta, 2 Chlorophyta, and 4 red algae and a 

jakobid as outgroups). 

5.3.2  Phylogenetic analysis 

The best-fit model was determined using the program ProtTest [22] with the Akaike 

Information Criterion [23] starting with a BioNJ tree and optimizing topology and 

branch lengths. The maximum likelihood (ML) tree and branch lengths were also 

estimated using the program PhyML v. 3.0 [24] with the JTT, WAG, and CpREV 

models and all combinations of +I (constant proportion of invariable sites), +G (gamma 

distribution for rates across sites), and +F (empirical character frequencies). 

5.3.3 Simulations 

Sequence data was generated using LineageSpecificSeqgen [25] (Chapter 2 in this 

thesis). One hundred datasets of 6622 amino acid positions were simulated using either 

the CpREV or WAG model with the corresponding rooted trees (using Reclinomonas as 

an outgroup) and branch lengths (identical topology, branch lengths differ slightly i.e. 

<0.0072). The proportion of invariable sites (I) at the root of the tree was varied from 0 

to 0.4 in steps of 0.1. Change in the proportion of variable sites was introduced on the 

Meosotigma lineage (see Figure  5.1) where a fraction, Pvar+ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1), of the invariable sites were set to be variable. 
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Figure  5.1 - The tree used for simulations with branch lengths according to the WAG model 

(CpREV branch lengths differ slightly i.e. <0.0072). The proportion of invariable sites at the root 

was varied from 0 to 0.4, in steps of 0.1.  Change in the proportion of variable sites was introduced 

on the Mesostigma lineage (marked with X), where a fraction, Pvar+ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1), of the invariable sites were set to be variable. 
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5.4 Results and Discussion 

5.4.1 Tree estimation differences between the 13-taxa dataset and the 8-taxa 

subset 

The models that were used in the two original studies [6, 11] differ from each other 

(WAG and JTT, respectively). Therefore, tree estimation with these models cannot be 

compared directly for the 13-taxa and 8-taxa datasets. For that reason, we estimated the 

phylogeny using each of these models, as well as the best-fit model selected by the 

program ProtTest [22], with all combinations of +I, +G, and +F. Unexpectedly, the 

CpREV+Γ+I+F model was selected as the best-fit model. This model selection is very 

surprising as the sequences in the dataset are derived from the mitochondria, whereas 

the CpREV model is based on chloroplast datasets. Other models (for example MtREV) 

which are based on mitochondrial datasets and therefore intuitively should be a better fit 

for the dataset were included in the set of models that were tested, but were not selected. 

The model used in Rodríguez-Ezpeleta et al. [11] (WAG+G+F) was the fourth-best 

model (with ∆AIC, the difference in AIC score from the best-fit model, of 886.01).  The 

model used by Turmel et al. [6] (JTT) had a ∆AIC of 11271.59 and was one of the 

worst-fit models, even when the dataset was reduced to their taxon sampling (∆AIC of 

7394.48). However it is important to note that the sites in the dataset of Turmel et al. are 

a subset of the sites in our dataset.  

In a recent study [21] we found that the best-fit model selected using a relative test 

might be inaccurate in tree reconstruction, and that an absolute model-fit test (such as 

those described by Goldman [26] and Bollback [27]) may provide a better prediction for 

phylogenetic reconstruction accuracy. Unfortunately, the absolute model-fit test in a ML 

framework [26] is not yet implemented in a readily available program. We therefore 

carried out the ML analysis with each of these three models (JTT, WAG, CpREV) and 

all possible combinations of +I, +G, and +F. 
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Because the 8- and 13-taxa datasets also (naturally) differ in the number of sites 

containing gaps and missing data, and since missing data may affect tree reconstruction 

accuracy [28, 29] we considered 5 different combinations of taxon and site sampling: 

(1) the original 13-taxa dataset, (2) The original dataset reduced to 8-taxa, (3) The 13-

taxa dataset with gaps and missing sites removed, (4) the reduced 8-taxa dataset with 

gaps and missing sites removed, and (5) The 13-taxa dataset with missing sites and gaps 

removed, and then reduced to the 8-taxon sample. The positioning of Mesostigma in the 

resulting phylogenies is shown in Table  5.1. 
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Table  5.1 – The positioning of Mesostigma in trees estimated using three different models (JTT, 

WAG, CpREV) and combination of +I, +G, and +F. 'S' = within Streptophyta, 'B' = basal to green 

plants. The best-fit model, found using ProtTest, for each of the settings is marked with a *. 

Model 

Original  
13-taxa 
dataset 
(6622 

positions) 

13-taxa 
dataset 

gaps and 
missing 

sites 
removed 

(1948 
positions) 

8-taxa 
dataset 
(6622 

positions) 

8-taxa 
dataset 

gaps and 
missing 

sites 
removed 

(3910 
positions) 

8-taxa 
dataset gaps 
reduced from 

the 13-taxa set 
with gaps and 
missing sites 

removed 
(1948 

positions) 
JTT S S B B S 

JTT+F S S S B S 

JTT+I S S B B S 

JTT+I+F B S B B S 

JTT+G S S B S S 

JTT+G+F S S S S S 

JTT+I+G S S S S S 

JTT+I+G+F S S S S S 

WAG S S B B S 

WAG+F S S B B S 

WAG+I S S B B S 

WAG+I+F S S B B S 

WAG+G S S B S S 

WAG+G+F S S S S S 

WAG+I+G S S S S S 

WAG+I+G+F S S S S S 

cpREV S S B B S 

cpREV+F S S B B S 

cpREV+I S S B B S 

cpREV+I+F S S B B S 

cpREV+G S S B S S 

cpREV+G+F S S S* S S 

cpREV+I+G S S S S S 

cpREV+I+G+F S* S* S S* S* 
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The results in Table  5.1 clearly show that, in this case, site sampling is as important as 

taxon sampling. Thus both site sampling and taxon sampling are important. 

Nevertheless, the 13-taxa dataset is much more robust with respect to the model used. 

Rodríguez-Ezpeleta et al. [11] found that the number of positions used was less 

important as long as rate heterogeneity among sites was modeled. In contrast, our 

results show that when rate heterogeneity is the only estimated distribution (I and F are 

not estimated), the tree estimation for the 8-taxa dataset is sensitive to site sampling. 

Exclusion of sites with missing data results in the positioning of Mesostigma within 

Streptophyta (as is the case for the 13-taxa dataset) while inclusion of sites with missing 

data results in its basal positioning.  

We also found that removing sites with missing data from the complete (13-taxa) 

alignment and then reducing the dataset to the subset of 8-taxa results in the placement 

of Mesostigma within Streptophyta, regardless of model choice (column 5 in Table  5.1). 

The number of incomplete characters in these datasets is much larger than the number 

of complete characters, the effect of this is unknown [28].  Programs used to estimate 

the likelihood of phylogenetic trees often treat missing characters by summing over the 

probabilities of all possible characters. Although handling missing characters in this 

way may be intuitive from a statistical point of view, our knowledge about sequence 

evolution suggests that a more reasonable method would be to calculate the probability 

of a character using the known characters at the same site (assigning higher probabilities 

for characters that already exist at the site). Nevertheless, estimating the probability of a 

given amino acid at a site based on the small sample of observed characters at that site 

might have undesirable statistical properties (and in some cases may lead to 

inconsistency). 

The strong effect site sampling has on tree reconstruction for the 8-taxon dataset, led us 

to examine the likelihood (using the WAG model) of each of the two competing trees 

(shown in Figure  5.2) for each site. We considered the 13-taxon dataset with and 

without removal of gaps and missing sites and the 8-taxon dataset reduced from each of 

these. The results are summarized in Table  5.2.  
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Figure  5.2 – The two competing maximum likelihood trees.  In tree (I) Mesostigma is positioned 

within the Streptophyta (S), whereas in tree (II) Mesostigma is basal to both Streprophyta and 

Chlorophyta (B). The 8 taxa which are included in the 8-taxon dataset are marked in red. 

 

Table  5.2 – Summary of site likelihoods (using the WAG model) for the 8- and 13- taxon datasets, 

with and without the removal of gaps and missing data. 'S' = within Streptophyta, 'B' = basal to 

green plants. 

Dataset 
Gaps and 
missing 

data 

Mesostigma 
position in 
the ML tree 

# sites 
supporting 
the within 

Streptophyta 
position 

# sites 
supporting 
the basal 
position 

Total 
number 
of sites 

Averaged 
difference in 
likelihood per 
site between 

the ML tree and 
the alternative 
tree (rounded 
to 4th decimal 

place) 
13-taxon  included S 2506 4116 6622 0.0017 

 excluded S 1457 491 1948 0.0134 
8-taxon included B 2768 3854 6622 0.0074 

 excluded S 1510 438 1948 0.0138 
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Interestingly, we found that for the 13-taxon dataset when gaps and missing data are 

included in the analysis ~62% of the sites supported the basal positioning of 

Mesostigma (B), while Mesostigma is placed within Streptophyta (S) in the ML tree. 

The percentage of sites supporting the within-Streptophyta positioning increases when 

gaps and missing data are removed.  

For the 8-taxon dataset with gaps and missing data included ~58% of the sites support 

the basal positioning of Mesostigma (the ML tree for this dataset). However, with gaps 

and missing sites excluded, ~78% of the remaining sites support the placement of 

Mesostigma within Streptophyta, the ML tree in this case. These results, together with 

the low bootstrap support found by Rodríguez-Ezpeleta et al. [11], suggest that site 

sampling is an extremely important and problematic factor in this case. A larger 

sequence length is required to infer the position of Mesostigma with confidence. 

5.4.2 Change in Pvar as a possible cause for the discrepancy  

Addressing the question of whether a change in Pvar in the Mesostigma lineage is the 

cause for the incongruent results regarding its position is not straightforward. Pvar 

estimation is difficult and might be unreliable. This is because sites can be variable (free 

to accept substitutions) but invariant (no substitutions are observed in the sampled 

group of taxa). The estimation of Pvar is directly affected by the number of taxa 

sampled; the accuracy is expected to increase with the size of the taxon sample. From a 

biochemical perspective, Pvar is expected to change over time. This is due to variations 

in the structural and functional constraints that are acting on the sequences [30, 31]. 

Lineage-specific proportions and positions of variable sites make this problem even 

more difficult [32]. We therefore chose to use simulations, as an initial step, to test 

whether the basal positioning of Mesostigma can be constructed when a change in Pvar 

is introduced in the Mesostigma lineage. 

We conducted simulations mimicking the case of Mesostigma, generating 13-taxon 

datasets using the empirical character frequencies, and each of the three models (JTT, 

WAG, and CpREV) and their respective ML tree. A change in Pvar was introduced in 
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the Mesostigma lineage as shown in Figure  5.1. The datasets were then reduced to the 

8-taxon sample and tree reconstruction accuracy using each of the models was 

evaluated. For the tree and parameter combinations used, the introduced change in Pvar 

did not affect the tree estimation accuracy and the within Streptophyta position for 

Mesostigma was reconstructed 100% of the time. However, Brikmann et al. [33] found 

that phylogenetic methods tend to be more robust in relation to LBA when estimating 

phylogenies from simulated datasets in comparison to real datasets. Wang et al. [34] 

have shown that the number of different amino acid character states per site in real 

datasets is much lower than that in simulated dataset. For simulated amino acid datasets, 

using any of the empirical models, all amino acid substitutions are possible with some 

probability. In real data however, the process is much more complex than that captured 

by the standard models; the constraints acting on the sequence determine the possible 

types of substitutions that may occur at any given site and the probability of many 

substitutions may be zero, in which case only a very small number of different 

characters will be observed at the site.  

To test whether this difference between the real dataset and our simulated datasets can 

be observed we calculated the frequencies of different numbers of unique amino acid 

character states per site for both the real (Figure  5.3) and the simulated data (Figure  5.4 

and Figure  5.5) using our own python code (for simulated data the numbers of unique 

characters per site were averaged over the 100 datasets). The results show that the 

patterns for the real data are different from those in our simulated data. The higher the 

Pinv and the higher the number of invariable sites that become variable in the 

Mesostigma lineage, the closer the patterns of the simulated data are to those of the real 

data. 
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Figure  5.3 – The average number of amino acid character states per site for the 13-taxon dataset. 
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Figure  5.4 – The average number of amino acid character states per site in simulated 13-taxon 

datasets under the WAG model. I is the proportion of invariable sites, while Pvar refers to the 

proportion of invariable sites that are set to be variable. Similar results were obtained for 

simulations using the CpRev model (results not shown). The results in this figure should be 

compared to Figure  5.3. See Figure  5.5 for additional parameters (Pvar = 0.6-1). 
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Figure  5.5 - The average number of amino acid character states per site in simulated 13-taxon 

datasets under the WAG model and for Pvar=0.6 to 1.0. Similar results were obtained for 

simulations using the CpRev model (results not shown). The results in this figure should be 

compared to Figure  5.3. See Figure  5.4 for additional parameters (Pvar = 0-0.5). 

Even when the best-fit model is used (CpREV+I+G+F), with the respective estimated 

parameters, the average number of amino acids character states per site (Figure  5.6) is 

higher than that in the real data (Figure  5.3). In particular, the number of invariant 
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(constant) sites in the real data is much higher than that of the simulated data, 

suggesting that Pinv is underestimated in the ML analysis of the real data.  

 

Figure  5.6 - The average number of amino acid characters per site in 13-taxon datasets simulated 

using the best-fit model (CpREV+I+G+F, with the ML estimates for the tree and parameters). 

We also observed differences in the types of substitutions that occurred in the real data 

versus those of the simulated data (results not shown). While in ~65% of the sites of the 

real data the amino acids at a site all belong to the same Dayhoff class, for the data 

simulated under the best-fit model (CpREV+I+G+F) in only ~43% of the sites (on 

average) do the amino acids at a site all belong to the same Dayhoff class. Even when 

ignoring the constant sites (~42% in the real data and ~ 30%, on average, in the 

simulated data) it is clear that the substitutions in the real data are more biochemically 

conservative than those in the simulated data. 

The models used for generating (simulating) datasets are those used for tree estimation. 

This means that the models used to reconstruct phylogenies are misspecified in that they 

do not account for the low number of possible types of substitutions in real data. This 

model misspecification by itself may cause the basal position for Mesostigma. Wang et 

al. [34] demonstrated that accounting for site-specific preferences of amino acids, using 

a class frequency mixture model, results in a more accurate phylogenetic estimation for 

the case of Microsporidia (described in chapter 4), overcoming the LBA artifact.  

Simulating sequences on the Mesostigma ML tree, with the site-specific amino acid 

frequencies estimated from the data may result in closer mimicking of the number of 
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characters per site observed in the real data. Phylogenetic estimation using the usual 

models can then be applied to test whether this misspecification alone, or combined 

with change in Pvar, can explain the conflicting results between the 8- and 13-taxa. A 

simulator (CovTree) which is designed for this purpose exists; unfortunately, it was 

removed from its author's website 

(http://morticia.cs.dal.ca/lab_public/?Download:covTREE) and we could not gain 

access to it even through direct correspondence with the authors. 
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5.5 Conclusion 

We found an interesting enigma in that, for 13-taxon dataset used by Rodríguez-

Ezpeleta et al. [11], there is a difference between the tree supported by the majority of 

sites and the tree selected by ML. The majority of sites in this dataset support the basal 

position for Mesostigma as sister to all green plants. Nevertheless, the sum of log-

likelihood values for the within-Streptophyta position was larger, making the within-

Streptophyta position more likely and it is therefore selected in ML analyses. These 

results suggest that the site sample in this dataset is not sufficient to conclude the 

position of Mesostigma with confidence from this dataset alone.  

Our results support the observations of Wang et al. [34] who found that the number of 

characters at a site in simulated data is significantly larger than that in real data. This is 

likely to be a result of the underlying biochemical constraints that are acting on the real 

sequences, limiting the types of possible substitutions in coding sequences, but are 

unaccounted for by phylogenetic models. An interesting extension for this study would 

be to compare non-coding regions with current models of substitutions. The CovTree 

simulator (if it becomes available again) would be useful in testing whether the model 

misspecification, introduced by not accounting for the small number of characters per 

site observed in real data, can mislead tree reconstruction.  
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I.I  Abstract 

There are many examples of groups (such as birds, bees, mammals, multicellular 

animals and flowering plants) that have undergone a rapid radiation. In such cases, 

where there is a combination of short internal and long external branches, correctly 

estimating and rooting phylogenetic trees is known to be a difficult problem. In this 

simulation study, we tested the performances of different phylogenetic methods at 

estimating a tree that models a rapid radiation. We found that maximum-likelihood, 

corrected- and uncorrected-neighbor-joining and corrected- and uncorrected-parsimony, 

all suffer from biases towards specific tree topologies. In addition, we found that using a 

single-taxon outgroup to root a tree frequently disrupts an otherwise correct ingroup 

phylogeny. Moreover, for uncorrected-parsimony, we found cases where several 

individual trees (in which the outgroup was placed incorrectly) were selected more 

frequently than the correct tree. Even for parameter settings where the correct tree was 

selected most frequently when using extremely long sequences, for sequences of up to 

60,000 nucleotides the incorrectly rooted trees were each selected more frequently than 

the correct tree. For all the cases tested here, tree estimation using a two-taxon outgroup 

was more accurate than when using a single-taxon outgroup. However, the ingroup was 

most accurately recovered when no outgroup was used. 
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I .II  Introduction 

The problem of tree reconstruction and rooting is known to be challenging, especially in 

cases of rapid radiations where there is a combination of short and long branches. In 

particular, long-branch attraction [1, 2, 3] is known to make this problem difficult. 

Many examples involving birds [4], bees [5], mammals [6], and early divergences of 

multicellular animals [7, 8], imply that these features are not just of theoretical interest. 

An example, which has recently highlighted this problem, is the dispute about the 

rooting of the angiosperms [9, 10, 11, 12]. As pointed out by Lockhart and Penny [13], 

the basic topology of the angiosperm radiation appears to be star-like (many short 

internal branches connecting large angiosperm lineages) while the outgroup taxa are 

relatively distant. 

Simulation studies have proven to be useful in evaluating the strengths and weaknesses 

of phylogenetic methods in tree reconstruction. Previous simulation studies on 

bifurcating trees show that when internal branches are small relative to external 

branches even a small misspecification of the substitution model may mislead 

phylogenetic inference [14, 15]. Holland et al. [16] conducted a simulation study of  the 

performance of the UPGMA, neighbor-joining, maximum parsimony, and maximum 

likelihood methods, for a five-taxon tree with a symmetric four-taxon ingroup under a 

molecular clock. That study compared the accuracy of different phylogenetic methods 

for various sequence lengths, and explored the effectiveness of correcting neighbor-

joining for multiple substitutions. Holland et al. [16] also tested the effectiveness of 

using an outgroup to root a tree and demonstrated some of the problems in 

reconstructing and rooting trees. They discovered a misleading zone where the tree 

estimate is consistent (that is, the probability of estimating the correct tree tends to one 

as the sequence length tends to infinity), but for a wide range of sequence lengths four 

incorrect trees were each chosen up to twice as frequently as the correct tree. They also 

established that the inclusion of a distant outgroup, which should join into a short 

internal branch, frequently disrupted the ingroup tree. This effect of outgroup inclusion 

disrupting the ingroup was also found for both mammals and birds [17, 18]. In their 
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study, Holland et al. [16] used only five taxa; as the number of taxa increases and the 

models become more complex additional problems are expected. 



APPENDIX                                                             THE PROBLEM OF ROOTING RAPID RADIATIONS 

129 

I .III  Materials and Methods 

To extend the work of Holland et al. [16], we focused on a symmetric 8-taxon ingroup 

tree with five short internal branches and a one- or two-taxon outgroup joining at the 

middle point of the inner-most branch (Figure I). This is a generalized version of a rapid 

radiation. A symmetric tree was chosen for its potential for analytical (exact) solutions.   

 

Figure I  - The model trees used for simulations (8-taxon simulation: solid lines, 9-taxon simulation 

(one-taxon outgroup): solid and dashed lines, 10-taxon simulation (two-taxon outgroup): solid, 

dashed and dotted lines). In the 9-taxon simulation, z was set to 0. In both the 9- and the 10-taxon 

trees the outgroup attaches the ingroup at the middle of the most inner edge of the 8-taxon tree. 

For all simulations, unless otherwise stated, the following settings and procedures 

apply. Seq-Gen version 1.3.2 [19] was used to generate the sequences. Four-state data-

sets were generated on each of the trees using the Jukes-Cantor model [20] of nucleotide 

substitution. We chose to use the Jukes-Cantor model, which is nested within more 

complex models for 4-state characters [21], to ensure the generality of our results. 

Substitutions at each site were independent and identically distributed (iid) with equal 

rates. Branch weights (lengths) were defined to be the expected number of substitutions 

per site on each branch. Each of the three tree-estimation algorithms maximum 

parsimony (MP), maximum likelihood (ML) and neighbor-joining (NJ) were applied to 

every sample sequence using PAUP* version 4b10 [22]. For MP and ML, heuristic 

searches were done with the HSearch command’s default settings except for the option 

NBest, which was set to 1 (this was done so that, for each dataset, only one best tree 

discovered during the search will be saved). 
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When comparing NJ applied to corrected distances and MP, two parameters are being 

changed simultaneously - the tree building method and whether or not a correction for 

multiple substitutions is done [23, 24]. However, it is possible to separate the effects of 

these two parameters to allow for a better comparison between the methods. Therefore, 

NJ was applied both with the Jukes-Cantor correction [20] by setting the DSet option in 

PAUP* to JC, and with no correction by setting the DSet option to p. In some cases MP 

was performed with Jukes-Cantor correction in addition to its usual implementation (no 

correction). Although correcting MP for multiple changes is possible, it is not 

implemented in publicly available software. Therefore, correction for MP was 

implemented using our own code with distance Hadamard [25] applied to distances that 

were corrected by the Jukes-Cantor method (this code is available from 

l.shavit@massey.ac.nz). For more information about corrected maximum parsimony 

and the effect of the correction on parsimony’s consistency see Steel, Hendy, and Penny 

[23] and Penny et al. [24]. 

Sequences were generated on the model trees depicted in Figure I. Branch lengths 

varied according to parameters x, y, z and w (Figure I), where x (ranging from 0.005 to 

0.025 in steps of 0.010) is the expected number of substitutions per site on each of the 

five internal branches, y (ranging from 0.1 to 0.3 in steps of 0.1) is the expected number 

of substitutions per site on each of the eight external branches, z (ranging from 0 to 0.3 

in steps of 0.05) is the expected number of substitutions per site on the edge connecting 

the outgroup taxa to the ingroup in the middle of the inner-most edge, and w (ranging 

from 0 to 0.3 in steps of 0.05) is the expected number of substitutions per site on each 

outgroup branch. If z+w ≥ 1.5x+y, then there is a point on the tree such that the 

distances from that point to each of the leaves are all equal (we then say that ‘a 

molecular clock is maintained’, though this is not true for all parameter combinations 

used here). 1000 data-sets were generated of lengths l = (200, 400, 800, and 1600) for 

each parameter combination of the model tree. The reconstructed unweighted trees 

(without edge lengths) were compared with the model (generating) tree. 
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I .IV  Results 

I.IV.I  8-taxon Simulation 

Accuracy of the methods – We first considered the ability of the methods to reconstruct 

the ingroup tree alone. Sequences were generated on the 8-taxon tree 

T8=(((1,2),(3,4)),((5,6),(7,8))) (see Figure I). Figure II shows the accuracy of the 

different methods in reconstructing T8 for different regions of the parameter space. The 

results of this simulation show that all four methods are consistent for all regions of the 

parameter space. As expected, all methods are less accurate when the internal edges are 

short and the external branches are long.  

 

Figure II - Accuracy of maximum parsimony (MP), uncorrected neighbor-joining (uNJ), corrected 

neighbor-joining (cNJ), and maximum likelihood (ML) in reconstructing the 8-taxon tree. In each 

box, the percentage of correct trees out of the 1000 trees constructed by each method is shown for 

each length of the internal edges x = (0.005, 0.015, 0.025). Each row corresponds to a different 

branch length y = (0.1, 0.2, 0.3) and each column corresponds to a different sequence length l = 

(200, 400, 800, 1600). 
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An unexpected feature is that in this parameter space MP performed as well as, and 

usually better than, the other methods tested. This was surprising because the tree and 

parameters were chosen so that it would be difficult for MP to obtain the correct tree. 

However, it is known that some biases can favor the correct tree [26, 27]. In the case of 

long external branches adjacent to short internal branches, the lengths of the short 

internal branches are overestimated resulting in the recovery of the correct tree [15, 26, 

27, 28, 29, 30, 31]. In our results, the more difficult the parameter combinations were 

(shorter x, and/or longer y), the bigger the improvement in accuracy of MP over the 

other methods. ML performed slightly better than uncorrected NJ (uNJ) and corrected 

NJ (cNJ). uNJ and cNJ found T8 with virtually the same frequencies, for each point in 

the parameter space. 

Topological Bias – Two trees have the same unlabeled topology if one tree can be 

converted into the other (ignoring branch lengths) by a permutation of the labels (taxon 

names). A twofold symmetry is a point on any vertex or edge on the tree where 

precisely two of the subtrees are topologically identical. An example of a twofold 

symmetry is a cherry, which is defined as a single pair of leaves adjacent to a common 

node [32]. Note that a star tree with 3 or more taxa contains no cherries as there are 

more than two taxa adjacent to the single internal node. We investigated the bias of 

phylogenetic methods towards estimating trees with a certain number of cherries. The 

four possible 8-taxon, unrooted, unlabeled, bifurcating tree topologies are shown in 

Figure III. Their frequencies were calculated using the formula given by Hendy, Little 

and Penny [33](see also [34]). Within the four possible unlabeled topologies of 8-taxon 

bifurcating trees, one topology comprises four cherries, two topologies have three 

cherries and one topology has two cherries (Figure III). 
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Figure III - The four unlabeled topologies of 8-taxon bifurcating trees. Topology 1 has four 

cherries, Topology 2 and 3 have three cherries and Topology 4 has two cherries. The twofold 

centers of symmetry in each topology are indicated by arrows. The number, Nt, of different tip-

labeled bifurcating trees having each topology t is given. 

To test the hypothesis that parsimony methods are biased towards selecting the highly 

symmetric topology of T8, 10,395 alignments (the number of 8-taxon, unrooted, 

bifurcating trees) were generated on an 8-taxon star-tree (by setting x=0). The expected 

number y of substitutions per site on the eight (external) branches was set to 0.2, and the 

length of the generated sequences was set to 1000. Each of the five phylogenetic 

methods was applied to the set of alignments, and the number of trees of each of the 

four topologies (Figure III) was recorded. The DCOLLAPSE and LCOLLAPSE options in 

PAUP* were both set to ‘yes’, thus allowing uNJ, cNJ, and ML to collapse branches 

with length smaller than 10-8. For MP the two COLLAPSE options MINBRLEN and 

MAXBRLEN were tested.  

It is important to note, that since the star-tree is a multifurcating tree with no internal 

branches, the correct number of trees having any of the four bifurcating topologies is 0. 

However, seeing that all methods selected many bifurcating trees, we compared the 
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distribution of these to the distribution of all different 8-taxon, leaf-labeled, unrooted, 

bifurcating trees. The results are shown in Figure IV. All methods were found to be 

biased towards fully resolved trees. Even when they were allowed to collapse zero-

length branches, none of the methods ever recovered the star-tree. Moreover, the biases 

demonstrated were not equivalent for all methods.  

 

Figure IV - The percentage of trees, having each of the possible topologies for an 8-taxon unrooted 

tree, out of 10,395 trees constructed by each method for sequences generated on a star tree. The box 

on the left shows a classification of the 10,395 8-taxon bifurcating trees into the four possible 

topologies. On the right is the classification of the 10,395 trees, constructed by each method for 

sequences generated on a star tree, into the four possible unlabeled bifurcating tree topologies. 

 

Strikingly, for MP, 80% of the estimated trees had four cherries, although only 3% (315 

out of 10,395) of the 8-taxon bifurcating trees have such a topology. Furthermore, MP 

did not select any trees with two-cherries or any multifurcating trees. In this example, 

we did not detect any differences in the results using either of the two collapsing options 

(M INBRLEN, MAXBRLEN). A less extreme bias was found for corrected MP (cMP), 

where 10% of the estimated trees had four cherries and 26% had two cherries. Both uNJ 

and cNJ had similar biases with only 17% of the estimated trees having two cherries, 

substantially less than the 49% (5,040 out of 10,395) of bifurcating trees having this 

topology. 13% of the trees constructed by uNJ and cNJ had four cherries, still well in 

excess of the 3% in the uniform distribution of the bifurcating trees. 
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Compared with the distribution of bifurcating trees, all methods selected more trees 

with topology 3, and fewer trees with topology 2 (both topologies have three cherries). 

For ML, some of the trees with topology 2 were collapsed into multifurcating trees. ML 

also found fewer trees with topology 4 (two cherries) than there are in the uniform 

distribution.  

For MP, cMP, uNJ and cNJ a general bias towards forming cherries was found. 

Although ML demonstrated less bias towards forming cherries, it did exhibit bias 

against collapsing edges that are adjacent to cherries. In more than 40% of the cases, 

ML selected multifurcating trees; however, the star-tree was never selected. MP, uNJ 

and cNJ estimated only bifurcating trees, even though the collapse options in PAUP* 

version 4b10 [22] were set to ‘yes’. The bias towards selecting bifurcating trees with 

cherries is particularly evident for MP, and this is almost certainly the explanation for 

why MP appears to perform so well in Figure II. When the sequence length was 

increased to 10,000, cMP, uNJ and cNJ selected each topology with a similar frequency 

(to within 2%) to that found when the length of the generated sequences was set to 

1000. ML selected more trees with two cherries (topology 4) and fewer trees of 

topology 3 than were selected when the sequence length was set to 1000, but selected 

the other topologies with similar frequencies (to within 1%) to those found with 

sequence length l = 1000. MP selected only (i.e. 100%) trees with four cherries 

(topology 1). We also tested the effect of setting NBEST to ‘no’, allowing the methods to 

select more than one tree for each data-set (while weighting the trees for each data-set, 

so that the total weight of each data-set was 1). This did not have a significant effect on 

the results. 

We have shown that, for the parameter space used, all the phylogenetic methods tested 

here were consistent in reconstructing the 8-taxon tree (T8). Nonetheless, we found that 

the phylogenetic methods tested, and particularly MP, are biased towards specific tree 

topologies. 
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I.IV.II  Adding a Single-Taxon Outgroup 

The next simulation tested the effect of adding a single-taxon outgroup to the 8-taxon 

tree. Sequences were generated on the 9-taxon tree T9=((((1,2),(3,4)),((5,6),(7,8))),9). 

The expected number of substitutions per site on the edge connecting the outgroup taxa 

to the ingroup, z, was set to 0. 

Accuracy of the methods – Given that the simulation study done by Holland et al. [16] 

found that the addition of an outgroup can disrupt a correct ingroup, we compared the 

outcomes of applying the methods to the 9-taxon alignment and to an alignment of the 

eight ingroup taxa alone. The results were classified into six categories according to the 

scheme shown in Figure Va, based on whether or not the 9-taxon tree (constructed from 

the 9-taxon alignment) was correct and whether or not the 8-taxon tree (constructed 

from the 8-taxon ingroup alignment) was correct.  The percentage of trials resulting in 

each category is reported in Figure Vb. As in the 8-taxon simulation, and as expected, 

all methods were found to be less accurate when the internal edges are short and the 

external branches are long (see supplementary material 1). 



APPENDIX                                                             THE PROBLEM OF ROOTING RAPID RADIATIONS 

137 

 

Figure V - Frequencies of different types of error in reconstructing the 9-taxon tree. a) The 

different types of result combinations in reconstructing the 9- and 8-taxon tree from the 9- and 8-

taxon alignments, respectively. Each terminal node description of a category gives the result of 8-

taxon estimation, while internal node descriptions are results of 9-taxon estimation. The first 

category is where both the 8- and 9-taxon trees are correct, the second is where the addition of the 

outgroup corrects an incorrect 8-taxon tree. The third category is where both the 8-taxon tree and 

the ingroup tree within the 9-taxon tree were constructed correctly, but the outgroup was 

misplaced. The fourth category is where the addition of the outgroup corrects an incorrect ingroup 

tree, but the outgroup itself is placed incorrectly. More disturbing is the fifth category where the 

inclusion of the outgroup has confounded the correct 8-taxon ingroup tree. The last category is 

where both the 8-taxon tree and the ingroup within the 9-taxon tree are incorrect. b) The results for 

sequence length l = 1600 averaged over the length of the internal edges, x, and the length of the 

external branches, y. 

With the inclusion of an outgroup, the accuracy in reconstructing the correct ingroup 

tree was reduced compared to the 8-taxon case. As expected, the results show that the 

more distant the outgroup becomes, the more difficult it is to reconstruct the correct tree 
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(Figure V). For the tree and parameters used, ML was the most accurate of the methods 

tested. MP, which was very accurate in reconstructing the 8-taxon tree (see topological 

bias), was particularly affected by the inclusion of the outgroup. In fact, MP was the 

only method that became inconsistent (with parameters x = 0.005 or x = 0.015, y = 0.3, z 

= 0 and w = 0.4; see supplementary material 1). When the molecular clock was 

maintained uNJ performed better than cNJ, but when the molecular clock was violated 

cNJ was more accurate (see Table I).  
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Table I - Accuracy of cNJ and uNJ in reconstructing the 9-taxon tree with respect to the molecular 

clock assumption. 

y x w Molecular 
Clock 

cNJ uNJ 

0.1 0.005 0.2 YES 143 177 
0.1 0.005 0.3 YES 102 159 
0.1 0.005 0.4 YES 58 138 
0.1 0.015 0.2 YES 863 893 
0.1 0.015 0.3 YES 771 859 
0.1 0.015 0.4 YES 657 838 
0.1 0.025 0.2 YES 974 978 
0.1 0.025 0.3 YES 946 973 
0.1 0.025 0.4 YES 896 972 
0.2 0.005 0.2 NO 26 24 
0.2 0.005 0.3 YES 10 14 
0.2 0.005 0.4 YES 6 7 
0.2 0.015 0.2 NO 561 547 
0.2 0.015 0.3 YES 418 491 
0.2 0.015 0.4 YES 340 449 
0.2 0.025 0.2 NO 893 886 
0.2 0.025 0.3 YES 807 848 
0.2 0.025 0.4 YES 736 834 
0.3 0.005 0.2 NO 4 2 
0.3 0.005 0.3 NO 4 3 
0.3 0.005 0.4 YES 2 2 
0.3 0.015 0.2 NO 198 172 
0.3 0.015 0.3 NO 175 175 
0.3 0.015 0.4 YES 93 122 
0.3 0.025 0.2 NO 635 575 
0.3 0.025 0.3 NO 568 564 
0.3 0.025 0.4 YES 437 505 

Results are shown for datasets of 1000 trees and sequence length l=1600. Bold font indicates the 

method with better accuracy out of cNJ and uNJ. Uncorrected NJ is more accurate under the 

molecular clock assumption, but as this assumption is increasingly violated, correcting for multiple 

substitutions becomes advantageous. 
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Most interesting are cases in which the 8-taxon ingroup tree was correct, but adding the 

outgroup disrupted the ingroup (these are ~13% of all cases). In most of those cases, the 

distorted ingroup results from the outgroup attaching to the ingroup at one of the long 

external branches, two branches away from the correct short internal branch. Examples, 

where the addition of an outgroup distorts an ingroup tree, were previously reported for 

birds [18] and for mammals [17]. The converse situation, where an incorrect ingroup 

tree was constructed (on an 8-taxon alignment) but the correct 9-taxon tree was found, 

occurred in less than 1.5% of the cases (Figure V). 

Misleading Zone – For MP, the simulations on the 9-taxon tree with the parameters 

x=0.015, y=0.2, z=0 and w=0.4 were extended to include sequence lengths of l = (200, 

400, 800, …, 204,800). Trees were classified into four categories: 1) the single correct 

tree; 2) the four trees in which the ingroup phylogeny is correct but the outgroup (taxon 

9) is incorrectly joined to one of the internal branches; 3) the eight trees in which the 

ingroup phylogeny is correct but the outgroup (taxon 9) is incorrectly joined to one of 

the external branches; 4) the remaining 135,122 trees. The results for sequence lengths l 

= 200-102,400 are shown in Figure VI. 
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Figure VI - The misleading zone for MP. In this simulation the 9-taxon tree 

T9=((((1,2),(3,4)),((5,6),(7,8))),9), with parameters x=0.015, y=0.2, z=0, w=0.4, was used. The 

frequency with which the correct tree and each of the competing trees - the four (one branch away) 

trees in which the ingroup phylogeny is correct but the outgroup, taxon 9, is incorrectly joined to 

one of the internal branches (for example ((((1,2),9),(3,4)),((5,6),(7,8)))), and the eight (two branches 

away) trees in which the ingroup phylogeny is correct but the outgroup, taxon 9, is incorrectly 

joined to one of the external branches (for example ((((1,9),2),(3,4)),((5,6),(7,8)))) - were chosen is 

shown. All other 135,122 trees in which the ingroup is wrong are collectively referred to as “other 

topologies”. For each category the results are averaged over the number of trees in the category. 

The misleading zone extends to a sequence length of approximately 60,000 nucleotides. Only then 

does the correct tree get selected more frequently than each of the eight competing trees that are 

two branches away from the correct tree. 

Within its consistency zone, the probability of MP selecting the correct tree goes to 1 as 

the sequence length increases. However, following Holland et al. [16] we have 

identified a misleading zone within, but close to the boundary of, the consistency zone 

of MP. This is a specific region of the parameter space in which MP is consistent, but 

for finite sequence lengths it is possible for each of several individual incorrect trees to 

be selected more frequently than the correct tree. For example, the 9-taxon tree with 



 I.IV  RESULTS 

142 

parameters x=0.015, y=0.2, z=0 and w=0.4 is inside the misleading zone of MP. For 

l=1600, each of 8 incorrect trees is selected with much greater frequency than the 

correct tree. For l=200 (using 10,000 data-sets), we found a ratio of ~1:3 between the 

correct tree and each of eight incorrect trees where the outgroup attaches to one of the 

external branches. Sequences of ~60,000 nucleotides are required before the correct tree 

is chosen more frequently than any other tree. With sequence length of 102,400 the 

correct tree is still only recovered ~15% of the time. With sequence length of 204,800 

(not shown) the correct tree is recovered in ~28% of the time. Extrapolating from this 

data, we expect that a sequence length of at least 400,000 characters would be needed 

for MP to have a 50% success rate in finding the correct tree. It is important to note, that 

correcting for multiple substitutions significantly reduces the size of maximum 

parsimony’s misleading zone for this combination of parameters. In fact, for cMP (as 

for uNJ, cNJ and ML), a sequence length as short as 400 is already enough for the 

correct tree to be chosen most frequently (data not shown). For short sequence lengths 

(l=200), all methods often select an incorrect tree and some incorrect trees are each 

selected with greater frequency than that of the correct tree. But since the number of 

times each tree is selected is very small, it is difficult to check whether this is 

statistically significant. However, as in the 5-taxon study of Holland et al. [16], there 

does appear to be a small misleading zone for all the methods studied here. 

Breaking symmetry – In order to evaluate the effect of breaking the symmetry of the 

ingroup tree, we changed the 9-taxon tree so that one external edge of the ingroup is 

longer than the others (a higher rate of evolution), and consequentially the symmetry of 

the ingroup is broken. The results (Figure VII) show that the longer this ingroup branch 

is, the more frequently the outgroup joins it, reducing the accuracy of all methods in 

reconstructing the 9-taxon tree. While the long external edge seems to have little effect 

on the accuracy of ML and cNJ, a strong negative effect on both MP and uNJ was 

observed. The longer the selected external edge, the further we are from maintaining a 

molecular clock, and the more pronounced the advantage of the corrected methods (ML 

and cNJ) over the uncorrected methods (uNJ and MP) becomes.  
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Figure VII - The effect of symmetry breaking. The results are shown for parameters y=0.1 and 

w=0.3. In each box, the percentage of correct trees reconstructed for each sequence length and each 

of the four lengths e=(0, 0.05, 0.1, 0.2) that were added to one external branch is shown. Each row 

corresponds to a different length of internal edges x=(0.005, 0.015, 0.025) and each column 

corresponds to a different tree-estimation method. 

We have demonstrated that with the use of a single-taxon outgroup and a rapid 

radiation, it is difficult to correctly infer the position of the root, even when the ingroup 

tree is correct. This is particularly noticeable when the substitution rate of one ingroup 

taxon is higher than the others. Of particular concern is the observation that introducing 

an outgroup can interfere with the accuracy of the ingroup tree. 

I.IV.III  Two-Taxon Outgroup 

Accuracy of the methods – This simulation was used to evaluate the effect of 

including a second outgroup-taxon, on the accuracy of the different methods in 

reconstructing the tree. Sequences were generated on the 10-taxon tree T10 (Figure I) 

with two, one or zero outgroup taxa removed to acquire the 8-, 9- and 10-taxon datasets, 
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respectively. The phylogenetic methods were applied to the same data-sets, and their 

ability to reconstruct the correct 8-, 9- and 10-taxon trees was compared.  

In Table II, the number of times in which the tree was reconstructed correctly is 

reported for each of the methods and for the four different branch lengths used. In every 

single case, correct trees were reconstructed more frequently for the 10-taxon data 

compared to the 9-taxon data. However, the frequency with which trees were correctly 

estimated for the 8-taxon data is higher than for both the 9-taxon and 10-taxon data-sets. 

This is true for all four methods with each of the sequence lengths.  

 

Table II - Accuracy of the final tree. 

Method Length 8   
Correct 

9   
Correct 

10 
Correct 

MP 200 156 13 28 
MP 400 457 40 117 
MP 800 804 92 302 
MP 1600 971 221 573 
uNJ 200 75 11 16 
uNJ 400 204 48 67 
uNJ 800 506 179 222 
uNJ 1600 837 493 562 
cNJ 200 71 7 12 
cNJ 400 197 37 52 
cNJ 800 499 144 188 
cNJ 1600 829 430 513 
ML 200 86 19 24 
ML 400 249 109 124 
ML 800 555 383 423 
ML 1600 857 777 815 

 

Accuracy of the methods in reconstructing the 8- 9- and 10-taxon trees from the respective 

sequence data, with the parameters set to x=0.015, y=0.2 and z+w=0.3. The results are averaged 

over the five central values of z = (0.05, 0.1, 0.15, 0.2, 0.25). Correct trees were reconstructed more 

frequently for the 8-taxon data than for the 9- and 10-taxon sequence data. In every case, more 

correct trees were constructed for the 10-taxon data than for the 9-taxon data. 
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This increase in reliability, when going from 9 to 10 taxa, runs counter to our intuition 

that the greater the number of taxa (and so the greater the number of internal edges that 

need to be estimated) the more difficult it is to reconstruct the correct tree. A possible 

explanation is that the more balanced topology of the 10-taxon tree makes it easier for 

the methods to reconstruct it. The correct ingroup is reconstructed most frequently for 

the 8-taxon (ingroup alone) data-sets (Table III), and more frequently for the 10-taxon 

data-set than for the 9-taxon data-sets. Thus, the inclusion of a single-taxon outgroup 

disrupts the correctly constructed ingroup more frequently than does the inclusion of the 

two related outgroup taxa. 

 

Table III - Ingroup tree accuracy.  

Method Length 
8-taxon  
Correct 

9-taxon 
Ingroup Correct 

10-taxon 
Ingroup Correct 

MP 200 156 56 80 
MP 400 457 145 271 
MP 800 804 328 593 
MP 1600 971 558 877 
uNJ 200 75 44 56 
uNJ 400 204 137 163 
uNJ 800 506 409 457 
uNJ 1600 837 790 818 
cNJ 200 71 35 46 
cNJ 400 197 113 140 
cNJ 800 499 369 419 
cNJ 1600 829 751 792 
ML 200 86 60 64 
ML 400 249 201 211 
ML 800 555 522 540 
ML 1600 857 860 868 

Accuracy of the methods in reconstructing the ingroup tree for the 8- 9- and 10-taxon sequence 

data with the parameters set to x=0.015, y=0.2 and z+w=0.3. The results are averaged over the five 

central values of z = (0.05, 0.1, 0.15, 0.2, 0.25). Ingroup correct trees were reconstructed more 

frequently for the 8-taxon data than for the 9- and 10-taxon sequence data. The addition of a one-

taxon outgroup disrupts the ingroup tree more frequently than the addition of a two-taxon 

outgroup. 
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Placement of a second outgroup-taxon – Biologists often face the problem of 

choosing good outgroup taxa for tree reconstruction. In this simulation we tested how 

the placement of the second outgroup taxon affects the accuracy of the methods in 

reconstructing the ingroup, i.e. the 8-taxon, tree. The ability of the methods to 

reconstruct the ingroup for different values of z (the expected number of substitutions 

on the edge connecting the outgroups’ common ancestor to the ingroup) and w (the 

expected number of substitutions on the edge of each outgroup-taxon) was compared. In 

addition, the outcomes of these runs were compared with the corresponding results for 

nine and eight taxa (all phylogenetic methods used were applied to the same data-sets). 

The results are shown in Figure VIII, where the accuracy of the methods in 

reconstructing the ingroup tree using the eight, nine and ten taxa (unconstrained) is 

presented. The results are categorized into eight categories: ‘rrr’) ingroup correct in all 

(8-, 9- and 10-taxon); ‘rrw’) ingroup wrong in the 10-taxon but correct in the 8- and 9-

taxon; ‘rwr’) ingroup correct in the 8- and 10-taxon but wrong in the 9-taxon; ‘rww’) 

ingroup wrong in both the 9- and 10-taxon but correct in the 8-taxon; ‘wrr’) ingroup 

correct in the 9- and 10-taxon but wrong in the 8-taxon; ‘wrw’) ingroup wrong in the 8- 

and 10-taxon but correct in the 9-taxon; ‘wwr’) ingroup correct in the 10-taxon but 

wrong in the 8- and 9-taxon; ‘www’) ingroup wrong in all (8-, 9- and 10-taxon).  
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Figure VIII - Classification of the 10-taxon results into the eight possible combinations (see text). In 

this simulation a 10-taxon tree with parameters x=0.015, y=0.2 and z+w=0.3 was used, z varied from 

0 to 0.3 in steps of 0.05. For each method the percentage of trees out of 1000 trees constructed, in 

each class described in the text, is shown for each length of the edge connecting the outgroup taxa 

to ingroup tree. The results are shown for sequence length l=1600. 

As expected, ML constructed the correct ingroup (for 8-, 9- and 10-taxa) more 

frequently than did the other methods. Although uNJ performed slightly better than cNJ, 

both constructed the correct trees with similar frequencies (the parameters used obey the 

molecular clock assumption). MP reconstructed the ingroup correctly for all in only 

about 55% of the cases; however it had the lowest percentage of ‘www‘ (wrong in all). 

Moreover, when the common ancestor of the two outgroup taxa was close to the 

ingroup (z=0.05), MP reconstructed the ingroup tree correctly for the 8- and 10-taxon 

data approximately 95% of the time. In addition, MP has the highest percentage of runs 

in which the ingroup was reconstructed correctly in the 8- and 10-taxon, but was wrong 

in the 9-taxon data (‘rwr’), and the lowest percentage of runs in which the ingroup was 

wrong for the 8-taxon data but was right for the others (‘wrr’). These results are as 

expected, taking into account the bias parsimony has towards forming cherries. Cases in 
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which the methods construct the ingroup incorrectly from the 8- and 10-taxon data-sets 

while reconstructing the correct ingroup from the 9-taxon data-set are very rare (<2%). 

Finally, we tested the accuracy of the phylogenetic methods in reconstructing the 10-

taxon tree for different numbers (z) of substitutions per site on the edge connecting the 

common ancestor of the two outgroup taxa to the ingroup, and the effect of constraining 

the two outgroup taxa to be together. The results are shown in Figure IX. The closer the 

common ancestor of the two outgroup taxa was to the ingroup (the further the two 

outgroup taxa are from each other), the more accurate the methods were in 

reconstructing the 10-taxon generating tree. However, it appears advantageous for z to 

be larger than 0 (such that there is a split separating the outgroup taxa from the 

ingroup). This trend is very obvious for MP, where the accuracy dropped very rapidly 

as the common ancestor of the two outgroup taxa became further from the ingroup. This 

trend is also noticeable for uNJ and cNJ where a more moderate change in accuracy was 

observed. For ML, although only a very slight drop in accuracy was found, the general 

trend still applies. We also found that for z=0 constraining the two outgroup taxa to 

come together had a positive effect on the accuracy of all the methods, both in 

reconstructing the ingroup tree and in placing the outgroup taxa in the correct position. 

When z>0, for long sequences, constraining the two outgroup taxa to come together did 

not effect the accuracy with which the methods reconstructed the ingroup tree and 

placed the outgroup taxa (Figure IXa). However, for short sequences and small values 

of z, a slight improvement was recorded (Figure IXb).  
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Figure IX - Accuracy in constructing the 10-taxon tree for different number (z) of substitutions per 

site on the edge connecting the common ancestor of the two outgroup taxa to the ingroup, with and 

without constraining the two outgroup taxa to be together. A 10-taxon tree with parameters 

x=0.015, y=0.2 and z+w=0.3 was used, z varied from 0 to 0.3 in steps of 0.05. a) the results for 

sequence length l=(200, 400); scale=(0, 25). b) the results for sequence length l=(800, 1600); 

scale=(0, 100). All methods are more accurate when the two-outgroup taxa used are separated from 

the ingroup with a common non-zero branch and when the common ancestor of the two outgroup 

taxa is close to the ingroup. 
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I.V  Discussion 

In this simulation study, we have identified problems that are likely to affect the ability 

of phylogenetic methods to reconstruct tree topologies corresponding to rapid radiations 

(where there is a combination of short internal and long external branches). Rapid 

radiations are often star-like, and it is therefore important to identify possible biases in 

reconstructing a star tree. We established that MP, cMP, uNJ and cNJ are all biased 

towards forming cherries (see Figure IV). This effect is most pronounced for MP, for 

which trees having four cherries were chosen many more times than any other topology 

even though the generating tree had no cherries. ML seems to be biased in a different 

way; it appears to collapse edges that are not adjacent to cherries. All methods are 

biased towards a high number of internal edges as none of the methods was successful 

in recovering the star-tree, even when collapsing was allowed. This effect is similar to 

the Bayesian “star paradox”, where sequences that have evolved on a star-tree can give 

branches with posterior probability close to one. Steel and Matsen [35] showed that for 

Bayesian analysis this effect is not expected to automatically vanish given long enough 

sequences. Topological biases, such as the bias towards forming cherries found here, 

may work either against or in favor of the methods in reconstructing trees (depending 

on the true topology of the tree).  

Our findings indicate that rooting a star-like tree (many short internal branches 

connecting long external branches), by joining distant outgroup taxa to a short internal 

edge, often prevents the correct construction of the ingroup tree (see Table III and 

Figure V). The effect is particularly strong when an outgroup-taxon and an ingroup 

taxon share a higher substitution rate (Figure VII). In many of the cases tested, the 

outgroup was placed two branches away from the correct position. For our data, an 

important finding is that when a tree rooted by an outgroup is in disagreement with the 

unrooted ingroup tree, the unrooted ingroup tree is most often correct. For the cases 

tested here, we found that the use of two outgroup taxa is better than the use of a single 

outgroup-taxon, both for the accuracy with which a tree is rooted and for maintaining 

the correct ingroup tree (see Tables 2 and 3). However, ingroup tree reconstruction is 
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more accurate when the methods are applied to the ingroup alone (see Table III and 

Figure VIII). We also found that using two outgroup taxa that are distant from each 

other is better than using two closely related outgroup taxa; this is especially true for 

MP. For the trees and parameters tested here, and for short sequence lengths, 

constraining the two outgroup taxa to come together is generally advantageous, 

especially when they are not closely related (see Figure IXb). However, for longer 

sequences, constraining the outgroup taxa to come together does not have an effect on 

the accuracy of the methods (see Figure IXa). In general our results confirm that it is 

“best practice” to infer phylogeny both with, and without, an outgroup and then 

compare the results. 

Correcting MP for multiple changes was found to be beneficial in the cases where the 

molecular clock assumption is valid, particularly in cases where MP is misleading or 

inconsistent. A possible explanation for this is that with the given tree topology under 

the molecular clock, MP suffers from long-branch attraction. With our parameters, cMP 

does not suffer from long-branch attraction and therefore is doing better in estimating 

the correct tree. Nevertheless, under the set of parameters used here, when the molecular 

clock assumption is violated, MP does not suffer from the long-branch attraction and is 

indeed biased towards the correct tree. Consequently, under our conditions when the 

molecular clock assumption is violated, MP is more accurate than cMP in 

reconstructing the correct tree. This effect is likely to be a characteristic of the highly 

symmetric model tree.  

In the cases where the molecular clock assumption is valid, uNJ was found to be more 

accurate than cNJ in reconstructing both the 9-taxon tree as a whole and the 

relationships amongst the ingroup-taxa (see Table ). However, when this assumption is 

violated, by breaking the symmetry of the tree, cNJ and ML were found to be more 

accurate than uNJ and MP. This effect under the molecular clock may be due to 

amplification of sampling error and/or because the standard correction has a bias toward 

overcorrecting. These results are consistent with those found in other simulation studies 

[16, 36, 37], where corrections for multiple substitutions were found to be helpful only 

for recovering trees with unequal rates of change along branches. Nei and Kumar [38] 
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offered guidelines for constructing phylogenetic trees; our results support their 

argument that uncorrected distances give the correct tree more often than corrected 

distances when the rate of nucleotide substitution is nearly the same for all evolutionary 

lineages and there is no strong transition/transversion bias.  

Our results support the observation of Holland et al. [16] that methods can be consistent 

but misleading (even in the absence of model misspecification). We observed a 

misleading zone for MP, where although the frequency with which the correct tree is 

found tends to one as the sequence length l tends to infinity, for finite yet very long 

sequences, a number of incorrect trees are each chosen more frequently than the correct 

tree. 

Holland et al. [16] considered the boundary of the consistency zone for MP, i.e. the part 

of the parameter space where a slight change in the edge lengths makes parsimony 

either consistent or inconsistent. For 5-taxon trees with 2-state data they calculated that 

each of the four incorrect trees where the outgroup is drawn to an external edge is 

selected by MP twice as frequently as the correct tree. In the 5-taxon case, there are only 

six splits for which the number of substitutions needed is not the same in the five 

competing trees. All six splits have the same expected frequency on the boundary of MP 

inconsistency. Two of those splits support the correct tree and each of these has to 

independently compete with two of the other splits (see [16]). The calculation for four 

state-data is more complex, but we suspect that the ratio between the correct tree and 

each of the frequently selected incorrect trees will be equivalent to that of the two-state 

data. The calculation for the 9-taxon tree is more difficult, as there are many inter-

dependent splits. Therefore, further mathematical work is required to calculate the ratio 

between the correct tree and each of the incorrect trees where the outgroup is drawn to 

an external edge, and to evaluate the effect of the number of taxa on the frequency with 

which the correct tree (with the outgroup in its correct placement) is found. 

Although this study specifically tested the effects on the reconstruction of an 8-taxon 

symmetric tree and a simple (biologically oversimplified) substitution model, the 

problems reported are expected to exist in larger trees and with more complex models 



APPENDIX                                                             THE PROBLEM OF ROOTING RAPID RADIATIONS 

153 

(in which the Jukes-Cantor model is nested). Using a complex model of sequence 

evolution would not have ensured that any tree estimation properties found were 

general. In our study, we used four-state data, which is the natural biological language 

and is known to saturate slightly slower than two-state data [39]. It would be interesting 

to test the methods further using twenty-state amino-acid data. Bayesian phylogenetic 

analysis was suggested to be as robust to relative branch-length differences as ML [40], 

therefore it would also be interesting to test Bayesian inference for the cases studied 

here.  
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I .VII  Supplementary Material 

 

Accuracy of methods in reconstructing the 9-taxon tree. In each box, the percentage of correct trees 

out of 1000 trees that were constructed by each method is shown for each length of the outgroup 

branch w=(0.2, 0.3, 0.4). Each row corresponds to a different external branch length y=(0.1, 0.2, 0.3) 

and each column corresponds to a different internal branch length x=(0.005, 0.015, 0.025). The 

results are shown for sequences lengths l=(200, 400, 800, 1600). All methods were found to be less 

accurate when the internal branches were short and the external branches were long. 
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