
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Expressibility of Higher-Order Logics on Relational

Databases: Proper Hierarchies

A dissertation presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information Systems at Massey University, Wellington,

New Zealand.

Flavio Antonio Ferrarotti

2008

Supervisor:

Associate Prof. Dr. José Maŕıa Turull Torres

Co-Supervisor:

Prof. Dr. Klaus-Dieter Schewe

Internal Examiner:

Prof. Dr. Sven Hartmann

New Zealand Examiner:

Prof. Dr. Robert Goldblatt

Overseas Examiner:

Prof. Dr. Lauri Hella

Date of Examination:

12.06.2008

Dedicated to the memory of my grandfather, Reinaldo

Abstract

We investigate the expressive power of different fragments of higher-order logics

over finite relational structures (or equivalently, relational databases) with special

emphasis in higher-order logics of order greater than or equal three. Our main results

concern the study of the effect on the expressive power of higher-order logics, of

simultaneously bounding the arity of the higher-order variables and the alternation

of quantifiers. Let AAi(r,m) be the class of (i + 1)-th order logic formulae where

all quantifiers are grouped together at the beginning of the formulae, forming m

alternating blocks of consecutive existential and universal quantifiers, and such that

the maximal-arity (a generalization of the concept of arity, not just the maximal of

the arities of the quantified variables) of the higher-order variables is bounded by r.

Note that, the order of the quantifiers in the prefix may be mixed. We show that,

for every i ≥ 1, the resulting AAi hierarchy of formulae of (i + 1)-th order logic is

proper. This extends a result by Makowsky and Pnueli who proved that the same

hierarchy in second-order logic is proper. In both cases the strategy used to prove

the results consists in considering the set AUTOSAT (F) of formulae in a given logic

F which, represented as finite structures, satisfy themselves. We then use a similar

strategy to prove that the classes of Σi
m ∪ Πi

m formulae in which the higher-order

variables of all orders up to i+1 have maximal-arity at most r, also induce a proper

hierarchy in each higher-order logic of order i ≥ 3. It is not known whether the

correspondent hierarchy in second-order logic is proper. Using the concept of finite

model truth definitions introduced by M. Mostowski, we give a sufficient condition

for that to be the case. We also study the complexity of the set AUTOSAT (F)

and show that when F is one of the prenex fragments Σ1
m of second-order logic,

it follows that AUTOSAT (F) becomes a complete problem for the corresponding

prenex fragment Σ2
m of third-order logic. Finally, aiming to provide the background

for a future line of research in higher-order logics, we take a closer look to the

restricted second-order logic SOω introduced by Dawar. We further investigate its

connection with the concept of relational complexity studied by Abiteboul, Vardi

and Vianu. Dawar showed that the existential fragment of SOω is equivalent to the

nondeterministic inflationary fixed-point logic NFP. Since NFP captures relational

NP, it follows that the existential fragment of SOω captures relational NP. We give

a direct proof, in the style of the proof of Fagin’s theorem, of this fact. We then

define formally the concept of relational machine with relational oracle and prove

v

the exact correspondence between the prenex fragments of SOω and the levels of the

relational polynomial-time hierarchy. This allows us to stablish a direct connection

between the relational polynomial hierarchy and SOω without using the Abiteboul

and Vianu normal form for relational machines.

vi

Acknowledgements

It is very difficult to express how much I owe to José Maŕıa Turull-Torres in just a

few lines. I have been truly fortunate to have him as supervisor. He taught me not

only most of what I know of finite model theory, but also to put first things first, to

be precise, to call things by their name, to be rigorous and to be honest. Frequently,

he would come over to my office and invite me for a coffee to not only discuss my

work, but also to chat about life. I always found after these discussions with him

the strength and motivation needed to continue with this project. He helped me

immensely in every aspect of my work. More importantly, he was always very careful

to give me just the right amount of guidance that would allow me to evolve as a

researcher by finding my own path and research questions. Apart from being such

an exceptional supervisor, he also gave me the invaluable gift of his friendship for

which I am eternally grateful.

I am also deeply grateful to my co-supervisor, Klaus-Dieter Schewe. He made it

possible for me to pursue my academic dream in New Zealand. He is a very generous

man. He supported our work in every possible way, yet he never asked anything in

return. He has been a guide to me from both an academic and a personal perspective.

I want to express my profound gratitude to Lauri Hella, Robert Goldblatt and

Sven Hartmann, for serving as examiners, for a careful reading of the dissertation,

and for their valuable comments.

I am very grateful to Leszek Kolodziejczyk for his important and detailed ob-

servations after a careful reading of a preliminary version of the work in Chapters 4

and 5. His remarks were very helpful. I have also learnt a lot from his excellent

thesis. I thank Michal Krynicki for first drawing my attention to it.

I would also like to thank the anonymous referees for the Annals of Mathematics

and Artificial Intelligence - their valuable observations have greatly helped me to

shape the final version of fundamental parts of this dissertation.

vii

I would like to thank all members of the Information Science Research Centre - it

has been an extraordinary group to work with. A special thanks is due to the head

of the department of Information Systems, Chris Freyberg, and to the secretaries,

Merle Richardson and Julie Lyons. To Chris because of his constant support, and

to Merle and July because they always had a solution for my problems.

My thanks also goes to the members of the doctoral subcommittee of the depart-

ment of computer sciences at the University of Buenos Aires, especially to Alejandro

Ŕıos. After careful evaluation of my application for admission as PhD student, they

recommended me to take a paper on First Order Logic and Computability Theory

taught by Roberto Cignoli, and a paper on Theory of Languages taught by Juan

Miguel Santos. I benefited greatly from taking those papers and it was then that I

developed my interest in the fascinating world of mathematical logic. I also thank

Alejandro Vaisman who, without knowing me, accepted to act as my PhD advisor

during the time I spent in the University of Buenos Aires.

My Friends in Argentina have always been with me through these years. They

never complained for the long periods of silence on my part. Thanks are due to

them for receiving me each time I went back and making me feel as if I never left.

A very special thanks goes to Jorge Peri for putting me in contact with José Maŕıa

when I was starting my PhD. Jorge was the most extraordinary professor that I had

during all my years as an undergraduate student and I will be always in debt to him

for that. Also a special thanks goes to Stella Perillo and Fernando Lorge. When I

decided to start my PhD, I had the good fortune of being working with them in my

paid job. They strongly supported me in every imaginable way during that time. I

also thank Gustavo Croch who has always been there when I needed a hand, and to

Fernando Bordignon whom I admire for his enthusiastic and honest attitude toward

research, which has been an important source of motivation for me.

I thank my dear friends, Peter and Mercedes Baxter and Raquel Direnzo, for all

their support. They always made me and my partner feel at home in New Zealand

and adopted us as part of their family here.

I thank my mother, Antonia, who encouraged me to pursue my dreams.

Last but not least, I am deeply in debt with my partner Lorena. I could not

have done this work without her love, constant encouragement and support during

all these years. She and our newborn son Luca are the two best things that ever

happened to me.

viii

Contents

1 Introduction 1

1.1 Outline of Contributions . 2

2 Preliminaries 7

2.1 Background from Relational Databases 7

2.1.1 Computable Queries . 8

2.2 Background from Finite Model Theory 9

2.2.1 Some Logics Relevant in Finite Model Theory 11

2.2.2 Type of a Tuple . 13

2.3 Background from Complexity Theory 16

2.3.1 Oracle and Alternating Turing Machines 18

2.4 Background from Descriptive Complexity 20

2.5 Background from Relational Complexity 22

3 Higher-Order Logics 26

3.1 Syntax and Semantics of Finite-Order Logic 27

3.2 Examples of Queries in Higher-Order Logics 31

3.3 The Expressive Power of Higher-Order Logics 35

3.4 Known Hierarchies in Second-Order Logic 37

4 An Arity-Alternation Hierarchy in Higher-Order Logics 40

4.1 The AAi Hierarchies . 41

4.2 Encoding Well-Formed Formulae into Relational Structures 42

4.3 Recognizing Well-Formed Formulae 44

4.4 Lower Bound . 47

4.5 Upper Bound . 48

4.6 Main Result . 56

ix

4.6.1 On an Existential Proof . 57

5 Alternating Only the Quantifiers of the Highest Order 62

5.1 The HAAi Hierarchies . 63

5.2 The Concept of Finite Model Truth Definitions 68

5.2.1 Expressibility Results via FM-Truth Definitions 70

5.3 A Sufficient Condition for the Properness of the HAA1 Hierarchy . . . 72

6 On the Complexity of Sentences which Satisfy Themselves 75

6.1 A Complete Problem for Higher-Order Logics 76

6.2 AUTOSAT (Σ1
m) is hard for Σ2

m . 77

6.3 AUTOSAT (Σ1
m) is in Σ2

m . 89

7 Relational Complexity and Second-Order Logic 93

7.1 A Restricted Second-Order Logic . 94

7.2 Relational Machines . 95

7.2.1 Nondeterministic Relational Machines 98

7.2.2 Relational Oracle Machines 99

7.2.3 Relational Polynomial-Time Hierarchy 100

7.3 The Relational Complexity of SOω 100

7.3.1 SOω Captures the Relational Polynomial-Time Hierarchy . . . 109

8 Conclusions and Future Work 118

8.1 Some Conjectures Regarding the Complexity of AUTOSAT 120

8.2 Some Considerations on Relational Complexity and Restricted Higher-

Order Logics . 122

x

Chapter 1

Introduction

Since the irruption of the relational database model proposed by Codd in the sev-

enties [Cod70], the interaction between database theory and finite model theory has

been a very fruitful one. Logics over finite structures have become the standard

starting point for developing the theory of database query languages, and finite

model theory techniques are used for proving results about their expressiveness and

complexity [AHV94, EF99, Imm99, Lib04].

Due to the well known limitations of first-order logic (or equivalently, relational

calculus) as a query language, this logic loses the dominating role it has always played

in classical model theory when it comes to the study of finite relational structures

or databases. Instead, various extensions of first-order logic have been explored as

a means to build logics more expressive in finite structures. Among the extensions

of first-order which have received more attention we can mention fixed-point logics,

logics with counting quantifiers, infinitary logics, and second-order logic.

A fundamental underlying question in this regard is: which kind of syntactic

restrictions have impact on the expressive power of such logics over finite structures?,

or equivalently: when can we really express more queries over relational databases?

The answer to this question is in many cases related to important open problems in

complexity theory. An example in second-order logic of this fact, can be found in

the well known Fagin-Stockmeyer characterization [Sto76] of the polynomial time-

hierarchy. Asking whether increasing the number of alternating blocks of quantifiers

in the prenex fragments of second-order logic allows us to express more queries, is

equivalent to asking whether the polynomial time-hierarchy is a proper hierarchy.

Even though the seminal result of Fagin [Fag74] which established that the com-

1

plexity class NP –those problems computable in nondeterministic polynomial time–

is exactly the set of problems describable in existential second-order logic, is usually

considered the starting point in the consistent development of finite model theory,

and since then a considerable amount of effort was devoted to the study of different

fragments of second-order logic, when it comes to the topic of this dissertation, we

note that higher-order logics beyond second-order have not received the same level

of attention in the context of finite model theory. However, judging by some of the

recent work done in the area [HT03, Kol04b, Kol05, HT06b, HT06a], we think this

could be starting to change. Of course those recent works have some important

antecedents as [Lei89, HS91].

In the present work, we try to make a contribution to the knowledge in this

area of research in finite model theory and relational databases. We investigate

the expressive power of different fragments of higher-order logics over finite rela-

tional structures with special emphasis in higher-order logics of order greater than

or equal three. Our main results were inspired by a work of Makowsky and Pnueli

in second-order logic [MP96], and concern the study of the effect on the expressive

power of higher-order logics, of simultaneously bounding the arity of the higher-

order variables and the alternation of quantifiers. We call the resulting hierarchies

of formulae, arity and alternation hierarchies, and show that they are proper in

higher-order logics.

This dissertation is organized as follows. In Chapter 2, we provide the theoretical

background and introduce notation and terminology. In Chapter 3 we present the

central subject of the thesis, namely higher-order logics. This chapter also serves as

a review of known result regarding the expressive power of these logics over finite

relational structures. Our contributions are presented in Chapters 4, 5, 6, and 7.

We outline the results included in these chapters in the next section. Finally, in

Chapter 8 we conclude our exposition with some conjectures, and comment possible

lines to continue this work in the future.

1.1 Outline of Contributions

We study two different kind of arity and alternation hierarchies in higher-order

logics –the AAi hierarchies and the HAAi hierarchies. A given layer AAi(r,m)

in the AAi hierarchy of higher-order logic formulae of order i + 1, is formed by

2

the class of prenex (i + 1)-th order logic formulae in which the maximal-arity of

the higher-order variables is bounded by r and the number of alternating blocks

of quantifiers is bounded by m. There are two important subtleties which should

be taken into account. Firstly, by maximal-arity we refer to a generalization for

higher-order variables of the notion of arity of a second-order variable, not just the

maximal of the arities of the quantified variables. We introduce this notion formally

in Chapter 3. Secondly, the formulae in the AAi hierarchies are in prenex normal

form, but they are not necessarily in generalized Skolem normal form (GSNF). This

means that the order of the quantifiers in the prefix of the formulae in the AAi

hierarchies may be mixed and that all alternations of quantifiers of whichever order

are considered. For instance, let ϕ be a third-order formula of the form ∃x∀X∃X (ψ)

where x, X and X are first-, second- and third-order variables, respectively, both X

and X have maximal-arity 4, and ψ is a quantifier free third-order subformula. It

follows that ϕ is in prenex normal form and it is precisely in the level AA2(4, 3) of

the AA2 hierarchy of third-order logic formulae, but it is not in GSNF. In order for

a higher-order logic formula of order i to be in GSNF, all the quantifiers of order i

in the formula must precede all the remaining quantifiers in the prefix.

The higher-order logic formulae which are in GSNF comprise well known hierar-

chies whose levels are denoted Σi
m and Πi

m. The class Σi
m consists of those higher-

order logic formulae in GSNF in which the quantifiers of order i + 1 are arranged

into at most m alternating blocks. Πi
m is defined dually. The levels HAAi(r,m) of

the second kind of hierarchies of arity and alternation that we study in this disserta-

tion –the HAAi hierarchies– are defined as the restriction of the classes Σi
m ∪Πi

m to

formulae in which the higher-order variables of all orders up to i+ 1 have maximal-

arity at most r. That is, in the HAAi hierarchies the formulae are in GSNF, and the

alternations are counted as in Σi
m and Πi

m. For instance, the formula ∃X∀Y∃Xx(ϕ),

where x, X, X and Y are first-, second- and third-order variables, respectively, X ,

Y , and X have maximal-arity 4, and ψ is a quantifier free third-order subformula,

is in the level HAA2(4, 2) of the HAA2 hierarchy of third-order logic formulae. The

same formula is however in the level AA2(4, 3) of the AA2 hierarchy of second-order

logic formulae.

In Chapters 4 and 5 we present our main contributions regarding the AAi hier-

archies and the HAAi hierarchies, respectively. The main results presented in these

chapters appear in [FT06, FT07].

3

Generalizing a result of Makowsky and Pnueli [MP96] who proved that the AA1

hierarchy of second-order logic formulae is proper, we prove in Chapter 4 that the

same holds for every AAi hierarchy of higher-order logic formulae of order i + 1.

More precisely, we show that for every i, r,m ≥ 1, there are Boolean queries not

expressible in AAi(r,m) but expressible in AAi(r + c(r),m+ 6), where c(r) = 1 for

r > 1 and c(r) = 2 for r = 1.

From the perspective of database query languages this means that, for every

i ≥ 2, if we simultaneously increase the arity of the quantified relation variables by

one and the number of alternating blocks of quantifiers by six in the fragment of

higher-order relational calculus of order i, AAi−1, then we can express more queries.

We get our result by roughly adapting the strategy in [MP96] to each higher-

order logic of order i ≥ 2. We could outline this strategy by saying that it consists

in considering the set AUTOSAT (F) of formulae of a given logic F which, encoded

as finite structures, satisfy themselves. As the well known diagonalization argument

applies here, when F is a level of an AAi hierarchy of arity and alternation, it follows

that AUTOSAT (F) is not definable in F , but is definable in a higher level of the

same hierarchy.

Also in Chapter 4, we explore an alternative strategy to prove the properness

of arity and alternation hierarchies in higher-order logics, by means of a simpler

complexity-theoretical type of argument involving a variant of the time-hierarchy

theorem for alternating Turing machines with bounded alternation. We note that

this approach would provide proofs of essentially the same type of results. However,

such proofs would be existential while in the work of Makowsky and Pnueli as

well as in our work constructive proofs are given, since computable queries which

separate the classes are exhibited. Furthermore, to the best of our knowledge there

is no written source for the variants of the time-hierarchy theorem required by this

strategy.

The work carried on in Chapter 4 adapting the strategy in [MP96] to prove the

properness of the AAi hierarchies, allowed us to see and to prove that for i ≥ 2,

the HAAi hierarchy of higher-order formulae of order i + 1 is also proper. We

present this result in Chapter 5 where we prove that for every i ≥ 2 and every

r,m ≥ 1, there are Boolean queries not expressible in HAAi(r,m) but expressible in

HAAi(r+ c(r),m+2) where c(r) = 1 for r > 1 and c(r) = 2 for r = 1. Interestingly,

it is not known whether the corresponding version of this hierarchy for second-

4

order logic, i.e., the HAA1 hierarchy, is proper. Note that the HAA1 hierarchy is

the hierarchy denoted as SAA in [MP96]. It was established there that, for every

r,m ≥ 1, AUTOSAT (HAA1(r,m)) is complete for PSPACE under polynomial-time

reductions. But the properness of the HAA1 hierarchy of second-order logic formulae

is not investigated in that paper.

We conclude Chapter 5 examining a version for finite models of Tarski’s famous

theorem on the undefinability of truth which was introduced by M. Mostowski in

[Mos01, Mos03]. We use this theorem together with the corresponding concept

of finite model truth definitions studied in those papers, and the characterization

given in [Kol04b, Kol05] of the logics for which the prenex classes of higher-order

logics Σi
m define finite model truth, to give a sufficient condition for the HAA1

hierarchy to be proper over finite structures. The condition which needs to be met

for that to be the case is that, for every vocabulary σ there is a fixed k such that

the data complexity for the first-order formulae of vocabulary σ is in NTIME(nk).

The question of whether this is actually the case is an important open question in

descriptive complexity (see [Imm99]). Furthermore, as shown in [Kol04a], this is also

a sufficient condition for the Σ1
1 arity hierarchy to be strict over finite structures.

This arity hierarchy is known to be strict if we allow vocabularies of arbitrary arity

[Ajt83], but its strictness over vocabularies of a fixed arity is still open.

In Chapter 6 we again study in the context of higher-order logics the set AUTO-

SAT (F) of the sentences of a given logic F which encoded as finite structures satisfy

themselves, but this time from a different perspective. We show that when F is one

of the prenex fragments Σ1
m of second-order logic, it follows that AUTOSAT (F)

becomes a complete problem for the corresponding prenex fragment Σ2
m of third-

order logic. We prove that AUTOSAT (Σ1
m) is hard for Σ2

m by means of a polynomial-

time reduction from the Σ1
m theory of the Boolean model to AUTOSAT (Σ1

m). The

Σ1
m theory of the Boolean model is the set of Σ1

m-formulae which are satisfied by

a two element structure of the Boolean vocabulary, i.e., a vocabulary with two

constant symbols that are interpreted by the two elements, respectively, and which

has no relations or function symbols. As shown in [HT05, HT06a] the Σ1
m theory

of the Boolean model is complete for Σ2
m under polynomial-time reductions. Then

we prove that the problem is indeed in Σ2
m, by building a nondeterministic Turing

machine with an oracle in the fragment Σp
m−1 of the polynomial-time hierarchy which

decides AUTOSAT (Σ1
m) in time O(2n

c
). Since by the characterization of the prenex

5

fragments of higher-order logics in [HT03, HT06b], Σ2
m captures the complexity class⋃

c∈NNTIME(2n
c
)Σp

m−1 , it follows that AUTOSAT (Σ1
m) is in Σ2

m.

Finally, in Chapter 7 we take a closer look to the restricted second-order logic

SOω introduced by Dawar in [Daw98]. In particular, we further investigate its

connection with the concept of relational complexity studied by Abiteboul, Vardi

and Vianu in [AVV97]. We believe that the results proved in this chapter can

be generalized to higher-order logics beyond second-order, and thus provide some

additional information on the expressive power of restricted fragments of higher-

order logics.

Among other interesting results, Dawar proved in [Daw98] that the existential

fragment of SOω is equivalent to the nondeterministic inflationary fixed-point logic

NFP. Since by a result in [AVV97], NFP captures the relational complexity class

NPr (see definition in Section 2.5), it then follows that the existential fragment of

SOω captures NPr. In Chapter 7, we give a direct proof, in the style of the proof of

Fagin’s theorem, of this fact.

Also in Chapter 7, we define formally the concept of relational machine with

relational oracle. Up to our knowledge, this is the first attempt to formally define

the relational polynomial-time hierarchy in terms of relational machines with rela-

tional oracles, i.e., oracles consisting on classes of relational structures closed under

isomorphisms instead of sets of strings. Using these relational machines with rela-

tional oracles, we show the exact correspondence between the prenex fragments of

SOω and the levels of the relational polynomial-time hierarchy. This allows us to

establish a direct connection between the relational polynomial hierarchy and SOω

without using the Abiteboul and Vianu normal form for relational machines (see

[AV95]), which in turn would have required us to define the oracles for the rela-

tional machines as sets of strings, and consequently to use relational machines with

oracles decided by standard Turing machines.

6

Chapter 2

Preliminaries

The goal of this chapter is to provide the theoretical background for our dissertation,

and at the same time, to introduce notation and terminology.

2.1 Background from Relational Databases

Since Codd defined the relational model in 1970 [Cod70], first-order logic, or equiv-

alently relational calculus, has been one of the main query languages for relational

databases. Codd considered the domain of the relational databases to be infinite and

thus he actually used a subset of first-order formulae which express only domain-

independent queries, which among other desirable properties always evaluate to

finite relations.

Following a more modern approach which has become the norm for the rigorous

study of expressibility of query languages over relational databases, we consider the

domain of a database instance to be finite. In this way we can benefit from the

theoretical framework, formal tools and results from finite model theory, and we do

not need to worry about domain-independent queries.

Given that attribute names associated with different relation columns are not

relevant for our work, we take what is known as an unnamed perspective to relational

databases [AHV94]. Thus, we define a relational database schema, or shortly a

schema, as a set of relation symbols, each associated with a natural number, its

arity. We do not allow constraints in the schema, and we do not allow constant

symbols either.

Let σ = {R1, . . . , Rs} be a schema, and for 1 ≤ i ≤ s, let ri be the associated

7

arity of the relation symbol Ri. A database instance of signature σ, or shortly a

database, is a structure I = 〈I, RI
1, . . . , R

I
s〉, where I is a finite set called the domain

which contains exactly all individual elements of the database, and for 1 ≤ i ≤ s,

RI
i is a relation of arity ri on I, i.e., RI

i ⊆ Iri . For the sake of clarity, we sometimes

write dom(I) instead of I. We denote as Bσ the class of all (finite) databases of

schema σ.

A k-tuple over a database I, with k > 0, is a tuple of length k formed with

elements from I, i.e., (a1, . . . , ak) ∈ Ik. Often we denote a k-tuple of I as ā, since

usually its length is clear from the context. Sometimes we abuse the notation and

write (ā1, . . . , ās), where s > 1 and ā1, . . . , āk are tuples of length k1, . . . , ks > 0,

respectively, to denote the (k1 + · · · + ks)-tuple (a11, . . . , a1k1 , . . . , as1, . . . , asks) ∈
Ik1+···+ks .

If I and J are databases of some schema σ, we denote as I ' J the existence of an

isomorphism between I and J, i.e., a bijection f : I → J such that (a1, . . . , ar) ∈ RI

iff (f(a1), . . . , f(ar)) ∈ RJ for all r-ary relation symbol R ∈ σ and all r-tuples

(a1, . . . , ar) ∈ Ir. Intuitively, the databases I and J are isomorphic if J can be

formed by replacing every element a ∈ I by f(a) ∈ J without changing the structure

of the database. An automorphism of I is an isomorphism from I to itself.

2.1.1 Computable Queries

From a conceptual point of view it is desirable for a model of computation of queries

to be representation independent [Ull88, Ull89]. This means, roughly, that queries

to databases which represent the “same” reality should evaluate to the same result.

In mathematical terms, we can partially capture this concept if we ask queries to

isomorphic databases to evaluate to the same result. This is the central idea in the

notion of computable query defined by Chandra and Harel [CH80] which we use in

this work.

We consider only typed queries, that is, queries which have a fixed arity. In

[CH80], queries which may evaluate to relations of different arities in different

databases are also considered, and they are called untyped queries. For an in depth

study on untyped queries see [Tur01a].

Definition 2.1. Fixing a schema σ and an integer r > 0, we define a computable

query of arity r and schema σ, as a partial function q : Bσ → Rr, where Rr denotes

8

the class of all finite relations of arity r, and where q has the following properties:

i. For every database I of schema σ on which q is defined, q(I) ⊆ Ir;

ii. q is a partial recursive function in some linear encoding of the database instances

in Bσ;

iii. q preserves isomorphisms, i.e., for every pair of databases of schema σ, I and

J, and for every isomorphism f : I → J , either q(J) = {(f(a1), . . . , f(ar)) :

(a1, . . . , ar) ∈ q(I)}, or q is undefined on both I and J.

Similarly, we define a computable Boolean query of schema σ, as a partial function

q : Bσ → {0, 1}, with the following properties:

i. q is a partial recursive function in some linear encoding of the database instances

in Bσ;

ii. q preserves isomorphisms, i.e., for every pair of databases of schema σ, I and J,

which are isomorphic, either q(J) = q(I), or q is undefined on both I and J.

Boolean queries may also be regarded as 0-ary queries.

Note that a query may be partial, that is, it may be defined on a proper sub-class

of Bσ. Otherwise, if the query is defined on the whole class of databases of schema

σ, we say that it is a total query.

2.2 Background from Finite Model Theory

There are excellent books on finite model theory [EF99, Imm99, Lib04]. We just

introduce briefly the concepts and notation needed for this work.

From the point of view of finite model theory, a database schema is simply a

relational vocabulary, and a database instance of some schema σ is a finite relational

structure of vocabulary σ, or σ-structure. Consequently, given a vocabulary σ, the

class of all finite σ-structures is exactly what we denoted as Bσ in Section 2.1.

We use the notion of a logic in a general sense. A formal definition would only

complicate the presentation and is unnecessary for our work. We refer the reader to

[Ebb85] for a formal study of a general framework of abstract logics.

As it is usual in this framework, we regard a logic as a pair (L, |=L), where L is a

mapping which assigns to each vocabulary σ a set of words (the set of L-sentences of

9

vocabulary σ) and |=L (the L-satisfaction relation) is a relation between structures

and L-sentences. We are not interested here in proof theoretic concepts like axioms

and inference rules. We only consider vocabularies, which are purely relational, i.e.,

there are no constant symbols nor function symbols. We assume always that the

vocabulary includes a symbol for equality.

We use the classical Tarski’s semantics, except that as our framework is finite

model theory, only finite structures, or interpretations are considered. Thus our

structures will always be finite relational structures, i.e., finite structures of a rela-

tional vocabulary.

Consequently, if L is a logic, the notions of satisfaction |=L and equivalence

between structures ≡L, are related to only finite structures. If the logic is clear from

the context, we use the notations |= and ≡, respectively.

If L is a logic and σ is a vocabulary, we denote as L[σ] the class of formulas from

L of vocabulary σ.

For ϕ a sentence in L[σ] we denote by Mod(ϕ) the class of finite σ-structures

I such that I |= ϕ. A class of finite σ-structures C closed under isomorphisms is

definable by an L-sentence if C = Mod(ϕ) for some sentence ϕ ∈ L[σ]. If L and L′
are logics, then L ⊆ L′ denotes that L′ is at least as expressive as L, i.e., all classes

of models definable by L-sentences are also definable by L′-sentences. L = L′ holds

if L ⊆ L′ and L′ ⊆ L. L ⊂ L′ holds if L ⊆ L′ and L 6= L′.
By ϕ(x1, . . . , xr) we denote a formula of some logic whose free variables are

exactly {x1, . . . , xr}. Sometimes, we use the same notation also when the set of free

variables of the formula is strictly included in {x1, . . . , xr}, even when the formula

is a sentence. We denote as free(ϕ) the set of free variables of the formula ϕ.

Recall that a valuation is a function which assigns to every variable in the logic,

an element of a given structure. If ϕ(x1, . . . , xr) is a formula of a vocabulary σ,

I is a σ-structure, and ā = (a1, . . . , ak) is an r-tuple over I, we use the notation

I |= ϕ(x1, . . . , xr)[ā] to denote that ϕ is satisfied by the structure I, under every

valuation v such that v(xi) = ai for 1 ≤ i ≤ r.

Then, we consider the set of all such tuples for which there is a corresponding

valuation which satisfies ϕ, as follows:

ϕI = {(a1, . . . , ar) ∈ Ik : I |= ϕ(x1, . . . , xr)[a1, . . . , ar]}
That is, ϕI is the relation defined by ϕ in the structure I, and its arity is given by

the number of free variables in ϕ.

10

Formally, we say that a formula ϕ(x1, . . . , xr) of vocabulary σ, expresses a query

q of schema σ, if for every database I of schema σ where q is defined, it holds that

q(I) = ϕI. Similarly, a sentence ϕ expresses a Boolean query q if for every database

I of schema σ where q is defined, it holds that q(I) = 1 iff I |= ϕ.

Note that when using logics as query languages only total queries are considered.

This is due to Tarski’s semantics. One way in which Partial queries can be expressed

is through pairs of formulas, where the first formula is a sentence which defines the

domain of the query [Tur01a]. Anyway, in this work we deal only with total queries.

2.2.1 Some Logics Relevant in Finite Model Theory

We comment next on some logics which are referenced on this work. For that, we

assume that the reader is familiar with the syntax and semantics of first-order logic

(FO).

The weakness of first-order logic as a query language is well known. As early

as in 1975, Fagin showed that a very simple query, namely the transitive closure

query over finite relations, is not expressible in first-order logic [Fag75]. Aho and

Ullman [AU79] rediscovered this result in 1979 and bought it to the attention of the

database community.

Intuitively, one reason for the weakness of first-order logic as a query language is

that there is no way of expressing any form of iteration or recursion. This suggests

that by adding some kind of induction operation, we could augment the expressive

power of first-order logic. This is the idea behind fixed point logics. Next, we

comment briefly some of these logics to keep this work as self contained as possible.

Let σ be a vocabulary and R be a k-ary relation symbol which is not in σ. A

formula ϕ(x1, . . . , xk, R) ∈ FO[σ ∪ {R}] and a structure I ∈ Bσ give rise to an

operator Fϕ : P(Ik) −→ P(Ik) defined by:

Fϕ(RI) = {(a1, . . . , ak) ∈ Ik : 〈I, RI〉 |= ϕ(x1, . . . , xk)[a1, . . . , ak]},

where 〈I, RI〉 denotes the expansion of I interpreting R as RI. A relation RI ⊆ Ik

is a fixed point of the operator Fϕ if Fϕ(RI) = RI.

Each such operator Fϕ generates a sequence of stages Fϕ
n defined inductively by:

Fϕ
0 = ∅ and Fϕ

n+1 = Fϕ(Fϕ
n). When the sequence Fϕ

n “converges”, i.e., when there

is n0 ≥ 0 such that Fϕ
n0

= Fϕ
n0+1 and hence, Fϕ

n0
= Fϕ

n for all n ≥ n0, then Fϕ
n0

is a

fixed point of Fϕ. We denote Fϕ
n0

as Fϕ
∞.

11

Fϕ is inflationary if, for every relation RI ⊆ Ik, it holds that RI ⊆ Fϕ(RI).

In particular, Fϕ is inflationary if ϕ(x1, . . . , xk, R) is of the form R(x1, . . . , xk) ∨
ψ(x1, . . . , xk, R). We call such formulae, inflationary formulae. If Fϕ is inflationary,

then Fϕ is inductive, i.e., the sequence Fϕ
n is increasing, and hence it reaches a fixed

point Fϕ
∞. The inflationary fixed point logic (IFP) is defined to be the closure of

first-order logic under the operation of taking inflationary fixed points of inflationary

formulae. Note that the transitive closure of the edge relation E of a directed graph,

which we know is not expressible in first-order logic, can now be expressed easily in

IFP. The fixed point Fϕ
∞, where ϕ(x, y, R) is the inflationary formula

R(x, y) ∨ (E(x, y) ∨ ∃z(R(x, z) ∧R(z, y))),

clearly defines the transitive closure of E.

The existence of a fixed point for the sequence Fϕ
n can also be guaranteed when

ϕ(x1, . . . , xk, R) is positive in R, i.e., when every occurrence of R in ϕ(x1, . . . , xk, R)

is under the scope of an even number of negations. In that case the sequence Fϕ
n

is also increasing, and therefore has a limit, i.e., there is a n0 ≤ |I|n such that

Fϕ
n0

= Fϕ
m for every m ≥ n0. This limit is the least fixed point of the sequence Fϕ

n .

The closure of first-order logic under the operation of taking least fixed points of

positive formulae, is usually called least fixed point logic (LFP). On finite structures,

this logic has exactly the same expressive power than IFP [GS86].

Given an arbitrary first-order logic formula ϕ(x1, . . . , xk, R) and a structure I,

the corresponding sequence of stages Fϕ
n is not necessarily increasing and may or

may not converge to a fixed point. So, there are two possibilities. The first is that

this sequence reaches a fixed point, i.e., for some n0 ∈ N we have Fϕ
n0

= Fϕ
n0+1, and

thus Fϕ
n0

= Fϕ
m for every m ≥ n0. If there is such n0, it must be the case that

n0 ≤ 2|I|
k
. The second possibility is that not such n0 exists. The partial fixed point

Fϕ
∞ is defined to be Fϕ

n0
if Fϕ

n0
= Fϕ

n0+1 for some n0 ≤ 2|I|
k
, otherwise Fϕ

∞ = ∅.
Partial fixed point logic PFP is the closure of first-order logic under the operation

defining partial fixed points of arbitrary first-order formulae.

The fixed point logics we have seen so far are obtained by deterministically iter-

ating first-order operators. We see next a fixed point logic introduced by Abite-

boul, Vardi and Vianu [AVV97] which is obtained by nondeterministically iter-

ating first-order operators. Given two first-order formulae ϕ0(x1, . . . , xk, R) and

ϕ1(x1, . . . , xk, R) of a same vocabulary σ, we define a sequence of stages F
(ϕ0,ϕ1)
b

12

indexed by binary strings b ∈ {0, 1}∗, as follows:

F
(ϕ0,ϕ1)
λ = ∅, for the empty string λ

F
(ϕ0,ϕ1)
b·0 = F

(ϕ0,ϕ1)
b ∪ Fϕ0(F

(ϕ0,ϕ1)
b)

F
(ϕ0,ϕ1)
b·1 = F

(ϕ0,ϕ1)
b ∪ Fϕ1(F

(ϕ0,ϕ1)
b).

The nondeterministic fixed point of the sequence is
⋃
b∈{0,1}∗ F

(ϕ0,ϕ1)
b . The nondeter-

ministic inflationary fixed point logic (NFP) is the closure of first-order logic under

the operation of taking nondeterministic inflationary fixed points, with the restric-

tion that negation cannot be applied to the fixed point operator.

Another way of extending the expressive power of first-order logic is by allowing

disjunctions and conjunctions of arbitrary (not just finite) sets of formulae. But

the resulting logic, usually denoted as L∞ω, is of little use in the study of finite

models, since every query (including noncomputable queries) over finite structures is

expressible in it. This changes when we concentrate on a bounded variable fragment

of L∞ω as all fixed point logics mentioned above can be viewed as fragments of it.

More precisely, they can be viewed as fragments of the logic Lω∞ω =
⋃
k∈N Lk∞ω, where

Lk∞ω denotes the class of formulae of L∞ω that use at most k different variables. The

following picture follows from the works of Kolaitis and Vardi [KV92a, KV92b] and

Dawar [Daw93].

IFP = LFP ⊆ NFP ⊆ PFP ⊂ Lω∞ω

The last containment is proper, since there are nonrecursive queries which can be

expressed in Lω∞ω [KV92b] while every query definable in PFP is computable in

PSPACE. In fact, as noted by Dawar [Daw98], it can be shown that Lk∞ω is com-

plete on ordered structures, where the maximum arity of a relation symbol in its

vocabulary is ≤ k.

2.2.2 Type of a Tuple

Sometimes, we need to consider the properties of a tuple in a relational structure or

database, which are definable in a given logic. For this, we use the model theoretic

concept of type. The results that we use in this work are mainly from [Daw93,

DLW95]. Another excellent source for the subject is [Ott97]. Our notation comes

mostly from there.

13

cb

fed g

a

Figure 2.2.2

Definition 2.2. Let L be a logic, let I be a relational structure of vocabulary σ,

and let ā = (a1, . . . , ak) be a k-tuple over I. The L-type of ā in I, denoted tpLI (ā), is

the set of formulas in L[σ] with free variables among {x1, . . . , xk} which are satisfied

in I by any valuation which, for 1 ≤ i ≤ k, assigns the i-th component of ā to the

variable xi. In symbols,

tpLI (ā) = {ϕ ∈ L[σ] : free(ϕ) ⊆ {x1, . . . , xk} and I |= ϕ[a1, . . . , ak]}

Note that, the L-type of a given tuple ā over a relational structure I, includes

not only the properties of all sub-tuples of ā, but also the set of all sentences in L
which are true when evaluated on I, i.e., the L-theory of I.

It is not difficult to see that the L-type of two different k-tuples over the same

relational structure may be different, even if the types of their corresponding com-

ponents are the same. Take for instance the complete binary tree of Figure 2.2.2.

If we consider the types of singletons, then we have (depending on the expressive

power of L) at most three different types. The type of a, the type of b and c, and the

type of d, e, f and g. This is the case because b and c as well as d, e, f and g, are

interchangeable by automorphisms of the tree and are thus equivalent from the point

of view of any logic L with Tarski’s semantics. Now, let us consider the types of the

tuples (b, f) and (c, g). Clearly, they are not interchangeable by automorphisms of

the tree. So, their type may be different (again, depending on the expressive power

of L) even when their components b and c as well as f and g have the same type.

According to Definition 2.2, a type is an infinite set of formulas which is con-

sistent, i.e., there is a structure and a valuation which satisfy all the formulas in

the set. Moreover, the set is maximally consistent, that is, if we add any formula

to the set, we loose the consistency of the set. Therefore, we can think of the type

of a tuple as a maximally consistent set of formulae, without having a particular

14

relational structure in mind. If α is the L-type of some tuple ā, i.e., α is a maximally

consistent set of L-formulae of some vocabulary σ, we say that a given σ-structure

I realizes the type α if there is a tuple ā over I such that tpLI (ā) = α.

The notion of FO-type, usually encountered in classical (infinite) model theory,

is not of much value in the context of finite model theory, since every tuple can

be characterized up to isomorphism by its FO-type. However, if we consider logics

which are weaker than first-order as to expressive power, that is not longer the case.

In this context, a notion which has proven to be of great importance is that of

FOk-type, where for k > 0, FOk denotes the fragment of first-order logic where only

formulae with variables in {x1, . . . , xk} are allowed. Note that the class of queries

expressible in FOk is strictly included in the class of queries expressible in FO and

that FO =
⋃
k>0 FOk.

Definition 2.3. For k ≥ r ≥ 1, we denote by ≡k the equivalence relation induced

in the set of r-tuples over a given structure I, by equality of FOk-types of r-tuples.

That is, for every pair of r-tuples ā and b̄ over I, ā ≡k b̄ iff tpFOk

I (ā) = tpFOk

I (b̄).

Kolaitis and Vardi [KV92b] showed that on finite structures, the equivalence

relation ≡k and the apparently stronger notion of equivalence of Lk∞ω-types, actually

coincide. That is, they showed that if ā ≡k b̄ over a given finite structure I of

vocabulary σ, then for every ϕ ∈ Lk∞ω[σ], it holds that I |= ϕ[ā] iff I |= ϕ[b̄], and

vice versa.

Definition 2.4. Let k ≥ 1, let σ be a relational vocabulary, and let I be a σ-

structure. We say that a relation RI of arity r ≤ k is closed under the equivalence

relation ≡k iff, for every pair of r-tuples ā and b̄ over I, if ā ∈ RI and ā ≡k b̄, then

b̄ ∈ RI.

Kolaitis and Vardi [KV92b] also showed that a query q of arity r ≤ k is express-

ible in Lk∞ω iff it is closed under ≡k. The same is true for the fixed point logics

introduced earlier, since the classes of queries expressible in those logics are strictly

included in the class of queries expressible in Lω∞ω.

We must mention that there is an elegant Ehrenfeucht-Fräıssé type of charac-

terization of the relation ≡k in terms of pebble games. It was first introduced by

Barwise [Bar77] and then reinvented and successfully used by Immerman [Imm82]

and Poizat [Poi82]. This characterization is an important source of intuition on

the relation ≡k, but since it is also very well known and explained in any of the

15

books on finite model theory referenced at the beginning of this section, we omit its

description here.

Although types are infinite sets of formulas, due to a result of A. Dawar [Daw93],

a single FOk-formula is equivalent to the FOk-type of a tuple over a given database.

The equivalence holds for all databases of the same schema.

Lemma 2.5 (Corollary 2.18 in [Daw93]). For every schema σ, for every database

I of schema σ, for every k ≥ 1, for every 1 ≤ r ≤ k, and for every r-tuple ā over

I, there is an FOk-formula α ∈ tpFOk

I (ā) such that for any database J of schema σ

and for every r-tuple b̄ over J, J |= α[b̄] iff tpFOk

I (ā) = tpFOk

J (b̄).

If an FOk formula α satisfies the condition of Lemma 2.5, we say that α isolates

the tpFOk

I (ā).

It is well known that the relation ≡k is uniformly definable in LFP, or equiva-

lently in IFP.

Theorem 2.6 ([KV92a, DLW95]). For every relational vocabulary σ and every k ≥
1, there is a formula ϕkσ of IFP, with 2k free variables, such that on any finite

σ-structure I, given two k-tuples ā and b̄ on I, I |= ϕkσ[ā, b̄] iff ā ≡k b̄.

Moreover, a total ordering of the FOk-types of a given vocabulary is also uni-

formly definable in LFP, or equivalently in IFP.

Theorem 2.7 ([AV95, DLW95]). For every relational vocabulary σ and every k ≥ 1,

there is a formula λkσ of IFP, with 2k free variables, such that on any finite σ-

structure I, λkσ defines a reflexive and transitive relation ≤k on k-tuples such that

for every two k-tuples ā and b̄ on I, either ā ≤k b̄ or b̄ ≤k ā and both ā ≤k b̄ and

b̄ ≤k ā hold iff ā ≡k b̄.

That is, for every relational vocabulary σ and every k ≥ 1, the corresponding

IFP-formula λkσ defines, on any finite σ-structure I, a preorder such that the corre-

sponding equivalence relation is ≡k. Thus, λkσ can be seen as defining a total order

on the equivalence classes of ≡k.

2.3 Background from Complexity Theory

We assume that the reader is familiar with Turing machines and the basic notions

of computability theory. We start from there and, mainly to fix the notation, sur-

16

vey briefly the notions of complexity theory used in this work. Both [Pap94] and

[BDG95] are excellent source books for the topic.

Let t and s be functions on the natural numbers such that t(n) ≥ n+1 and s(n) ≥
1. As usual, DTIME(t(n)) and NTIME(t(n)) denote the classes of languages de-

cidable by deterministic and nondeterministic Turing machines, respectively, whose

running time is bounded above by t. DSPACE(s(n)) and NSPACE(s(n)) denote

the classes of languages decidable by deterministic and nondeterministic Turing ma-

chines, respectively, whose work space is bounded above by s(n).

We assume that the reader is familiar with the following complexity classes:

• the class P of the languages decidable in polynomial-time, P =
⋃
c∈NDTIME(nc);

• the class NP of languages decidable in nondeterministic polynomial time,

NP =
⋃
c∈NNTIME(nc);

• The class PSPACE of languages decidable in polynomial space, PSPACE =⋃
c∈NDSPACE(nc).

If C is a complexity class, we denote as coC the class of languages whose complements

are in C.

Recall that P is closed under complementation and also P ⊆ NP ∩ coNP, but it

is not known whether this containment is proper and whether NP equals coNP. Re-

garding space complexity, by Savitch’s theorem, nondeterministic polynomial space

collapses to deterministic polynomial space, i.e., PSPACE =
⋃
c∈NNSPACE(nc).

The concept of reducibility is the standard way in complexity theory of comparing

the “difficulty” of deciding two different languages. It also allows us to formalize

the concept of “the most difficult” languages of a class which are known as complete

problems.

Given two languages L1 and L2 of some alphabet A, we say that L1 is polynomial-

time (many-one) reducible to L2 iff there is a function f : A∗ −→ A∗, computable

in polynomial-time, and such that x ∈ L1 iff f(x) ∈ L2 holds for all x ∈ A∗.
A language L is hard for a complexity class C iff for every language L′ in C, it

holds that L′ is polynomial-time reducible to L. A language L is complete for a

complexity class C iff it is hard for C and L ∈ C.

The theory of complete problems was initiated with the famous work of Cook

[Coo71], who demonstrated that the set SAT of satisfiable propositional formulae

is complete for NP.

17

2.3.1 Oracle and Alternating Turing Machines

Turing gave his original definition of oracles for the case of undecidable languages.

An oracle for an undecidable language L, is a mythical device that is able to answer

in unit time whether a given word belongs to L or not. In complexity theory, oracles

still are able to answer in unit time whether a given word belongs to a language L or

not, but L must be a decidable language. Informally, we can think of an oracle as a

subroutine which can magically solve a difficult problem in unit time. In this setting,

they are used to compare the complexity of deciding difficult languages. Suppose we

have a language L1 for which there is no known algorithm which decides it in P. If

there is an algorithm that can decide L1 in P, provided that it uses as a subroutine

an oracle for another language L2, then this indicates that the language L2 gives us

some additional information which allows us to overcome the difficulty of deciding

L1 in P.

Definition 2.8. An oracle Turing machine is a Turing machine with a distinguished

tape, called oracle tape, and three distinguished states q?, the query state, and qYES ,

qNO , the answer states.

The computation of an oracle Turing machine requires that an oracle language

be fixed previously to the computation. Let L be an arbitrary language. The

computation of a Turing machine M with oracle L proceeds like in an ordinary

Turing machine, except for transitions from the query state. From the query state

M transfers into the state qYES if the string currently in the oracle tape belongs to

L; otherwise, M transfers into the state qNO .

The time complexity of deterministic as well as nondeterministic Turing machines

with oracles, is defined in exactly the same way as for ordinary Turing machines.

Every query state is counted as an ordinary step. If C is any deterministic or non-

deterministic complexity class and L is a language, then CL is the class of languages

decided by oracle machines of the same sort and time bound as in C, only that the

machines have now an oracle L. If C ′ is also a complexity class defined using bounds

on resources, then CC′ denotes
⋃
L∈C′ CL.

An important complexity class which is usually defined in terms of oracle Turing

machines, is the polynomial-time hierarchy (PH). The levels of this hierarchy are

defined as follows:

∆p
0 = Σp

0 = Πp
0 = P

18

and for m > 0,

∆p
m+1 = PΣp

m Σp
m+1 = NPΣp

m Πp
m+1 = coNPΣp

m

The complexity class PH is the union of all the complexity classes in the polynomial-

time hierarchy, i.e., PH =
⋃
m∈NΣp

m.

The polynomial-time hierarchy can also be defined in terms of alternating Turing

machines. An alternating Turing machine is a variation of the nondeterministic

machine which apart from the usual “existential states”, admits a new kind of state

called universal, which influence the notion of acceptance.

Definition 2.9. An alternating Turing machine is a Turing machine with two dif-

ferent kinds of non-final states: the existential states and the universal states. The

notion of acceptance is defined by induction on the computation tree. The alternat-

ing Turing machine in a given configuration c accepts iff

• c is in a final accepting state, or

• c is in an existential state and at least one of its sons in the computation tree

accepts, or

• c is in an universal state, it has at least one son in the computation tree, and

all its sons in the computation tree accept.

Note that an alternating machine all of whose non-final states are existential, is

essentially a nondeterministic machine.

In this work we use alternating machines which can switch a bounded number of

times between existential and universal states. They are called Σm and Πm machines.

A Σm machine is an alternating machine which starts in an existential state and

switches between existential and universal states at most m − 1 times on a single

computation path. A Πm machine can also switch at most m − 1 times between

existential and universal states, but it starts in an universal state.

We denote as ΣmTIME(f(n)) the class of languages that are decidable by a Σm

machine in time bounded by f . Similarly, we use ΠmTIME(f(n)) to denote the class

of languages decidable by a Πm machine in time time bounded by f .

Using alternating machines, for m ≥ 1, the level Σp
m of the polynomial-time

hierarchy corresponds to the class
⋃
c∈NΣmTIME(nc). The level Πp

m can be defined

as usual, i.e., as the complement of Σp
m, or as

⋃
c∈NΠmTIME(nc). However, there is

19

no natural definition of the intermediate levels ∆p
m of the polynomial-time hierarchy

using alternating machines.

2.4 Background from Descriptive Complexity

The typical way of characterizing the expressive power of a given logic over finite

structures, is by means of classes of queries defined in terms of the time or space

complexity of their evaluation. This approach gave rise to an important field of finite

model theory which is known as descriptive complexity ([Imm99, EF99, Lib04]).

In this setting, the notion of complexity is that of the complexity of describing a

collection of structures of a relational signature which is closed under isomorphisms,

and which is recursive. For instance, we can look at the class of Boolean queries

which are definable in first-order logic as a complexity class. Similarly, we can define

descriptive complexity classes based in other logics.

What makes this approach to complexity particularly interesting is that it has a

close correspondence with the classical classes of computational complexity, which in

turn have emerged as natural levels of computational power, certified by robustness

criteria and the existence of natural complete problems. As a consequence, matching

logics constitute naturally distinguished levels of expressiveness.

Complexity classes in classical complexity theory are usually defined as classes

of languages which are decidable by Turing machines. Therefore, if we want to

talk about the complexity of logics on finite structures, we need to encode finite

structures as words over a fixed alphabet.

We encode any finite relational structure I of a given vocabulary σ as a word over

the alphabet {0, 1}. The encoding enc(I) of I is a word of length O(|I|k), where k is

the maximal arity of a relation symbol in σ, or k = 1 if σ is the empty vocabulary.

We define enc(I) as the concatenation of 1|I|0 (which encodes the size of I) with

the encoding of each relation in I in some fixed order. To encode the relations we

need to assume an ordering on the domain of I. We cannot encode a structure as

a string without an ordering. A relation RI of arity r is encoded as a bit string of

length |I|r where “1” in a given position indicates that the corresponding tuple in

the lexicographical order of tuples in Ir is in RI.

In complexity theory n is usually reserved for the length of the input. However,

for technical reasons, in descriptive complexity n is usually used to denote the size of

20

the input structure, not the length of its encoding. So, in calculating the complexity

of a class of structures, we consider the size of a given input structure I to be |I|,
not the length of enc(I).

Since we are interested on relational databases, i.e., we assume large finite struc-

tures and much smaller sentences (Boolean queries) which are evaluated on these

large finite structures, we use the notion of data complexity. There are however

other notions of complexity of a logic, namely combined complexity and expression

complexity, but these are more appropriate for others areas such as verification and

model checking (see [Lib04] for details).

Let C be a Turing machine complexity class and L be a logic. The data complexity

of L is in C if for every vocabulary σ and every sentence ϕ ∈ L[σ], the corresponding

language {enc(I) : I ∈ Bσ and I |= ϕ}, is in C. We say that a given Boolean query

q of schema σ is in C if it can be tested with complexity C, i.e., if the language

{enc(I) : I ∈ Bσ and q(I) = 1} belongs to C. We say that L captures C if the

following holds:

i. The data complexity of L is in C.

ii. For every Boolean query q in the complexity class C, there is a sentence ϕq of

L such that I |= ϕq iff q(I) = 1.

The foundational result relating computational complexity to the expressive

power of logics over finite structures, is due to Fagin [Fag74] who showed that the

class NP contains exactly those properties (Boolean queries) that are expressible in

existential second-order logic.

Theorem 2.10 ([Fag74]). Σ1
1 captures NP.

This result was latter generalized by Stockmeyer [Sto76] who showed the corre-

spondence between the prenex fragments of second-order logic and the polynomial-

time hierarchy.

Theorem 2.11 ([Sto76]). For m ≥ 1, Σ1
m captures Σp

m.

Since then, the research in the area has demonstrated that virtually all known

complexity classes can be mirrored in logic. However, some of the results equating

logical expressibility to computational complexity require a built-in linear order.

That is, the exact correspondence between expressibility in a logic and decidability

21

within given resource bounds is restricted to those structures that have a linear

order as one of their relations. For instance, LFP captures P on the class of ordered

structures [Imm86, Var82], but no such logical characterization of the class P is

known for arbitrary finite structures. Similarly, it is known that PFP captures

PSPACE on the class of ordered structures [AV91a, Var82].

2.5 Background from Relational Complexity

The fact that the models of computation of queries do not assume an ordered do-

main, leads to a mismatch between the hardness of database queries and their Tur-

ing complexity. The typical example is the even query on a set, which has very

low Turing complexity, but it is by all accounts a hard query. This query cannot be

expressed in logics as powerful as Lω∞ω, which strictly includes all usual extensions of

first-order logic with a fixed point operator. Recall that, it is only when we assume

a build in order that IFP captures P and PFP caputres PSPACE.

Based on this observation, Abiteboul, Vardi and Vianu [AVV97] proposed a

different notion to measure the complexity of computing queries. They called this

notion, relational complexity . In relational complexity theory, computations over re-

lational structures or databases are modelled by relational machines instead of Tur-

ing machines. The relational machine was originally called loosely coupled generic

machine [AV91b, AV95]. Later on, it was renamed as relational machine [AVV95].

A relational machine is a Turing machine augmented with a finite set of fixed-

arity relations forming a relational store (rs). Designated relations contain initially

the input database, and one specific relation holds the output at the end of the

computation. A relational machine uses a finite set of first-order formulae to interact

with the rs . Transitions have the form:

If the internal state of the machine is q,

the tape head is reading symbol x and

the first-order sentence ϕ evaluates to true in the rs ,

then change state to q′,

write symbol x′ in the tape,

move the tape head one cell to the left/right and

replace the r-ary relation R by the relation defined by the first-order formula

ψ(x1, . . . , xr) in the structure contained in the rs .

22

We give a formal definition of this machine in Chapter 7.

Each relational machine has an associated arity, which is the maximum number

of variables which appear in any formula in its finite control.

Unlike Turing machines, relational machines have limited access to their input.

Note that a k-ary relational machine can only access to its input through a fixed

set of FOk queries. In particular, relational machines cannot compute the size of

their input structures in the general case. This is so because the discerning power

of the relational machines is limited. More precisely, a relational machine of arity k

cannot distinguish between tuples of elements of the input structure whose respective

FOk-types coincide.

Proposition 2.12 ([AVV97]). Let 1 ≤ r ≤ k. For every pair of r-tuples ā and b̄

over a relational structure I, ā ≡k b̄ iff no k-ary relational machine can distinguish

among ā and b̄ over I.

Therefore, computations of k-ary relational machines are determined by the

equivalence classes of the relation ≡k. In fact, as shown by Abiteboul and Vianu

in [AV95], relational machines are complete on ordered input structures (where all

distinct tuples have different FOk-type), but they collapse to first-order logic on

unordered sets (where the number of equivalence classes in ≡k is bounded by a

constant independently of the size of the input structure).

Since k-ary relational machines cannot distinguish between tuples which are ≡k-

equivalent, they cannot compute the size of their input structures. But, they can

compute the number of ≡k-classes.

Proposition 2.13 ([AVV97]). Let the k-size of a structure I, denoted sizek(I), be the

number of ≡k-classes of k-tuples over I. For each k ≥ 1 and relational vocabulary σ,

there is a deterministic relational machine Mσ of arity 2k that outputs on its Turing

machine tape, for an input structure I of vocabulary σ, a string of length sizek(I)

in time polynomial in sizek(I).

Based on these facts, Abiteboul and Vianu proposed to used the k-size as a basis

for measuring the complexity of relational machines. This is also the approach that

we follow in Chapter 7.

We think of a relational machine M as an acceptor of a relational language,

i.e., a class of structures of a relational vocabulary closed under isomorphisms. The

23

relational language accepted by M , denoted L(M), is simply the set of input struc-

tures accepted by M . If M is deterministic, then the computation time of M on

an input structure I is the number of transitions that M makes before accepting or

rejecting I, while the computation space is the number of tape cells scanned. If M

is nondeterministic, then we only consider accepting computations. In that case,

the computation time of M on an input structure I is the number of transitions in

the shortest accepting computation of M on I, while the computation space is the

minimum number of tape cells scanned in any accepting computation of M on I.

Definition 2.14. Let L(M) be the relational language accepted by a halting rela-

tional machine M of arity k. Let t and s be functions on the natural numbers such

that t(n) ≥ n+ 1 and s(n) ≥ 1. Then we say that:

• L(M) ∈ DTIMEr(t(n)) if M is deterministic and its computation time on any

input structure I is bounded above by t(sizek(I));

• L(M) ∈ NTIMEr(t(n)) if M is nondeterministic and its computation time on

any input structure I is bounded above by t(sizek(I));

• L(M) ∈ DSPACEr(s(n)) if M is deterministic and its computation space on

any input structure I is bounded above by s(sizek(I));

• L(M) ∈ NSPACEr(s(n)) if M is nondeterministic and its computation space

on any input structure I is bounded above by s(sizek(I)).

Mirroring the classical complexity classes, we define the class Pr of the relational

languages decidable by relational machines working in polynomial-time in the k-

size of their input structures as Pr =
⋃
c∈NDTIMEr(n

c); and the class NPr of the

relational languages decidable by nondeterministic relational machine working in

polynomial-time in the k-size of their input structures as NPr =
⋃
c∈NNTIMEr(n

c).

The class PSPACEr of relational languages decidable by relational machines working

in polynomial-space in the k-size of their input structures is
⋃
c∈NDSPACEr(n

c).

A logic L captures a relational complexity class Cr iff every class of relational

structures definable in L is in Cr and vice versa.

Abiteboul, Vardi and Vianu proved the following results relating fixed point

logics over finite structures and relational complexity classes.

24

Theorem 2.15 ([AV95, AVV97]).

• IFP captures Pr,

• NFP captures NPr,

• PFP captures PSPACEr.

Interestingly, questions about containments among standard complexity classes

translate to questions about containments among relational complexity classes.

Theorem 2.16 ([AVV97]). Let Class(Resource,Control ,Bound) and Classr(Re-

source,Control ,Bound) denote the classical complexity class and the relational com-

plexity class, respectively, where Resource is either time or space, Control is either

deterministic, nondeterministic, or alternating, and Bound is the bounding function

or family of functions. Let F1 and F2 be polynomially closed sets of time/space con-

structible functions, and let Resource1, Resource2, Control1, Control2 be kinds of

resources and controls, respectively. It holds that,

Class(Resource1,Control1, F1) ⊆ Class(Resource2,Control2, F2)

if and only if

Classr(Resource1,Control1, F1) ⊆ Classr(Resource2,Control2, F2).

It follows that the known relationships between deterministic and nondetermin-

istic complexity classes, also hold for relational complexity classes. For instance,

the class of relational languages decidable by nondeterministic relational machines

in polynomial space collapses to PSPACEr. Also, open questions about standard

complexity classes translate to questions about relational complexity classes. For

example, P = NP iff Pr = NPr.

Note that, the well known Abiteboul-Vianu theorem, which reduces the problem

of separating complexity classes P and PSPACE to separating the fixed point logics

LFP and PFP over unordered structures, follows from Theorems 2.15 and 2.16.

25

Chapter 3

Higher-Order Logics

In this chapter we introduce the central subject of the thesis, namely higher-order

logics over finite models.

Since it is not frequently found in the literature, we start with a detailed definition

of the syntax and semantics of finite-order logic. Furthermore, the technicalities of

the proofs of several of our results use heavily these definitions. We also introduce

here the concept of maximal-arity (a generalization of the concept of arity to higher

orders) used in the definition of the arity and alternation hierarchies studied in this

work. At the end of the first section, we define the fragments of finite-order logic

which are usually known as higher-order logics.

Then, we give a few examples of queries. The intention is to provide some

intuition on how to express queries in higher-order logic. We also discuss briefly

why we believe that the study of higher-order logics over finite models could be of

interest from an application perspective.

The last two sections of the chapter are devoted to the review of known results

regarding the expressive power of higher-order logics over finite structures. First we

introduce the general results which characterize the expressive power of the prenex

fragments of higher-order logics. Then we introduce some result on hierarchies in

higher-order logics –a central topic in this work–. The fact that these results refer

only to second-order logic, seems to be mainly the consequence of the fact that this

is the fragment of finite-order logic which has received, up to know, most of the

attention in the context of finite model theory.

26

3.1 Syntax and Semantics of Finite-Order Logic

Finite-order logic is an extension of first-order logic which allows us to quantify over

higher-order relations. We define here its syntax and semantics following the account

in [Lei94]. We emphasize the fact that the set of formulae of finite-order logic can

be viewed as a set of strings over a finite alphabet, i.e., as a formal language. This

plays an important role in the encoding of formulae as finite structures which we

define in Section 4.2 in the next chapter.

Definition 3.1. We define the set of types , as the set typ of strings over the alphabet

{ι; (;); , } inductively generated by:

• ι ∈ typ;

• if τ1, . . . , τr ∈ typ (r ≥ 1), then (τ1, . . . , τr) ∈ typ;

• nothing else belongs to typ.

If τ1 = · · · = τr = ι, then (τ1, . . . , τr) is denoted by ιr. The set of types can be

naturally stratified into orders which are inductively defined, as follows:

• order(ι) = 1

• order((τ1, . . . , τr)) = 1 + max ({order(τ1), . . . , order(τr)})

For τ = (τ1, . . . , τr), r is the arity of the type τ . We associate a non-negative integer,

the maximal-arity (ma), with each type, as follows:

• ma(ι) = 0

• ma((τ1, . . . , τr)) = max ({r,ma(τ1), . . . ,ma(τr)})

Clearly, if order(τ) = 2, then the maximal-arity of τ coincides with its arity. We

denote as typ(i, r) the subset of types of order ≤ i and maximal-arity ≤ r. Note

that each subset typ(i, r) is finite. For instance,

typ(3, 2) = {ι; (ι); (ι, ι); ((ι)); ((ι, ι)); (ι, (ι)); ((ι), ι); ((ι), (ι)); (ι, (ι, ι));

((ι, ι), ι); ((ι), (ι, ι)); ((ι, ι), (ι)); ((ι, ι), (ι, ι))}.

The intended interpretation is that objects of type ι are individuals, i.e., ele-

ments of the universe of a given model, whereas objects of type (τ1, . . . , τr) are r-ary

relations, i.e., sets of r-tuples of objects of types τ1, . . . , τr, respectively.

27

Definition 3.2. Given a set U , the set Uτ of objects of type τ over U is defined by

Uι = U

U(τ1,...,τr) = P(
r∏
i=1

Uτi) = P(Uτ1 × · · · × Uτr)

Over a relational vocabulary σ, each formula of finite-order logic is a string of

symbols taken from the alphabet

A = {¬;∨;∧;∃; ∀; (;); =; x;X; |; ι; , } ∪ σ

The words that belong to the language {x|n : n > 0} are called individual variables ,

while the words that belong to the language {Xτ |n : τ ∈ typ \ {ι} and n > 0} are

called higher-order variables . We call the higher-order variables of the form Xτ |n,
for i = order(τ) and r = ma(τ), i-th order variables of maximal-arity r. To simplify

the notation we denote strings of the form |n, n > 0, as subscripts, e.g., we write x3

for x|||. In addition, we write the types of the higher-order variables as superscripts,

e.g., we write X
(ι)
2 for X(ι)||. Sometimes, we omit the superscript when we denote

second-order variables (i.e., variables of type ιr, for some r ≥ 1) if their arity is clear

from the context. We use V τ to denote any variable of type τ . So, if τ = ι then V τ

stands for an individual variable, otherwise V τ stands for a higher-order variable of

type τ .

Definition 3.3. We define the set of well-formed formulae of finite-order logic over

a relational vocabulary σ (here we do not allow constant symbols), as follows:

i. If v1 and v2 are individual variables, then v1 = v2 is a wff.

ii. If R is a relation symbol in σ of arity r ≥ 1, and v1, . . . , vr are individual

variables, then R(v1, . . . , vr) is a wff.

iii. If V τ is a higher-order variable of type τ = (τ1, . . . , τr) and V τ1
1 , . . . , V τr

r are

variables of types τ1, . . . , τr, respectively, then V τ (V τ1
1 , . . . , V τr

r) is a wff.

iv. If ϕ is a wff, then (¬ϕ) is a wff.

v. If ϕ and ψ are wff’s, then (ϕ ∨ ψ) and (ϕ ∧ ψ) are wff’s.

vi. If ϕ is a wff and v is an individual variable, then ∃v(ϕ) and ∀v(ϕ) are wff’s.

28

vii. If ϕ is a wff and V τ is a higher-order variable, then ∃V τ (ϕ) and ∀V τ (ϕ) are

wff’s.

viii. Nothing else is a wff.

The atomic formulae are the ones introduced by clauses (i) to (iii). The free

occurrence of a variable (either an individual variable or a higher-order variable) in

a formula of finite-order logic is defined in the obvious way. Thus, the set free(ϕ) of

free variables of a formula ϕ is the set of both individual and higher-order variables

which do not occur in ϕ under the scope of a quantifier which binds them.

Note that, according to our definition of wff of finite-order logic, atomic formulae

of the form V (...,ιr,...)(. . . , R, . . .), where R is a relation symbol of arity r in the given

vocabulary σ, are not allowed. We choose to impose this restriction only for the

sake of clarity, in particular for the presentation of Section 4.5. This is clearly not

a fundamental restriction in finite-order logic, and furthermore our results can also

be proven without this restriction as shown in [FT05].

The semantics of formulae of finite-order logic is similar to the semantics of

formulae of second-order logic, except that a valuation over a structure with universe

U maps higher-order variables of type τ to objects in Uτ .

Definition 3.4. Let σ be a relational vocabulary. A valuation val on a σ-structure

I with domain I, is a function which assigns to each individual variable an element

in I and to each higher-order variable V τ , for some type τ 6= ι, an object in Iτ .

Let val0, val1 be two valuations on a σ-structure I, we say that val0 and val1 are

V τ -equivalent if they coincide in every variable of whichever type, with the possible

exception of variable V τ . We also use the notion of equivalence w.r.t. sets of

variables.

Let I be a σ-structure, and let val be a valuation on I. The notion of satisfaction

in finite-order logic extends the notion of satisfaction in first-order logic with the

following rules:

i. I, val |= V τ (V τ1
1 , . . . , V τr

r) where τ = (τ1, . . . , τr) iff

(val(V τ1
1), . . . , val(V τr

r)) ∈ val(V τ).

ii. I, val |= ∃V τ (ϕ) where V τ is a higher-order variable and ϕ is a well-formed

formula, iff there is a valuation val ′, which is V τ -equivalent to val , such that

I, val ′ |= ϕ.

29

iii. I, val |= ∀V τ (ϕ) where V τ is a higher-order variable and ϕ is a well-formed

formula, iff for every valuation val ′, which is V τ -equivalent to val , it holds that

I, val ′ |= ϕ.

The restriction of finite-order logic to formulae whose variables are all of order

≤ i, for some i ≥ 1, is called i-th order logic and is denoted by HOi. Note that,

for i = 1 this is first-order logic (FO), and for i = 2 this is second-order logic (SO).

The logics of order i ≥ 2 are usually known as higher-order logics (HO).

As in many other extensions of first-order logic, in second-order logic we can

naturally associate a non-negative integer, the arity, with each formula. Usually,

the arity of a formula of second-order logic is defined as the biggest arity of a

second-order variable occurring in that formula. Taking a similar approach, we

define the maximal-arity of a HOi formula, i ≥ 2, as the biggest maximal-arity of

any higher-order variable occurring in that formula. For r ≥ 1, the restriction of

HOi to formulae of maximal-arity ≤ r forms the fragment HOi,r of HOi. Clearly,

for second-order logic the maximal-arity of a formula coincides with its arity. Note

that, if a variable V τ occurs in some HOi,r formulae, then τ ∈ typ(i, r).

An easy induction using renaming of variables and equivalences such as ¬∃V τ (ϕ)

≡ ∀V τ (¬ϕ) and (φ ∨ ∀V τ (ψ)) ≡ ∀V τ (φ ∨ ψ) if V τ is not free in φ, shows that each

HOi formula is logically equivalent to an HOi formula in prenex normal form, i.e.,

to a formula of the form Q1V1 . . . QnVn(ϕ), where Q1, . . . , Qn ∈ {∀,∃}, and where

V1, . . . , Vn are variables of order≤ i and ϕ is a quantifier-free HOi formula. Moreover,

for every i ≥ 2, each HOi formula is logically equivalent to one in prenex normal

form in which the quantifiers of order i precede all the remaining quantifiers in the

prefix (among others, see [HT03, HT06b] for a detailed proof of this fact). Such

normal form is known as generalized Skolem normal form, or GSNF. The formulae

of finite-order logic which are in GSNF comprise well known hierarchies whose levels

are denoted Σi
m and Πi

m. The class Σi
m consists of those HOi+1 formulae in GSNF

in which the quantifiers of order i + 1 are arranged into at most m alternating

blocks, starting with an existential block. Πi
m is defined dually. Clearly, every

HOi+1 formula is equivalent to a Σi
m formula for some m, and also to a Πi

m formula.

30

3.2 Examples of Queries in Higher-Order Logics

It is not frequent to find in the literature examples of queries expressed in higher-

order logics beyond second-order. So, we think it is appropriate to provide here

some intuition on how to describe properties of finite structures using higher-order

quantification. We do that by means of two simple examples of properties of graphs

which allow for an elegant characterization in third-order logic. Further examples

can be found in [FT04, FPT05].

In the examples below, we work on the vocabulary σ = {E} of graphs. An

undirected graph is a σ-structure G = 〈G,EG〉 satisfying ϕ1 ≡ ∀xy(E(x, y) →
E(y, x)) and ϕ2 ≡ ∀x(¬E(x, x)). If we do not require G to satisfy ϕ1, then we

speak of a directed graph (or digraph). As usual, we call vertices the elements of G

and edges the elements of EG.

For the sake of clarity, we omit in our examples the types of the variables (which

anyway are clear from the context) and use uppercase calligraphic letters to denote

third-order variables.

Examples of second-order formulae expressing different properties of graphs, are

frequently encountered in the literature. A classical example of that is graph 3-

colorability, which can be expressed elegantly in Σ1
1 using just unary second-order

variables (see for instance [Imm99]). Anyway, we think it is better to start with a

simple example of a second-order query, rather than to go straight to the examples

of third-order queries.

Example 3.5. An undirected graph G is regular if all its vertices have the same de-

gree. It is well known that the class of regular graphs is not definable in first-order

logic [EF99, Imm99]. In second-order logic, this class can be defined as follows:

∃A
(
∀x(∃B(“B is the set of vertices which are adjacent to x” ∧

“the sets A and B have the same cardinality”)
))

It is very easy to express that “B is the set of vertices which are adjacent to x”.

∀z(B(z) ↔ E(x, z)
)

Finally, we can express that “the sets A and B have the same cardinality” with a

formula stating that there is a bijection F from A to B.

31

a b

c

d

f e

g

h i
J(a) J(c) J(g)

J(b) J(d) J(f) J(h)

J(e)

J(i)

Figure 3.6

∃F∀xyz
((
F (x, y) → A(x) ∧B(y)

)∧ “F is a subset of A×B”(
F (x, y) ∧ F (x, z) → y = z

)∧ “F is a function”(
A(x) → ∃y(F (x, y))

)∧ “F is total”(
F (x, z) ∧ F (y, z) → x = y

)∧ “F is injective”(
B(y) → ∃x(F (x, y))

))
“F is surjective”

Now we can move to our first example in third-order logic.

Example 3.6. An undirected graph G is an interval graph iff it is the intersection

graph of a family of intervals of the real line. This means that to each vertex v of G

corresponds an interval J(v) of the real line such that (u, v) ∈ EG iff J(u)∩J(v) 6= ∅.
Figure 3.6 displays the graph usually known as windmill together with its interval

representation.

By using a characterization of Gilmore and Hoffman [GH64], we can define in

third-order logic the class of interval graphs, as follows:

∃C∃O(
“C is the family of all vertex subsets of G that induce a maximal clique” ∧

“O is a linear order of C” ∧
∀x(“the subsets in C which contain x occur consecutively in the linear order O”)

)

We express that “C is the family of all vertex subsets of G that induce a maximal

clique” with the subformula:

∀X
(
C(X) ↔ ∀x∀y(X(x) ∧X(y) ∧ x 6= y → E(x, y)

)∧ “X induces a clique on G”

¬∃Y (∀x(X(x) → Y (x)) ∧ ∃x(Y (x) ∧ ¬X(x))∧
∀x∀y(Y (x) ∧ Y (y) ∧ x 6= y → E(x, y))

))

“no superset of X induces a clique on G”

32

We express that “O is a linear order of C” with the subformula:

∀X∀Y ∀Z(
(O(X, Y) → C(X) ∧ C(Y))∧ “O is a subset of C × C”

(C(X) → O(X,X))∧ “O is reflexive”

(O(X, Y) ∧ O(Y,X) → X = Y)∧ “O is antisymmetric”

(O(X, Y) ∧ O(Y, Z) → O(X,Z))∧ “O is transitive”

(C(X) ∧ C(Y) → O(X, Y) ∨ O(Y,X))
)

“dichotomy holds in O”

Finally, we express that “the subsets in C which contain x occur consecutively in

the linear order O” with the subformula:

∃F∃L
(
C(F) ∧ F (x) ∧ ¬∃X(O(X,F) ∧X 6= F ∧X(x)

)∧
“F is the first subset in the order O which includes the vertex x”

C(L) ∧ L(x) ∧ ¬∃X(O(L,X) ∧X 6= L ∧X(x)
)∧

“L is the last subset in the order O which includes the vertex x”

∀X(O(F,X) ∧ O(X,L) → X(x)
))

“the vertex x belongs to all subsets which are between F and L in the order O”

Actually, we do not really need the expressive power of third-order logic to

characterize the class of interval graphs. In fact, interval graphs can be recognized

in linear time [BL76], and thus there is a formula in Σ1
1 which can express this

property. Recall that by Fagin’s theorem, Σ1
1 captures NP . However, it is very

unlikely that there is a formula in second-order logic that expresses the property in

a way which is as intuitive and simple as in the example. Similar observations can

be applied to our next example.

As an aside consideration and from an application perspective, this indicates

that it could make sense to add some kind of higher-order quantification to database

query languages like SQL. Even though usually the queries in P are enough, as to the

queries needed in the industry, we think that the use of higher-order quantification

makes the expression of some of them much easier.

Example 3.7. An n-cube Qn is an undirected graph whose vertices are binary n-

tuples. Two vertices of Qn are adjacent iff they differ in exactly one bit. A 1-cube

Q1, a 2-cube Q2 and a 3-cube Q3 are displayed in Figure 3.7.

We can build an (n + 1)-cube Qn+1 starting with two isomorphic copies of an

n-cube Qn and adding edges between corresponding vertices. Using this fact, we

can define in third-order logic the so called class of hypercube graphs, as follows:

33

(0,1,1)

(1,1,1)(1,1,0)

(0,1,0)

(1,0,0) (1,0,1)

(0,0,1)(0,0,0)

(1,0) (1,1)

(0,1)(0,0)

(0) (1)

Figure 3.7

∃C∃O(
“C is a class of undirected graphs” ∧ “O is a total order on C” ∧
∀G1∀G2

(C(G1) ∧ C(G2) ∧
“G1 is the immediate predecessor of G2 in the order O” →
“G2 can be built from two isomorphic copies of G1 by adding edges

between corresponding vertices”
)∧

“the first graph in the order O is a Q1”

“the last graph in the order O is the input graph”
)

We can express that “G2 can be built from two isomorphic copies of G1 by adding

edges between corresponding vertices”, as follows:

∃F1∃F2

(
“F1 and F2 are injective and total functions from dom(G1) to dom(G2)” ∧

“The ranges of F1 and F2 form a partition of dom(G2)” ∧
“F1 and F2 are isomorphisms from G1 to the sub-graphs of G2 induced by the

ranges of F1 and F2, respectively” ∧
∀x(x ∈ dom(G1) → “there is an edge in G2 which connects F1(x) and F2(x)”) ∧
¬∃xy(x, y ∈ dom(G1) ∧ x 6= y∧

“there is an edge in G2 which connects F1(x) and F2(y)”)
)

Note that, if there is an edge (a, b) in G2 such that a belongs to the range of F1

and b belongs to the range of F2, or vice versa, then either F−1
1 (a) = F−1

2 (b) or

F−1
1 (b) = F−1

2 (a).

It is clear how to express in third-order logic the remaining details. So, we end

this example here.

34

3.3 The Expressive Power of Higher-Order Logics

The known results on the expressive power of higher-order logics turned out to be

extensions of the Fagin-Stockmeyer correspondence between the prenex fragments

of second-order and the polynomial hierarchy. In order to state them, we first define

by induction on i the i-fold exponential function expi on the natural numbers as

follows: exp0(n) = n, and for i ≥ 1, expi(n) = 2expi−1(n).

The expressive power of higher-order logics on finite structures has been studied,

among a few others, by Kuper and Vardi [KV88], by Leivant [Lei89] and by Hull

and Su [HS91]. However, the exact characterization of each prenex fragment of

higher-order logics over finite structures is more recent and it is due to Hella and

Turull Torres [HT03, HT06b].

Theorem 3.8 ([HT03, HT06b]). For i,m ≥ 1, it holds that:

• Σi
m captures

(⋃
c∈NNTIME(expi−1(n

c))
)Σp

m−1

• Πi
m captures

(⋃
c∈N coNTIME(expi−1(n

c))
)Σp

m−1

where Σp
m−1 is the level m− 1 of the polynomial-time hierarchy.

The following corollary is a direct consequence of the fact that, for every i ≥ 2,

HOi =
⋃
m≥0 Σi−1

m .

Corollary 3.9 ([HT03, HT06b]). For every i ≥ 2,

• HOi captures
⋃
m≥0

(⋃
c∈NNTIME(expi−2(n

c))
)Σp

m

Independently, Kolodziejczyk [Kol04b, Kol05] characterized the prenex frag-

ments of higher-order logic in terms of alternating Turing machines, but taking

also into account the arity of the higher-order variables. He uses for that a notion of

arity which he called basic-arity (ba). If τ is a type of order 2, then ba(τ) is simply

the arity of τ . If order(τ) > 2 and τ = (τ1, . . . , τr), then ba(τ) = max ({ba(τi) :

order(τi) = order(τ)− 1, 1 ≤ i ≤ r}). For i ≥ 2 and m ≥ 1, they defined [Σi
m]≤r as

the class of Σi
m formulae in which the type of the variables of order i and i+ 1 have

basic-arity bounded by r, and proved the following.

Theorem 3.10 ([Kol04b, Kol05]). For i ≥ 2 and m ≥ 1,

• [Σi
m]≤r captures

⋃
c∈NΣmTIME(expi−1(cn

r))

35

A characterization of the expressive power of the Σi
m and Πi

m fragments in terms

of alternating Turing machines instead of oracle machines, follows easily from the

previous theorem. According to [Bör84], the case m = 1 was proved by Christen in

his Ph.D. thesis [Chr74].

Corollary 3.11. For i,m ≥ 1,

• Σi
m captures

⋃
c∈NΣmTIME(expi−1(n

c))

• Πi
m captures

⋃
c∈NΠmTIME(expi−1(n

c))

Previously known results from Hull and Su [HS91] and from Kuper and Vardi

[KV88] regarding the expressive power of higher-order logics, can be obtained as

corollaries of Theorem 3.8 and Corollary 3.9.

The class of Kalmar elementary functions can be characterized as the class of

functions on natural numbers which are computable using resources bounded by

expi(n
c) for some i ≥ 0 and some constant c ∈ N (see [Ros84]). Observe that, by the

standard relationships that hold among the different resources (see Theorem 2.26 in

[BDG95]), it does not matter whether we take resources to mean DTIME, NTIME,

DSPACE or NSPACE.

Corollary 3.12 ([Ben62, HS91]). Finite-order logic captures the class of languages

decidable in DTIME(f(n)), where f(n) is a Kalmar elementary function.

Consequently, finite-order logic (or equivalently
⋃
i≥2HO

i) is not complete, in

the sense that it cannot express all computable Boolean queries. In [HT03, HT06b]

a logic which is complete, called variable order logic (V O), was defined. This logic

permits the use of untyped relation variables, i.e., variables of variable order, by al-

lowing quantification over orders. They showed that the resulting logic can express

all computable queries, but it can also express non computable queries. A charac-

terization of the class of computable queries in terms of an undecidable fragment of

V O was also given there.

As pointed out by Hella and Turull-Torres, the following result is a straightfor-

ward consequence of their characterization of HOi and the hierarchy theorem for

nondeterministic time (see [Coo72, SFM78, Zák83]). The original proof in [HS91] is

by contrast quite involved.

Corollary 3.13 ([HS91]). For every i ≥ 2, HOi ⊂ HOi+1.

36

A similar result also follows for the existential and universal fragments of higher-

order logics. We denote as ∃HOi the class of HOi formulae in which universal

quantification of order i is not allowed and where negation is allowed only in atoms.

To denote the corresponding universal fragment, we use ∀HOi.

Corollary 3.14 ([KV88]). For every i ≥ 2,

• ∃HOi ⊂ ∃HOi+1

• ∀HOi ⊂ ∀HOi+1

3.4 Known Hierarchies in Second-Order Logic

In second-order logic, a considerable amount of effort was devoted to the study

of hierarchies defined in terms of alternations of quantifiers. In this line of work,

important results have been obtained for monadic second-order logic (MSO), i.e.,

second-order logic restricted to unary second-order variables.

Some of the earlier results on this regard concern a class of special structures

which are usually known a word models [EF99]. Let A be a finite alphabet and let

π(A) be the vocabulary {<}∪{Ra : a ∈ A}, where < is a binary relation symbol and

the different Ra are unary relation symbols. We can identify any word w = a1 . . . an

in A+ with a π(A)-structure (word model) Iw, where the cardinality of dom(Iw)

equals the length of w, <Iw is a linear order in dom(Iw), and, for each Ra ∈ π(A),

RIw
a contains the positions in w carrying an a, i.e., RIw

a = {b ∈ Iw : for some j (1 ≤
j ≤ n), b is the j-th element in the order <Iw and aj = a}.

By the fundamental result of Büchi and Elgot the regular languages are precisely

those which can be defined in monadic second-order on word models, cf. [Büc60,

Elg61].

Theorem 3.15 ([Büc60]). Let A be a finite alphabet. A language L ⊆ A+ is defin-

able in monadic second-order logic iff it is regular.

Furthermore, since every regular language is actually definable by a monadic

Σ1
1 sentence (see for instance Proposition 6.2.1 in [EF99]), it follows that on word

models, monadic second-order logic collapses to its existential fragment.

Corollary 3.16. Over word models, MSO = monadic Σ1
1.

37

Thomas [Tho82] gave a refinement of this result. He observed that over word

models monadic-second order logic even collapses to monadic Σ1
1 with only a single

existential quantification of a unary second-order variable. This result does not ex-

tend to all finite structures. On the contrary, Otto [Ott95] showed that the number

of existential quantifiers in monadic Σ1
1 induces a strict hierarchy as to expressive

power. Let k-monΣ1
1 be the set of monadic Σ1

1 formulae which allow up to k exis-

tential quantifications of unary second-order variables.

Theorem 3.17 ([Ott95]). For every k ≥ 1, there are Boolean queries not expressible

in k-monΣ1
1 but expressible in (k + 1)-monΣ1

1.

Other classes of finite structures over which interesting results concerning monadic

second-order hierarchies have been obtained, are the classes of graphs and grids. We

already defined the class of directed and undirected graphs in Section 3.2. A grid is

a graph isomorphic to

〈{0, . . . , n} × {0, . . . ,m}, {((i, j), (k, l)) : i, k ≤ n; j, l ≤ m; |i− k|+ |j − l| = 1}〉

for some n,m. That is, for 0 ≤ i < n and 0 ≤ j < n, each node (i, j) is connected

to the nodes (i+ 1, j) and (i, j + 1).

In 1994, Fagin [Fag94] raised the question of whether by increasing m the

monadic Σ1
m-formulae could express more properties of finite graphs. This ques-

tion is the “monadic analogue” of the problem whether the polynomial hierarchy is

strict. Some years before that, Ajtai and Fagin [AF90] gave a partial answer to this

question proving that reachability for directed graphs is a monadic property which

is not expressible in monadic Σ1
1. Schwentick [Sch94] extended this result to directed

graphs with a built-in order. Fagin’s question was answered in [MT97] where it was

shown that over directed graphs, the monadic Σ1
m-formulae induce a strict hierarchy

of graph properties. A slightly stronger result was proven for grids in [Sch97], where

it was shown that over grids, monadic−Σ1
m ⊂ monadic−Σ1

m+1 ∩ monadic−Π1
m+1.

These results on monadic quantifier hierarchies over grids and graphs were further

studied and strengthened in [MST02], where among other interesting results, the

following was shown.

Theorem 3.18 ([MST02]). Let B(monadic−Σ1
m) denote the smallest superset of

monadic Σ1
m which is closed under conjunction and negation of formulae in monadic

Σ1
m. Let m ≥ 1. If C is the class of directed graphs, or undirected graphs, then it

holds that over C, B(monadic−Σ1
m) ⊂ monadic−Σ1

m+1 ∩monadic−Π1
m+1.

38

We should note here that this result does not hold for colored grids, i.e., grids

extended with unary relations which may be thought of as representing colors on

the vertices. Over colored grids, the collapse of existential monadic second-order

prefixes to a single existential quantifier was proved in [Mat98]. Also, several classes

of graphs of bounded tree-width in which the monadic quantifier hierarchy collapses,

have been characterized [MM03].

In many extensions of first-order logic, the maximum arity of the relation vari-

ables occurring in a formula was shown to be of a great relevance. The fragments

allowing only formulae of a bounded arity in its relation variables form a natural

hierarchy inside such logics, and a natural question to be asked is whether this hi-

erarchy is strict. An affirmative answer to this question for various extensions of

first-order logic by fixed-point operators and transitive closure operators has been

given by Grohe in [Gro93, Gro96]. In [Hel89, Hel92], Hella studied the notion of arity

on first-order logic extended with Lindström quantifiers. In [GH96], a double arity

hierarchy theorem for transitive closure logic was proven. However, in second-order

logic less progress has been made regarding arity hierarchies.

The Σ1
1 arity hierarchy, i.e., the hierarchy ∪r∈N(Σ1

1)
≤r where (Σ1

1)
≤r denotes the

set of Σ1
1 formulae restricted to second-order variables of arity at most r, is known

to be strict over vocabularies of arbitrary (unbounded) arity [Ajt83]. But it is still

open whether the arity hierarchy in Σ1
1 is strict over vocabularies of a fixed arity. A

sufficient condition for the strictness of this hierarchy was given in [Kol04a].

Proposition 3.19 ([Kol04a]). If for every vocabulary σ there is a fixed k such that

data complexity for FO[σ] is in NTIME(nk), then (Σ1
1)
≤r ⊂ (Σ1

1)
≤r+1 for every r ≥ 1.

In the study of the full hierarchy Σ1
m, Makowsky and Pnueli followed a different

approach in [MP96]. They investigated the expressive power of second-order logic

over finite structures when limitations in the arity of the second-order variables and

in the number of alternations of both first-order and second-order quantifiers, are

simultaneously imposed. Under these conditions, they proved the existence of a

proper hierarchy of arity and alternation in second-order logic. We explain this

result with more detail in the next chapter where we prove analogous results for

each higher-order logic of order ≥ 2.

Finally, we should mention that an important hierarchy theorem for second-order

generalized quantifiers was recently proved in [Kon06].

39

Chapter 4

An Arity-Alternation Hierarchy in

Higher-Order Logics

In this chapter, aiming to gain a better understanding on the kind of syntactic

restrictions which are relevant as to the expressive power of different fragments

of higher-order logics over finite structures, we study the effect of simultaneously

bounding the maximal-arity of the higher-order variables and the alternation of

quantifiers in formulae of higher-order logics. Let AAi(r,m) be the class of (i+ 1)-

th order logic formulae where all quantifiers of whichever order are grouped together

at the beginning of the formula, forming up to m alternating blocks of consecutive

existential and universal quantifiers, and such that the maximal-arity of the higher-

order variables is bounded by r. Note that, the order of the quantifiers in the prefix

may be mixed.

We show that, for every i ≥ 1, the resulting AAi(r,m) hierarchy of formulae of

(i+1)-th order logic is proper. We get our result by roughly adapting the strategy of

Makowsky and Pnueli [MP96] to each higher-order logic of order i ≥ 2. The strategy

consists in considering the set AUTOSAT (F) of formulae of a given logic F which,

encoded as finite structures, satisfy themselves. As the well known diagonalization

argument applies when F is a level of an AAi hierarchy of arity and alternation, it

follows that AUTOSAT (F) is not definable in F , but is definable in a higher level

of the same hierarchy.

The chapter is organized as follows. In the first section we formally define the AAi

hierarchies. Then, in Section 4.2 we fix an encoding for the formulae of finite-order

logic as relational structures, and we define the sets WFF (F), AUTOSAT (F) and

40

DIAG(F) of structures encoding well-formed formulae in F , self-satisfying formulae

in F , and well-formed formulae in the complement of AUTOSAT (F) with respect to

WFF (F), respectively, for a given logic F . In Section 4.3 we study the descriptive

complexity of WFF (F) for different fragments of higher-order logics. After that,

we move to Section 4.4 where we use a diagonalization argument to give lower

bounds for the definability of DIAG(F) and AUTOSAT (F) for different fragments

of higher-order logics. In Section 4.5 we give an upper bound for the definability of

the classes AUTOSAT (F), with F being the different levels of the AAi hierarchies.

Finally, in Section 4.6 we present our main result regarding the properness of the

AAi hierarchies as well as some considerations regarding an alternative strategy to

prove this result by means of a complexity-theoretical type of argument.

4.1 The AAi Hierarchies

We define next for each order i ≥ 2 a hierarchy in HOi defined in terms of both,

alternation of quantification and maximal-arity of the higher-order variables.

Definition 4.1. (AAi hierarchies). For i, r,m ≥ 1,

i. AAΣi(r,m) is the restriction of HOi+1,r to prenex formulae with at most m

alternating blocks of quantifiers, starting with an existential block. That is,

AAΣi(r,m) is the class of formulae ϕ ∈ HOi+1,r of the form

∃ V1 ∀ V2 . . . Qm Vm (ψ)

where ψ is a quantifier-free HOi+1,r formula, Qm is either ∃ if m is odd or ∀ if

m is even, and for 1 ≤ j ≤ m, each variable in the vector Vj is a variable of

order ≤ i+ 1 and maximal-arity ≤ r.

ii. AAΠi(r,m) is defined in the same way as AAΣi(r,m), but now we require that

the first block consists of universal quantifiers.

iii. AAi(r,m) = AAΣi(r,m) ∪ AAΠi(r,m).

Note that, the formulae in the AAi hierarchies are in prenex normal form, but

not necessarily in GSNF. Thus, the quantifiers of the highest order do not nec-

essarily precede all the remaining quantifiers in the prefix, as it is the case in the

Σi
m hierarchies. Furthermore, in the AAi hierarchies we count every alternation of

41

quantifiers in the prefix, independently of their order, while in the Σi
m hierarchies

the only alternation counted are those corresponding to the quantifiers applied to

the variables of the highest order.

Makowsky and Pnueli showed that the AA1 hierarchy imposes a proper hierarchy

in second-order logic.

Theorem 4.2 (Th. A [MP96]1). For every r,m ≥ 1 there are Boolean queries not

expressible in AA1(r,m) but expressible in AA1(r + c(r),m+ 6), where c(r) = 1 for

r > 1 and c(r) = 2 for r = 1.

They proved this result by introducing the set AUTOSAT (F) of formulae in

a given logic F which satisfy themselves, in a certain encoding of the formulae as

structures. Following a similar strategy, we show that, for every i ≥ 2, the analogous

AAi hierarchy imposes a proper hierarchy in HOi+1.

4.2 Encoding Well-Formed Formulae into Rela-

tional Structures

Using word models (see Section 3.4 in the previous chapter or [EF99] for a definition),

every formula of finite-order logic over a given relational vocabulary σ can be viewed

as a finite relational structure of the following vocabulary.

π(σ) = {<,R¬, R∨, R∧, R∃, R∀, R(, R), R=, Rx, RX , R|, Rι, R,} ∪ {Ra : a ∈ σ}

Example 4.3. If σ = {E} is the vocabulary of graphs and ϕ is the sentence

∃X(ι)
1 (∃x2(X

(ι)
1 (x2) ∨ E(x2, x2))),

which using our notation for the variables corresponds to

∃X(ι)|(∃x||(X(ι)|(x||) ∨ E(x||, x||))),

then the following π(σ)-structure I encodes ϕ.

I = 〈I,<I, RI
¬, R

I
∨, R

I
∧, R

I
∃, R

I
∀, R

I
(, R

I
), R

I
=, R

I
x, R

I
X , R

I
| , R

I
ι , R

I
, , R

I
E〉

1Theorem A in [MP96] actually states m + 4 instead of m + 6, but as we explain latter in

Remark 4.29, m + 4 seems to be a bit stronger than what is warranted by the proof.

42

where <I is a linear order on I, |I| = length(ϕ), and for each Ra ∈ π(σ), RI
a contains

the positions in ϕ carrying an a,

RI
a = {b ∈ I : for some j (1 ≤ j ≤ |I|), a is the j-th symbol in ϕ, and

b is the j-th element in the order <I}
Moreover, instead of having a different vocabulary π(σ) depending on the vo-

cabulary σ of the formulae which we want to encode as relational structures, we can

have a vocabulary ρ rich enough to describe formulae of finite-order logic for any

arbitrary vocabulary σ. That is, we can fix a vocabulary ρ such that every formula

of finite-order logic of whichever vocabulary σ can be viewed as a finite ρ-structure.

This can be done as follows. Let ρ be the vocabulary

{<,R¬, R∨, R∧, R∃, R∀, R(, R), Rx, RX , R|, Rι, R,, RP}

We first identify every formula ϕ of finite-order logic over an arbitrary vocabulary

σ, with a formula ϕ′ over the vocabulary σ′ = {P |i : 1 ≤ i ≤ |σ| + 1}, where, for

a predefined bijective function f from σ ∪ {=} to σ′, ϕ′ is the formula obtained

by replacing in ϕ each occurrence of a relation symbol R ∈ σ ∪ {=} by the word

f(R) ∈ σ′. We then identify every formula ϕ with the ρ-structure Iϕ′ corresponding

to the word model for ϕ′.

Note that, following the previous schema, even the formulae of finite-order logic

over ρ can be viewed as finite ρ-structures. This motivates the following important

definition.

Definition 4.4. Let F be a set of formulae of finite-order logic of vocabulary ρ, let

ρ′ = {P |i : 1 ≤ i ≤ 15} and let f be the following bijective function from ρ ∪ {=}
to ρ′.

{< 7→ P1,= 7→ P2, R¬ 7→ P3, R∨ 7→ P4, . . . , Rι 7→ P13, R, 7→ P14, RP 7→ P15}

where, for 1 ≤ i ≤ 15, Pi denotes a string of the form P |i. For every formula ϕ

of finite-order logic over ρ, let ϕ′ be the formula obtained by replacing in ϕ each

occurrence of a relation symbol R ∈ ρ ∪ {=} by the word f(R) ∈ ρ′. We identify

every formula ϕ with the ρ-structure Iϕ′ , where the cardinality of I is the length of

ϕ′, <Iϕ′ is a linear order on I, and for each Ra ∈ ρ, RIϕ′
a corresponds to the positions

in ϕ′ carrying an a, i.e., we identify ϕ with the word model for ϕ′.

43

• We denote by WFF (F) the set of finite ρ-structures Iϕ′ such that ϕ ∈ F .

• We denote by AUTOSAT (F) the set of finite ρ-structures Iϕ′ such that ϕ is

in F and there is a valuation val for which Iϕ′ , val |= ϕ.

• We define DIAG(F) = WFF (F) \ AUTOSAT (F).

Let us see some concrete examples of finite ρ-structures which belong to WFF (F),

AUTOSAT (F) and DIAG(F).

Example 4.5. Let Iϕ′ be the ρ-structure corresponding to the word model for

ϕ′ ≡ ∃x|(∃x||(P |(x|, x||)))

which encodes the formula ϕ ≡ ∃x1(∃x2(<(x1, x2))). It follows that Iϕ′ belongs to

WFF (FO[ρ]), as ϕ is a wff in FO[ρ]. Since Iϕ′ is the word model for ϕ′, there are

at least two elements x1, x2 ∈ dom(Iϕ′) such that x1 < x2. Therefore, Iϕ′ |= ϕ and

consequently Iϕ′ belongs to AUTOSAT (FO[ρ]). On the other hand, the ρ-structure

Iψ′ corresponding to the word model for ψ′ ≡ (¬ϕ′), also belongs to WFF (FO[ρ]),

as the formula ψ ≡ (¬ϕ) encoded by Iψ′ is a wff in FO[ρ], but clearly Iψ′ is not

in AUTOSAT (FO[ρ]). This means that Iψ′ is in DIAG(FO[ρ]). Finally, the Iα′

structure corresponding to the word model for α′ ≡ xP ||| is not in WFF (FO[ρ]),

and therefore neither is in AUTOSAT (FO[ρ]) nor in DIAG(FO[ρ]), as the formula

α ≡ xR¬ encoded by Iα′ is not a well-formed formulae in FO[ρ].

Note that, for i, r,m ≥ 1 and F = AAi(r,m), WFF (F), AUTOSAT (F) and

DIAG(F) are not empty.

4.3 Recognizing Well-Formed Formulae

We consider now the complexity of recognizing well-formed formulae of finite-order

logic.

Recall that, by the fundamental result of Büchi and Elgot (see Theorem 3.15), the

regular languages are precisely those which can be defined in monadic second-order.

Since every regular language is actually definable by a monadic Σ1
1 sentence formed

by a block of existential quantifiers with unary second-order variables, followed by

a block of first-order universal quantifiers, followed in turn by a first-order formula

which is quantifier free, we have the following fact.

44

Fact 4.6. Every regular language is definable in the level AAΣ1(1, 2) of the hierarchy

of arity and alternation of second-order.

Regarding context-free languages, Makowsky and Pnueli proved the following.

Proposition 4.7 (Prop. 14 [MP96]). Every context-free language is definable in

the level AAΣ1(3, 3) of the hierarchy of arity and alternation of second-order.

Therefore, for each context-free grammar G with set of terminal symbols T there

is a AAΣ1(3, 3) formula ϕG of vocabulary π(T) = {<} ∪ {Ra : a ∈ T} such that

Mod(ϕG) = {I ∈ Bπ(T) : I is a word model for some v ∈ L(G)}

It is not difficult to see that, for i, r,m ≥ 1 and a relational vocabulary σ, the set

of wff’s of AAi(r,m) over σ is a context-free language. The following example

illustrates this fact by showing a context-free grammar for one of these sets of

formulae.

Example 4.8. Let G = (N, T, P,S) be a context-free grammar where N = {S,

F, BΣ, BΠ, V, A, I} is the set of nonterminal symbols, T = {¬;∨;∧;∃; ∀; (;);
=; x;X; |; ι;R; , } is the set of terminal symbols, S is the start symbol, and P is

the following set of productions:

S → F “quantifier-free formula F”

S → BΣF ∪ BΣBΠF ∪ BΣBΠBΣF “zero, one or two alternations of quantifiers, start-

ing with an existential block”

S → BΠF ∪ BΠBΣF ∪ BΠBΣBΠF “zero, one or two alternations of quantifiers, start-

ing with an universal block”

BΣ → ∃V ∪ ∃VBΣ “block of existential quantifiers”

BΠ → ∀V ∪ ∀VBΠ “block of universal quantifiers”

F → A ∪ (F∨F) ∪ (F∧F) ∪ (¬F) “atomic formula or compound formula”

V → xI ∪ X(ι)I ∪ X((ι))I “a variable is a first-order variable x or a higher-order

variable Xτ , where τ ∈ typ(3, 1) \ {ι}, plus an index”

A → xI = xI “atomic formula of the form v1 = v2”

A → R(xI) “atomic formula of the form R(v)”

45

A → X(ι)I(xI) ∪ X((ι))I(X(ι)I) “atomic formula of the form V τ (V τ1
1) where τ =

(τ1) ∈ typ(3, 1) \ {ι}”
I → | ∪ |I “index”

The language L(G) generated by G is precisely the set of wff’s of AA2(1, 3) over

σ = {R}, where R is a unary relation symbol.

The following proposition is a consequence of the previous observations.

Proposition 4.9. For i, r,m ≥ 1, the notion of wff of AAi(r,m) is not definable in

AAΣ1(1, 1) but is definable in AAΣ1(3, 3).

Proof. (Sketch). Given that, for i, r,m ≥ 1 and a relational vocabulary σ, the set of

wff’s of AAi(r,m) over σ is a context-free language, and that, by Proposition 4.7,

every context free language is definable in AAΣ1(3, 3), we can conclude that the

notion of wff of AAi(r,m) is definable in AAΣ1(3, 3).

To see that the notion of wff of AAi(r,m) is not definable in AAΣ1(1, 1), let us

assume that, for some relational vocabulary σ and some i, r,m ≥ 1, the set of wff’s of

AAi(r,m) over σ is definable in AAΣ1(1, 1). Since monadic Σ1
1 includes AAΣ1(1, 1),

it follows that, by Büchi’s characterization of regular languages, the set of wff’s over

σ for such fragment AAi(r,m) is regular. But it is straightforward to show, by using

the pumping lemma for regular languages (see [HU79]), that for every i, r,m ≥ 1,

AAi(r,m)[σ] is non-regular. This contradicts the assumption that the set of wff’s of

some fragment AAi(r,m) is definable in AAΣ1(1, 1), completing the proof.

For every i, r,m ≥ 1, we now want to establish the complexity of recognizing

the class WFF (AAi(r,m)[ρ]). Note that, Proposition 4.9 refers to the class {Iϕ ∈
Bπ(ρ) : ϕ ∈ AAi(r,m)[ρ]}, whereas WFF (AAi(r,m)[ρ]) is the class {Iϕ′ ∈ Bρ : ϕ ∈
AAi(r,m)[ρ]}. However, since the set {ϕ′ : ϕ ∈ AAi(r,m)[ρ]} is still context-free,

Proposition 4.9 also follows for the class WFF (AAi(r,m)[ρ]).

Fact 4.10. For i, r,m ≥ 1, the set WFF (AAi(r,m)[ρ]), i.e., the set of finite ρ-

structures Iϕ′ such that ϕ ∈ AAi(r,m)[ρ], is not definable in AAΣ1(1, 1)[ρ], but is

definable in AAΣ1(3, 3)[ρ].

46

4.4 Lower Bound

In this section, we define, for each level of the AAi hierarchies, Boolean queries

which are not expressible in that level.

Proposition 4.11. For i, r,m ≥ 1 and F = AAi(r,m)[ρ], DIAG(F) is not definable

in F .

Proof. Towards a contradiction, let us assume that DIAG(F) is definable in F . Then

there is a sentence ψD ∈ F such that Mod(ψD) = DIAG(F). From the definition of

DIAG(F) and from our assumption, it follows that for an arbitrary ρ-structure Iϕ′

which encodes a sentence ϕ ∈ F , Iϕ′ 6|= ϕ iff Iϕ′ |= ψD. On the other hand, there

is a finite ρ-structure Iψ′D which encodes the sentence ψD. But then Iψ′D 6|= ψD iff

Iψ′D |= ψD, which is a contradiction.

Proposition 4.12. For i ≥ 1, r ≥ 3, m ≥ 4 and F = AAi(r,m)[ρ], AUTOSAT (F)

is not definable in F .

Proof. Let us assume that AUTOSAT (F) is definable in F , i.e., that there is a

sentence ψA ∈ F such that Mod(ψA) = AUTOSAT (F). We know by Fact 4.10 that

there is a sentence ψW in AAΣ1(3, 3)[ρ], and therefore in F , such that Mod(ψW) =

WFF (F). But then, there is a sentence ϕ which is in prenex normal form and which

is logically equivalent to ψW ∧ ¬ψA. Furthermore, as ψW has at most 3 alternating

blocks of quantifiers and ψA has at most m ≥ 4 alternating blocks of quantifiers,

there is a sentence ψD with at most m alternating blocks of quantifiers which is

equivalent to ϕ. It follows that ψD ∈ F and Mod(ψD) = DIAG(F) which contradicts

Proposition 4.11 and hence the assumption that AUTOSAT (F) is definable in F is

not true.

Remark 4.13. It seems natural to conjecture that the previous proposition is also true

for every level of the AAi hierarchies below AAi(3, 4). Unfortunately, at least for the

AA1 hierarchy of second-order logic, it does not seem possible to prove that by using

the diagonalization argument which we employ here and which was introduced in the

work of Makowsky and Pnueli. The major problem is that by Fact 4.10 we cannot

define WFF (F) in AAΣ1(1, 1). Furthermore, as we know that WFF (F) is definable

in AA1(3, 3), but we do not know whether WFF (F) is definable in AA1(2, 3), we

need r ≥ 3. Finally, as the set of formulae in each level of the AA1(r,m) hierarchy

47

is closed under negation, but not under conjunction, we need m ≥ 4. Note that

the fact that each level of the AAi hierarchies is closed under negation seems to be

not enough since, for every i, r,m ≥ 1, WFF (AAi(r,m)) ⊂ Bρ. That is, there are

structures of signature ρ which do not encode a formula from AAi(r,m).

We summarize the classes of formulae for which we know that AUTOSAT (F) is

not definable in F , in the following proposition. We say that a class of formulae F

is closed under conjunction with a formula γ of vocabulary ρ iff, for every ϕ ∈ F [ρ]

there is a formula ψ ∈ F [ρ] which is equivalent to ϕ ∧ γ.

Proposition 4.14. Let F be a class of formulae of finite-order logic whose syntax

is context free. If F is closed under negation and conjunction with second-order

formulae of the form ∃X∀ȳ∃z̄(ψ) where X is a vector of second-order variables of

arity 3, ȳ and z̄ are vectors of first-order variables and ψ is a quantifier-free formula

of vocabulary ρ, then AUTOSAT (F [ρ]) is not definable in F [ρ].

Note that, according to the proof of Proposition 14 in [MP96] (Proposition 4.7 in

the present work), every context-free language is definable by a second-order formula

of the form ∃X∀ȳ∃z̄(ψ) where X is a vector of second-order variables of arity 3, ȳ

and z̄ are vectors of first-order variables and ψ is a quantifier-free formula.

4.5 Upper Bound

We give in this section an upper bound for the definability for every i, r,m ≥ 1 of

AUTOSAT (AAi(r,m)[ρ]). We follow the same strategy as in [MP96], adapting the

definitions and proving the corresponding lemmas for every order i ≥ 2.

Given that for each HOi,r fragment, and thus for each layer of the AAi hierarchies,

both the order and the maximal-arity of the variables are bounded, we assume, for

the sake of simplicity, a vocabulary ρ with a different relation symbol for each

different type of higher-order variable, i.e.,

ρ = {<,R¬, R∨, R∧, R∃, R∀, R(, R), Rx, R|, R,, RP} ∪ {RXτ : τ ∈ typ(i, r) \ {ι}}

Note that strictly speaking, ρ should be denoted as ρi,r, since it depends upon i and

r. However, to simplify the notation, we use simply ρ.

We identify every formula ϕ ∈ HOi,r[ρ] with a formula ϕ′ over the vocabulary

ρ′ = {P |j : 1 ≤ j ≤ 12 + |typ(i, r)|}, where ϕ′ is the formula obtained by replacing

48

in ϕ each occurrence of a relation symbol R ∈ ρ ∪ {=} by the word f(R) ∈ ρ′, for

the following bijective function f from ρ to ρ′,

{<7→ P1,=7→ P2, R¬ 7→ P3, . . . , RP 7→ P13} ∪ {RXτj 7→ P13+j : τj is

the j-th type in the lexicographical order of typ(i, r) \ {ι}}.

As before, we encode each formula ϕ using the ρ-structure Iϕ′ which corresponds to

the word model for ϕ′.

From now on, we call a word model of vocabulary ρ simply a word, and if Ra(x)

for some unary relation symbol Ra ∈ ρ, we say that the symbol in position x of the

word is a.

Definition 4.15 (Def. 21 [MP96]2). For each τ ∈ typ(i, r),

i. VARτ (x) is a predicate indicating that the symbol in position x is a symbol of

a variable of type τ ;

ii. INDEX τ (x, y1, y2) is a predicate indicating that the symbol in position x is a

symbol of a variable of type τ , and the symbols in positions y1 to y2 encode its

index;

iii. SAME τ (x1, x2) is a predicate indicating that the symbols in positions x1 and

x2 are symbols of variables of type τ , and they have the same index (that is,

they refer to the same variable).

Lemma 4.16 (Lemma 22 [MP96]2). The predicate VARτ (x) can be expressed by a

quantifier-free first-order formula; INDEX τ (x, y1, y2) can be expressed by a prenex

first-order formula with an existential block of quantifiers followed by a universal

block; and SAME τ (x1, x2) can be expressed by a formula in AAΣ1(2, 3).

Proof. VARτ (x) is simply RXτ (x) where RXτ is the relation symbol in ρ used to

denote variables of type τ .

For INDEX τ (x, y1, y2), we write

VARτ (x) ∧ ∀z((y1 < z ∧ z < y2) → R|(z)
)

“x is a variable of type τ and every symbol z between y1 and y2 is “|”” ∧
2This definition/lemma is an adaptation of the cited definition/lemma from the work of

Makowsky and Pnueli to the case of higher-order logics.

49

R|(y1) ∧R|(y2)

“the symbols in positions y1 and y2 are both “|”” ∧
∀z¬(x < z ∧ z < y1)

“y1 is the successor of x” ∧
∃z(y2 < z ∧ ∀z2¬(y2 < z2 ∧ z2 < z) ∧ ¬R|(z)

)

“z is the successor of y2 and the symbol in position z is not “|””

For SAME τ (x1, x2), we write

∃y1y2y3y4F
(
INDEX τ (x1, y1, y2) ∧ INDEX τ (x2, y3, y4)∧
“F is a bijective function from the range y1 − y2 to y3 − y4”

)

It is not difficult to see that there is formula in AAΣ1(2, 3) which is equivalent to

the previous one.

We now want to encode valuations for the different variables in a formula. Given

a ρ-structure Iϕ′ which encodes a formula ϕ ∈ AAi(r,m)[ρ], and given a valuation v

on Iϕ′ , for each type τ ∈ typ(i+ 1, r) the values assigned by v to all variables Xτ of

type τ = (τ1, . . . , τk) which appear in ϕ are encoded by an object (relation) Rτ ′ ∈ Iτ ′
of type τ ′ = (ι, τ1, . . . , τk). First-order variables, i.e., variables of type ι, are a special

case since the values assigned by v to the first-order variables which appear in ϕ

are encoded by a binary relation R ∈ Iι2 of type ι2, with the additional restriction

that each element corresponding to a first-order variable is related to exactly one

element. We use V to denote a vector which contains a different variable V (ι,τ1,...,τk)

for each type (τ1, . . . , τk) ∈ typ(i+1, r)\{ι}, plus a second-order variable F of arity

2. Such vector V has exactly |typ(i+1, r)| different variables which we use to encode

valuations for the fragment AAi(r,m).

Definition 4.17 (Def. 23 [MP96]2).

i. VALτ (V τ ′) are predicates indicating that V τ ′ encodes a valuation for all vari-

ables of type τ in the formula.

ii. VAL(V) is a predicate indicating that the vector V encodes a valuation for all

variables occurring in the formula.

iii. ASSIGNS τ (V τ ′ , Y τ , x) are predicates indicating that Y τ is the object assigned

by the valuation encoded by V τ ′ to the variable of type τ in position x.

50

Lemma 4.18 (Lemma 24 [MP96]2). VALι(F) can be expressed by a formula in

AAΠ1(2, 3). For τ = (τ1, . . . , τk), τ 6= ι, VALτ (V τ ′) can be expressed by a formula

in AAΠj−1(ma(τ ′), 3), where j = order(τ). For a given order i and maximal-arity

r, VAL(V) can be expressed by a formula in AAΠi−1(r + 1, 3).

ASSIGNS ι(F, y, x) can be expressed by a quantifier-free second-order formula of

arity 2. For τ = (τ1, . . . , τk), τ 6= ι, ASSIGNS τ (V τ ′ , Y τ , x) can be expressed by a

formula in AAΠj−1(ma(τ ′), 1), where j = order(τ).

Proof. For VALι(F), we say that F encodes a valuation for all first-order variables

in the formula.

∀x1x2y
(¬SAME ι(x1, x2) ∨ (F (x1, y) ↔ F (x2, y))

)

“If a first-order variable occurs more than once, then F

assigns the same set of values to each occurrence” ∧
∀x1∃x2

(
VARι(x1) → F (x1, x2)

)

“F assigns at least one value to each first-order variable” ∧
∀x1x2x3

(
F (x1, x2) ∧ F (x1, x3) → x2 = x3

)

“F assigns at most one value to each first-order variable”

For VALτ (V τ ′) where τ 6= ι, we say that V τ ′ , τ ′ = (ι, τ1, . . . , τk), encodes a valuation

for all higher-order variables of type τ = (τ1, . . . , τk) in the formula.

∀x1x2X
τ1
1 . . . Xτk

k

(
¬SAME τ (x1, x2)∨

(
V τ ′(x1, X

τ1
1 , . . . , X

τk
k) ↔ V τ ′(x2, X

τ1
1 , . . . , X

τk
k)

))

“V τ ′ assigns the same object in Iτ to each occurrence of

a same higher-order variable of type τ in the formula”

For a given order i and maximal-arity r, VAL(V) is written as the conjunction of

the |typ(i, r)| formulae for VALτ , i.e,

∧

(τ1,...,τk)∈typ(i,r)\{ι}

(
VAL(τ1,...,τk)(V (ι,τ1,...,τk))

)
∧ VALι(F)

For ASSIGNS ι(F, y, x), we say that F assigns y to the first-order variable in position

x if F (x, y).

For ASSIGNS τ (V τ ′ , Y τ , x), where τ = (τ1, . . . , τk) and τ ′ = (ι, τ1, . . . , τk), the cor-

responding formula is as follows.

51

∀Zτ1
1 . . . Zτk

k

(
V (ι,τ1,...,τk)(x, Zτ1

1 . . . Zτk
k) ↔ Y τ (Zτ1

1 . . . Zτk
k)

)

“V (ι,τ1,...,τk) assigns Y τ to x”

Definition 4.19 (Def. 25 [MP96]2).

i. WFF (x1, x2) is a predicate indicating that the symbols in positions x1 to x2

form a well-formed sub-formula.

ii. For 3 ≤ j ≤ 12 + |typ(i, r)|, ATOM Pj
(x1, x2) is a predicate indicating that the

symbols in positions x1 to x2 form an atomic sub-formula of the form P |j(x).
Note that, P |j is a word in ρ′ which corresponds to a unary relation symbol in

the vocabulary ρ.

iii. For 1 ≤ j ≤ 2, ATOM Pj
(x1, x2) is a predicate indicating that the symbols in

positions x1 to x2 form an atomic sub-formula of the form P |j(x, y). Recall that

P | and P || are the words in ρ′ which correspond to the binary relation symbols

< and =, respectively.

iv. For every τ ∈ typ(i, r) \ {ι}, ATOMXτ (x1, x2) is a predicate indicating that

the symbols in positions x1 to x2 form an atomic sub-formula of the form

V τ (V τ1
1 , . . . , V τk

k), where τ = (τ1, . . . , τk).

v. For every τ ∈ typ(i, r) \ {ι}, POS τ
j (x1, x2) is a predicate indicating that the

symbol in position x1 is a variable of type τ = (τ1, . . . , τk), k ≥ j, and the

symbol in position x2 is the variable V τj in the j-th position of it.

vi. NOT (x1, x2) is a predicate indicating that the symbols in positions x1 to x2

form a sub-formula of the form (¬ϕ).

vii. OR(x1, x2, x3) is a predicate indicating that the symbols in positions x1 to x3

form a sub-formula of the form (ϕ1 ∨ ϕ2) with x2 the position of the ∨ symbol.

viii. AND(x1, x2, x3) is a predicate indicating that the symbols in positions x1 to x3

form a sub-formula of the form (ϕ1 ∧ ϕ2) with x2 the position of the ∧ symbol.

Lemma 4.20 (Lemma 26 [MP96]2). The predicates in Definition 4.19 can be ex-

pressed by formulae in AAΣ1(3, 3).

Proof. It follows from Proposition 4.7 and the fact that each predicate in Defini-

tion 4.19 defines in each model a language which is context-free.

52

Definition 4.21 (Def. 27 [MP96]2).

i. ATOMSAT (V , x1, x2) is a predicate indicating that the symbols in positions x1

to x2 form an atomic sub-formula, which is satisfied by the valuation encoded

by V for a structure which is the whole formula.

ii. QFREESAT (V , x1, x2) is a predicate indicating that the symbols in positions

x1 to x2 form a quantifier-free well-formed sub-formula, which is satisfied by the

valuation encoded by V for a structure which is the whole formula.

Lemma 4.22 (Lemma 28 [MP96]2). Let c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

For a given order i and maximal-arity r, ATOMSAT (V , x1, x2) can be expressed by

a formula in AAΠi−1(r + c(r), 4) whereas QFREESAT (V , x1, x2) can be expressed

by a formula in AAΣi−1(r + c(r), 5).

Proof. For ATOMSAT (V , x1, x2) we have different cases depending on the kind

of atom we are considering. If the atom is a formula of the form P |j(x), where

f(Ra) = P |j for Ra a unary relation symbol in ρ, we write

ATOM Pj
(x1, x2) ∧ VAL(V)∧

∃yp(Rx(p) ∧ x1 < p ∧ p < x2 ∧Ra(y) ∧ ASSIGNS ι(F, y, p)
)

If the atom is a formula of the form P |(x, y), we write

ATOM P1(x1, x2) ∧ VAL(V)∧
∃y1y2p1p2

(
Rx(p1) ∧Rx(p2) ∧ x1 < p1 ∧ p1 < p2 ∧ p2 < x2∧
y1 < y2 ∧ ASSIGNS ι(F, y1, p1) ∧ ASSIGNS ι(F, y2, p2)

)

If the atom is a formula of the form P ||(x, y), we just replace y1 < y2 by y1 = y2

and ATOM P1(x1, x2) by ATOM P2(x1, x2) in the previous formula.

And, if the atom is a formula of the form V τ (V τ1
1 , . . . , V τk

k), τ = (τ1, . . . , τk), we

write

ATOMXτ (x1, x2) ∧ VAL(V)∧
∃Y τ1

1 . . . Y τk
k p1 . . . pk

(
V (ι,τ1,...,τk)(x1, Y

τ1
1 , . . . , Y τk

k)∧
POS τ

1(x1, p1) ∧ . . . ∧ POS τ
k(x1, pk)∧

ASSIGNS τ1(V τ ′1 , Y τ1
1 , p1) ∧ . . . ∧ ASSIGNS τk(V τ ′k , Y τk

k , pk)
)

For QFREESAT (V , x1, x2) we use a second-order variable X and say that, a tuple

53

(a, b) is in X iff the symbols in positions a to b form a quantifier free sub-formula

which is satisfied by the valuation encoded by V for a structure which is the whole

formula.

∃X
(
X(x1, x2) ∧ ∀y1y2

(
X(y1, y2) ↔

(
ATOMSAT (V , y1, y2)∨

(
NOT (y1, y2) ∧ ¬X(y1 + 2, y2 − 1)

)∨
(∃y(OR(y1, y, y2) ∧ (X(y1 + 1, y − 1) ∨X(y + 1, y2 − 1))

))∨
(∃y(AND(y1, y, y2) ∧ (X(y1 + 1, y − 1) ∧X(y + 1, y2 − 1))

)))))

Definition 4.23 (Def. 29 [MP96]2).

i. ∃BLOCK (x1, x2, x3) is a predicate indicating that the symbols in positions x1 to

x2 form a block of existentially quantified variables and the symbols in positions

x2 + 1 to x3 form a well-formed sub-formula.

ii. ∀BLOCK (x1, x2, x3) is a predicate indicating that the symbols in positions x1 to

x2 form a block of universally quantified variables and the symbols in positions

x2 + 1 to x3 form a well-formed sub-formula.

iii. VEQUIV (V 1, V 2, x1, x2) is a predicate indicating that V 1 and V 2 encode valu-

ations for all variables occurring in the formula, and that V 1 is S-equivalent to

V 2, with S being the set of variables occurring in the positions x1 to x2 of the

formula.

Lemma 4.24 (Lemma 30 [MP96]2). ∃BLOCK (x1, x2, x3) and ∀BLOCK (x1, x2, x3)

can be expressed by formulae in AAΣ1(3, 3). For a given order i and maximal-arity

r, VEQUIV (V 1, V 2, x1, x2) can be expressed by a formula in AAΠi−1(r + 1, 3).

Proof. ∃BLOCK (x1, x2, x3) and ∀BLOCK (x1, x2, x3) are context free.

For VEQUIV (V 1, V 2, x1, x2), we write

VAL(V 1) ∧ VAL(V 2)∧
∧
τ∈typ(i+1,r)

(
∀y

(
VARτ (y) ∧ ¬∃z(x1 < z ∧ z < x2 ∧ SAME τ (y, z)

)

“if the variable in position y is a variable of type τ

which does not appear in the range x1 − x2” →
∀Zτ

(
ASSIGNS τ (V τ ′

1 , Zτ , y) ↔ ASSIGNS τ (V τ ′
2 , Zτ , y)

)

54

“the valuations encoded by V 1 and V 2 assign to

the variable in position y, the same object from Iτ”
))

Note that ¬∃z(x1 < z∧z < x2∧SAME τ (y, z)) is equivalent to ∀z(¬(x1 < z)∨¬(z <

x2)∨¬SAME τ (y, z)) and that, by Lemma 4.16, SAME τ (y, z)) can be expressed by

a formula in AAΣ1(2, 3) and thus ¬SAME τ (y, z)) can be expressed by a formula in

AAΠ1(2, 3). Therefore, it is not difficult to see that two alternations of quantifiers

starting with a universal block are enough to express VEQUIV (V 1, V 2, x1, x2).

Definition 4.25 (Def. 31 [MP96]2).

i. ∃BLOCKSATm(V , x1, x2) is a predicate indicating that V encodes a valuation

and the symbols in positions x1 to x2 form a formula with no more than m

alternating blocks of quantifiers, starting with an existential quantifier, which

is satisfied by V .

ii. ∀BLOCKSATm(V , x1, x2) is a predicate indicating that V encodes a valuation

and the symbols in positions x1 to x2 form a formula with no more than m

alternating blocks of quantifiers, starting with a universal quantifier, which is

satisfied by V .

Lemma 4.26 (Lemma 32 [MP96]2). Let c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

For a given order i, maximal-arity r and m ≥ 1 alternating blocks of quantifiers,

∃BLOCKSATm(V , x1, x2) can be expressed by formulae in AAΣi−1(r + c(r),m+ 4)

if m is odd, and by formulae in AAΣi−1(r + c(r),m + 5) if m is even. Conversely,

∀BLOCKSATm(V , x1, x2) can be expressed by formulae in AAΠi−1(r+ c(r),m+ 4)

if m is even, and by formulae in AAΠi−1(r + c(r),m+ 5) if m is odd.

Proof. We use induction on the number of blocks of quantifiers m. For m = 0,

∃BLOCKSAT 0(V , x1, x2) and ∀BLOCKSAT 0(V , x1, x2) are simply

QFREESAT (V , x1, x2)

For m > 0, we say that ∃BLOCKSATm(V , x1, x2), if

∃V 1x
(∃BLOCK (x1, x, x2) ∧ VEQUIV (V 1, V , x1, x)∧
∀BLOCKSATm−1(V 1, x+ 1, x2)

)

And we say that ∀BLOCKSATm(V , x1, x2), if

55

∀V 1x
(∀BLOCK (x1, x, x2) ∧ VEQUIV (V 1, V , x1, x) →
∃BLOCKSATm−1(V 1, x+ 1, x2)

)∧
∃x(∀BLOCK (x1, x, x2)

)

Note that, the formula expressing ∃BLOCKSATm(V , x1, x2) has an alternating

block of quantifiers more than the formula expressing ∀BLOCKSATm−1(V , x1, x2).

Conversely, the formula expressing ∀BLOCKSATm(V , x1, x2) has an alternating

block of quantifiers more than the formula expressing ∃BLOCKSATm−1(V , x1, x2).

Finally, the upper bound for the definability of AUTOSAT (AAi(r,m)[ρ]) is as

follows.

Proposition 4.27. For every i, r,m ≥ 1, AUTOSAT (AAi(r,m)[ρ]) is definable in

AAΣi(r + c(r),m+ 6)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

Proof. We have to show that, for every i, r,m ≥ 1, there is a sentence ψA ∈ AAi(r+

c(r),m+6)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1, such that Mod(ψA) =

AUTOSAT (AAi(r,m)[ρ]). The required formulae are simply disjunctions of the

BLOCKSAT formulae above.

∃V x1x2

(
∀z(¬(z < x1)) ∧ ∀z(¬(x2 < z))

“x1 and x2 are the first and the last element in

the ordering <, respectively” ∧
(
QFREESAT (V , x1, x2)∨
∃BLOCKSAT 1(V , x1, x2) ∨ . . . ∨ ∃BLOCKSATm(V , x1, x2)∨

∀BLOCKSAT 1(V , x1, x2) ∨ . . . ∨ ∀BLOCKSATm(V , x1, x2)
))

4.6 Main Result

Our main result stating the properness of the AAi hierarchies follows.

Theorem 4.28. For every i, r,m ≥ 1, there are Boolean queries not expressible in

AAi(r,m) but expressible in AAi(r + c(r),m + 6), where c(r) = 1 for r > 1 and

c(r) = 2 for r = 1.

56

Proof. The result follows from the fact that, for i, r,m ≥ 1, DIAG(AAi(r,m)[ρ])

is not definable in AAi(r,m)[ρ] but is definable in AAi(r +c(r),m + 6)[ρ]. Propo-

sition 4.11 shows that DIAG(AAi(r,m)[ρ]) is not definable in AAi(r,m)[ρ]. We

prove that DIAG(AAi(r,m)[ρ]) is definable in AAi(r+c(r),m+6)[ρ] as follows. Let

i, r,m ≥ 1, by Fact 4.10 and Proposition 4.27, there is a sentence ψW ∈ AAΣ1(3, 3)[ρ]

such that Mod(ψW) = WFF (AAi(r,m)[ρ]) and a sentence ψA ∈ AAΣi(r+ c(r),m+

6)[ρ] such that Mod(ψA) = AUTOSAT (AAi(r,m)[ρ]), respectively. Therefore, it is

not difficult to see that there is a sentence ψD ∈ AAΠi(r+c(r),m+6)[ρ] which is logi-

cally equivalent to ψW∧¬ψA. Since Mod(ψD) = DIAG(AAi(r,m)[ρ]), it follows that,

for every i, r,m ≥ 1, DIAG(AAi(r,m)[ρ]) is definable in AAi(r + c(r),m+ 6).

Remark 4.29. Note that, we increment here the number of alternating blocks of

quantifiers by 6 instead of by 4 as in the original theorem of Makowsky and Pnueli for

second-order logic. We believe that this small divergence is originated in Lemma 26

in [MP96] and propagated downwards to subsequent lemmas in that section. In

[MP96], Lemma 26 states that the predicates in Definition 25 can be expressed

by formulae in AA1(3, 1) instead of by formulae in AAΣ1(3, 3) as we would have

expected, since each predicate in Definition 25 in [MP96] defines in each model a

language which is context-free.

4.6.1 On an Existential Proof

The following discussion is motivated by observations of Kolodziejczyk (personal

communications, October 2005 and November 2007).

According to Kolodziejczyk, the properness of the AAi hierarchies could also

be proved by a complexity-theoretical type of argument involving variants of the

time-hierarchy theorem for Σm−TIME for any fixed m. We sketch this argument

for AA1 below, but let us note two important points first.

• This approach would provide an existential proof of the AAi hierarchies while

in the work of Makowsky and Pnueli for second-order as well as in our work

for all natural orders, a constructive proof is given, since computable queries

which separate the classes are exhibited.

• In the opinion of Kolodziejczyk and to the best of our knowledge, there is no

written source for the variants of the time-hierarchy theorem for Σm−TIME

57

for every fixed m, which are required for this complexity-theoretical argument.

Theorem 3.3 in [BDG90] establishes a time-hierarchy theorem for the class

ATIME(f(n)) of languages accepted by f(n) time bounded alternating Turing

machines. However, the proof of that theorem uses the fact that ATIME is

closed under complementation. Thus, the same strategy cannot be used to

prove variants of the time-hierarchy theorem for Σm−TIME for every fixed

m, since it is not known whether the Σm−TIME classes are closed under

complementation, and furthermore this seems unlikely. Then, as Kolodziejczyk

pointed out to us, it seems that the right thing to look at are the proofs of time-

hierarchy theorems for NTIME (see among others [Coo72, SFM78, Zák83]),

as they do not require closure under complementation. In his opinion, those

proofs could then be adapted to prove similar time-hierarchy theorems for

Σm−TIME for every fixed m. But we do not know how hard the new proofs

can be or whether they are really possible at all.

Now, let us assume that we can prove variants of the time-hierarchy theorem

for Σm−TIME for any fixed m. Then, an alternative existential proof (sketch) for

the properness of the AA1 hierarchy could be as follows: It can be shown that, for

r,m ≥ 1, the data complexity for AAΣ1(r,m) is in Σm−TIME(nr) and the data

complexity for AAΠ1(r,m) is in Πm−TIME(nr). Together, the data complexity for

AA1(r,m) is in Σm+1−TIME(nr). By the time-hierarchy theorem for Σm+1−TIME,

there is a language L in the level Σp
m+1 of the polynomial-time hierarchy which is

not definable in AA1(r,m). But by Fagin-Stockmeyer theorem (recall Section 2.4),

L is definable in Σ1
m+1, and thus in AA(r′,m′) for some r′ > r and m′ > m. Since

by the normal form in [EGG96], every Σ1
m formula, m ≥ 2, reduces to a Σ1

m formula

whose first-order part is a Boolean combination of existential formulae, then m′ is

at most m + 2. Essentially the same type of argument should also work for each

AAi hierarchy of order i ≥ 2 if we use Corollary 3.11 instead of Fagin-Stockmeyer

theorem, and take into account the tower of exponents expi−1(n
r).

Moreover, and also assuming that we can prove variants of the time-hierarchy

theorem for Σm−TIME for any fixed m, the classes [Σi
m]≤r of Σi

m formulae in which

the type of the variables of order i and i + 1 have basic-arity bounded by r, would

form for each i ≥ 2 and m ≥ 1, a strict hierarchy within Σi
m. That is, for i ≥ 2 and

m, r ≥ 1, it would hold that [Σi
m]≤r ⊂ [Σi

m]≤r+1. As pointed out in [Kol04b, Kol05],

for each i ≥ 2 and m ≥ 1, the strictness of the [Σi
m]≤r hierarchy would follow

58

from Theorem 3.10 and the time-hierarchy theorem for Σm−TIME. Recall that, the

basic-arity (ba) of a type τ of order ≥ 2 is defined as follows: If τ is a type of order

2, then ba(τ) is simply the arity of τ . If order(τ) > 2 and τ = (τ1, . . . , τr), then

ba(τ) = max ({ba(τi) : order(τi) = order(τ)− 1, 1 ≤ i ≤ r}).
Regarding the relationship between the [Σi

m]≤r hierarchies and the AAi hierar-

chies, we note that:

• By our result (Theorem 4.28), for every i ≥ 1, the classes AAi(r,m) form a

proper hierarchy of formulae within HOi+1, while for every i ≥ 2, the classes

[Σi
m]≤r form a strict hierarchy of formulae within Σi

m, provided that we can

prove variants of the time-hierarchy theorem for Σm−TIME for any fixed m.

• Each AAi(r,m) class of formulae is closed under complementation. It is not

known whether the [Σi
m]≤r classes are closed under complementation. There-

fore, the same argument that we used to prove a lower bound for the defin-

ability of AUTOSAT (AAi(r,m)[ρ]) (see Proposition 4.12), cannot be used to

prove a lower bound for the definability of AUTOSAT ([Σi
m]≤r[ρ]).

• Unlike the AA1 hierarchy of second-order logic formulae which we know by

Theorem 4.2 is proper, it is not known whether for some m, k, c ≥ 1, [Σ1
m]≤r ⊂

[Σ1
m]≤r+c for every r ≥ k. That is, it is not known whether for some m ≥ 1,

the classes [Σ1
m]≤r form a proper hierarchy of Σ1

m formulae. Even assuming

that we can prove variants of the time-hierarchy theorem for Σm−TIME for

any fixed m, it does not follows from Theorem 3.10 that for m ≥ 1, the classes

[Σ1
m]≤r from a proper hierarchy of Σ1

m formulae, since Theorem 3.10 holds for

i ≥ 2. Recall that, a sufficient condition for the [Σ1
1]
≤r hierarchy to be strict

was given in [Kol04a] (see Proposition 3.19 in the previous chapter).

• In the definition of the [Σi
m]≤r fragments, only the variables of order i+1 and i

are restricted to basic-arity ≤ r. However, as explained in [Kol05], a definition

of [Σi
m]≤r in which all higher-order variables of order ≤ i + 1 are required to

have basic-arity at most r, would give a class with the same expressive power

with respect to sentences. That is, for i ≥ 2, m, r ≥ 1, and every sentence

ϕ ∈ [Σi
m]≤r (possibly containing variables of order < i with basic-arity > r),

there is a corresponding sentence ϕ′ ∈ [Σi
m]≤r which does not contain higher-

order variables of basic-arity ≥ r and which is equivalent to ϕ. To illustrate

59

how this can be done, let us assume that ϕ is a sentence in [Σ3
m]≤r. By

definition of the fragments [Σ3
m]≤r, all variables of order 3 and 4 which appear

in ϕ have basic-arity ≤ r. Suppose there is a second-order variable V ιk in ϕ

which has basic-arity k > r. We can replace V ιk by a third-order variable of

type τ = ((ι), . . . , (ι))︸ ︷︷ ︸
k

and thus of basic-arity 1. This is the case because every

second-order relation R of arity k can be encoded as a third-order relation R
of type τ consisting exclusively of tuples of singletons. A tuple of singletons

({x1}, . . . , {xk}) is in R iff (x1, . . . , xk) is in R. This encoding requires to add

some quantification of order 2 and 3 to ϕ, but no extra quantification of order

4 is needed, therefore the resulting formula ϕ′ is still in [Σ3
m]≤r. A similar

encoding can be used for higher orders.

• Apart from the fact that for every type τ of order ≥ 2, it holds that ba(τ) ≤
ma(τ), there is a more relevant difference between the concepts of basic-arity

and maximal-arity. While the set of types of a given order i and maximal-

arity r is finite (see Definition 3.1 in the previous chapter), the corresponding

set of types of order i and basic-arity r is infinite if i ≥ 3. For instance, the

third-order types ((ι)), ((ι), ι), ((ι), ι, ι), ((ι), ι, ι, ι), . . . , have all basic-arity 1,

but have maximal-arity 1, 2, 3, 4, . . . , respectively. Thus, if we replace in the

definition of the AAi hierarchies the concept of maximal-arity by the concept

of basic-arity, then the proof of the upper bound for AUTOSAT (AAi(r,m)[ρ])

(Proposition 4.27) does not longer hold. Recall that in our proof, for every

fragment AAi(r,m), we fix a vector V which has exactly |typ(i+1, r)| different

variables. We use V to encode valuations for the variables which may appear

in any given AAi(r,m) formula (see the discussion before Definition 4.17 and

see also the formula expressing VAL(V) in the proof of Lemma 4.18). It is not

possible to use the same encoding if we use the concept of basic-arity instead

of the concept of maximal-arity in the definition of the AAi(r,m) fragments,

since we would have an infinite number of types of order ≤ i+1 and basic-arity

≤ r.

• In the [Σi
m]≤r hierarchies the first block of quantifiers in the formulae is ex-

istential, the quantifiers of order i + 1 precede all other quantifiers and only

the alternations of quantifiers of order i + 1 are considered, while in the AAi

hierarchies the first block of quantifiers in the formulae can be existential or

60

universal, the quantifiers of order i + 1 do not necessarily precede all other

quantifiers and all alternations of quantifiers of whichever order are consid-

ered. That is, the formulae in the classes AAi(r,m) are in prenex normal

form, but not necessarily in GSNF, while the formulae in the classes [Σi
m]≤r

are in GSNF and start with an existential block of quantifiers. In the next

chapter we study a variation of the AAi hierarchies, the HAAi hierarchies, in

which the alternations of quantifiers are considered as in the [Σi
m]≤r hierar-

chies.

61

Chapter 5

Alternating Only the Quantifiers

of the Highest Order

In this chapter we study a variation of the AAi hierarchies, the HAAi hierarchies,

where the alternations are counted as in Σi
m and Πi

m. The difference between the

HAAi and the AAi hierarchies is that in the HAAi hierarchies the quantifiers of

order i+ 1 precede all other quantifiers in the formulae and only the alternations of

quantifiers of order i+ 1 are considered, while in the AAi hierarchies the quantifiers

of order i+ 1 do not necessarily precede all other quantifiers and all alternations of

quantifiers of whichever order are considered.

Let HAAi(r,m) be the class of Σi
m ∪ Πi

m formulae in which the higher-order

variables of all orders up to i + 1 have maximal-arity at most r. We prove in the

first section of this chapter that, for each order i ≥ 3, the corresponding HAAi−1

hierarchy is proper. This result is again obtained by using a constructive proof base

on the query AUTOSAT .

Note that the corresponding version of this hierarchy for second-order logic,

HAA1, was not studied in [MP96] regarding the properness of the hierarchy. The

HAA1 hierarchy was used there denoted as SAA, to prove that, for every r,m ≥ 1,

AUTOSAT (SAA(r,m)) is PSPACE-complete. Indeed, it is not known whether the

HAA1(r,m) hierarchy is proper.

A method which has been frequently used in classical model theory to compare

the expressive power of logics, is Tarski’s method of truth definitions [Tar33]. In par-

ticular, this method has been successfully used for higher-order logics (see [Lei94]).

In finite model theory, Tarski’s method has first been explored by M. Mostowski

62

in [Mos01, Mos03]. He introduced the notion of finite model truth definitions (FM-

truth, from now on) and proved a finite version of Tarski’s theorem on undefinability

of truth. Roughly, he proved that no logic closed under some basic first-order con-

structions, most notably negation, can define FM-truth for itself over sufficiently

large finite models which have a suitable amount of arithmetical structure so that

gödelization can be carried out. Same as in the classical case, the concept of FM-

truth can be used to compare the expressive power of different fragments of higher

order logics, but now over finite models. We examine this in detail in Section 5.2

and make use of the method in Section 5.3. Observe that the same underlying idea

of expressing the relationship of satisfaction for logics restricted to finite models

by means of logics restricted to finite models, is used in both, AUTOSAT and the

concept of FM-truth.

Recently, in [Kol04b, Kol05] the notion of FM-truth definition was further dis-

cussed and compared with Vardi’s concept of combined complexity [Var82], noting

an important difference: the possibility of defining FM-truth for a logic L does not

depend on the syntax of L, as long as it is decidable. Furthermore, for each i,m ≥ 1,

a characterization of the logics for which the Σi
m class defines FM-truth, was given.

In [Kol04a], FM-truth definitions were used to give a sufficient condition for the Σ1
1

arity hierarchy to be strict over finite structures (see Proposition 3.19 in Chapter 3).

We show in Section 5.3 that under the same assumption, the HAA1(r,m) hierarchy

is proper.

5.1 The HAAi Hierarchies

We define next a new kind of arity-alternation hierarchies in which the only alter-

nations bounded are those corresponding to the quantifiers of the highest order.

Definition 5.1. (HAAi hierarchies) Let i, r,m ≥ 1,

i. HAAΣi(r,m) is the class of Σi
m formulae in which the higher-order variables of

all orders up to i+ 1 have maximal-arity at most r.

ii. HAAΠi(r,m) is the class of Πi
m formulae in which the higher-order variables of

all orders up to i+ 1 have maximal-arity at most r.

iii. HAAi(r,m) = HAAΣi(r,m) ∪ HAAΠi(r,m).

63

As we mentioned at the beginning of the chapter, the difference between the

HAAi and the AAi hierarchies is that in the HAAi hierarchies the quantifiers of

order i+ 1 precede all other quantifiers in the formulae and only the alternations of

quantifiers of order i+ 1 are considered, while in the AAi hierarchies the quantifiers

of order i+ 1 do not necessarily precede all other quantifiers and all alternations of

quantifiers of whichever order are considered.

Note that because of (iii), for every i ≥ 1, the set of formulae in each level of

the HAAi(r,m) hierarchy is closed under negation.

Regarding the relation between the AAi hierarchies and the HAAi hierarchies,

it can be easily observed from the proof of Lemma 1 in [HT03, HT06b] that, for

every i, r,m ≥ 1, HAAi(r,m) ⊇ AAi(r,m). It is a trivial task to adapt that proof

to show that, for every formula ϕ ∈ AAi(r,m), there is a formula ψ in GSNF which

is equivalent to ϕ, has the same maximal-arity as ϕ and does not have more than

m alternating blocks of quantifiers of order i+ 1.

The corresponding lower and upper bounds for the definability of AUTOSAT

for the different levels of the HAAi hierarchies are as follows.

Proposition 5.2.

i. For i = 1, r ≥ 3, m ≥ 2 and F = HAAi(r,m)[ρ], AUTOSAT (F) is not

definable in F .

ii. For i ≥ 2, r ≥ 3, m ≥ 1 and F = HAAi(r,m)[ρ], AUTOSAT (F) is not

definable in F .

Proof. (Sketch). For every i, r,m ≥ 1, it is clear that HAAi(r,m) is a context free

language. For instance, it is not difficult to modify the context free grammar for

AA2(1, 3) in Example 4.8 to obtain a context free grammar for HAA2(1, 3). We just

need to add the productions V1 → X((ι))I, V2 → xI ∪ X(ι)I, and F → ∃V2(F) ∪
∀V2(F), and replace the productions with nonterminals BΣ and BΠ in the left hand

side by the productions BΣ → ∃V1 ∪ ∃V1BΣ and BΠ → ∀V1 ∪ ∀V1BΠ, respectively.

Since for r ≥ 3 and m ≥ 2, the set of formulae in HAA1(r,m)[ρ] is closed under

negation and conjunction with second-order formulae of the form ∃X∀ȳ∃z̄(ψ) where

X is a vector of second-order variables of arity 3, ȳ and z̄ are vectors of first-order

variables and ψ is a quantifier-free formula of vocabulary ρ, then by Proposition 4.14

it follows that for r ≥ 3 and m ≥ 2, AUTOSAT (HAA1(r,m)[ρ]) is not definable in

64

HAA1(r,m)[ρ]. This proves Part (i). Part (ii) also follows from Proposition 4.14 by

noting that, for every i ≥ 2, r ≥ 3 and m ≥ 1, the set of formulae in HAAi(r,m)[ρ]

is closed under negation and conjunction with any formula in AA1(3, 3)[ρ], including

of course those of the form ∃X∀ȳ∃z̄(ψ).

Proposition 5.3. For i ≥ 2 and r,m ≥ 1, AUTOSAT (HAAi(r,m)[ρ]) is definable

in HAAΣi(r + c(r),m+ 2)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

Proof. (Sketch). We show how the proof of Proposition 4.27 can be adapted to

obtain, for every i ≥ 2, r,m ≥ 1, a sentence ψA ∈ HAAi(r + c(r),m + 2)[ρ] such

that Mod(ψA) = AUTOSAT (HAAi(r,m)[ρ]).

The predicates used in Section 4.5 which are related to the identification of

variables (Definition 4.15), the encoding of valuations (Definition 4.17), the identi-

fication of well-formed sub-formulae (Definition 4.19) and the notion of satisfaction

of quantifier free sub-formulae (Definition 4.21), remain the same.

Given the different way in which the quantifiers are arranged in the HAAi hier-

archies, it follows that the predicates that need to be adapted are only those which

have to deal with quantified formulae.

First, we need to modify Definition 4.23. Predicates ∃BLOCK (x1, x2, x3) and

∀BLOCK (x1, x2, x3) apply now only to blocks of variables of order at most i, i.e.,

they hold only if the quantified variables in positions x1 to x2 are all of order ≤ i.

We also need to define ∃BLOCK i(x1, x2, x3) and ∀BLOCK i(x1, x2, x3) in order to

identify blocks of quantifiers of order i + 1. All these predicates can be expressed

by formulae in HAAΣ1(3, 1), since they all define in each model a language which is

context-free, and in the proof of Proposition 4.7 given in [MP96], the corresponding

formula has a block of existentially quantified second-order variables of arity 3,

followed by a first-order part.

The most delicate part of the proof is the redefinition of the predicates ∃BLOCK -

SATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2). The main difference with the pre-

vious case is that now these predicates hold only if the formula in positions x1 to x2

is a formula with no more than m alternating blocks of quantifiers of order i+1, but

with an arbitrary number of alternating blocks of quantifiers of order ≤ i, which is

satisfied by the valuation encoded by V . Recall that V is a vector which contains

a different variable V (ι,τ1,...,τk) for each type (τ1, . . . , τk) ∈ typ(i + 1, r) \ {ι}, plus a

second-order variable F of arity 2. Recall also that V has exactly |typ(i+1, r)| differ-

ent variables. We use induction on the number m of alternating blocks of quantifiers

65

of order i + 1. For m = 0, ∃BLOCKSAT 0(V , x1, x2) and ∀BLOCKSAT 0(V , x1, x2)

say that V = V 1 ∪V 2 encodes a valuation for all variables occurring in the formula,

V 1 encodes the sub-valuation for the variables of order i + 1, V 2 encodes the sub-

valuation for the variables of order ≤ i, and the symbols in positions x1 to x2 form

a HOi,r prenex formula which is satisfied by V . Note that, we use here a variable X
of order i+ 1 and arity |typ(i, r)|+ 2 and state that X (V

′
2, y1, y2) iff the symbols in

positions y1 to y2 form a HOi,r formula (possibly with free variables of order i+ 1)

which is satisfied by V 1 ∪ V ′
2.

∃X
(
X (V 2, x1, x2)∧ (5.1)

∀V ′
2y1y2

(
X (V

′
2, y1, y2) ↔

(
QFREESAT (V 1 ∪ V ′

2, y1, y2)∨

∃zV ′′
2

(∃BLOCK (y1, z, y2) ∧ VEQUIV (V
′′
2, V

′
2, y1, z)∧

X (V
′′
2, z + 1, y2)

)∨
∃z∀V ′′

2

(∀BLOCK (y1, z, y2) ∧ VEQUIV (V
′′
2, V

′
2, y1, z) →

X (V
′′
2, z + 1, y2)

))))

For m > 0, ∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2) are written

exactly as in the proof of Lemma 4.26, but replacing ∃BLOCK (x1, x2, x3) and

∀BLOCK (x1, x2, x3) with ∃BLOCK i(x1, x2, x3) and ∀BLOCK i(x1, x2, x3), respec-

tively.

Since we only count here alternations of quantifiers of order i+1, the reader can

easily check that, form ≥ 1, ∃BLOCKSATm(V , x1, x2) can be expressed by formulae

in HAAΣi(|typ(i, r)|+2,m) ifm is odd, and by formulae in HAAΣi(|typ(i, r)|+2,m+

1) if m is even. Conversely, ∀BLOCKSATm(V , x1, x2) can be expressed by formulae

in HAAΠi(|typ(i, r)| + 2,m) if m is even, and by formulae in HAAΠi(|typ(i, r)| +
2,m+ 1) if m is odd.

But we still can get a much tighter upper bound in the maximal-arity than

|typ(i, r)| + 2, since the arity of X can be significantly decreased if we encode the

valuations for the variables of order ≤ i differently. For instance we can encode

the valuations for all variables of order ≤ 3 and maximal-arity ≤ 2 using just one

variable of order 3 and maximal-arity 3, namely V τ where τ = (ι, (ι, ι), (ι, ι)), instead

of using a different variable for each different type in typ(3, 2). Of course, in order

66

to do this we need to redefine the predicates in Definition 4.17 accordingly. But

that can be done without too much difficulty. Just to exemplify, let us suppose

that we want to encode valuations for variables of type τ ′ = (ι, (ι, ι)) using V τ . We

could say that the set of tuples assigned by V τ to the variable V τ ′ in position p, is

the set which contains precisely those tuples (z, Z) that have a corresponding tuple

(p,X, Z) in V τ such that (z, z) is the only tuple in X. Thus, the formula expressing

the predicate ASSIGNS τ ′(V τ , Y τ ′ , x) could be written as follows.

∀XZ
(
V τ (x,X, Z) ↔

∃z(Y τ ′(z, Z) ∧X(z, z) ∧ ∀y1y2(X(y1, y2) → z = y1 ∧ z = y2)
))

Taking into account these considerations, it is not difficult to see that we can

encode the valuations for all variables of order ≤ i and maximal-arity ≤ r which

appear in a given formula, using only one variable of order i, maximal-arity r + 1

and type (ι, τi−1,r, . . . , τi−1,r︸ ︷︷ ︸
r

) where, for j, k ≥ 1,

• τj,k = ι if j = 1 and

• τj,k = (τj−1,k, . . . , τj−1,k)︸ ︷︷ ︸
k

if j > 1.

Thus we can replace the variable X of arity |typ(i, r)|+ 2 in (5.1) by a variable

of the same order but of arity 3 and type ((ι, τi−1,r, . . . , τi−1,r︸ ︷︷ ︸
r

), ι, ι).

Hence, for m ≥ 1, ∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2) can

be expressed by formulae in HAAΣi(r + c(r),m + 1) and HAAΠi(r + c(r),m + 1),

respectively. For m = 0, ∃BLOCKSATm(V , x1, x2) and ∀BLOCKSATm(V , x1, x2)

can be expressed by formulae in HAAΣi(r + c(r), 1).

Finally, the required formulae are simply disjunctions of the 2m BLOCKSAT

formulae above.

It seems that the previous result does not apply to the HAA1 hierarchy of second-

order. The main obstacle is that the valuation for first-order variables is encoded

into a second-order variable. Thus the variable X in the proof must be of order at

least 3.

We show next that, for i ≥ 2, each HAAi hierarchy is proper.

67

Theorem 5.4. For every i ≥ 2 and every r,m ≥ 1, there are Boolean queries not

expressible in HAAi(r,m) but expressible in HAAi(r + c(r),m + 2) where c(r) = 1

for r > 1 and c(r) = 2 for r = 1.

Proof. Note that, if we replace F = AAi(r,m)[ρ] by F = HAAi(r,m)[ρ], Proposi-

tion 4.11 still holds. This proves that, for every i, r,m ≥ 1, DIAG(HAAi(r,m)[ρ])

is not definable HAAi(r,m)[ρ].

Let us now prove the upper bound. As seen in the proof of Proposition 5.2,

for every i, r,m ≥ 1, HAAi(r,m)[ρ] is a context free language. It follows from

Proposition 4.9 that, for every i, r,m ≥ 1, there is a sentence ψW ∈ AAΣ1(3, 3)[ρ]

such that Mod(ψW) = WFF (HAAi(r,m)[ρ]). Since HAAΣ2(3, 1) ⊇ AAΣ1(3, 3), we

have that ψW is in HAAΣ2(3, 1)[ρ] as well. By Proposition 5.3, for every i ≥ 2

and every r,m ≥ 1, there is a sentence ψA ∈ HAAΣi(r + c(r),m + 2)[ρ] such that

Mod(ψA) = AUTOSAT (HAAi(r, m)[ρ]). Therefore, for every i ≥ 2 and every r,m ≥
1, there is a sentence ψD ∈ HAAΠi(r+c(r),m+2)[ρ] which is logically equivalent to

ψW ∧ ¬ψA. Since Mod(ψD) = DIAG(HAAi(r,m)[ρ]), it follows that for every i ≥ 2

and every r,m ≥ 1, DIAG(HAAi(r,m)[ρ]) is definable in HAAi(r+ c(r),m+2).

5.2 The Concept of Finite Model Truth Defini-

tions

Tarski’s theorem on the undefinability of truth is often expressed by saying that

arithmetical truth is not definable (by an arithmetical formula) in the standard

model of arithmetic. In finite models, this is trivially true since we cannot define an

infinite set in a finite structure. It is therefore impossible to define in a finite struc-

ture the set of sentences which are true in that structure, since there are infinitely

many true (and false) sentences. However, M. Mostowski [Mos01, Mos03] showed

that for many interesting questions we do not need infinitely many formulae. For

instance, we could ask whether restricting our arithmetical universe to some initial

segment {0, . . . , n}, is it possible to define in a given logic arithmetical truth for

the finite set of first-order sentences whose Gödel numbers are in such segment. If

the definition exists, we could additionally ask whether it also holds for any initial

segment larger than {0, . . . , n}.
All structures considered from now on are assumed to be finite with built-in

68

arithmetic, i.e., the domain of a σ-structure A is always an initial segment A =

{0, . . . , n} of the natural numbers, and σ contains the arithmetical sub-vocabulary

σ0 = {+,×,≤, 0,MAX }, where +,×,≤ are relation symbols and MAX , 0 are con-

stant symbols. The relation symbols and constants in σ0 are interpreted in the

standard way. For instance, +(x, y, z) is satisfied in a σ-structure iff x + y = z

is true for x, y, z ∈ N. Given a string w, we denote as pwq the natural number

corresponding to w in some appropriate Gödelization.

Definition 5.5 (Def. 2 [Mos01]). Let R ⊆ Nr and let ϕ(x1, . . . , xr) be a first-order

logic formula of vocabulary σ0 with no free variables besides x1, . . . , xr. We say that

R is FM-represented by ϕ iff for each k ∈ N there is an m ∈ N such that for each

finite σ0-structure A with domain I = {0, . . . , n− 1}, for some n > m,

R(a1, . . . , ar) iff A |= ϕ(x1, . . . , xr)[a1, . . . , ar], for all a1, . . . ar ≤ k.

R is FM-representable iff there is a first-order logic formula of vocabulary σ0 which

FM-represents it.

The previous definition leads us to the following question: which finite relations

on natural numbers can be represented in “sufficiently large” finite models?

Theorem 5.6 (Th. 5 [Mos01]). (FM-representability theorem). Let r ≥ 1 and R ⊆
Nr. Then R is FM-representable iff R is recursive with some recursively enumerable

oracle.

This implies that we may freely talk of relations connected to the syntax of logics.

For instance, we can FM-represent relations such as “the formula x is the result of

preceding the formula y with an existential quantifier”. As all these kind of relations

are decidable, we simply use the formulae which FM-represent them. However we

should have in mind that a formula ϕ(x̄) which FM-represents some relation only

“tells us” whether a given tuple ā is in the relation if we look at the truth value of

ϕ(ā) in a sufficiently large model.

Once syntax can be somehow represented in finite structures, a finite model

analogue to Tarski’s notion of truth definition can be defined.

Definition 5.7 (Def. 1 [Mos01]). Let L be a logic and σ be a vocabulary. We

say that the σ-formula TrL,σ(x) is an FM-truth definition for L over σ iff for each

L-sentence ψ of vocabulary σ there is an m ∈ N such that for each finite σ-structure

A with |A| > m, A |= ψ ↔ TrL,σ(x)[pψq].

69

Thus, if there is an FM-truth definition for a logic L, then for each sentence ψ

there is an m such that in all finite structures of cardinality greater than m the

FM-truth definition “tells us” whether ψ is true or not.

5.2.1 Expressibility Results via FM-Truth Definitions

The FM-representability theorem can be used to prove a diagonal lemma which

roughly states that, for any formula with one free variable, there is a sentence which

asserts of itself the property defined by the formula if we look at sufficiently large

finite models. In analogy to the classical case, the finite version of Tarski’s famous

theorem on the undefinability of truth follows from this lemma.

Theorem 5.8 (Th. 2 [Mos01]). (Tarski’s theorem, version for finite models). Let

L be a logic which is closed under negation, and under conjunction with first-order

formulae. That is, for every vocabulary σ, if ϕ ∈ L[σ] and α ∈ FO[σ], then there

is a formula ψ ∈ L[σ] which is equivalent to ¬ϕ, and there is a formula ψ′ ∈ L[σ]

which is equivalent to ϕ∧α. It follows that it is not true that there is an L-formula

which is an FM-truth definition for L.

As with the original Tarski’s theorem, Theorem 5.8 can be used to compare the

expressive power of different logics, now over finite structures. Let L be a logic

which is closed under negation, and under conjunction with first-order formulae.

The strategy consists in showing that a given logic L′ which is known to be at least

as expressive as L, additionally defines FM-truth for L. If that is the case, then we

have shown – using the “method of FM-truth definitions” – that L′ is strictly more

expressive than L.

It should be noted here that positive results, i.e., results of the kind “L defines

FM -truth for L′”, are more difficult than in the infinite case. For instance, the

standard proof that HOi+1 has a truth definition over infinite models for HOi can

be adapted to give:

Proposition 5.9 (Th. 3 [Mos01]). On finite structures, for every order i ≥ 1, there

is an FM-truth definition for HOi in HOi+2.

That is, in order to define FM-truth for HOi on finite models, the order needs

to be increased by 2 instead of 1. One of the main obstacles to adapt the classical

proof, which increases the order by 1, is that in finite models we have no pairing

70

function (i.e., a function which uniquely encodes two natural numbers into a single

natural number). It is an open problem whether there is an FM-truth definition for

HOi in HOi+1. Indeed, in [Kol05] it is pointed out that this problem is equivalent

to a presumably hard problem in complexity theory.

For every i > 1 and r > 0, let RSi(r) be the class of formulae of the form

Q1X
τ1
1 . . . QmX

τm
m ϕ,

where m ≥ 0, ϕ ∈ HOi−1, for j = 1 . . .m, Qj is one of the quantifiers ∀,∃,
order(τ1) = · · · = order(τm) = i, and arity(τ1) + · · · + arity(τm) ≤ r. These

classes were defined in [Mos01] where they were called “classes of restricted size”1.

It is stated there that for i > 1 and r > 0, there is an FM-truth definition for RSi(r)

in RSi(r + c) for some c ∈ N. No proof was given, though. Furthermore, note that

according to its definition each class RSi(r) of restricted size of order i contains the

whole HOi−1 fragment. Therefore, if the result is correct, then in particular there is

an FM-truth definition for HOi in HOi+1. But, as we mentioned earlier, this is an

open problem and presumable a difficult one.

An alternative to avoid this problem could be to use a restricted notion of arity,

similar to our notion of maximal-arity (see Definition 3.1), in the definition of the

classes of restricted size. It would be also necessary to restrict the arity of the

variables of order less than i. We believe that, the results on hierarchies of restricted

size that could be obtained in that way, would be essentially equivalent to our results

on the HAAi hierarchies.

In [Kol04b, Kol05], Kolodziejczyk was able to characterize, using the notion of

data complexity, the logics for which the Σi
m classes define FM-truth. Recall that,

data complexity for a logic L is said to be in a complexity class C if every class K
definable in L is in C. The characterization is based on the alternating complexity

classes Σm−TIME and Πm−TIME (see Section 2.3.1 for details).

Theorem 5.10 (Th. 5.2 [Kol04b]). Let L be a logic and σ a relational vocabulary.

For i,m ≥ 1, it holds that Σi
m[σ] defines FM-truth for L[σ] iff there is a number k

such that data complexity2 for L[σ] is in Σm−TIME(expi−1(n
k)). Here n denotes the

1Note that, what M. Mostowski defines in page 514 in [Mos01] as the size of a type is exactly

what we call in Definition 3.1 the arity of a type.
2Kolodziejczyk uses in his work the term “model checking” instead of “data complexity”. Since

the definition given in [Kol04b] of model checking (see third paragraph in page 186) coincides with

71

size of the structure. For Πi
m and Πm−TIME(expi−1(n

k)), the analogous situation

also holds.

It has been pointed out in [Kol04b] that, for r,m ≥ 1, data complexity for

AAΣ1(r,m) is in Σm−TIME(nr) and for AAΠ1(r,m) is in Πm−TIME(nr). Then, for

each fragment AA1(r,m) of second-order logic, data complexity is in Σm+1−TIME(nr).

Therefore, for every vocabulary σ and m, r ≥ 1, it holds that Σ1
m+1[σ] defines FM-

truth for AA1(r,m)[σ].

The fact that, for r,m ≥ 1, Σ1
m+1 defines FM-truth for AA1(r,m), is not enough

to conclude that, for every r,m ≥ 1, Σ1
m+1 is strictly more expressive than AA1(r,m)

using the method of FM-truth definitions. We also need to show that AA1(r,m) does

not define FM-truth for itself. Unfortunately, we cannot apply Theorem 5.8 here,

since the formulae in AA1(r,m) are not closed under conjunction with first-order

formulae.

5.3 A Sufficient Condition for the Properness of

the HAA1 Hierarchy

FM-truth definitions were used in [Kol04a] to prove that, if for every vocabulary σ

there is a fixed k such that data complexity for FO[σ] is in NTIME(nk), then the

Σ1
1 arity hierarchy is strict (see Proposition 3.19 in Chapter 3). Recall that this

hierarchy is known to be strict if we allow vocabularies of arbitrary arity [Ajt83],

but its strictness over vocabularies of a fixed arity is still open.

The question of whether for every vocabulary σ there is a fixed k such that data

complexity for FO[σ] is in NTIME(nk), is an important open question in descriptive

complexity (see [Imm99], open problem 7.13).

By Theorem 5.10, if data complexity for FO over any fixed vocabulary is in

NTIME(nk), where k may depend on σ, then Σ1
1 defines FM-truth for FO over any

vocabulary σ. Not surprisingly, these FM-truth definitions can be transformed into

Σ1
1 FM-truth definitions for HAAΣ1(r, 1), for any r ≥ 1 and over any vocabulary σ.

Indeed, this can be generalized to the whole HAA1 hierarchy of second-order logic.

the definition of what is more commonly known as data complexity (see Definition 6.1 in [Lib04]),

we use this last term.

72

Proposition 5.11. If for every vocabulary σ there is a fixed k such that data com-

plexity for FO[σ] is in NTIME(nk), then for any vocabulary σ and arity r there is

a kr such that data complexity for HAAΣ1(r,m) over σ is in class Σm−TIME(nkr),

and data complexity for HAAΠ1(r,m) over σ is in the class Πm−TIME(nkr).

Proof. (Sketch). We show that given our assumption, for any vocabulary σ and

arity r there is a kr such that data complexity for HAAΣ1(r,m) over σ is in

Σm−TIME(nkr). The proof for HAAΠ1(r,m) is completely analogous.

Let σ be a vocabulary and let ϕ be a HAAΣ1(r,m)[σ] sentence. Given a σ-

structure A, to check whether A |= ϕ, an alternating Σm machine Mϕ works as

follows:

• Starting in an existential state, Mϕ guesses relations corresponding to the

variables in the initial block of existential quantifiers in ϕ. Recall that these

quantifiers are of order 2 and arity at most r. Thus, using the well-known

encoding of relations over {0, . . . , n − 1} as binary strings, this amounts to

writing in the tape a fixed number of binary strings of length bounded by

O(r · nr · log n).

• Mϕ then switches to a universal state and guesses relations corresponding to

the variables in the first block of universal quantifiers, then switches back to

an existential state, and so on.

• Once the witnesses for all the second-order quantifiers have been guessed, it

only remains to check the truth of the first-order part ψ of ϕ. Note that, as

we assume that data complexity for FO[σ] is in NTIME(nk), then it must also

be in co-NTIME(nk), since FO is closed under negation. Thus, if Mϕ is in an

existential state, it checks the truth of ψ in NTIME(nk). Otherwise, if Mϕ is

in an universal state, it checks the truth of ψ in co-NTIME(nk).

Corollary 5.12. If for every vocabulary σ there is a fixed k such that data com-

plexity for FO[σ] is in NTIME(nk), then for r,m ≥ 1, there is a c ∈ N such that

HAA1(r,m) ⊂ HAA1(r + c,m+ 1).

Proof. Since every level of the HAA1(r,m) hierarchy is closed under negation, and

conjunction with first-order logic formulae, it follows from Theorem 5.8 that, for

73

any vocabulary σ and r,m ≥ 1, it is not true that there is a formula in HAA1(r,m)

which is an FM-truth definition for HAA1(r,m) over σ.

On the other hand, by the previous result and by Theorem 5.10, if for every

vocabulary σ there is a fixed k such that data complexity for FO[σ] is in NTIME(nk),

then for every vocabulary σ and r,m ≥ 1, Σ1
m defines FM-truth for HAAΣ1(r,m)

over σ and Π1
m defines FM-truth for HAAΠ1(r,m) over σ. Since HAA1(r,m) =

HAAΣ1(r,m)∪HAAΠ1(r,m) and Π1
m ⊆ Σ1

m+1, it follows that under our assumption,

for every vocabulary σ and r,m ≥ 1, Σ1
m+1 defines FM-truth for HAA1(r,m)[σ]; and

thus there is a formula TrHAA1(r,m),σ(x) in Σ1
m+1[σ] which is an FM-truth definition

for HAA1(r,m) over σ. Let s be the maximal-arity of the formula TrHAA1(r,m),σ(x),

it follows that TrHAA1(r,m),σ(x) is also in HAA1(r + c,m + 1)[σ], for c ∈ N and

r + c ≥ s. Note that Σ1
m+1 ⊆

⋃
r∈NHAA1(r,m + 1). Hence, if for every vocabulary

σ there is a fixed k such that data complexity for FO[σ] is in NTIME(nk), then for

every vocabulary σ and r,m ≥ 1, there is a c ∈ N such that HAA1(r + c,m + 1)

defines FM-truth for HAA1(r,m) over σ.

It is important to note here that it is not known whether, for r,m ≥ 1, AUTO-

SAT (HAA1(r,m)[ρ]) is definable in HAA1(r+ c1,m+ c2)[ρ], for some c1, c2 ∈ N. In

Proposition 5.3 we show that AUTOSAT (HAAi(r,m)[ρ]) is definable in HAAi(r +

c(r),m+ 2)[ρ] where c(r) = 1 for r > 1 and c(r) = 2 for r = 1, but only for i ≥ 2.

74

Chapter 6

On the Complexity of Sentences

which Satisfy Themselves

The set AUTOSAT (F) of the sentences of a given logic F which encoded as finite

structures satisfy themselves, was also studied in [MP96] from the point of view of

its complexity. Let Σ0
m denote the set of first-order formulae in prenex normal form

which start with an existential block of quantifiers and have up to m alternating

blocks. They proved the following result.

Theorem 6.1 ([MP96]). Under polynomial-time reductions, it holds that:

i. AUTOSAT (FO) is complete for PSPACE.

ii. For every r,m ≥ 1, AUTOSAT (HAA1(r,m)) is complete for PSPACE.

iii. For every m ≥ 1, AUTOSAT (Σ0
m) is complete for the class Σp

m of the polynomial-

time hierarchy.

The fact that for first-order logic AUTOSAT is hard for PSPACE, was proved

by reduction from the well known problem of quantified satisfiability (QSAT) to

AUTOSAT (FO). Note that QSAT, also known as quantified boolean formulae

(QBF), is complete for PSPACE (see [Pap94, BDG95] among other sources). Since

for every r,m ≥ 1, it holds that FO ⊂ HAA1(r,m), the same reduction from QSAT

to AUTOSAT (FO), also applies from QSAT to AUTOSAT (HAA1(r,m)), for every

r,m ≥ 1. Regarding AUTOSAT (Σ0
m), they gave a polynomial-time reduction from

QSATm (quantified satisfiability with m alternations of quantifiers). Since QSATm

75

is complete for the corresponding level Σp
m of the polynomial-time hierarchy, this

proves that AUTOSAT (Σ0
m) is hard for Σp

m.

In this chapter, we extend this result establishing the complexity of AUTOSAT

for the prenex fragments Σ1
m of second-order logic. Notice that the argument used

in [MP96] to prove that AUTOSAT (HAA1(r,m)) is in PSPACE, does not apply to

AUTOSAT (Σ1
m). The main obstacle is that the arity of the variables which appear

in the formulae in Σ1
m is not bounded by a fixed r as in the case of HAA1(r,m).

We prove instead that for every m, AUTOSAT (Σ1
m) is in

⋃
c∈NNTIME(2n

c
)Σp

m−1 .

Since for every m ≥ 1, we also give in this chapter a polynomial-time reduction from

a complete problem in the fragment Σ2
m of third-order logic to AUTOSAT (Σ1

m) and,

by Theorem 3.8, Σ2
m captures

⋃
c∈NNTIME(2n

c
)Σp

m−1 , we get the following result.

Theorem 6.2. For every m ≥ 1, it holds that AUTOSAT (Σ1
m) is complete for Σ2

m

under polynomial-time reductions.

We do not pursue this matter further in this chapter, but we would like to

mention that we strongly believe the previous result also holds for every order i > 1.

We do not see any obstacle to extending our strategy to prove that for every i,m ≥ 1,

it holds that AUTOSAT (Σi
m) is complete for Σi+1

m under polynomial-time reductions.

Among other things, in the last chapter of this dissertation we explain how we think

that our strategy could be extended to prove this conjecture.

6.1 A Complete Problem for Higher-Order Logics

We define now the problem which we use in the next section to show that AUTO-

SAT (Σ1
m) is hard for the fragment Σ2

m of third-order logic. This problem was in-

troduced in [HT05, HT06a]. It is a generalization for higher-order logics of the well

known QSATm problem which as we mentioned at the beginning of this chapter, is

known to be complete for the corresponding level Σp
m of the polynomial-time hier-

archy. And hence, by the correspondence between the prenex fragments of second-

order logic and the polynomial-time hierarchy (see Theorem 2.11), it is also complete

for the Σ1
m fragment of second-order logic.

Definition 6.3. Let B be the Boolean model 〈{0, 1}, 0B, 1B〉 of the Boolean vocab-

ulary {0, 1}, i.e., a vocabulary with no relation (or function) symbols, and which

has two constant symbols which are interpreted by the two elements, respectively.

76

For i,m ≥ 1, we denote Σi
m-Th(B), the Σi

m theory of the Boolean model B, i.e.,

Σi
m-Th(B) is the set of Σi

m-formulae of the Boolean vocabulary which are satisfied

by B.

Theorem 6.4 ([HT05, HT06a]). For i,m ≥ 1, it holds that Σi
m-Th(B) is complete

for Σi+1
m under polynomial-time reductions.

Note that in particular, for each m ≥ 1, the Σ1
m theory of the Boolean model B

is complete for the fragment Σ2
m of third-order logic.

Although we do not use it here, we should mention that as shown also in [HT05,

HT06a], there are complete problems for all Σi
m fragments even under quantifier-

free first-order reductions, and without assuming the existence of an order in the

input structures in such reductions. Using those problems as the interpretation of

(relativized) Lindström quantifiers, they showed that every fragment Σi
m of higher-

order logics can be captured with a first-order logic Lindström quantifier. Moreover,

they gave a normal form showing that each Σi
m sentence is equivalent to a single

occurrence of the quantifier plus a tuple of quantifier-free first-order formulae.

6.2 AUTOSAT (Σ1
m) is hard for Σ2

m

By a polynomial-time reduction from Σ1
m-Th(B) to AUTOSAT (Σ1

m[ρ]), we show in

this section that AUTOSAT (Σ1
m) is hard for Σ2

m. Here ρ is the vocabulary used in

the definition of AUTOSAT (see Definition 4.4).

First, we fix a translation from second-order formulae of Boolean vocabulary to

second-order formulae of vocabulary ρ.

Definition 6.5. Let ϕ be a any second-order formula of the Boolean vocabulary,

we denote ϕ̂ the following second-order formula of vocabulary ρ:

∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ϕ′(w0, w1))

where ψmin(x) ≡ ∀y(¬y < x), ψmax(x) ≡ ∀y(¬x < y), w0 and w1 are first order

variables which do not appear in ϕ, and ϕ′(w0, w1) is defined by induction on ϕ, as

follows:

• Let ϕ be an atomic formula.

77

– If ϕ has the form s = t, then ϕ′(w0, w1) is

f(s) = f(t) ∧ (f(s) = w0 ∨ f(s) = w1) ∧ (f(t) = w0 ∨ f(t) = w1)

where f(t) (f(s)) denotes w0, w1 or t (s), depending on whether t (s) is

the constant symbol 0, 1 or a first-order variable, respectively.

– If ϕ has the form V (x1, . . . , xr), then ϕ′(w0, w1) is

V (x1, . . . , xr) ∧ (x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)

• Let ϕ be a compound formula.

– If ϕ has the form ¬ψ, then ϕ′(w0, w1) is ¬ψ′(w0, w1).

– If ϕ has the form ψ ∨ γ, then ϕ′(w0, w1) is ψ′(w0, w1) ∨ γ′(w0, w1).

– If ϕ has the form ψ ∧ γ, then ϕ′(w0, w1) is ψ′(w0, w1) ∧ γ′(w0, w1).

– If ϕ has the form ∃x(ψ), then ϕ′(w0, w1) is

∃x((x = w0 ∨ x = w1) ∧ ψ′(w0, w1))

– If ϕ has the form ∀x(ψ), then ϕ′(w0, w1) is

∀x((x = w0 ∨ x = w1) → ψ′(w0, w1))

– If ϕ has the form ∃X(ψ), then ϕ′(w0, w1) is

∃X(∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . .∧

(xr = w0 ∨ xr = w1)) ∧ ψ′(w0, w1))

– If ϕ has the form ∀X(ψ), then ϕ′(w0, w1) is

∀X(∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . .∧

(xr = w0 ∨ xr = w1)) → ψ′(w0, w1))

Now, for each valuation v on the Boolean model B and each ρ-structure A with

at least two elements, we define a corresponding valuation vA on A. We define vA

in such a way that for every second-order formula ϕ, it holds that B, v |= ϕ iff

A, vA |= ϕ̂.

78

Definition 6.6. We define Bρ|≥2 = {Ai ∈ Bρ : |dom(Ai)| ≥ 2}, i.e., Bρ|≥2 is the

class of ρ-structures with at least two elements. We denote min(A) and max(A)

the least and last element, respectively, in the linear order <A of the ρ-structure A.

Let v be a valuation on B, and let A ∈ Bρ|≥2, we define the valuation vA on A, as

follows:

• If x is a first-order variable, then

vA(x) =





min(A) if x is the variable w0

max(A) if x is the variable w1

min(A) if x is a variable other than w0 and w1, and v(x) = 0B

max(A) if x is a variable other than w0 and w1, and v(x) = 1B

• If X is a second-order variable of arity r, then vA assigns to X an r-ary relation

R ⊆ {min(A),max(A)}r such that (a1, . . . , ar) ∈ R iff (g(a1), . . . , g(ar)) ∈
v(X) for g(ai) = 0B if ai = min(A) and g(ai) = 1B if ai = max(A).

We show next that a valuation v on the Boolean model satisfies a second-order

formula ϕ iff in every ρ-structure A with at least two elements the corresponding

valuation vA satisfies ϕ̂. We do that in two steps. First, we show in Lemma 6.7 the

following: if there is a ρ-structure A with at least two elements such that A, vA |= ϕ̂,

then for every ρ-structure A′ with at least two elements, A′, vA′ |= ϕ̂. Note that the

converse is trivially true since Bρ|≥2 is not empty. Thus, if for every Ai ∈ Bρ|≥2,

Ai, vAi
|= ϕ̂, then there is an A ∈ Bρ|≥2 such that A, vA |= ϕ̂. Secondly, we show in

Lemma 6.8 that a valuation v on the Boolean model satisfies a second-order formula

ϕ iff there is a ρ-structure A with at least two elements such that the corresponding

valuation vA satisfies ϕ̂.

Lemma 6.7. Let ϕ be any second-order formula of the Boolean vocabulary, let v

be a valuation on B, let ϕ̂ be as in Definition 6.5, and let Bρ|≥2 and vA be as

in Definition 6.6. If there is an A ∈ Bρ|≥2 such that A, vA |= ϕ̂, then for every

Ai ∈ Bρ|≥2, it holds that Ai, vAi
|= ϕ̂.

Proof. We proceed by induction on ϕ. Consider first the case of atomic formulae:

• Let ϕ be s = t. Since A, vA |= ϕ̂, we know that vA(f(s)) = vA(f(t)) = min(A)

or vA(f(s)) = vA(f(t)) = max(A). Let’s assume w.l.o.g. that vA(f(s)) =

vA(f(t)) = min(A). It follows that either f(s) is w0 or v(f(s)) = 0. In

79

either case, we get that for every Ai ∈ Bρ|≥2, vAi
(f(s)) = min(Ai). By the

same argument, we also get that vAi
(f(t)) = min(Ai). Therefore, for every

Ai ∈ Bρ|≥2, it holds that Ai, vAi
|= ϕ̂.

• Let ϕ be V (t1, . . . , tr). Since A, vA |= ϕ̂, we have (vA(f(t1)), . . . , vA(f(tr))) ∈
vA(V) and, for every 1 ≤ j ≤ r, either vA(f(tj)) = min(A) or vA(f(tj)) =

max(A). Let us assume w.l.o.g. that for every 1 ≤ j ≤ r, vA(f(tj)) = min(A).

It follows that, for every 1 ≤ j ≤ r, either f(tj) is w0 or v(f(tj)) = 0. In either

case, we get that for every Ai ∈ Bρ|≥2, vAi
(f(tj)) = min(Ai). It also follows

that,

(min(A), . . . ,min(A))︸ ︷︷ ︸
r

∈ vA(V), and therefore that

(0B, . . . , 0B)︸ ︷︷ ︸
r

∈ v(V) and (min(Ai), . . . ,min(Ai))︸ ︷︷ ︸
r

∈ vAi
(V),

Thus, for every Ai ∈ Bρ|≥2, it holds that Ai, vAi
|= ϕ̂.

Assume then as an induction hypothesis that for every sub-formula ψ of ϕ and

every valuation v on B, if there is an A ∈ Bρ|≥2 such that A, vA |= ψ̂, then for every

Ai ∈ Bρ|≥2, it holds that Ai, vAi
|= ψ̂.

• Let ϕ be ¬ψ. Towards a contradiction, let us assume that there is an Ax ∈
Bρ|≥2 such that Ax, vAx 6|= ϕ̂. Thus, Ax, vAx |= ¬(∃w0w1(ψmin(w0)∧ψmax(w1)∧
w0 6= w1 ∧ ¬ψ′(w0, w1))). By the well known relation between universal and

existential quantifiers and by De Morgan laws, Ax, vAx |= ∀w0w1(¬ψmin(w0)∨
¬ψmax(w1) ∨ ¬w0 6= w1 ∨ ψ′(w0, w1)). It follows that for every valuation

v′Ax
, which is {w0, w1}-equivalent to vAx , we have Ax, v

′
Ax

|= ¬ψmin(w0) ∨
¬ψmax(w1) ∨ ¬w0 6= w1 ∨ ψ′(w0, w1). Since vAx is {w0, w1}-equivalent to itself

and Ax, vAx |= ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1, it is necessarily the case that

Ax, vAx |= ψ′(w0, w1). Therefore, Ax, vAx |= ψ̂ and by inductive hypothesis

for every Ai ∈ Bρ|≥2, Ai, vAi
|= ψ̂. But then A, vA |= ψ̂, and consequently

A, vA 6|= ϕ̂, which contradicts our hypothesis.

• Let ϕ be ψ ∨ γ. Since A, vA |= ϕ̂, we have that A, vA |= ψ̂ or A, vA |= γ̂.

By induction hypothesis, for every Ai ∈ Bρ|≥2, Ai, vAi
|= ψ̂ or, for every

Ai ∈ Bρ|≥2, Ai, vAi
|= γ̂. Thus, for every Ai ∈ Bρ|≥2, Ai, vAi

|= ψ̂ ∨ γ̂, or

equivalently Ai, vAi
|= ϕ̂.

80

• Let ϕ be ψ ∧ γ. Since A, vA |= ϕ̂, we have that A, vA |= ψ̂ and A, vA |= γ̂.

By induction hypothesis, for every Ai ∈ Bρ|≥2, Ai, vAi
|= ψ̂ and, for every

Ai ∈ Bρ|≥2, Ai, vAi
|= γ̂. Thus, for every Ai ∈ Bρ|≥2, Ai, vAi

|= ψ̂ ∧ γ̂, or

equivalently Ai, vAi
|= ϕ̂.

• Let ϕ be ∃x(ψ). If A, vA |= ϕ, then there is a valuation u, which is {x}-
equivalent to vA, such that A, u |= ∃w0w1(ψmin(w0)∧ψmax(w1)∧w0 6= w1∧(x =

w0 ∨x = w1)∧ψ′(w0, w1)). Since u is {x}-equivalent to vA and u(x) = vA(w0)

or u(x) = vA(w1), there is a valuation v′ on B, which is {x}-equivalent to

v, such that the corresponding valuation v′A on A is precisely u. Given that

A, v′A |= ψ̂, it follows by inductive hypothesis that, for every Ai ∈ Bρ|≥2,

Ai, v
′
Ai
|= ψ̂. Since v′ is {x}-equivalent to v, for every Ai ∈ Bρ|≥2, we have that

v′Ai
is {x}-equivalent to vAi

. It follows that for every Ai ∈ Bρ|≥2, Ai, vAi
|= ϕ̂.

• Let ϕ be ∀x(ψ). If A, vA |= ϕ then for every valuation u, which is {x}-
equivalent to vA, A, u |= ∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ((x =

w0∨x = w1) → ψ′(w0, w1))). Moreover, if u(x) = max(A) or u(x) = min(A),

then A, u |= ψ̂, and there is a valuation v′ on B, which is {x}-equivalent to

v, and such that the corresponding valuation v′A on A, is precisely u. On the

other hand, if v′ is a valuation on B, which is {x}-equivalent to v, then for every

Ai ∈ Bρ|≥2, the corresponding valuation v′Ai
on Ai, is {x}-equivalent to vAi

and v′Ai
(x) = max(A) or v′Ai

(x) = min(A). Therefore, if v′ is a valuation on

B, which is {x}-equivalent to v, then A, v′A |= ψ̂, and by induction hypothesis,

for every Ai ∈ Bρ|≥2, Ai, v
′
Ai
|= ψ̂. Since then, for every Ai ∈ Bρ|≥2, if u is a

valuation on Ai which is {x}-equivalent to vAi
, then Ai, u |= ∃w0w1(ψmin(w0)∧

ψmax(w1)∧w0 6= w1), and furthermore if u(x) = max(Ai) or u(x) = min(Ai),

then Ai, u |= ψ′(w0, w1), we get that for every Ai ∈ Bρ|≥2, Ai, vAi
|= ϕ̂.

• Let ϕ be ∃X(ψ). If A, vA |= ϕ, then there is a valuation u, which is {X}-
equivalent to vA, such that A, u |= ∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧
∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1)∧ . . .∧ (xr = w0 ∨ xr = w1))∧
ψ′(w0, w1)). Since u is {X}-equivalent to vA and u(X) ⊆ {min(A),max(A)}r,
there is a valuation v′ on B, which is {X}-equivalent to v, such that the

corresponding valuation v′A on A is precisely u. Given that A, v′A |= ψ̂, it

follows by inductive hypothesis that, for every Ai ∈ Bρ|≥2, Ai, v
′
Ai
|= ψ̂. Since

81

v′ is {X}-equivalent to v, for every Ai ∈ Bρ|≥2, we have that v′Ai
is {X}-

equivalent to vAi
. It clearly follows that for every Ai ∈ Bρ|≥2, Ai, vAi

|= ϕ̂.

• Let ϕ be ∀X(ψ). If A, vA |= ϕ then for every valuation u, which is {X}-
equivalent to vA, it holds that A, u |= ∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6=
w1 ∧ ∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨
xr = w1)) → ψ′(w0, w1)). Moreover, if u(X) ⊆ {min(A),max(A)}r, then

A, u |= ψ̂, and there is a valuation v′ on B, which is {X}-equivalent to v, and

such that the corresponding valuation v′A on A, is precisely u. On the other

hand, if v′ is a valuation on B, which is {X}-equivalent to v, then for every

Ai ∈ Bρ|≥2, the corresponding valuation v′Ai
on Ai, is {X}-equivalent to vAi

and v′Ai
(x) ⊆ {min(A),max(A)}r. Therefore, if v′ is a valuation on B, which

is {X}-equivalent to v, then A, v′A |= ψ̂, and by induction hypothesis, for every

Ai ∈ Bρ|≥2, Ai, v
′
Ai
|= ψ̂. Since then, for every Ai ∈ Bρ|≥2, if u is a valuation on

Ai which is {X}-equivalent to vAi
, then Ai, u |= ∃w0w1(ψmin(w0)∧ψmax(w1)∧

w0 6= w1), and furthermore if u(X) ⊆ {min(Ai),max(Ai)}r, then Ai, u |=
ψ′(w0, w1), we get that for every Ai ∈ Bρ|≥2, Ai, vAi

|= ϕ̂.

Lemma 6.8. Let ϕ be any second-order formula of the Boolean vocabulary, let v

be a valuation on B, let ϕ̂ be as in Definition 6.5, and let Bρ|≥2 and vA be as in

Definition 6.6. Then, it holds that B, v |= ϕ iff there is an A ∈ Bρ|≥2 such that

A, vA |= ϕ̂.

Proof. We use induction on the formula ϕ. Consider first the case of atomic formu-

lae:

• Let ϕ be s = t. Let A be in Bρ|≥2. If B, v |= ϕ, then by definition of vA, it

clearly follows that vA(f(s)) = vA(f(t)) and thus A, vA |= ϕ̂.

On the other hand, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then

there is a valuation v′A, which is {w0, w1}-equivalent to vA, such that A, v′A |=
ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ϕ′(w0, w1). Since A, v′A |= ψmin(w0) ∧
ψmax(w1), by definition vA(w0) = min(A) and vA(w1) = max(A), and v′A is

{w0, w1}-equivalent vA, it turns out that vA and v′A are exactly the same valu-

ation, and consequently that A, vA |= ϕ′(w0, w1). Therefore, either vA(f(s)) =

82

vA(f(t)) = min(A) or vA(f(s)) = vA(f(t)) = max(A). Let us assume w.l.o.g.

that vA(f(s)) = vA(f(t)) = min(A). Since vA(f(s)) = min(A) then by defi-

nition of vA, either f(s) is w0 and thus s is the constant symbol 0, or f(s) is

s –a first-order variable other than w0 and w1– and v(s) = 0B. Equivalently,

either f(t) is w0 and t is the constant symbol 0, or f(t) is t and v(t) = 0B.

Thus B, v |= ϕ.

• Let ϕ be V (x1, . . . , xr). Let A be in Bρ|≥2. If B, v |= ϕ, then we know that

(v(x1), . . . , v(xr)) ∈ v(V), and thus by definition of vA, we also know that

(vA(x1), . . . , vA(xr)) ∈ vA(V). It clearly follows that A, vA |= ϕ̂.

Conversely, let us assume that there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂. It

follows that, there is a valuation v′A, which is {w0, w1}-equivalent to vA, such

that A, v′A |= ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ϕ′(w0, w1). Since A, v′A |=
ψmin(w0) ∧ ψmax(w1), by definition vA(w0) = min(A) and vA(w1) = max(A),

and v′A is {w0, w1}-equivalent vA, it turns out that vA and v′A are exactly

the same valuation, and consequently that A, vA |= ϕ′(w0, w1). Therefore,

(vA(x1), . . . , vA(xr)) ∈ vA(V) and for every 1 ≤ i ≤ r, either vA(xi) = min(A)

or vA(xi) = max(A). Let us assume w.l.o.g. that for every 1 ≤ i ≤ r,

vA(xi) = min(A). It follows that,

(min(A), . . . ,min(A))︸ ︷︷ ︸
r

∈ vA(V), and thus (0B, . . . , 0B)︸ ︷︷ ︸
r

∈ v(V).

It also follows that for every 1 ≤ i ≤ r, v(xi) = 0B. Therefore B, v |= ϕ.

Assume then as an induction hypothesis that for every sub-formula ψ of ϕ and

valuation v on B, B, v |= ψ iff there is an A ∈ Bρ|≥2 such that A, vA |= ψ̂.

• Let ϕ be ¬ψ. If B, v |= ϕ, then B, v 6|= ψ. By inductive hypothesis, we

obtain that for every Ai ∈ Bρ|≥2, Ai, vAi
6|= ψ̂. Thus, let A ∈ Bρ|≥2,

A, vA |= ¬(∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ψ′(w0, w1))). By the well

known relation between universal and existential quantifiers and by De Mor-

gan laws, A, vA |= ∀w0w1(¬ψmin(w0)∨¬ψmax(w1)∨¬w0 6= w1 ∨¬ψ′(w0, w1)).

It follows that for every valuation v′A, which is {w0, w1}-equivalent to vA, we

have A, v′A |= ¬ψmin(w0) ∨ ¬ψmax(w1) ∨ ¬w0 6= w1 ∨ ¬ψ′(w0, w1). Since vA

is {w0, w1}-equivalent to itself and A, vA |= ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1,

83

it is necessarily the case that A, vA |= ¬ψ′(w0, w1). It clearly follows that

A, vA |= ϕ̂.

Conversely, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then there is a

valuation v′A, which is {w0, w1}-equivalent to vA, such that A, v′A |= ψmin(w0)∧
ψmax(w1) ∧ w0 6= w1 ∧ ¬ψ′(w0, w1). Since A, v′A |= ψmin(w0) ∧ ψmax(w1),

by definition vA(w0) = min(A) and vA(w1) = max(A), and v′A is {w0, w1}-
equivalent to vA, it turns out that vA and v′A are exactly the same valuation,

and consequently that A, vA |= ¬ψ′(w0, w1). Therefore by Lemma 6.7, for

every Ai ∈ Bρ|≥2, Ai, vAi
6|= ψ̂, and by inductive hypothesis, B, v 6|= ψ. It

follows that B, v |= ϕ.

• Let ϕ be ψ ∨ γ. If B, v |= ϕ then B, v |= ψ or B, v |= γ. If B, v |= ψ,

then by induction hypothesis there is an A ∈ Bρ|≥2, such that A, vA |= ψ̂.

Otherwise, if B, v 6|= ψ, then B, v |= γ, and by induction hypothesis there is

an A ∈ Bρ|≥2, such that A, vA |= γ̂. In either case there is an A ∈ Bρ|≥2 such

that A, vA |= ψ̂ ∨ γ̂, or equivalently such that A, vA |= ϕ̂.

On the other hand, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then

A, vA |= ψ̂ or A, vA |= γ̂. If A, vA |= ψ̂, then by induction hypothesis B, v |=
ψ. Otherwise, if A, vA 6|= ψ̂, then A, vA |= γ̂, and by induction hypothesis

B, v |= γ. In either case, B, v |= ψ ∨ γ.

• If ϕ is ψ ∧ γ. If B, v |= ϕ then B, v |= ψ and B, v |= γ. By induction

hypothesis, we get that there is an Ax ∈ Bρ|≥2 such that Ax, vAx |= ψ̂, and

there is an Ay ∈ Bρ|≥2 such that Ay, vAy |= γ̂. By Lemma 6.7, we then have

that, for every Ai ∈ Bρ|≥2, Ai, vAi
|= ψ̂ and Ai, vAi

|= γ̂. Thus, there is an

A ∈ Bρ|≥2 such that A, vA |= ψ̂ ∧ γ̂, or equivalently such that A, vA |= ϕ̂.

On the other hand, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then

A, vA |= ψ̂ and A, vA |= γ̂. By induction hypothesis, it follows that B, v |= ψ

and B, v |= γ, and therefore that B, v |= ψ ∧ γ.

• Let ϕ be ∃x(ψ). If B, v |= ϕ, then there is a valuation v′, which is {x}-
equivalent to v, such that B, v′ |= ψ. By induction hypothesis, it follows that

there is an A ∈ Bρ|≥2, such that A, v′A |= ψ̂. Given that A, v′A |= ψ̂ and

furthermore v′A(x) = min(A) or v′A(x) = max(A), A, v′A |= ∃w0w1(ψmin(w0)∧

84

ψmax(w1)∧w0 6= w1∧ψ′(w0, w1)∧(w0 = x∨w1 = x)). Since v′ is {x}-equivalent

to v, it clearly follows that v′A is {x}-equivalent to vA and thus that A, vA |= ϕ̂.

Conversely, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then there is a

valuation u, which is {x}-equivalent to vA, such that A, u |= ∃w0w1(ψmin(w0)∧
ψmax(w1)∧w0 6= w1∧(x = w0∨x = w1)∧ψ′(w0, w1)). Since u is {x}-equivalent

to vA and u(x) = vA(w0) or u(x) = vA(w1), there is a valuation v′ on B,

which is {x}-equivalent to v, such that the corresponding valuation v′A on A

is precisely u. Therefore A, v′A |= ψ̂, and by induction hypothesis B, v′ |= ψ.

It follows that B, v |= ∃x(ψ).

• Let ϕ be ∀x(ψ). If B, v |= ϕ, then for every valuation v′, which is {x}-
equivalent to v, we have that B, v′ |= ψ. Let A ∈ Bρ|≥2, and let u be a

valuation on A, which is {x}-equivalent to vA, and such that u(x) = min(A)

or u(x) = max(A), it follows that there is a valuation u′ on B, which is {x}-
equivalent to v, such that the corresponding valuation u′A is exactly u. Since

u′ is {x}-equivalent to v, then by induction hypothesis there is an Ax ∈ Bρ|≥2

such that Ax, u
′
Ax

|= ψ̂, and thus by Lemma 6.7, A, u′A |= ψ̂. It follows

that, for every valuation u on A, which is {x}-equivalent to vA, A, u |=
∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ((x = w0 ∨ x = w1) → ψ′(w0, w1)).

Therefore A, vA |= ϕ̂.

On the other hand, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then for

every valuation u, which is {x}-equivalent to vA, A, u |= ∃w0w1(ψmin(w0) ∧
ψmax(w1) ∧ w0 6= w1 ∧ ((x = w0 ∨ x = w1) → ψ′(w0, w1)). Furthermore, if

v′ is a valuation on B, which is {x}-equivalent to v, then the corresponding

valuation v′A on A, is {x}-equivalent to vA and v′A(x) = v′A(w0) = min(A)

or v′A(x) = v′A(w1) = max(A). Therefore, if v′ is a valuation on B, which is

{x}-equivalent to v, then A, v′A |= ψ̂ and by induction hypothesis, B, v′ |= ψ.

It follows that, B, v |= ∀x(ψ).

• Let ϕ be ∃X(ψ). If B, v |= ϕ, then there is a valuation v′, which is {X}-
equivalent to v, such that B, v′ |= ψ. By induction hypothesis, it follows that

there is an A ∈ Bρ|≥2, such that A, v′A |= ψ̂.

Given that A, v′A |= ψ̂ and by definition v′A(X) ⊆ {min(A),max(A)}r, it

clearly follows that A, v′A |= ∃w0w1(ψmin(w0)∧ψmax(w1)∧w0 6= w1∧ψ′(w0, w1)∧
∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)).

85

Since v′ is {X}-equivalent to v, we know that v′A is {X}-equivalent to vA and

thus that A, vA |= ϕ̂.

Conversely, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then there is a val-

uation u, which is {X}-equivalent to vA, such that A, u |= ∃w0w1(ψmin(w0) ∧
ψmax(w1)∧w0 6= w1 ∧ψ′(w0, w1)∧∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 =

w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)). Since u is {X}-equivalent to vA and

u(X) ⊆ {min(A),max(A)}r, there is a valuation v′ on B, which is {X}-
equivalent to v, such that the corresponding valuation v′A on A is precisely u.

Therefore A, v′A |= ψ̂, and by induction hypothesis B, v′ |= ψ. It follows that

B, v |= ∃X(ψ).

• Let ϕ be ∀X(ψ). If B, v |= ϕ, then for every valuation v′, which is {X}-
equivalent to v, we have that B, v′ |= ψ. Let A ∈ Bρ|≥2, and let u be

a valuation on A, which is {X}-equivalent to vA, and such that u(X) ⊆
{min(A),max(A)}r, it follows that there is a valuation u′ on B, which is

{X}-equivalent to v, such that the corresponding valuation u′A is exactly u.

Since u′ is {X}-equivalent to v, then by induction hypothesis there is an

Ax ∈ Bρ|≥2 such that Ax, u
′
Ax

|= ψ̂, and thus by Lemma 6.7, A, u′A |= ψ̂.

It follows that, for every valuation u on A, which is {X}-equivalent to vA,

A, u |= ∃w0w1(ψmin(w0) ∧ ψmax(w1) ∧ w0 6= w1 ∧ ∀x1 . . . xr(X(x1, . . . , xr) →
(x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)) → ψ′(w0, w1)). Therefore

A, vA |= ϕ̂.

On the other hand, if there is an A ∈ Bρ|≥2, such that A, vA |= ϕ̂, then for

every valuation u, which is {X}-equivalent to vA, A, u |= ∃w0w1(ψmin(w0) ∧
ψmax(w1) ∧ w0 6= w1 ∧ ∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . . ∧
(xr = w0 ∨ xr = w1)) → ψ′(w0, w1)). Furthermore, if v′ is a valuation on

B, which is {X}-equivalent to v, then the corresponding valuation v′A on A,

is {X}-equivalent to vA and v′A(X) ⊆ {min(A),max(A)}r. Therefore, if v′

is a valuation on B, which is {X}-equivalent to v, then A, v′A |= ψ̂ and by

induction hypothesis, B, v′ |= ψ. It follows that, B, v |= ∀X(ψ).

Finally, we show that AUTOSAT (Σ1
m) is hard for Σ2

m by a reduction from

Σ1
m-Th(B) to AUTOSAT (Σ1

m[ρ]). The strategy is to show that for each Σ1
m-sentence

86

ϕ of the Boolean vocabulary, we can build in polynomial time ˆ̂ϕ, a Σ1
m-sentence of

vocabulary ρ, which is equivalent to ϕ̂. Since ϕ̂ and ˆ̂ϕ are equivalent, we get from

Lemma 6.7, Lemma 6.8, and the fact that Bρ|≤2 is not empty, the following: Let

ϕ ∈ Σ1
m be a sentence of the Boolean vocabulary,

• B |= ϕ iff, for every ρ-structure A ∈ Bρ|≤2, it holds that A |= ˆ̂ϕ, and

• B 6|= ϕ iff, for every ρ-structure A ∈ Bρ|≤2, it holds that A 6|= ˆ̂ϕ.

Given that in particular the ρ-structure I ˆ̂ϕ′ which encodes ˆ̂ϕ has more than two

elements, B |= ϕ iff I ˆ̂ϕ′ |= ˆ̂ϕ.

Proposition 6.9. For every m ≥ 1, AUTOSAT (Σ1
m[ρ]) is hard for Σ2

m under

polynomial time reductions.

Proof. (By a reduction from Σ1
m-Th(B) to AUTOSAT (Σ1

m[ρ])). Given ϕ, a Σ1
m-

sentence of the Boolean vocabulary, we produce in polynomial time ˆ̂ϕ, a sentence

in Σ1
m[ρ], such that ϕ ∈ Σ1

m-Th(B) iff I ˆ̂ϕ′ ∈ AUTOSAT (Σ1
m[ρ]), or equivalently,

B |= ϕ iff I ˆ̂ϕ′ |= ˆ̂ϕ.

Let ϕ̂ be the sentence obtained from ϕ as indicated in Definition 6.5. We build ˆ̂ϕ

from ϕ̂ and ϕ. First, we eliminate all second-order quantifiers in ϕ′(w0, w1), obtain-

ing ϕ′′(X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm , w0, w1), where for 1 ≤ j ≤
m, sj ≥ 1, and X11, . . . , Xmsm is the set of second-order variables which appear free

in ϕ′′. Note that, the set of second-order variables which appear free in ϕ′′ (i.e., all

variables in ϕ′′), coincides with the set of all second-order variables in ϕ′(w0, w1),

which in turn coincides with the set of second-order variables in the Σ1
m-sentence ϕ.

We then write ˆ̂ϕ as

∃X11 . . . ∃X1s1∀X21 . . . ∀X2s2 . . . QXm1 . . . QXmsm

(∃w0w1(ψmin(w0) ∧ ψmax(w1)

∧w0 6= w1 ∧ ϕ′′(X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm , w0, w1)
)
,

where ∃X11 . . . ∃X1s1∀X21 . . . ∀X2s2 . . . QXm1 . . . QXmsm is the prefix of second-order

quantifiers in ϕ.

Clearly ϕ̂ can be built in polynomial time, and given ϕ followed by ϕ̂ as input,

ˆ̂ϕ can be built in linear time.

Also clearly ˆ̂ϕ is a Σ1
m[ρ]-sentence. Furthermore, ˆ̂ϕ is equivalent to ϕ̂. This can

be seen by noting that, if α is a formula in Σ1
m[ρ]∪Π1

m[ρ], then for every ρ-structure

87

A and valuation v on A,

A, v |= α′(w0, w1) iff A, v |= Q1X1 . . . QkXk(α
′′(X1, . . . , Xk, w0, w1)), (1)

where α′′(X1, . . . , Xk, w0, w1) is the formula obtained by eliminating all second-order

quantifiers in α′(w0, w1), and Q1X1 . . . QkXk is the prefix of second-order quantifiers

of α.

To prove (1), we use induction on α. If α is an atomic formula, or α is of the

form ¬ψ, ψ∨γ, ψ∧γ, ∃x(ψ) or ∀x(ψ), then Q1X1 . . . Q1Xk(α
′′(X1, . . . , Xk, w0, w1))

and α′(w0, w1) are exactly the same formula, and our proposition is trivially true.

If α is of the form ∃X(ψ), then α′(w0, w1) is ∃X(∀x1 . . . xr(X(x1, . . . , xr) →
(x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)) ∧ ψ′(w0, w1)). We want to

show that this is equivalent to ∃XQ1X1 . . . QkXk(α
′′(X,X1, . . . , Xk, w0, w1)), where

α′′(X,X1, . . . , Xk, w0, w1) is the formula obtained by eliminating all second-order

quantifiers in α′(w0, w1), and ∃XQ1X1 . . . QkXk is the prefix of second-order quan-

tifiers of α. If A, v |= α′(w0, w1) then there is a valuation v′, which is {X}-
equivalent to v, such that A, v′ |= ∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 =

w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)) ∧ ψ′(w0, w1). Since A, v′ |= ψ′(w0, w1), it fol-

lows by induction hypothesis that, A, v′ |= Q1X1 . . . QkXk(ψ
′′(X1, . . . , Xk, w0, w1)),

where ψ′′(X1, . . . , Xk, w0, w1) is the formula obtained by eliminating all second-order

quantifiers in ψ′(w0, w1), and Q1X1 . . . QkXk is the prefix of second-order quantifiers

of ψ. Given that, none of the second order variables X1, . . . , Xk appear free in the

formula ∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0∨x1 = w1)∧ . . .∧ (xr = w0∨xr = w1)),

we have that A, v′ |= Q1X1 . . . QkXk(∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 =

w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)) ∧ ψ′′(X1, . . . , Xk, w0, w1)). Therefore, A, v |=
∃XQ1X1 . . . QkXk(α

′′(X,X1, . . . , Xk, w0, w1)).

On the other hand, if A, v |= ∃XQ1X1 . . . QkXk(α
′′(X,X1, . . . , Xk, w0, w1)), then

there is a valuation v′, which is {X}-equivalent to v, such that

A, v′ |= Q1X1 . . . QkXk(∀x1 . . . xr(X(x1, . . . , xr) → (x1 = w0 ∨ x1 = w1) ∧ . . . ∧
(xr = w0 ∨ xr = w1)) ∧ ψ′′(X1, . . . , Xk, w0, w1)), where ψ′′(X1, . . . , Xk, w0, w1) is

the formula obtained by eliminating all second-order quantifiers in ψ′(w0, w1), and

Q1X1 . . . QkXk is the prefix of second-order quantifiers of ψ. It follows that A, v′ |=
Q1X1 . . . QkXk(ψ

′′(X1, . . . , Xk, w0, w1)), and by induction hypothesis that A, v′ |=
ψ′(w0, w1). Since the valuation v′ on A also satisfies, ∀x1 . . . xr(X(x1, . . . , xr) →
(x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)), we have that A, v |= α′(w0, w1).

88

If α is a formula of the form ∀X(ψ), the proof is completely analogous to the

previous case.

Summarising, for each Σ1
m-sentence ϕ of the Boolean vocabulary, we can build in

polynomial time ˆ̂ϕ, a Σ1
m-sentence of vocabulary ρ, which is equivalent to ϕ̂. Since

ϕ̂ and ˆ̂ϕ are equivalent, we get by Lemma 6.8 that B |= ϕ iff there is an A ∈ Bρ|≥2,

such that A |= ˆ̂ϕ. And by Lemma 6.7 and the fact that Bρ|≤2 is not empty, we also

get that there is an A ∈ Bρ|≥2, such that A |= ˆ̂ϕ iff for every Ai ∈ Bρ|≥2, Ai |= ˆ̂ϕ.

Given that for every ϕ ∈ Σ1
m[ρ], we have that I ˆ̂ϕ′ ∈ Bρ|≥2, it clearly follows that

B |= ϕ iff I ˆ̂ϕ′ |= ˆ̂ϕ.

6.3 AUTOSAT (Σ1
m) is in Σ2

m

To prove that for every m ≥ 1, AUTOSAT (Σ1
m[ρ]) is in Σ2

m, we build a nonde-

terministic Turing machine with an oracle in Σp
m−1 which decides in time O(2(nc))

whether an arbitrary input ρ-structure Iϕ′ is in AUTOSAT (Σ1
m[ρ]).

Recall that by Theorem 3.8, Σ2
m captures

⋃
c∈NNTIME(2n

c
)Σp

m−1 , where n is the

size of the input and Σp
m−1 the m-th level of the polynomial-time hierarchy.

Note that the proof is similar to the proof of Theorem 3.3 in [HT05].

Proposition 6.10. For every m ≥ 1, AUTOSAT (Σ1
m[ρ]) is in Σ2

m.

Proof. We define a Turing machine M which decides whether an arbitrary input

ρ-structure Iϕ′ encodes a Σ1
m-sentence ϕ of vocabulary ρ such that Iϕ′ |= ϕ, and

which works in NTIME(2n
c
)Σp

m−1 .

Note that the number of variables in ϕ as well as the arity of the quantified

second-order variables, is O(n), where n is the size of (the domain of) the input

structure Iϕ′ .

Let ϕ be a Σ1
m-formula, we can think of ϕ as a formula where all second-order

quantifiers are existential, and are grouped together at the beginning with m − 1

interleaving negation symbols. This is clearly possible by the well known relation

between existential and universal quantifiers.

Let the ρ-structure Iϕ′ be the input to M and n the size of Iϕ′ . The machine

works as follows:

1. M writes in its work tape the formula ϕ encoded by Iϕ′ . This requires space

O(n) and can be done working deterministically in polynomial time.

89

2. M deterministically checks that ϕ is a well formed sentence in Σ1
m[ρ]. Again

this takes polynomial time.

3. Let ϕ be ∃X1 . . . ∃Xs1(ψ), whereX1, . . . , Xs1 are second-order variables of arity

r for some s1, r ≥ 1, and ψ is either a first-order formula or the negation of a

formula which starts with a block of existential second-order quantifiers. M
guesses a sequence of relations as possible values for the second-order variables

X1, . . . , Xs1 , respectively. The space needed for the guessed relations is O(s1 ·
r · nr · log n). Since the length of ϕ is bounded by n, we know that r and

s1 are also bounded by n. Therefore, the sequence of guessed relations needs

space bounded by nn+3, i.e., M needs space O(nn
c
), which is O(2n

c
) for some

constant c. The nondeterministic time needed for this step is also O(2n
c
).

4. Now M evaluates the formula ψ substituting the guessed relations for the

second-order variables X1, . . . , Xs1 , respectively. According to what we said

above regarding the formula ψ, for its evaluation we have to consider two

different cases:

(a) ψ is a first-order formula:

Then M evaluates ψ deterministically, which takes time polynomial in

the size of the guessed relations. Thus, this step takes time (O(2n
c
))c2

for some constant c2, which is still O(2n
c′
) for some constant c′.

Note that, to evaluate ψ we do not need to use oracles (as we do in the

second case, see below), since as the quantified variables in ψ are first-

order variables, we can afford the time needed to evaluate the negation of

an existential quantifier deterministically as a universal quantifier (note

that there are 2n
r

relations of arity r). So, the evaluation of the formula

ψ is done completely in a deterministic way, and still in time O(2n
c′
) for

some constant c′.

(b) ψ is the negation of a formula which starts with a block of existential

second-order quantifiers:

Say, ψ ≡ ¬(∃Y1 . . . ∃Ys2(ψ′)). Then, M calls an oracle Turing machine

Mψ which will evaluate the sub-formula ∃Y1 . . . ∃Ys2(ψ′) over the struc-

ture Iϕ′ extended with the second-order relations guessed by M. When

Mψ ends, the machine M proceeds by inverting the result of the compu-

90

tation of Mψ. That is, M accepts the input structure Iϕ′ iff Mψ rejects

its input.

The way in which the oracle machine Mψ works is exactly the same as

the way in which the original machine M works. First, Mψ guesses

a sequence of s2 relations of arity r, as possible values for the second-

order variables Y1, . . . , Ys2 , respectively. Then, Mψ evaluates the for-

mula ψ′ substituting the guessed relations for the second-order variables

Y1, . . . , Ys2 , respectively. If in the quantifier prefix of the sub-formula ψ′

there is a negation symbol before an existential second-order quantifier,

then Mψ calls in turn another oracle Turing machine which will work

like M and Mψ.

This process is followed until there are no more negations before second-

order existential quantifiers in the remaining sub-formulae.

Note that the oracle machine Mψ needs the same space and time as the

original machine M, i.e., O(2n
c
), where n is the size of Iϕ′ , which is the

input structure to the machine M. However, it is not necessary for Mψ

to work in NTIME(2n
c
). We define Mψ in such a way that it works in

NTIME(nc) (i.e., in NP).

To evaluate ψ, Mψ needs to know the input structure Iϕ′ , as well as

the values for the second-order variables X1, . . . , Xs1 which were guessed

by the machine M. Therefore, the input to the oracle machine Mψ is

as follows: a) the formula ψ, which requires space O(n), b) the input

structure Iϕ′ , which also requires space O(n), and c) the guessed values

for the variables X1, . . . , Xs1 , which requires space bounded by O(2n
c
) as

seen above.

So, the necessary space for the query to the oracle in the oracle tape is

O(2n
c
). In fact, we use padding to make sure that the input to the oracle

is of size 2n
c
. That is, the query to the oracle consists of the formula

ψ, the input structure Iϕ′ and the guessed values for X1, . . . , Xs1 padded

with enough “quasiblanks” to make the total length of the input string

to the oracle to be O(2n
c
).

Hence, if the oracle machine Mψ works in polynomial time, it will work

actually in NTIME((2n
c
)c
′
), where n is the size of Iϕ′ . Then an oracle in

NP is enough.

91

As to the other oracle machines, which could eventually be called in turn

by Mψ or any other oracle machine in the chain, the input in the oracle

tape should be built in the same way, except for the input structure,

which should be extended with the guessed values for all the second-

order variables which are quantified in the prefix of the original formula

ϕ, before the sub-formula which is to be evaluated by the given oracle.

The space required in the oracle tape, though, is still O(2n
c
).

So, we have got a non deterministic Turing machine M which decides AUTO-

SAT (Σ1
m[ρ]) in time O(2n

c
), for some constant c, and which calls a chain of oracle

machines, each belonging to the class NP . Clearly, the depth of nesting of the chain

of successive calls to oracles is given by the number of negations which appear in

the prefix of the formula ϕ, minus 1.

Therefore, M is in the class
⋃
c∈NNTIME(2n

c
)Σp

m−1 .

92

Chapter 7

Relational Complexity and

Second-Order Logic

In [Daw98], Dawar introduced a restricted version of second-order logic SOω in which

the second-order quantifiers range over relations that are closed under the equiva-

lence relation ≡k of k variable equivalence, for some k (see Section 2.2.2). Among

other results, he proved that the existential fragment of SOω is equivalent to the

nondeterministic inflationary fixed-point logic NFP. Since by a result of Abiteboul,

Vardi and Vianu [AVV97], NFP captures relational NP (NPr, see Section 2.5), it

then follows that the existential fragment of SOω captures NPr.

Aiming to further explore the connection between relational complexity and

higher-order logics, we give a direct proof, in the style of the proof of Fagin’s theo-

rem, of the fact that the existential fragment of SOω captures NPr. Then we define

formally the concept of relational machine with relational oracle and show the exact

correspondence between the prenex fragments of SOω and the levels of the relational

polynomial-time hierarchy.

This last result is the relational equivalent of Stockmeyer characterization of the

polynomial-time hierarchy. It was already pointed out by Dawar in [Daw98] where

he observed that, if we close the logic NFP simultaneously under negation and

the operation of taking nondeterministic fixed-points, we obtain a logic equivalent

to SOω, though he did not prove it. Moreover, the alternations of negations and

fixed-points correspond exactly to the second-order quantifier alternations in the

prenex fragments of SOω. Since by a result in [AVV97], the closure of NFP under

negation and the operation of taking nondeterministic fixed-points captures the

93

relational polynomial-time hierarchy, and the correspondence between the levels of

the relational polynomial-time hierarchy and the alternation of negations and fixed

points also holds, then the correspondence between the prenex fragments of SOω

and the levels of the relational polynomial hierarchy follows.

However, up to our knowledge, this is the first attempt to formally define the

relational polynomial-time hierarchy in terms of relational machines with relational

oracles, i.e., oracles consisting on classes of structures closed under isomorphisms

instead of sets of strings. This allows us to establish a direct connection between the

relational polynomial hierarchy and SOω, without using the Abiteboul and Vianu

normal form for relational machines (see [AV95]). That is, we do not need to encode

a canonical representation of the input structure in the Turing machine tape of the

relational machine as in [AVV97].

Note that along this chapter we refer frequently to the material in Sections 2.2.2

and 2.5 as we make extensive use of the model theoretic concept of type and the

notion of relational complexity.

7.1 A Restricted Second-Order Logic

Motivated by the study of the finite model theory of the infinitary logic with finitely

many variables (Lω∞ω), Dawar defined in [Daw98] a restricted version of second-order

logic SOω which is contained within Lω∞ω. This is obtained by restricting the inter-

pretation of the second-order quantifiers to relations closed under the equivalence

relation ≡k, for some k (see Definitions 2.3 and 2.4).

We define next the syntax and semantics of SOω.

Definition 7.1. In addition to the symbols of first-order logic, the alphabet of SOω

contains, for each k ≥ 1, a second-order quantifier ∃k and countably many k-ary

relation variables V k
1 , V

k
2 , . . . To denote relation variables we use letters X, Y,

Let m ≥ 1 and let σ be a relational vocabulary, we denote by Σ1,ω
m [σ] the class

of formulae of the form

∃k1
1X11 . . . ∃k1

s1X1s1∀k
2
1X21 . . . ∀k2

s2X2s2 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ϕ),

where for i, j ≥ 1 we have si, k
i
j ≥ 1 and arity(Xij) ≤ kij, Q is either ∃ or ∀,

depending on whether m is odd or even, respectively, and ϕ is a first-order formula of

94

vocabulary σ∪{X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}. As usual, ∀kX(ϕ)

abbreviates ¬∃kX(¬ϕ).

Similarly, we denote by Π1,ω
m [σ] the class of formulae of the form

∀k1
1X11 . . . ∀k1

s1X1s1∃k
2
1X21 . . . ∃k2

s2X2s2 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ϕ),

where for i, j ≥ 1 we have si, k
i
j ≥ 1 and arity(Xij) ≤ kij, Q is either ∀ or ∃,

depending on whether m is odd or even, respectively, and ϕ is a first-order formula

of vocabulary σ ∪ {X11, . . . , X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}.
The set of formulae of SOω is then defined as the union of the set of first-order

formulae with
⋃
m≥1 Σ1,ω

m .

The notion of satisfaction in SOω extends the notion of satisfaction in first-order

with the following rule:

• I |= ∃kX(ϕ) where k ≥ 1, X is a relation variable of arity r ≤ k, ϕ is a wff of

vocabulary σ ∪ {X} and I is a σ-structure, iff there is an R ⊆ Ir such that R

is closed under the equivalence relation ≡k in I, and (I, R) |= ϕ. Here (I, R)

is the (σ ∪ {X})-structure expanding I, in which X is interpreted as R.

Note that, for each Σ1,ω
m -formula ϕ ≡ ∃k1X1 . . . Q

ksXs(ψ), there is a formula

ϕ̂ ∈ Σ1
m which is equivalent to ϕ. The corresponding formula ϕ̂ is simply,

∃X1 . . . QXs

(
ψ ∧

∧
1≤i≤s

γki(Xi)

)
,

where γki(Xi) expresses that Xi is ≡ki-closed. Since IFP ⊆ Σ1
1∩Π1

1, it clearly follows

from Theorem 2.6 that γk is definable in Σ1
m.

It is is important to mention that the restricted second-order logic SOω is not

really restricted over ordered structures.

Theorem 7.2 ([Daw98]). On ordered structures, for every m ≥ 1, Σ1,ω
m = Σ1

m and

Π1,ω
m = Π1

m.

7.2 Relational Machines

We already introduced the relational machine in Section 2.5, Chapter 2. But, for

the detail of the proofs in this chapter, we need a formal definition.

95

Recall that the relational machine consists of a Turing machine augmented with

a finite set of fixed-arity relations forming a relational store (rs). We assume that

the Turing machine component of our relational machine consists of a finite control

which has a finite set of internal states, plus a one-way infinite tape equipped with

a read/write tape head which can move right or left.

Definition 7.3. We formally define a deterministic relational machine as a eleven-

tuple, 〈Q,Σ, δ, q0, b, F, τ, σ, T,Ω,Φ〉, where:

1. Q is the finite set of internal states;

2. Σ is the tape alphabet;

3. b ∈ Σ is the symbol denoting blank;

4. q0 ∈ Q is the initial state;

5. F ⊆ Q is the set of accepting final states;

6. τ is the vocabulary of the rs ;

7. σ ⊂ τ is the vocabulary of the input structure;

8. T ∈ τ \ σ is the output relation;

9. Ω is a finite set of first-order sentences of vocabulary τ ;

10. Φ is a finite set of first-order formulas of vocabulary τ , and

11. δ : Q × Σ × Ω → Σ × Q × {R,L} × Φ × τ is a partial function called the

transition function.

Transitions are based on:

i. the current state;

ii. the content of the current tape cell; and

iii. the answer to a Boolean first-order query evaluated on the τ -structure held in

the rs.

Situations in which the transition function is undefined indicate that the compu-

tation must stop. Otherwise, the result of the transition function is interpreted as

follows:

96

i. the first component is the symbol to be written on the scanned cell of the tape;

ii. the second component is the new state;

iii. the third component specifies the moves of the tape head: R means moving one

cell to the right and L means moving one cell to the left;

iv. the fourth component specifies an n-ary (n ≥ 1) first-order query ϕ to be

evaluated on the τ -structure held in the rs ; and

v. the fifth component is an n-ary relation symbol in τ , which specifies the n-ary

relation in the rs to be replaced by the relation obtained from the evaluation of

ϕ.

We can now introduce for relational machines the analogous to the concepts of

configuration (also called instantaneous description or snapshot) and computation

of Turing machines.

Definition 7.4. Given a relational machine M , a configuration of M is a description

of the whole status of the computation: it includes the contents of the tape, the

position of the tape head, the current internal state of the finite control, and the

contents of the relational store. Formally, a configuration of M is a 3-tuple (q, w,A)

where q is the current internal state of M , w ∈ Σ∗#Σ∗ represents the current

contents of the tape, and A is the current τ -structure held in the rs. The symbol

“#” is supposed not to be in Σ, and marks the position of the tape head (by

convention, the head scans the symbol immediately at the right of the “#”). All

symbols in the infinite tape not appearing in w are assumed to be the particular

symbol blank “b”.

The machine starts in the initial state, with the input in the designated relations

of the relational store, and an empty tape.

Definition 7.5. The initial configuration of a relational machine M on an input

structure I of vocabulary σ is (q0,#,A), where A is the τ -structure which extends

I with an empty relation RA
i for each relation symbol Ri in τ . The head is assumed

to be in the left-most position of the tape.

The fact of accepting an input is indicated by an accepting configuration.

97

Definition 7.6. An accepting configuration is a configuration whose state is an

accepting state.

A computation of a relational machine can now be defined as a sequence of

configurations:

Definition 7.7. Given a relational machine M and an input structure I, a partial

computation of M on I is a (finite or infinite) sequence of configurations of M , in

which each step from a configuration to the next obeys the transition function. A

computation is a partial computation which start with the initial configuration, and

ends in a configuration in which no more steps can be performed. An accepting

computation is a computation ending in an accepting configuration, and in this case

the input structure I is accepted.

Relational machines give rise to three types of computational devices. First, we

can think of a relational machine M as an acceptor of a relational language, i.e., a

class of structures closed under isomorphisms. In this case the relational language

accepted by M , denoted L(M), is the set of input structures accepted by M . We can

also think of a relational machine M as computing a relational function from input

structures to output relations. The relational function computed by M is defined on

the relational language accepted by M , and for each accepted input structure the

value of the relational function is the relation held in the output relation T in the rs

when the machine stops in an accepting state. Finally, we can think of a relational

machine M as computing a mixed function, i.e., a function from structures to strings

where the output is written on the machine’s tape. Again the function is defined on

the relational language accepted by M . For each accepted input structure the value

of this function is the word which appears in the tape when the machine stops in

an accepting state.

The arity of a relational machine is the maximum number of variables which

appear in any formula in its finite control.

Definition 7.8. Let M = 〈Q,Σ, δ, q0, b, F, τ, σ, T,Ω,Φ〉 be a relational machine, the

arity of M , denoted as arity(M), is max({|var(ϕ)| : ϕ ∈ Ω ∪ Φ}).

7.2.1 Nondeterministic Relational Machines

In analogy with nondeterministic Turing machines, we can define nondeterministic

relational machines.

98

Definition 7.9. A nondeterministic relational machine is a eleven-tuple, 〈Q,Σ, δ,
q0, b, F, σ, τ, T,Ω,Φ〉, where each component is as in the deterministic case, with the

exception that the transition function is defined by

δ : Q× Σ× Ω → P(Σ×Q× {R,L} × Φ× τ)

where, for any set A, P(A) denotes the powerset of A.

All the definitions and remarks made for the deterministic case about configura-

tions and computations, apply in the same manner to the nondeterministic model.

However, on a given input structure there is now not only one computation, but a

set of possible computations. Acceptance for nondeterministic relational machines

is therefore defined as follows.

Definition 7.10. An input structure I is accepted by an nondeterministic relational

machine M iff there exists a computation of M on I ending in an accepting config-

uration. We denote by L(M) the relational language accepted by M , i.e., the class

of σ-structures accepted by M .

7.2.2 Relational Oracle Machines

Definition 7.11. A relational oracle machine is a relational machine with a dis-

tinguished set of relations in its rs , called oracle relations, and three distinguished

states q?, the query state, and qYES , qNO , the answer states.

Similarly to the case of oracle Turing machines, the computation of an oracle

relational machine requires that an oracle language be fixed previously to the com-

putation. But, since we are working with relational machines, it is natural to think

of a relational oracle language, i.e., a class of structures closed under isomorphisms,

rather than a set of strings. Let C be an arbitrary class of structures of some vo-

cabulary σo which is closed under isomorphisms. The computation of a relational

oracle machine M with oracle C and distinguished set of oracle relation symbols

σo, proceeds like in an ordinary relational machine, except for transitions from the

query state. From the query state M transfers into the state qYES if the relational

structure of vocabulary σo formed by the domain of the input structure and the dis-

tinguished set of oracle relations currently held in the rs, belongs to C; otherwise,

M transfers into the state qNO .

99

7.2.3 Relational Polynomial-Time Hierarchy

The time complexity of oracle relational machines is defined precisely in the same

way as with ordinary relational machines. Each query step counts as one ordinary

step. Thus if C is any deterministic or nondeterministic relational time complexity

class and A is a relational language, we can define CA to be the class of all relational

languages accepted by halting relational machines of the same sort and time bound

as in C, only that the machines have now an oracle A.

Definition 7.12. The levels of the relational polynomial-time hierarchy are defined

as follows:

• ∆Pr
0 = ΣPr

0 = ΠPr
0 = Pr

• and for m > 0, ∆Pr
m+1 = PΣPr

m
r ΣPr

m+1 = NPΣPr
m

r ΠPr
m+1 = coNPΣPr

m
r .

The relational complexity class PHr is the union of all relational complexity classes

in the relational polynomial time hierarchy, i.e., PHr =
⋃
m∈NΣPr

m .

7.3 The Relational Complexity of SOω

We know by the work of Dawar that the expressive power of the fragment Σ1,ω
1 of

SOω equals the expressive power of the nondeterministic inflationary fixed point

logic.

Theorem 7.13 ([Daw98]). Σ1,ω
1 = NFP.

It clearly follows from this result and Theorem 2.15 that the classes of relational

structures which are finitely axiomatizable in Σ1,ω
1 , are exactly those classes which

belong to the relational complexity class NPr.

Theorem 7.14 ([Daw98]). Σ1,ω
1 captures NPr.

We give next a direct proof of this result. That is, we show that for every

relational vocabulary σ, every Σ1,ω
1 [σ]-sentence ϕ can be evaluated in NPr, and vice

versa that every NPr property of finite relational structures can be expressed in

Σ1,ω
1 . But first, we need some preparation.

The next lemma is a direct consequence of Theorems 2.15 and 2.7.

100

Lemma 7.15. For every relational vocabulary σ and every k ≥ 1, there is a deter-

ministic relational machine M≤k of arity k′ ≥ 2k, such that on any input structure

I of vocabulary σ, M≤k computes the preorder ≤k of Theorem 2.7 working in time

bounded by a polynomial in sizek′(I).

The following two facts are variations of Facts 3.2 and 3.1 in [Tur01b], respec-

tively. Anyway, we prove them for their better understanding.

Fact 7.16. Let I be a relational structure of some vocabulary σ, and let ā =

(a1, . . . , ak) and b̄ = (b1, . . . , bk) be two k-tuples on I. Let 1 ≤ r ≤ k and let (i1, . . . ir)

be a tuple of projection coordinates, where for 1 ≤ j < r, we have 1 ≤ ij < ij+1 ≤ k.

Let ā′ = (ai1 , . . . , air) and b̄′ = (bi1 , . . . , bir). It follows that, if ā ≡k b̄, then both

ā′ ≡k b̄′ and ā′ ≡r b̄′ hold.

Proof. By definition of the FOk-type of a tuple, for every FOk formula ϕ ∈ tpFOk

I (ā),

with free(ϕ) ⊆ {xi1 , . . . , xir}, it holds that I |= ϕ[ā]. Since the valuation represented

by the sub-tuple ā′ = (ai1 , . . . , air) assigns to the free variables in ϕ the same ele-

ments from I as the valuation represented by the tuple ā, it also holds that I |= ϕ[ā′].

Thus we can define tpFOk

I (ā′) as the set of FOk formulae ϕ ∈ tpFOk

I (ā) such that

free(ϕ) ⊆ {xi1 , . . . , xir}. Given that tpFOk

I (b̄′) can be defined in the same way, if

tpFOk

I (ā) = tpFOk

I (b̄), then tpFOk

I (ā′) = tpFOk

I (b̄′).

To prove that ā′ ≡r b̄′, we use the same argument, except that we consider FOr

formulae ϕ ∈ tpFOk

I (ā) and FOr formulae ϕ ∈ tpFOk

I (b̄), instead of FOk formulae, to

build tpFOr

I (ā′) and tpFOr

I (b̄′), respectively.

Fact 7.17. Let I be a relational structure of some vocabulary σ and let ϕ be a

FOk[σ]-formula with 1 ≤ r ≤ k free variables. The relation that ϕ defines on I, i.e.

ϕI, is closed under ≡k.

Proof. Let ā and b̄ be two r-tuples on I. We show that, if ā ∈ ϕI and ā ≡k b̄, then

b̄ ∈ ϕI. Since ā ∈ ϕI , then by definition of the FOk-type of a tuple and definition

of ϕI, we have that ϕ is in tpFOk

I (ā). Given that ā ≡k b̄, ϕ is also in tpFOk

I (b̄), and

therefore I |= ϕ[b̄]. Hence, b̄ ∈ ϕI.

The following is a straightforward consequence of Fact 7.16.

Fact 7.18. Let I be a relational structure of some vocabulary σ. For every 1 ≤ r ≤ k,

it holds that sizer(I) ≤ sizek(I).

101

We can now proceed with the first part of our direct proof of Dawar’s result

regarding the relational complexity of Σ1,ω
1 , i.e., Theorem 7.14.

Proposition 7.19. Every class of relational structures definable in Σ1,ω
1 is in NPr.

Proof. We show that for every relational vocabulary σ, every Σ1,ω
1 [σ]-sentence ϕ can

be evaluated in NPr. Suppose that ϕ is ∃k1X1 . . . ∃ksXs(ψ), where ψ is a first-order

formula of vocabulary σ ∪ {X1, . . . , Xs}. We build a nondeterministic relational

machine Mϕ which evaluates ϕ on input structures of vocabulary σ. For 1 ≤ i ≤ s,

let k′i ≥ 2ki be the arity of the relational machine M≤ki of Lemma 7.15 which

computes the preorder ≤ki of Theorem 2.7. The arity k of Mϕ is max ({k′1, . . . , k′s}).
The vocabulary τ of the relational store is σ∪{X1, . . . , Xs,≤k1 , . . . ,≤ks , S1, . . . , Ss},
where for 1 ≤ i ≤ s, the arity of Xi is exactly the same as the arity ri ≤ ki of the

corresponding quantified relation variable in ϕ, the arity of ≤ki is 2ki, and the arity

of Si is ki. Let I be the input structure to Mϕ. The machine works as follows:

• For each 1 ≤ i ≤ s, Mϕ builds the preorder ≤ki of Theorem 2.7 in its rs. To

complete this step, Mϕ simply emulates, for each preorder ≤ki , the correspond-

ing deterministic relational machine M≤ki of arity k′i ≥ 2ki of Lemma 7.15.

Therefore, Mϕ can compute each preorder ≤ki working deterministically in

time bounded by a polynomial in sizek′i(I), and as k ≥ k′i, all preorders ≤ki

working deterministically in time bounded by a polynomial in sizek(I) (which

by Fact 7.18 is ≥ sizek′i(I)).

• By stepping through the equivalence classes of the relation ≡ki in the order

given by ≤ki , Mϕ computes sizeki
(I) for every 1 ≤ i ≤ s. Clearly the com-

putation can be carried out by working deterministically in a number of steps

polynomial in sizek(I). See also Proposition 2.13.

• For 1 ≤ i ≤ s, Mϕ guesses and writes over its Turing machine tape a tuple

āi = (ai1, . . . , aisizeki
(I)) ∈ {0, 1}sizeki

(I). Since for each 1 ≤ i ≤ s, Mϕ can

perform this task working nondeterministically in time sizeki
(I) (which by

Fact 7.18 is ≤ sizek(I)), this computation takes time polynomial in sizek(I).

• Using the binary tuples guessed in the previous step, Mϕ generates, for every

1 ≤ i ≤ s, a relation which is placed in Xi in its rs and is closed under the

equivalence relation ≡ki in I.

102

For i = 1 to s.

For j = 1 to sizeki
(I)

Begin

If aij = 1 then

Xi := Xi(x1, . . . , xri) ∨ (∃xri+1 . . . xki
(¬Si(x1, . . . , xki

)∧
∀y1 . . . yki

(≤ki (y1, . . . , yki
, x1, . . . , xki

)∧
¬ ≤ki (x1, . . . , xki

, y1, . . . , yki
) → Si(y1, . . . yki

))));

Si := Si(x̄) ∨ (¬Si(x̄) ∧ ∀ȳ(≤ki (ȳ, x̄) ∧ ¬ ≤ki (x̄, ȳ) → Si(ȳ)));

End;

Mϕ can clearly perform this task working deterministically in time bounded

by a polynomial in sizek(I).

• Finally, Mϕ evaluates ψ on the τ -structure currently held in its rs. Mϕ accepts

the input structure I iff ψ evaluates to true.

Hence, ϕ can be evaluated in NPr.

Before proving the converse of the previous result, we need two additional facts.

Fact 7.20. Let I be a relational structure. For 1 ≤ i ≤ n, let ki ≥ ri ≥ 1 and let Ci
be the set of equivalence classes of ri-tuples determined by ≡ki on I. If follows that,

for every CR ⊆ C1 × . . .× Cn, the relation

RI = {(a11, . . . , a1r1 , a21, . . . , a2r2 , . . . , an1, . . . anrn) ∈ Ir1+r2+...+rn :

([(a11, . . . , a1r1)], [(a21, . . . , a2r2)], . . . , [(an1, . . . anrn)]) ∈ CR}

is closed under ≡k1+k2+···+kn on I.

Proof. Suppose that there is a CR ⊆ C1×. . .×Cn such that its corresponding relation

RI is not closed under ≡k1+k2+···+kn on I. Then, there are two (r1+r2+· · ·+rn)-tuples

ā = (a11, . . . , a1r1 , a21, . . . , a2r2 , . . . , an1, . . . , anrn), and

b̄ = (b11, . . . , b1r1 , b21, . . . , b2r2 , . . . , bn1, . . . , bnrn)

on I such that ā ∈ RI, b̄ 6∈ RI and ā ≡k1+k2+···+kn b̄. Since ā ≡k1+k2+···+kn b̄, for

1 ≤ i ≤ n, it holds that (ai1, . . . , airi) ≡ki (bi1, . . . , biri). But then, by definition of

RI, we have that b̄ ∈ RI which contradicts our hypothesis.

103

Fact 7.21. Let M be a relational machine of arity k and let σ and τ be the vocab-

ularies of the input structure and the rs, respectively. In every configuration in a

computation of M on an input structure I, every relation Ri of arity ri ≤ k held in

the rs of M is closed under the equivalence relation ≡k on I.

Proof. We proceed by induction on the sequence of configurations of a computation

of M on an input structure I. W.l.o.g. we can assume that the relations of the input

structure I, i.e., the relations in the rs which interpret the relation symbols in σ,

are not modified through any computation of M . This poses no problem since in

case that such a modification is needed, we can just get another copy of the relation

which would be in σ \ τ and modify the new relation instead.

In the initial configuration of M , the τ -structure A0 held in the rs is I extended

with an empty relation RA0
i for each relation symbol Ri in τ \ σ. Note that, by

Fact 7.16, if a relation R of arity r ≤ k is closed under ≡r, then R is also closed

under ≡k, hence we only need to show that for every relation symbol Ri ∈ σ of

arity ri, the relation RI
i is closed under ≡ri on I. Let us assume that there is a

Ri ∈ σ such that RI
i is not closed under ≡ri on I. If that is the case, there are two

ri-tuples ā, b̄ ∈ Iri such that ā ∈ RI
i , b̄ 6∈ RI

i and ā ≡ri b̄. But then there is a FOri-

formula of vocabulary σ, namely Ri(x1, . . . , xri), such that I |= Ri(x1, . . . , xri)[ā]

while I 6|= Ri(x1, . . . , xri)[b̄], which clearly contradicts our assumption that ā ≡ri b̄.

For a configuration other than the initial configuration, we assume as inductive

hypothesis that, in the preceding configuration in the sequence, every relation R
An−1

i

of arity ri ≤ k in the τ -structure An−1 held in the rs of M , is closed under ≡k on

I. Let An be the τ -structure held in the rs of M in the current configuration. Note

that in each step from a configuration to the next M updates exactly one relation

in its rs. Let RAn
x of arity rx be the relation updated in the step from the previous

to the current configuration in the sequence, and let ϕRx ∈ FOk[τ] be the formula

used for the update. We show below that there is a formula ϕ′Rx
∈ FOk[σ] such

that ϕ
An−1

Rx
= ϕ′IRx

, i.e., ϕ′Rx
defines in I the same relation that ϕRx defines in An−1.

Since the FOk-formula ϕ′Rx
of vocabulary σ defines on I the relation RAn

x , it follows

by Fact 7.17 that RAn
x is closed under ≡k on I.

By inductive hypothesis, if R
An−1

i is a relation of arity ri in An−1, then it is closed

under ≡k on I. Let TRi
= {tpFOk

I (ā) : ā ∈ R
An−1

i } be the set of FOk-types realized

by R
An−1

i on I. By Lemma 2.5, for every type tj ∈ TRi
, there is an FOk formula

αtj of vocabulary σ which isolates tj. Therefore, the FOk-formula ψRi
≡ ∨

tj∈TRi
αtj

104

of vocabulary σ defines R
An−1

i on I. The formula ϕ′Rx
is built from ϕRx with every

occurrence of a sub-formula of the form Ri(x1, . . . , xri), where Ri ∈ τ \ σ, replaced

by the corresponding sub-formula ψRi
(x1, . . . , xri).

We complete the proof of Theorem 7.14 showing that every NPr property of

finite relational structures can be expressed in Σ1,ω
1 . The proof is close to the proof

of Fagin’s theorem in [Lib04], but we need to bear in mind that we can only quantify

relational variables which are closed under the equivalence relation ≡k for some k,

and we have to take into account the rs of the machine.

Proposition 7.22. Every class of relational structures (relational language) in NPr

is definable in Σ1,ω
1 .

Proof. Let q : Bσ → {0, 1} be a Boolean query which is computed by a nondeter-

ministic relational machine M = 〈Q,Σ, δ, q0, b, F, σ, τ, Rl,Ω,Φ〉 of arity k, working

in polynomial time in the k-size of the input structure of vocabulary σ. We assume

that M works in time (sizek(I))
s for some s ≥ 1 and I ∈ Bσ. Here

• Q = {q0, . . . , qm} is the finite set of internal states; q0 ∈ Q is the initial state;

• Σ = {0, 1, b} is the tape alphabet; b ∈ Σ is the symbol denoting blank;

• F = {qm} is the set of accepting final states;

• τ = {R0, . . . , Rl} is the vocabulary of the rs ; ri (0 ≤ i ≤ l) is the arity of Ri;

• σ = {R0, . . . , Ru}, where u < l, is the vocabulary of the input structure;

• Rl is the output relation;

• Ω = {α0, . . . , αv} is a finite set of first-order sentences of vocabulary τ ;

• Φ = {γ0, . . . , γw} is a finite set of first-order formulas of vocabulary τ ; and

• δ : Q× Σ× Ω → P(Σ×Q× {R,L} × Φ× τ) is the transition function of M .

The sentence ϕM expressing acceptance by M on input I ∈ Bσ has the form

∃2·kO ∃2·s·kT0 ∃2·s·kT1 ∃2·s·kTb ∃2·s·kHq0 . . . ∃2·s·kHqm ∃(s+1)·kS0 . . . ∃(s+1)·kSl (ψ),

where ψ is a first-order formula of vocabulary {O, T0, T1, Tb, Hq0 , . . . , Hqm , S0, . . . ,

Sl} ∪ σ. The arity of O is 2 · k; the arity of T0, T1, Tb as well as the arity of Hqi for

105

0 ≤ i ≤ m, is 2 · s · k; and the arity of Si for 0 ≤ i ≤ l is ri + s · k. The intended

interpretation of these relation symbols is as follows:

• O is a preorder of k-tuples over I.

Note that, by Theorem 2.7, there is a preorder ≤k such that the corresponding

equivalence relation is ≡k, and that such preorder is also a linear order over the set

of equivalence classes of k-tuples C determined by ≡k. Thus, with ≤k we can define

a lexicographic linear order of the s-tuples in Cs. Since M runs in time bounded

by (sizek(I))
s and visits at most (sizek(I))

s cells, we can model time (t̄) as well

as position on the tape (p̄) by s-tuples of equivalence classes in C. We actually

do that by using (s · k)-tuples of elements of the domain I instead of s-tuples of

equivalence classes in C. Under this approach, two (s · k)-tuples ā = (ā1, . . . , ās)

and b̄ = (b̄1, . . . , b̄s) are considered equivalent iff, for 1 ≤ i ≤ s, their corresponding

k-tuples āi and b̄i belong to the same equivalence class, i.e., iff āi ≤k b̄i and b̄i ≤k āi.

Having this considerations in mind, we define the intended interpretation of the

remaining relation symbols as follows:

• T0, T1, and Tb are tape relations; for x ∈ {0, 1, b}, Tx(p̄, t̄) indicates that posi-

tion p̄ at time t̄ contains x.

• Hq’s are head relations; for q ∈ Q, Hq(p̄, t̄) indicates that at time t̄, the machine

M is in state q, and its head is in position p̄.

• Si’s are rs relations; for 0 ≤ i ≤ l, Si(ā, t̄) indicates that at time t̄, the relation

Ri in the rs contains the ri-tuple ā.

The sentence ψ must now express that when M starts with an empty tape and

an input I in the designated relations of its rs, the relations Tx’s, Hq’s and Si’s

encode its computation, and eventually M reaches an accepting state.

We define ψ to be the conjunction of the following sentences:

• A sentence expressing that O defines a pre-order of k-tuples.

∀x̄(O(x̄, x̄)) “O is reflexive” ∧
∀x̄ȳz̄(O(x̄, ȳ) ∧O(ȳ, z̄) → O(x̄, z̄)) “O is transitive” ∧
∀x̄ȳ(O(x̄, ȳ) ∨O(ȳ, x̄)) “O is connex”.

106

• A sentence defining the initial configuration of M .

∃x̄∀ȳ
(
x̄ ¹ ȳ) → (

Hq0(x̄, x̄) ∧ ∀p̄(Tb(p̄, x̄))
))

“At time 0, M is in state q0, the head is in the left-most position of the tape,

and the tape contains only blanks” ∧
∃t̄∀x̄

(
t̄ ¹ x̄→ ∧

0≤i≤u
(∀a1 . . . ari(Si(a1, . . . , ari , t̄) ↔ Ri(a1, . . . , ari))

)∧
∧
u<i≤l

(∀a1 . . . ari(¬Si(a1, . . . , ari , t̄))
))

“the relations in the rs hold a τ -structure A which extends I with an empty

relation SA
i for each relation symbol Ri in τ \ σ”.

Here, for x̄ = (x̄1, . . . , x̄s) and ȳ = (ȳ1, . . . , ȳs), where x̄i and ȳi (1 ≤ i ≤ s) are

k-tuples of individual variables, we say that x̄ ¹ ȳ iff
(
O(x̄1, ȳ1) ∧ ¬O(ȳ1, x̄1)

)∨
(
O(x̄1, ȳ1) ∧O(ȳ1, x̄1) ∧O(x̄2, ȳ2) ∧ ¬O(ȳ2, x̄2)

) ∨ . . .∨
(
O(x̄1, ȳ1) ∧O(ȳ1, x̄1) ∧ . . . ∧O(x̄s−1, ȳs−1) ∧O(ȳs−1, x̄s−1)∧
O(x̄s, ȳs) ∧ ¬O(ȳs, x̄s)

) ∨ x̄ ∼ ȳ,

where x̄ ∼ ȳ is simply O(x̄1, ȳ1)∧O(ȳ1, x̄1)∧ . . .∧O(x̄s, ȳs)∧O(ȳs, x̄s). Infor-

mally, x̄ ¹ ȳ if x̄ precedes or equals ȳ in the lexicographic order induced by

O, and x̄ ∼ ȳ if they share the same position.

• A sentence stating that in every configuration of M , each cell of the tape

contains exactly one element of Σ.

∀p̄t̄
((
T0(p̄, t̄) ↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ T0(x̄, ȳ) ∧ ¬T1(x̄, ȳ) ∧ ¬Tb(x̄, ȳ))

)∧
(
T1(p̄, t̄) ↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ T1(x̄, ȳ) ∧ ¬T0(x̄, ȳ) ∧ ¬Tb(x̄, ȳ))

)∧
(
Tb(p̄, t̄) ↔ ∀x̄ȳ(x̄ ∼ p̄ ∧ ȳ ∼ t̄→ Tb(x̄, ȳ) ∧ ¬T0(x̄, ȳ) ∧ ¬T1(x̄, ȳ))

))
.

• A sentence stating that at any time the machine is in exactly one state.

∀t̄∃p̄
(∨

q∈Q
(
Hq(p̄, t̄) ∧ ∀x̄(Hq(x̄, t̄) ↔ x̄ ∼ p̄)

))∧
¬∃p̄t̄x̄ȳ

(∨
q,q′∈Q,q 6=q′

(
Hq(p̄, t̄) ∧ p̄ ∼ x̄ ∧ t̄ ∼ ȳ ∧Hq′(x̄, ȳ)

))
.

• Sentences expressing that the relations Ti’s, Hq’s and Si’s respect the tran-

sitions of M . For every a ∈ Σ, q ∈ Q and α ∈ Ω for which the transition

function δ is defined, we have a sentence of the form

∨

(b,q′,m,γ,R)∈δ(q,a,α)

χ(q, a, α, b, q′,m, γ,R),

107

where χ(q, a, α, b, q′,m, γ,R) is the sentence describing the transition in which,

upon reading a in state q, if α evaluates to true in the τ -structure A currently

held in the rs, then the machine writes b, enters state q′, makes the move m,

and replaces the relation RA by γA in the rs. Assume that m = L and Sj is

the relation variable which encodes R, we write χ(q, a, α, b, q′,m, γ, R) as the

conjunction of:

∀p̄∀t̄
(
¬(∀x̄(p̄ ¹ x̄)) ∧ Ta(p̄, t̄) ∧Hq(p̄, t̄) ∧ α̂(t̄) →
(
Tb(p̄, t̄+ 1) ∧Hq′(p̄− 1, t̄+ 1)∧
∀x̄(¬(x̄ ∼ p̄) → (∧

i∈{0,1,b} Ti(x̄, t̄+ 1) ↔ Ti(x̄, t̄)
))∧

∀x1 . . . xrj
(
Sj(x1, . . . , xrj , t̄+ 1) ↔ γ̂(x1, . . . , xrj , t̄)∧

∧
0≤i≤l,i 6=j

(∀x1 . . . xri(Si(x1, . . . , xri , t̄) ↔ Si(x1, . . . , xri , t̄+ 1)
)))

and

∀p̄∀t̄
(
∀x̄(p̄ ¹ x̄) ∧ Ta(p̄, t̄) ∧Hq(p̄, t̄) ∧ α̂(t̄) →
(
Tb(p̄, t̄+ 1) ∧Hq′(p̄, t̄+ 1)∧
∀x̄(¬(x̄ ∼ p̄) → (∧

i∈{0,1,b} Ti(x̄, t̄+ 1) ↔ Ti(x̄, t̄)
))∧

∀x1 . . . xrj
(
Sj(x1, . . . , xrj , t̄+ 1) ↔ γ̂(x1, . . . , xrj , t̄)∧

∧
0≤i≤l,i 6=j

(∀x1 . . . xri(Si(x1, . . . , xri , t̄) ↔ Si(x1, . . . , xri , t̄+ 1)
)))

where α̂(t̄) and γ̂(x1, . . . , xrj , t̄) are the formulae obtained by replacing in α and

γ(x1, . . . , xrj), respectively, each atomic sub-formula of the form Ri(y1, . . . , yri)

(0 ≤ i ≤ l) by Si(y1, . . . , yri , t̄). We use abbreviations p̄ − 1 and t̄ + 1 for the

predecessor of p̄ and the successor of t̄ in the lexicographic order induced by

O, respectively; these are clearly definable in first-order logic. The second

formula above is very similar to the first one, and handles the case when p̄ is

the left-most cell of the tape: then the head does not move and stays in p.

• Finally, a sentence stating that at some point, M is in an accepting final state.

∃p̄∃t̄(Hqm(p, t)).

We show next that, M accepts a given σ-structure I iff there are relations closed

under equivalence of FOk-types of tuples as required by the SOω quantifiers in

108

the prefix of ϕM , which assigned to the relation variables O, T0, T1, Tb, Hq0 , . . . ,

Hqm , S0, . . . , Sl satisfy ψ.

Let C be the set of equivalence classes of k-tuples on I determined by the equiv-

alence relation ≡k. Let ≤k be the partial order of Theorem 2.7 and let “≤k” be

{([(a11, . . . , a1k)], [(a21, . . . , a2k)]) ∈ C2 : (a11, . . . , a1k, a21, . . . , a2k) ∈ ≤k}. Since the

relation “≤k” is a subset of C2, it follows from Fact 7.20 that there is a relation with

the intended interpretation for O which is closed under ≡2k on I.

Regarding T0, T1, Tb, Hq0 , . . . , Hqm . If M accepts a given σ-structure I, then

for each Ri ∈ {T0, T1, Tb, Hq0 , . . . , Hqm} there is a CRi
⊆ C2·s such that the cor-

responding relation RI
i = {(a11, . . . , a1k, a21, . . . , a2k, . . . , a(2·s)1, . . . , a(2·s)k) ∈ I2·s·k :

([(a11, . . . , a1k)], [(a21, . . . , a2k)], . . . , [(a(2·s)1, . . . , a(2·s)k)]) ∈ CRi
} meets the intended

interpretation and, by Fact 7.20, is closed under ≡2·s·k on I.

For each Ri ∈ τ of arity ri, let Ci be the set of equivalence classes of ri-tuples

determined by ≡k on I. By Fact 7.21, in every configuration in a computation of

a relational machine M of arity k on an input σ-structure I, every relation Ri of

arity ri in its rs is closed under ≡k on I. Thus, if M accepts a given σ-structure I,

then for each relation variable S0, . . . , Sl used to model the content of the relational

store, there is a CSi
⊆ Ci × Cs such that the corresponding relation

SI
i = {(a1, . . . , ari , a11, . . . , a1k, a21, . . . , a2k, . . . , as1, . . . , ask) ∈ Iri+s·k :

([(a1, . . . , ari)], [(a11, . . . , a1k)], [(a21, . . . , a2k)], . . . , [(as1, . . . , ask)]) ∈ CSi
},

meets the intended interpretation. Again by Fact 7.20, each of these relations SI
i is

closed under ≡(s+1)·k on I.

We conclude that, for every I ∈ Bσ, I |= ϕM iff M accepts I.

7.3.1 SOω Captures the Relational Polynomial-Time Hier-

archy

We show in this section the exact correspondence between the prenex fragments of

SOω and the levels of the relational polynomial-time hierarchy.

To prove the following lemma, we adapt the strategy used for Turing machines

in [Sto76] to the case of relational machines.

Lemma 7.23. If M is a nondeterministic relational machine with an oracle A in

ΣPr
m , for some m ≥ 0, then there is a nondeterministic relational machine M ′ which

is equivalent to M and which, in any computation, asks at most one query to an

109

oracle A′ which is also in ΣPr
m .

Proof. We assume thatM = 〈Q,Σ, δ, q0, b, F, σ, τ, T,Ω,Φ〉 works in nondeterministic

time bounded by (sizek(I))
s for some s ≥ 1 and input relational structure I of

vocabulary σ = {E1, . . . , El}. We also assume that the subset of distinguished

oracle relation symbols in the vocabulary τ of M is σo = {Ro
1, . . . , R

o
n}, where for

1 ≤ i ≤ n, the arity of Ro
i is ri. We denote as MA the relational machine in

ΣPr
m which decides A. We assume that the arity of MA is k′ and that it works in

time bounded by (sizek′(Io))
s′ for some s′ ≥ 1 and input relational structure Io of

vocabulary σo.

M ′ works as follows. First, it guesses a sequence of oracle queries, i.e., a se-

quence of σo-structures, as well as their corresponding answers. M ′ does this by

guessing and writing over its Turing machine tape a sequence of tuples of the form

((ā1, . . . , ān), A), where A is either Y or N and for 1 ≤ i ≤ n, āi ∈ {0, 1}sizeri (I).

Each n-tuple (ā1, . . . , ān) represents a query to the oracle and A is the answer to that

query. The σo-structure corresponding to a given n-tuples (ā1, . . . , ān) is obtained

by interpreting Ro
i ∈ σo with the following corresponding relation

{b̄ ∈ (dom(I))ri : b̄ is in the j-th equivalence class in the order given by ≤ri and

the j-th component of āi equals 1}.
Note that, as shown in the proof of Proposition 7.19, given a tuple āi ∈ {0, 1}sizeri (I),

M ′ can compute the corresponding relation and store it in its rs working in time

bounded by a polynomial in sizeri(I).

Then, M ′ proceeds as M , except that every time that M makes a query to the

oracle, M ′ just takes the answer guessed for that query at the beginning of the

computation.

Let us fix an arbitrary computation of M ′ on the input structure I. At the end

of the computation, M ′ must check that the guessed queries match the sequence

of real queries of M in the fixed computation, and that the guessed answers for

those queries coincide with the actual answers from the oracle A. If any of those

conditions is not met, M ′ stops in a rejecting state.

To check whether the guessed yes answers are correct, M ′ simply takes each

guessed tuple of the form ((ā1, . . . , ān), Y), stores their corresponding relations in

its rs, and works as MA to check whether the structure of domain dom(I) formed

by those relations, is in the oracle A. M ′ does not need to call an oracle to do this

110

since the answer guessed for those queries is yes.

As to the queries for which the guessed answer is no, M ′ does need to use

an oracle, but it suffices to make just one query to it. To do this, M ′ encodes

the guessed oracle queries with guessed answers no as a structure of vocabulary

σN = {Eo
1 , . . . , E

o
l , S

o
1 , . . . , S

o
n}, where for 1 ≤ i ≤ j, arity(Eo

i) = arity(Ei), and for

1 ≤ i ≤ n, arity(Soi) = ri + s · k. Actually, σN is the set of distinguished oracle

relation symbols in the vocabulary τ ′ of the rs of M ′.

Let (ā11, . . . , ā1n), . . . , (ām1, . . . , āmn) be the sequence of tuples corresponding to

the queries with guessed negative answers, for each 1 ≤ u ≤ n, M ′ stores in its rs

the following relation:

Sou :=
⋃

1≤i≤m{(b̄, t̄) ∈ (dom(I))ru+s·k : b̄ is in the j-th equivalence class in the

order given by ≤ru , the j-th component of āiu equals 1, and

t̄ belongs to the i-th equivalence class in the order given by ≤s·k}.
Furthermore, for 1 ≤ i ≤ l, M ′ stores in Eo

i in its rs the relation EI
i in the input

structure I. Then it asks the oracle A′ the query represented by the σN -structure

of domain dom(I) formed by those relations. If the answer of the oracle A′ is yes,

then the no answers guessed by M ′ are all correct.

Let J ∈ BσN , let Jσ be the structure J restricted to the vocabulary {Eo
1 , . . . , E

o
l },

and let C be the set of equivalence classes of k-tuples determined by the equivalence

relation ≡k on Jσ. For ([t̄1], . . . , [t̄s]) ∈ Cs and 1 ≤ i ≤ n, we denote as T J
i,([t̄1],...,[t̄s])

the following relation:

{(a1, . . . , ari) ∈ (dom(J))ri : for t̄′1 ∈ [t̄1], . . . , t̄
′
s ∈ [t̄s],

it holds that J |= Soi (a1, . . . , aoi
, t̄′1, . . . , t̄

′
s)}

Accordingly, we denote as J(t̄1,...,t̄s) the structure of vocabulary σo and domain

dom(J) which is obtained by interpreting the relation symbols Ro
1, . . . , R

o
n with the

relations T J
1,([t̄1],...,[t̄s])

, . . . T J
n,([t̄1],...,[t̄s])

, respectively.

A given structure J ∈ BσN belongs to the new oracle A′ iff, for every s-tuple

([t̄1], . . . , [t̄s]) of equivalence classes in Cs, it holds that J(t̄1,...,t̄s) 6∈ A.

The Machine MA′ which decides the relational language A′ works as follows:

1. MA′ computes the preorder ≤k of Theorem 2.7 on Jσ.

2. Using ≤k, MA′ computes sizek(Jσ).

111

3. Let x̄ = (x̄1, . . . , x̄s) and ȳ = (ȳ1, . . . , ȳs) be (k · s)-tuples, we say that x̄ ¹ ȳ

if ([x̄1], . . . , [x̄s]) precedes or equals ([ȳ1], . . . , [ȳs]) in the lexicographic order

induced by ≤k on Cs. If x̄ ¹ ȳ and ȳ ¹ x̄, then we say that x̄ ∼ ȳ.

X := ∀ȳ(x̄ ¹ ȳ);

Y := ¬x̄ = x̄;

While ∃x̄(¬Y (x̄));

Begin

R1 := ∃x̄(X(x̄) ∧ So1(y1, . . . , yr1 , x̄));
...

Rn := ∃x̄(X(x̄) ∧ Son(y1, . . . , yrn , x̄));

MA′ works as MA taking as input the σo-structure of domain dom(J)

formed by the relations R1, . . . , Rn held in its rs;

If “MA accepts” then

MA′ stops in a rejecting state;

Y := Y (x̄) ∨X(x̄);

X := ¬Y (x̄)∧
∀ȳ((Y (ȳ) ∧ ∀z̄(Y (z̄) → z̄ ¹ ȳ)) →

(ȳ ¹ x̄ ∧ ∀z̄((ȳ ¹ z̄ ∧ z̄ ¹ x̄) → (ȳ ∼ z̄ ∨ z̄ ∼ x̄)))
)
;

End;

MA′ stops in an accepting state.

Since the “while loop” in the previous algorithm is executed (sizek(Jσ))
s times,

it is not difficult to see that MA′ works in nondeterministic time bounded by a

polynomial in sizek′(J), where k′ ≥ s · k is the arity of MA′ .

Theorem 7.24. For m ≥ 1, Σ1,ω
m captures ΣPr

m .

Proof. a) =⇒: First, we show that for every relational vocabulary σ, every Σ1,ω
m [σ]-

sentence ϕ can be evaluated in ΣPr
m .

Suppose that ϕ is ∃k11X11 . . . ∃k1s1X1s1∀k21X21 . . . ∀k2s2X2s2∃k31X31 . . . ∃k3s3X3s3 . . .

Qkm1Xm1 . . . Q
kmsmXmsm(ψ), where Q is either ∃ or ∀, depending on whether m is

odd or even, respectively, and ψ is a first-order formula of vocabulary σ ∪{X11, . . . ,

X1s1 , X21, . . . , X2s2 , . . . , Xm1, . . . , Xmsm}.
We build a nondeterministic relational oracle machine Mϕ which evaluates ϕ on

input structures of vocabulary σ. For 1 ≤ j ≤ s1, let k′1j ≥ 2k1j be the arity of

the relational machine M≤k1j of Lemma 7.15 which computes the preorder ≤k1j of

112

Theorem 2.7. The arity k of Mϕ is max ({k′11, . . . , k
′
1s1
}). The vocabulary τ of the

relational store is σ ∪ σom−1 ∪ {≤k11 , . . . ,≤k1s1 , S1, . . . , Ss1}, where for 1 ≤ j ≤ s1,

the arity of ≤k1j is 2k1j and the arity of Sj is k1j, and σom−1 = {Rom−1 : R ∈
σ} ∪ {Xom−1

11 , . . . , X
om−1

1s1
} is the set of distinguished oracle relation symbols. For

every R ∈ σ, the arity of Rom−1 is the same as the arity of R, and for 1 ≤ j ≤ s1,

the arity of X
om−1

1j is the same as the arity r1j ≤ k1j of X1j.

Let ϕ′m−1 be the following sentence:

∃k21X21 . . . ∃k2s2X2s2¬(∃k31X31 . . . ∃k3s3X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm(ψ′m−1)),

where ψ′m−1 is ψ with every occurrence of a relation symbol R ∈ σ replaced by the

corresponding relation symbol Rom−1 ∈ σom−1 , and every occurrence of a relation

variable X1j (1 ≤ j ≤ s1) replaced by the corresponding relation symbol X
om−1

1j ∈
σom−1 . The oracle Cm−1 of Mϕ is the relational language {A ∈ Bσom−1 : A |= ϕ′m−1}.

On an input structure I, Mϕ works as follows:

1. For every 1 ≤ j ≤ s1, Mϕ builds the preorder ≤k1j of Theorem 2.7 in its rs.

2. Mϕ computes sizek1j
(I) for every 1 ≤ j ≤ s1.

3. For every 1 ≤ j ≤ s1, Mϕ guesses and writes over its Turing machine tape a tuple

āj ∈ {0, 1}sizek1j
(I).

4. Using the binary tuples guessed in the previous step, Mϕ generates, for every

1 ≤ j ≤ s1, a relation which is placed in the distinguish oracle relation Xo
1j of its

rs and is closed under the equivalence relation ≡k1j in I. Mϕ works by storing in

Xo
1j the tuples in all l-th equivalence classes in the order given by ≤k1j for which

the l-th component of āj equals 1.

5. Finally, for every R ∈ σ, Mϕ stores the relation RI into the corresponding oracle

relation Rom−1 and moves to the oracle query state q?. Mϕ accepts the input

structure I iff the relational structure of domain I formed by the distinguished

set of oracles relations currently held in its rs does not belongs to the oracle set

Cm−1, i.e., iff Mϕ transfers from the state q? into the state qNO.

As shown in the proof of Proposition 7.19, Mϕ can perform tasks 1 to 4 working

in time bounded by a polynomial in sizek(I). Furthermore, task 5 can clearly be

performed in constant time by Mϕ.

113

Therefore, it only remains to show that the oracle Cm−1 is in ΣPr
m−1, i.e., that

there is a nondeterministic relational machine Mϕ′m−1
such that L(Mϕ′m−1

) = Cm−1

and L(Mϕ′m−1
) ∈ ΣPr

m−1.

Mϕ′m−1
evaluates ϕ′m−1 on input structures of vocabulary σom−1 . The vocabulary

τ ′1 of the relational store is σom−1 ∪ σom−2 ∪ {≤k21 , . . . ,≤k2s2 , S1, . . . , Ss2}, where for

1 ≤ j ≤ s2, the arity of ≤k2j is 2k2j and the arity of Sj is k2j, and σom−2 = {Rom−2 :

R ∈ σom−1}∪{Xom−2

21 , . . . , X
om−2

2s2
} is the set of distinguished oracle relation symbols.

For every R ∈ σom−1 , the arity of Rom−2 is the same as the arity of R, and for

1 ≤ j ≤ s2, the arity of X
om−2

2j is the same as the arity r2j ≤ k2j of X2j.

The oracle Cm−2 of Mϕ′m−1
is the relational language {A ∈ Bσom−2 : A |= ϕ′m−2},

where ϕ′m−2 is ∃k3
1X31 . . . ∃k3

s3X3s3 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ψ′m−2). Here ψ′m−2 is

ψ′m−1 with every occurrence of a relation symbol R ∈ σom−1 replaced by the corre-

sponding relation symbol Rom−2 ∈ σom−2 , and every occurrence of a relation variable

X2j (1 ≤ j ≤ s2) replaced by the corresponding relation symbol X
om−2

2j ∈ σom−2 .

The way in which the machine Mϕ′m−1
works is exactly the same as the way in

which the original machine Mϕ works, i.e., Mϕ′m−1
executes steps 1 to 5 adapted to

the vocabulary τ ′1 of its rs and for 1 ≤ j ≤ s2. Therefore, for every input structure I′

of vocabulary σom−1 , Mϕ′m−1
works in nondeterministic relational time bounded by a

polynomial in sizek′(I
′), where k′ = max ({k′21, . . . , k

′
2s2
})) is the arity of Mϕ′m−1

, and

for 1 ≤ j ≤ s2, k
′
2j ≥ 2k2j is the arity of the relational machine M≤k2j of Lemma 7.15

which computes the preorder ≤k2j of Theorem 2.7.

This process continues in the same way for the blocks 3 to m− 1 of quantifiers

in ϕ. Since for the last block m of quantifiers the resulting ϕ′1 is either

∃km
1 Xm1 . . . ∃km

smXmsm(ψ′1) or ∃km
1 Xm1 . . . ∃km

smXmsm(¬ψ′1),

it follows by Theorem 7.14 that the oracle C1 of Mϕ′2 (i.e., the relational language

{A ∈ Bσo1 : A |= ϕ′1}) is in NPr = ΣPr
1 .

Hence, ϕ can be evaluated in ΣPr
m .

b) ⇐=: Next, we show that every ΣPr
m property of finite relational structures

can be expressed in Σ1,ω
m .

We use induction on m. The base case is Proposition 7.22. Now consider a

Boolean query q : Bσ → {0, 1} in ΣPr
m where m > 1. Let M be the nondeterministic

relational machine with an oracle in ΣPr
m−1 which computes q. Let {I ∈ Bσo : qo(I) =

114

1}, where σo is the set of distinguished oracle relation symbols of M and qo is a

boolean query in ΣPr
m−1, be the oracle of M .

By inductive hypothesis, for every boolean query qi in ΣPr
m−1, there is a sen-

tence αqi ∈ Σ1,ω
m−1 which express qi. In particular, there is a sentence αqo ∈ Σ1,ω

m−1

of vocabulary σo, which express the boolean query qo. Let αqo be σo-sentence

∃k21X21 . . . ∃k2s2X2s2∀k31X31 . . . ∀k3s3X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm(ψo), whereQ is

either ∃ or ∀, depending on whether m is odd or even, respectively, and ψo is a first-

order sentence of vocabulary σo∪{X21, . . . , X2s2 , X31, . . . , X3s3 , . . . , Xm1, . . . , Xmsm}.
We show how to modify the formula ϕM in Proposition 7.22, i.e., the formula

corresponding to the nondeterministic relational machine, to reflect the interaction

of M with its oracle. We assume that M works in time (sizek(I))
s for some s ≥ 1

and I ∈ Bσ.
First, we add to the prefix of ϕM the existential quantification ∃(s+1)·kSo1 . . .

∃(s+1)·kSon. Let roi denote the arity of the distinguished oracle relation Ro
i ∈ σo =

{Ro
1, . . . , R

o
n}. For 1 ≤ i ≤ n, the arity of the relation variable Soi is roi + s · k. The

intended interpretation of Soi (ā, t̄) is that at time t̄, the distinguished oracle relation

Ro
i in the rs contains the roi -tuple ā.

The sub-formula ψ of ϕM treats the variables So1 , . . . , S
o
n corresponding to the

distinguished oracle relations in the rs of M in exactly the same way as the variables

S1, . . . , Sl which correspond to the other relations in the rs of M . We only need to

add a special case to the sub-formula of ψ which express that the relations Ti’s, Hq’s,

Si’s and Soi ’s respect the transition function of M . When M is in the oracle query

state q?, χ(q?, a, α, b, q
′,m, γ, R) is the sentence describing the transition in which

upon entering the query state q?, the machine moves to state qYES if the σo-structure

held in the rs is in the oracle of M , or to state qNO if it is not. W.l.o.g., we assume

that the contents of the rs as well as of the working tape of M and the position of

its read/write head remain unchanged.

The more “natural” way of expressing χ(q?, a, α, b, q
′,m, γ, R) is probably as

follows:

∀p̄∀t̄
(
Hq?(p̄, t̄) →

(
α̂qo(t̄) → HqYES

(p̄, t̄+ 1)
) ∧ (¬α̂qo(t̄) → HqNO

(p̄, t̄+ 1)
)∧

∀x̄(∧
i∈{0,1,b} Ti(x̄, t̄+ 1) ↔ Ti(x̄, t̄)

)∧
∧

0≤i≤l
(∀x1 . . . xri(Si(x1, . . . , xri , t̄) ↔ Si(x1, . . . , xri , t̄+ 1))

)∧
∧

0≤i≤n
(∀x1 . . . xro

i
(Soi (x1, . . . , xro

i
, t̄) ↔ Soi (x1, . . . , xro

i
, t̄+ 1))

))

115

where α̂qo(t̄) is the formula obtained by replacing in αqo each atomic sub-formula

of the form Ro
i (y1, . . . , yro

i
) (0 ≤ i ≤ n) by Soi (y1, . . . , yro

i
, t̄). But, we need the

resulting formula to be in prenex normal form. Unfortunately, equivalences such

as ∀x Q γ(x) ↔ ∀X Q
(∃!xX(x) → ∀x(X(x) → γ(x))

)
, where Q stands for an

arbitrary sequence of first- and second-order quantifiers and ∃!xX(x) means “there

exists exactly one x such that X(x)”, are no longer true for SOω. Not all elements

of the domain are distinguishable from each other in FOk for a fixed k. Thus, it

may well happen that there is an element a in the domain of a given structure I

such that {a} is not closed under under ≡k on I.

In order to write χ(q?, a, α, b, q
′,m, γ,R) in a form such that the SOω quantifiers

in αqo can be moved to the prefix of ϕM , we use Lemma 7.23 . That is, we assume

that in any computation M makes at most one query to its oracle. Under this as-

sumption, we can then write χ(q?, a, α, b, q
′,m, γ, R) as the conjunction of:

∃k21X21 . . . ∃k2s2X2s2∀k31X31 . . . ∀k3s3X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm

∀p̄∀t̄
(
Hq?(p̄, t̄) ∧ ψ̂o(t̄) →
HqYES

(p̄, t̄+ 1) ∧ ∀x̄(∧
i∈{0,1,b} Ti(x̄, t̄+ 1) ↔ Ti(x̄, t̄)

)∧
∧

0≤i≤l
(∀x1 . . . xri(Si(x1, . . . , xri , t̄) ↔ Si(x1, . . . , xri , t̄+ 1))

)∧
∧

0≤i≤n
(∀x1 . . . xro

i
(Soi (x1, . . . , xro

i
, t̄) ↔ Soi (x1, . . . , xro

i
, t̄+ 1))

))

and

∀k21X ′
21 . . . ∀k2s2X ′

2s2
∃k31X ′

31 . . . ∃k3s3X ′
3s3
. . . Qkm1X ′

m1 . . . Q
kmsmX ′

msm

∀p̄∀t̄
(
Hq?(p̄, t̄) ∧ ¬ψ̂′o(t̄) →
HqNO

(p̄, t̄+ 1) ∧ ∀x̄(∧
i∈{0,1,b} Ti(x̄, t̄+ 1) ↔ Ti(x̄, t̄)

)∧
∧

0≤i≤l
(∀x1 . . . xri(Si(x1, . . . , xri , t̄) ↔ Si(x1, . . . , xri , t̄+ 1))

)∧
∧

0≤i≤n
(∀x1 . . . xro

i
(Soi (x1, . . . , xro

i
, t̄) ↔ Soi (x1, . . . , xro

i
, t̄+ 1))

))

where ψ̂o(t̄) is the formula obtained by replacing in ψo each atomic sub-formula of

the form Ro
i (y1, . . . , yro

i
) (0 ≤ i ≤ n) by Soi (y1, . . . , yro

i
, t̄), and ψ̂′o(t̄) is the for-

mula obtained by replacing in ψ̂o each occurrence of a relation variable Xij ∈
{X21, . . . , X2s2 , X31, . . . , X3s3 , . . . , Xm1, . . . , Xmsm} by X ′

ij. Note that for the sen-

tence above, we use the fact that ¬αqo is equivalent to

∀k21X21 . . . ∀k2s2X2s2∃k31X31 . . . ∃k3s3X3s3 . . . Q
km1Xm1 . . . Q

kmsmXmsm(¬ψo).

116

It is not difficult to see that the SOω quantifiers in the sentence above, can now be

safely moved to the prefix of ψM and rearranged in such a way that the resulting

formula is in Σ1,ω
m .

117

Chapter 8

Conclusions and Future Work

The central results in this dissertation prove the properness of two different hierar-

chies of arity and alternation inside each higher-order logic of order greater than or

equal to three, namely the AAi and HAAi hierarchies. Both results were obtained

by exploiting the underlying idea of expressing the relationship of satisfaction for

logics restricted to finite models, by means of logics restricted to finite models. This

idea was independently formulated by M. Mostowski [Mos93, Mos01, Mos03] and

by Makowsky and Pnueli [MP96]. However, the actual approach followed in those

works is not exactly the same. While in the work of Makowsky and Pnueli the

formulae are encoded as finite structures, in the work of M. Mostowski the formulae

are encoded as natural numbers over sufficiently large finite models which have a

suitable amount of arithmetical structure so that Gödelization can be carried out.

From the point of view of our work though, the two approaches can be used to prove

similar, although not exactly the same, kinds of results.

To separate the different levels of these hierarchies, we extended Makowsky and

Pnueli approach to higher-orders logics. This involved a substantial amount of tech-

nical work which included among other things to express the AUTOSAT query in

higher-order logics beyond second-order. As a by-product of this exercise, intuition

on expressing actual queries in higher-order logics was gained. We think it would

be useful to have further examples of queries other than AUTOSAT that are inex-

pressible at certain levels of the AAi and HAAi hierarchies in order to obtain more

practical relevance. This would require to extract the essence of the AUTOSAT

problem via reduction. Something along the line of the reductions from theories of

the Boolean model to AUTOSAT shown in Chapter 6.

118

We studied the related approach of M. Mostowski, which was later on extended

by Kolodziejczyk [Kol04b, Kol05], as an alternative to prove the properness of hier-

archies in higher-order logics. We have seen that this approach involving FM-truth

definitions can be used to prove the properness of the HAAi hierarchies; indeed we

used it to give a sufficient condition for the HAA1-hierarchy of second-order logic

formulae to be strict. But on the other hand, we could not use this approach with

the AAi hierarchies since the finite version of Tarski’s theorem on the undefinability

of truth does not allow us to prove the lower bounds for them.

Also we explored possible existential proofs of hierarchy theorems for higher-

order logics by means of a complexity-theoretical type of argument involving vari-

ants of the time-hierarchy theorem for alternating Turing machines with bounded

alternation. A drawback of this approach is that, to the best of our knowledge,

there is no written source for the required variants of the time-hierarchy theorem.

Furthermore, we would only get existential proofs of essentially the same sort of

results, instead of constructive proofs as in the work of Makowsky and Pnueli for

second-order logic and in our work for higher-order logics, where specific queries

which separate the different levels of the hierarchies were exhibited.

While the result concerning the properness of the AAi hierarchies generalizes for

higher-order logics a result of Makowsky and Pnueli [MP96] for second-order logic,

the result concerning the properness of the HAAi hierarchies applies to logics of

order greater than or equal three and it is not known whether it holds for second-

order logic. It was only under the very strong assumption that for every vocabulary

σ there is a fixed k such that the data complexity for FO is in NTIME(nk), that we

were able to prove the properness of the HAA1 hierarchy of second-order logic.

We used the same diagonalization argument to prove both the lower bounds for

the HAAi hierarchies and the lower bounds for the AAi hierarchies. Furthermore,

as shown by Proposition 5.2, this argument also works for the HAA1 hierarchy of

second-order logic formulae. Thus, what gave us the key to prove the properness

of the HAAi hierarchies for i ≥ 2, was mainly the fact that we were able to de-

fine AUTOSAT (HAAi(r,m)) in a slightly higher layer of the HAAi hierarchy (see

Proposition 5.3). By contrast, the question of whether it is possible to do the same

for AUTOSAT (HAA1(r,m)) is still open.

Open Question 8.1. Is there some c1, c2 ∈ N such that for every r,m ≥ 1, it holds

that AUTOSAT (HAA1(r,m)[ρ]) is definable in HAA1(r + c1,m+ c2)[ρ]?

119

This finding gives us hope that analogous problems for higher-order logics (of

order greater than or equal three) of open problems regarding hierarchies of formulae

in second-order logic, could in some cases be more easily approachable in higher-

order logics. Of course this does not seem to be the general case. In fact, the

standard combinatorial techniques used to separate the expressive power of logics

over finite models, seem to be rather too complicated to apply to logics beyond

monadic second-order (see for instance the proof on the lower bounds in quantifier

rank for the parity property in [KT07]).

We also studied the complexity of AUTOSAT and showed that AUTOSAT (Σ1
m)

is complete for the prenex fragments Σ2
m of third-order logic. We worked the proof

of this result with a great deal of detail. This allowed us to develop some strong

conjectures on the complexity of AUTOSAT for further fragments of higher-order

logics. We present these conjectures in the next section.

Finally, inspired by a work of Dawar [Daw98], we explored in detail the connec-

tion between the concept of relational complexity and the restricted second-order

logic SOω. The aim here was to provide the basis for a new line of research in the

area of higher-order logics in finite models. We have of course many open questions

for future research in this topic. We comment on some of these questions in the

second section.

8.1 Some Conjectures Regarding the Complexity

of AUTOSAT

We know from [MP96] that for the prenex fragments of first-order logic Σ0
m, AUTO-

SAT (Σ0
m) is complete for the corresponding class Σp

m of the polynomial-time hier-

archy, or equivalently, complete for the corresponding fragment Σ1
m of second-order

logic. In Chapter 6 we extended that result proving that for the prenex fragments of

second-order logic Σ1
m, AUTOSAT (Σ1

m) is complete for the corresponding fragment

Σ2
m of third-order logic. We strongly believe that this result can also be extended

to higher orders.

Conjecture 8.2. For i ≥ 2 and m ≥ 1, AUTOSAT (Σi
m) is complete for Σi+1

m under

polynomial-time reductions.

We think that the same strategy that we used to prove Theorem 6.2, could also

120

be used to prove this conjecture. Let us take for instance AUTOSAT for the prenex

fragments Σ2
m of third-order logic. We could extend Definition 6.5 with the following

cases:

• If ϕ has the form X (X1, . . . , Xr), where X is a third-order variable of arity r

and X1, . . . , Xr are second-order variables of arity r, then ϕ′(w0, w1) is

X (X1, . . . , Xr)
∧

1≤i≤r ∀x1 . . . xr(Xi(x1, . . . , xr) →
((x1 = w0∨x1 = w1)∧ . . .∧(xr = w0∨xr = w1))).

• If ϕ has the form ∃X (ψ), where X is a third-order variable of arity r, then

ϕ′(w0, w1) is

∃X (∀X1 . . . Xr

(X (X1, . . . , Xr) →∧
1≤i≤r ∀x1 . . . xr(Xi(x1, . . . , xr) →

((x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)))
)∧

ψ′(w0, w1)
)
.

• If ϕ has the form ∀X (ψ), where X is a third-order variable of arity r, then

ϕ′(w0, w1) is

∀X (∀X1 . . . Xr

(X (X1, . . . , Xr) →∧
1≤i≤r ∀x1 . . . xr(Xi(x1, . . . , xr) →

((x1 = w0 ∨ x1 = w1) ∧ . . . ∧ (xr = w0 ∨ xr = w1)))
) →

ψ′(w0, w1)
)
.

Note that by the definition of higher-order logic used in [HT05, HT06a] where Theo-

rem 6.4 was proved, we do not need to consider third-order variables of a third-order

type other than the types in {(ιr, . . . , ιr)︸ ︷︷ ︸
r

: r ≥ 1}, since these are the only kind of

third-order variables allowed in the formulae in Σ2
m in those papers.

We could also extend Definition 6.6 with the following case:

• If X is a third-order variable of arity r, then vA assigns to X an r-ary third-

order relation R ⊆ (P({min(A),max(A)}r))r such that (A1, . . . , Ar) ∈ R iff

(g(A1), . . . , g(Ar)) ∈ v(X). Here g(Ai) = {(b1, . . . br) : there is a (a1, . . . , ar) ∈
Ai such that, for 1 ≤ i ≤ r, bi = 0B if ai = min(A) and bi = 1B if ai =

max(A)}.

Under these extended definitions, it seems to us that it would be a routine task

to prove analogous results to Lemma 6.7 and 6.8 for the fragments Σ2
m of third-order

121

logic and to show that AUTOSAT (Σ2
m) is hard for the fragment Σ3

m of fourth-order

logic.

As to a possible argument to prove that AUTOSAT (Σ2
m) is in Σ3

m, we also think

that it should be a routine task to extend the proof of Proposition 6.10, since by

Theorem 3.8, Σ3
m captures

⋃
c∈NNTIME(22nc

)Σp
m−1 , and the nondeterministic time

needed to guess a third-order relation of arity r is O(2n
r
).

On the other hand, if we bound the arity of the second-order variables in the

Σi
m∪Πi

m fragments, we know from [MP96] that AUTOSAT (HAA1(r,m)) is complete

for PSPACE. Our conjecture to this regard is that this result can also be generalized

to higher orders.

Conjecture 8.3. For every i ≥ 2 and every r,m ≥ 1, AUTOSAT (HAAi(r,m)) is

complete for DSPACE(expi−1(n
c)).

To the best of our knowledge, there is no known complete problem for the class

DSPACE(expi(n
c)) when i ≥ 1. However, we think it is quite possible that in the

same way as QSAT (quantified satisfiability) is complete for PSPACE, the union

for every j of the Σi
j theory of the Boolean model (i ≥ 1), i.e.,

⋃
j≥1 Σi

j−Th(B),

could be complete for DSPACE(expi(n
c)). If that is the case, then it should be

relatively straightforward to reduce
⋃
j≥1 Σi

j−Th(B) to AUTOSAT (HAAi+1(r,m))

for every r,m ≥ 1. Also, space bounded by O(expi(n
r)) should be enough to decide

AUTOSAT (HAAi+1(r,m)) since the maximal-arity of the variables in HAAi+1(r,m)

is restricted by r.

8.2 Some Considerations on Relational Complex-

ity and Restricted Higher-Order Logics

First we consider a technical problem regarding the definition of SOω. Afterwards

we explore two possible directions for research in the line of Chapter 7. Let Ck

denote the logic which extends FOk with counting quantifiers. The first direction

consists in considering second-order quantifiers which range over relations that are

closed under equivalence of Ck-types of tuples, for some k, instead of closed under

equivalence of FOk-type of tuples. The second direction consists in using the idea

behind SOω to define restricted versions of higher-order logics of order higher than

two.

122

Following [Daw98], we defined in Chapter 7 the set of formulae of SOω as FO ∪⋃
m≥1 Σ1,ω

m . Now, suppose that we define the syntax and semantics of this logic as

below, i.e., in a more usual fashion.

Definition 8.4. In addition to the symbols of first-order logic, the alphabet of SO′ω

contains, for each k ≥ 1, a pair of second-order quantifiers ∃k and ∀k, and countably

many k-ary relation variables V k
1 , V

k
2 , . . . To denote relation variables we use letters

X, Y, . . . Let σ be a relational vocabulary, we define the set of SO ′ω formulae over σ

to be the set generated by the rules for first-order formulae with equality extended

by the following rules:

• If X is r-ary and x1, . . . , xr are individual variables, then X(x1, . . . , xr) is an

atomic formula.

• If ϕ is a wff and X is a relation variable of arity r ≤ k, then ∃kX(ϕ) is a wff.

Let I be a σ-structure, and let val be a valuation on I. The notion of satisfaction

in SO′ω extends the notion of satisfaction in first-order with the following rules:

• I, val |= X(x1, . . . , xr) iff (val(x1), . . . , val(xr)) ∈ val(X).

• I, val |= ∃kX(ϕ) where X is a relation variable of arity r ≤ k and ϕ is a wff,

iff there is a valuation val ′, which is X-equivalent to val , such that val ′(X) is

closed under the equivalence relation ≡k in I, and I, val ′ |= ϕ.

Let SO′′ω be the restriction of SO′ω to formulae without free relation (second-

order) variables. We do not know whether or not SO′′ω and SOω are equivalent. Note

that, the only formulae of SO′′ω which are allowed in Definition 7.1 of SOω, are those

formulae which are in GSNF. As explained in part (b) of the proof of Theorem 7.24,

equivalences such as ∀x Q γ(x) ↔ ∀X Q
(∃!xX(x) → ∀x(X(x) → γ(x))

)
, where Q

stands for an arbitrary sequence of first- and second-order quantifiers and ∃!xX(x)

means “there exists exactly one x such that X(x)”, are no longer true for SO′′ω.

In the general case not all elements of the domain are definable in FOk for a fixed

k. Thus, it may well happen that there is an element a in the domain of a given

structure I such that {a} is not closed under under ≡k on I. Therefore, we think

that the following is still open.

Open Question 8.5. Is every SO′′ω-formula equivalent to a Σ1,ω
m -formula for some m?

123

Next, we comment on SOCω

, the logic similar to SOω that is obtained by con-

sidering Ck-types of tuples instead of FOk-types of tuples. Ck is a well known logic

in finite model theory which is obtained by adding to FOk counting quantifiers, i.e.,

all existential quantifiers of the form ∃≥n with n ≥ 1. Informally, ∃≥nx(ϕ) means

that there are at least n different elements in the domain of the structure which

satisfy ϕ.

For k ≥ r ≥ 1, we denote by ≡Ck
the equivalence relation induced in the set of

r-tuples over a given structure I, by the equality of Ck-types of r-tuples.

We define the syntax of Σ1,Cω

m , Π1,Cω

m and SOCω

in exactly the same way as the

syntax of Σ1,ω
m , Π1,ω

m and SOω, respectively (see Definition 7.1). As to the semantics,

the only difference is that now the second-order quantifiers range over relations

which are closed under the equivalence relation ≡Ck
for some k, instead of the

equivalence relation ≡k. That is, the notion of satisfaction in SOCω

extends the

notion of satisfaction in first-order with the following rule:

• I |= ∃kX(ϕ) where k ≥ 1, X is a relation variable of arity r ≤ k, ϕ is a wff of

vocabulary σ ∪ {X} and I is a σ-structure, iff there is an R ⊆ Ir such that R

is closed under the equivalence relation ≡Ck
in I, and (I, R) |= ϕ.

Considering the known results on Ck-types and FOk-types, it seems clear that

SOCω ⊃ SOω. However, as explained next, we think that it would be worth to

carry on a more detailed study of the expressive power of SOCω

. The necessary

background material for this study, specifically for Ck-types and how they compare

to FOk-types, can be obtained from [CFI92, Gro98, Ott97], among others. Also

[Tur06] is a relevant source to look at on this regard.

It is well known that in the absence of linear order many natural NP-complete

problems as for instance Hamiltonicity and clique, are not definable in Lω∞ω. Since

SOω ⊆ PFP and PFP ⊂ Lω∞ω, nor are those problems definable in SOω. On the other

hand, it is easy to see that there are NP-complete problems that can be expressed

in Σ1,ω
1 since this logic is equivalent to Σ1

1 on ordered structures and thus it captures

NP over those structures. However, without assuming an ordered domain, there are

also natural NP-complete problems that are expressible in Σ1,ω
1 . As shown by Dawar

[Daw98], the problem of inequivalence of nondeterministic finite automata (NFA)

on a unary alphabet, which is known to be an NP-complete problem, is definable

in Σ1,ω
1 . The same is also true for the restriction of NFA inequivalence to a finite

language.

124

Open Question 8.6. Continuing the line of the work of Dawar described above, we

think it would be interesting to explore natural problems which are expressible, and

natural problems which are not, in different fragments of SOCω

. Let Cω
∞ω denote

the infinitary logic with counting which is defined in the same way as Lω∞ω with the

addition of all counting quantifiers. If as we expect the class of problems expressible

in SOCω

is strictly included in the class of problems expressible in Cω
∞ω, then queries

whose classification in the infinitary logics Cω
∞ω and Lω∞ω is well known could serve

as a good starting point for this research. Some well known examples of such queries

are: the property of a graph having even cardinality which is in C1
∞ω and is not in

Lω∞ω; the property of a graph being regular as well as the property of a graph being

Eulerian which are in C2
∞ω and are not in Lω∞ω ([Ott97]); the property of a graph

being connected which is in L3
∞ω and is not in C2

∞ω ([Gro98]); and the property of a

graph having an even number of connected components which is in Cω
∞ω and is not

in Lω∞ω ([KV95]).

In [Ott96], Otto defined a generalization of the relational machine of Abiteboul

and Vianu that incorporates counting operations in a generic manner. He called this

model of computation relational machine with counting, and used it to characterize

the expressive power of fixed-point logics with counting terms. It seems to us that

the relational complexity classes defined in terms of this model of computation could

be used to characterize the expressive power of SOCω

, in much the same way as the

original relational complexity classes were used to characterize the expressive power

of SOω.

Open Question 8.7. Let the Ck-size of a structure I be the number of ≡Ck
-classes of

k-tuples over I. Suppose we define the relational complexity classes of Section 2.5

using relational machines with counting instead of the original relational machines,

and furthermore, using the Ck-size instead of the k-size as a basis for measuring the

complexity. Does SOCω

capture the resulting “counting relational” polynomial-time

hierarchy, i.e., the polynomial-time hierarchy redefined using relational machines

with counting? Which is the relationship between the standard complexity classes

and the resulting relational complexity classes defined in terms of relational machines

with counting?

Finally, we discuss the extension of the correspondence between the relational

polynomial hierarchy and the prenex fragments Σ1,ω
m of SOω, to higher orders. We

do that for third-order logic to simplify the exposition, since it is easy to extend the

125

definitions for orders higher than three.

First we define what is a third-order relation closed under ≡k. For clarity we only

consider third-order relations whose type has the form (ιr, . . . , ιr)︸ ︷︷ ︸
r

for some r ≥ 1.

Definition 8.8. A relation R of order 3 and arity r ≤ k is closed under ≡k iff,

every relation Ri in a tuple (R1, . . . , Rr) ∈ R, is closed under ≡k.

Next we define the syntax and semantics of the corresponding restricted third-

order logic.

Definition 8.9. We denote by Σ2,ω
m [σ] the class of formulae of the form

∃k1
1X11 . . .∃k1

s1X1s1∀k2
1X21 . . . ∀k2

s2X2s2 . . . Q
km
1 Xm1 . . . Q

km
smXmsm(ϕ),

where arity(Xij) ≤ kij, Q is either ∃ or ∀, and ϕ is an SOω formula of vocabulary

σ ∪ {X11, . . . ,X1s1 ,X21, . . . ,X2s2 , . . . ,Xm1, . . . ,Xmsm}.
As usual, Π2,ω

m [σ] is defined dually.

TOω =
⋃
m≥1 Σ2,ω

m .

The notion of satisfaction in TOω extends the notion of satisfaction in SOω with

the following rule:

I |= ∃kX (ϕ), where X is third-order variable of arity r, iff there is an RI ⊆ (P(Ir)
)r

closed under ≡k such that (I,RI) |= ϕ.

Now, suppose we want to characterize the expressive power of the prenex frag-

ments Σ2,ω
m of TOω in terms of relational complexity classes. It seems to us that we

could do that either by using the same model of relational machine that we have

been using till now, or by extending the model by allowing it to store third-order re-

lations in its rs . In the first case we think that we would need to encode a canonical

representation of the structure in the Turing tape of the relational machine by using

Abiteboul and Vianu normal form for relational machines (see [AV95]), and then to

work on the tape. Consequently, we would need to consider a relational machine

with a classical oracle consisting in a set of strings, rather than a relational machine

with a relational oracle.

If we choose to extend the relational machine model of computation by adding

third-order relations to the rs , then the strategy could be closer to the strategy that

we used in Chapter 7 to characterize the expressive power of the prenex fragments

Σ1,ω
m of SOω. This strategy would require, among other things, to extend the first-

order language used by the relational machine to communicate with the rs so that

126

the machine can interact with the third-order relations in its rs. Also, we would

need to extend the concept of relational oracle language to include structures with

third-order relations, and thus to adapt the concept of k-size of the input structures

accordingly.

These considerations also apply to the restricted higher-order logics beyond

second-order which would be obtained by considering higher-order relations closed

under ≡Ck
instead of ≡k.

We would like to conclude this section with a last observation. Let us assume

that formulae of SOω with free second-order variables are allowed. Let SOω,k be the

fragment of SOω where only formulae with up to k different variables (counting all

fist-order and second-order variables) are permitted. Let I be a relational structure

of vocabulary σ, and let Ā = (A1, . . . , Ar) be an r-tuple in (P(Ir))r. We define the

SOω,k-type of Ā in I as follows:

tpSOω,k

I (Ā) = {ϕ ∈ SOω,k[σ] : free(ϕ) ⊆ {X1, . . . , Xr} and I |= ϕ[A1, . . . , Ar]}

Let k ≥ r ≥ 1 and let Ā and B̄ be a pair of r-tuples in (P(Ir))r. We say that

Ā ≡SOω,k
B̄ iff tpSOω,k

I (Ā) = tpSOω,k

I (B̄). Consequently, a third-order relation R
of arity r ≤ k is closed under the equivalence relation ≡SOω,k

iff, for every pair of

r-tuples Ā and B̄ in (P(Ir))r, if Ā ∈ R and Ā ≡SOω,k
B̄, then B̄ ∈ R.

Then an alternative generalization of the idea behind SOω to higher-order logics

could be obtained by defining the notion of satisfaction in TOω as the extension of

the notion of satisfaction in SOω with the following rule:

I |= ∃kX (ϕ), where X is a third-order variable of arity r, iff there is anRI ⊆ (P(Ir)
)r

closed under ≡SOω,k
such that (I,RI) |= ϕ.

127

Bibliography

[AF90] Miklós Ajtai and Ronald Fagin. Reachability is harder for directed than

for undirected finite graphs. J. Symb. Log., 55(1):113–150, 1990.

[AHV94] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, Redwood City, CA, 1994.

[Ajt83] Miklós Ajtai. Σ1
1 formulae on finite structures. Ann. Pure Appl. Logic,

24:1–48, 1983.

[AU79] Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval lan-

guages. In Proceedings of the Sixth Annual ACM Symposium of Principles

of Programming Languages, pages 110–120, New York, NY, USA, 1979.

ACM Press.

[AV91a] Serge Abiteboul and Victor Vianu. Datalog extensions for database queries

and updates. J. Comput. System Sci., 43:62–124, 1991.

[AV91b] Serge Abiteboul and Victor Vianu. Generic computation and its com-

plexity. In Proceedings of the Twenty-third Annual ACM Symposium on

Theory of Computing, pages 209–219, New York, NY, USA, 1991. ACM

Press.

[AV95] Serge Abiteboul and Victor Vianu. Computing with first-order logic. J.

Comput. Syst. Sci., 50(2):309–335, 1995.

[AVV95] Serge Abiteboul, Moshe Y. Vardi, and Victor Vianu. Computing with

infinitary logic. Theor. Comput. Sci., 149(1):101–128, 1995.

[AVV97] Serge Abiteboul, Moshe Y. Vardi, and Victor Vianu. Fixpoint logics,

relational machines, and computational complexity. J. ACM, 44(1):30–56,

1997.

128

[Bar77] Jon Barwise. On moschovakis closure ordinals. J. Symb. Log., 42(2):292–

296, 1977.

[BDG90] José Luis Balcázar, Joseph Dı́az, and Joaquim Gabarró. Structural Com-

plexity II. Texts in Theoretical Computer Science, EATCS. Springer,

Berlin Heidelberg New York, 1990.

[BDG95] José Luis Balcázar, Joseph Dı́az, and Joaquim Gabarró. Structural Com-

plexity I. Texts in Theoretical Computer Science, EATCS. Springer, Berlin

Heidelberg New York, 2 edition, 1995.

[Ben62] J. H. Bennett. On Spectra. PhD thesis, Princeton University, Princeton,

NJ, 1962.

[BL76] Kellogg S. Booth and George S. Leuker. Testing for the consecutive ones

property, interval graphs, and graph planarity using PQ-tree algorithms.

J. Comput. Syst. Sci., 13:335–379, 1976.

[Bör84] Egon Börger. Decision problems in predicate logic. In G. Lolli, G. Longo,

and A. Marcja, editors, Logic Colloquium, volume 112 of Studies in Logic

and the Foundations of Mathematics, pages 263–301. North Holland, 1984.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Z.

Math. Logik und Grund. Math, 6:66–92, 1960.

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound

on the number of variables for graph identifications. Combinatorica,

12(4):389–410, 1992.

[CH80] Ashok K. Chandra and David Harel. Computable queries for relational

data bases. J. Comput. Syst. Sci., 21(2):156–178, 1980.

[Chr74] C. A. Christen. Spektren und Klassen Elementarer Funktionen. PhD thesis,

ETH Zürich, 1974.

[Cod70] Edgar F. Codd. A relational model of data for large shared data banks.

Commun. ACM, 13(6):377–387, 1970.

129

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing,

pages 151–158, Shaker Heights, Ohio, USA, 1971. ACM Press.

[Coo72] Stephen A. Cook. A hierarchy for nondeterministic time complexity. In

Conference Record, Fourth Annual ACM Symposium on Theory of Com-

puting, pages 187–192, Denver, Colorado, USA, May 1972. ACM.

[Daw93] Anuj Dawar. Feasible Computation Through Model Theory. PhD thesis,

University of Pennsylvania, Philadelphia, 1993.

[Daw98] Anuj Dawar. A restricted second order logic for finite structures. Inf.

Comput., 143(2):154–174, 1998.

[DLW95] Anuj Dawar, Steven Lindell, and Scott Weinstein. Infinitary logic and

inductive definability over finite structures. Inf. Comput., 119(2):160–175,

1995.

[Ebb85] Heinz-Dieter Ebbinghaus. Extended logics: The general framework. In

J. Barwise and S. Fefferman, editors, Model Theoretic Logics, pages 25–

76. Springer-Verlag, 1985.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Perspec-

tives in Mathematical Logic. Springer, Berlin Heidelberg New York, 2nd

edition, 1999.

[EGG96] Thomas Either, Georg Gottlob, and Yuri Gurevich. Normal forms for

second-order logic over finite structures, and classification of NP optimiza-

tion problems. Ann. Pure Appl. Logic, 78:111–125, 1996.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and related

arithmetics. Trans. Am. Math. Soc., 21:89–96, 1961.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time recog-

nizable sets. In R. Karp, editor, Complexity of Computations, volume 7 of

SIAM-AMS Proc., pages 27–41, Providence, RI, 1974. American Mathe-

matical Society.

[Fag75] Ronald Fagin. A spectrum hierarchy. Z. Math. Log. Grundl. Math., 21:123–

134, 1975.

130

[Fag94] Ronald Fagin. Problem proposed in Oberwolfach meeting, 1994. Collec-

tion of Open Problems in Finite Model Theory. Available at http://www-

mgi.informatik.rwth-aachen.de/FMT/problems.pdf.

[FPT05] Flavio Antonio Ferrarotti, Jorge A. Peri, and José Maŕıa Turull Torres.

Expresando propiedades sobre grafos en lógicas de orden superior. In

Jorge E. Sagula, editor, Proceedings of the 7th Symposium on Education

in Mathematics, Chivilcoy, Bs. As., Argentina, May 2005. EDUMAT. In

CD-ROM.

[FT04] Flavio Antonio Ferrarotti and José Maŕıa Turull Torres. Using higher order

quantification in logical query languages. In Proceedings of the 3rd Chilean

Database Workshop, XII Jornadas Chilenas de Computación, Arica, Chile,

November 2004. University of Tarapacá and Chilean Society of Computer

Sciences. In CD-ROM.

[FT05] Flavio Antonio Ferrarotti and Jose Maria Turull Torres. Arity and alter-

nation of quantifiers in higher order logics. Technical Report 10/2005,

Department of Information Systems, Massey University, New Zealand,

September 2005.

[FT06] Flavio Antonio Ferrarotti and José Maŕıa Turull Torres. Arity and al-

ternation: A proper hierarchy in higher order logics. In Jürgen Dix and

Stephen J. Hegner, editors, Proceedings of the 4th International Sympo-

sium on Foundations of Information and Knowledge Systems, volume 3861

of Lec. Notes Comput. Sci., pages 92–115. Springer, February 2006.

[FT07] Flavio Antonio Ferrarotti and José Maŕıa Turull Torres. Arity and alterna-

tion: A proper hierarchy in higher order logics. Ann. Math. Artif. Intell.,

50(1–2):111–141, 2007.

[GH64] Paul C. Gilmore and Alan J. Hoffman. A characterization of comparability

graphs and of interval graphs. Canad. J. Math., 16:539–548, 1964.

[GH96] Martin Grohe and Lauri Hella. A double arity hierarchy theorem for tran-

sitive closure logic. Arch. Math. Log., 35:157–171, 1996.

[Gro93] Martin Grohe. Bounded-arity hierarchies in fixed-point logics. In Egon

Börger, Yuri Gurevich, and Karl Meinke, editors, Proceedings of the 7th

131

Workshop on Computer Science Logic, volume 832 of Lec. Notes Comput.

Sci., pages 150–164, Swansea, United Kingdom, September 1993. Springer.

[Gro96] Martin Grohe. Arity hierarchies. Ann. Pure Appl. Logic, 82(2):103–163,

1996.

[Gro98] Martin Grohe. Finite variable logics in descriptive complexity theory. Bul-

letin of Symbolic Logic, 4(4):345–398, 1998.

[GS86] Yuri Gurevich and Saharon Shelah. Fixed-point extensions of first-order

logic. Ann. Pure Appl. Logic, 32:265–280, 1986.

[Hel89] Lauri Hella. Definability hierarchies of generalized quantifiers. Ann. Pure

Appl. Logic, 43(3):235–271, 1989.

[Hel92] Lauri Hella. Logical hierarchies in ptime. In Proceedings of the 7th Annual

IEEE Symposium on Logic in Computer Science, pages 360–368, Santa

Cruz, California, USA, June 1992. IEEE Computer Society.

[HS91] Richard Hull and Jianwen Su. On the expressive power of database queries

with intermediate types. J. Comput. Syst. Sci., 43(1):219–267, 1991.

[HT03] Lauri Hella and José Maŕıa Turull Torres. Expressibility of higher order

logics. Electr. Notes Theor. Comput. Sci., 84, 2003.

[HT05] Lauri Hella and Jose Maria Turull Torres. Complete problems for higher

order logics. Technical Report 12/2005, Department of Information Sys-

tems, Massey University, New Zealand, September 2005.

[HT06a] Lauri Hella and José Maŕıa Turull Torres. Complete problems for higher

order logics. In Proceedings of the 15th Annual Conference of the EACSL

(and 20th International Workshop) on Computer Science Logic, volume

4207 of Lec. Notes Comput. Sci., pages 380–394, Szeged, Hungary, Septem-

ber 2006. Springer.

[HT06b] Lauri Hella and José Maŕıa Turull Torres. Computing queries with higher-

order logics. Theor. Comput. Sci., 355(2):197–214, 2006.

132

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley Series in Computer

Sciences. Addison-Wesley, Redwood City, CA, 1979.

[Imm82] Neil Immerman. Upper and lower bounds for first-order expressibility. J.

Comput. System Sci., 25:76–98, 1982.

[Imm86] Neil Immerman. Relational queries computable in polynomial time. In-

form. and Control, 68:86–104, 1986.

[Imm99] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer

Science. Springer, Berlin Heidelberg New York, 1999.

[Kol04a] Leszek Aleksander Kolodziejczyk. A finite model-theoretical proof of a

property of bounded query classes within PH. J. Symb. Log., 69(4):1105–

1116, 2004.

[Kol04b] Leszek Aleksander Kolodziejczyk. Truth definitions in finite models. J.

Symb. Log., 69(1):183–200, 2004.

[Kol05] Leszek Aleksander Kolodziejczyk. Truth Definitions and Higher Order

Logics in Finite Models. PhD thesis, Institute of Philosophy, Warsaw

University, Warsaw, Poland, February 2005.

[Kon06] Juha Kontinen. The hierarchy theorem for second-order generalized quan-

tifiers. J. Symb. Log., 71(1):188–202, 2006.

[KT07] Michal Krynicki and Jose Maria Turull Torres. Games on trees and syntac-

tical complexity of formulas. Logic Journal of the IGPL, 15(5-6):653–687,

2007.

[KV88] Gabriel M. Kuper and Moshe Y. Vardi. On the complexity of queries in the

logical data model. In Marc Gyssens, Jan Paredaens, and Dirk Van Gucht,

editors, Proceedings of the 2nd International Conference on Database The-

ory, volume 326 of Lec. Notes Comput. Sci., pages 267–280. Springer, 1988.

[KV92a] Phokion G. Kolaitis and Moshe Y. Vardi. Fixpoint logic vs. infinitary logic

in finite-model theory. In Proceedings of the 7th Annual IEEE Symposium

on Logic in Computer Science, pages 46–57, Santa Cruz, California, USA,

1992. IEEE Computer Society.

133

[KV92b] Phokion G. Kolaitis and Moshe Y. Vardi. Infinitary logics and 0-1 laws.

Inform. and Comput., 98(2):258–294, 1992.

[KV95] Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and

pebble games on finite structures. Ann. Pure Appl. Logic, 74(1):23–75,

1995.

[Lei89] Daniel Leivant. Descriptive characterizations of computational complexity.

J. Comput. Syst. Sci., 39(1):51–83, 1989.

[Lei94] Daniel Leivant. Higher order logic. In Dov M. Gabbay, Christopher J.

Hogger, J. A. Robinson, and Jörg H. Siekmann, editors, Handbook of Logic

in Artificial Intelligence and Logic Programming, volume 2, pages 229–322.

Oxford University Press, 1994.

[Lib04] Leonid Libkin. Elements Of Finite Model Theory. Texts in Theoretical

Computer Science, EATCS. Springer, Berlin Heidelberg New York, 2004.

[Mat98] Oliver Matz. One quantifier will do in existential monadic second-order

logic over pictures. In Lubos Brim, Jozef Gruska, and Jiŕı Zlatuska, ed-

itors, Proceedings of the 23rd International Symposium on Mathematical

Foundations of Computer Science, volume 1450 of Lec. Notes Comput.

Sci., pages 751–759, Brno, Czech Republic, August 1998. Springer.

[MM03] Johann A. Makowsky and Julian Mariño. Tree-width and the monadic

quantifier hierarchy. Theor. Comput. Sci., 1(303):157–170, 2003.

[Mos93] Marcin Mostowski. Truth-definitions in finite models, 1993. Manuscript.

[Mos01] Marcin Mostowski. On representing concepts in finite models. Math. Log.

Q., 47(4):513–523, 2001.

[Mos03] Marcin Mostowski. On representing semantics in finite models. In A. Ro-

jszczak, J. Cachro, and G. Kurczewski, editors, Philosophical Dimensions

of Logic and Science: Selected Contributed Papers from the 11th Interna-

tional Congress of Logic, Methodology, and Philosophy of Science, pages

15–28, Krakow, 2003. Kluwer.

[MP96] Johann A. Makowsky and Yachin B. Pnueli. Arity and alternation in

second-order logic. Ann. Pure Appl. Logic, 78(1-3):189–202, 1996.

134

[MST02] Oliver Matz, Nicole Schweikardt, and Wolfgang Thomas. The monadic

quantifier alternation hierarchy over grids and graphs. Inf. Comput.,

179(2):356–383, 2002.

[MT97] Oliver Matz and Wolfgang Thomas. The monadic quantifier alternation

hierarchy over graphs is infinite. In Proc. 12th Annual IEEE Symposium

on Logic in Computer Science (LICS’97), pages 236–244, Warsaw, Poland,

1997.

[Ott95] Martin Otto. An note on the number of monadic quantifiers in monadic

Σ1
1. Inf. Process. Lett., 53(6):337–339, 1995.

[Ott96] Martin Otto. The expressive power of fixed-point logic with counting. J.

Symb. Log., 61(1):147–176, 1996.

[Ott97] Martin Otto. Bounded variable logics and counting – A study in finite

models, volume 9. Springer, Berlin Heidelberg New York, 1997.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,

Reading, MA, 1994.

[Poi82] Bruno Poizat. Deux ou trois choses que je sais de ln. J. Symb. Log.,

47(3):641–658, 1982.

[Ros84] H.E. Rose. Subrecursion: Functions and Hierarchies. Oxford University

Press, New York, USA, 1984.

[Sch94] Thomas Schwentick. Graph connectivity and monadic np. In Proceedings

of the 35th Annual Symposium on Foundations of Computer Science, pages

614–622, Santa Fe, New Mexico, USA, November 1994. IEEE.

[Sch97] Nicole Schweikardt. The monadic quantifier alternation hierarchy over

grids and pictures. In Mogens Nielsen and Wolfgang Thomas, editors,

Proceedings of Computer Science Logic, 11th International Workshop, vol-

ume 1414 of Lec. Notes Comput. Sci., pages 441–460, Aarhus, Denmark,

August 1997. Springer.

[SFM78] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating

nondeterministic time complexity classes. J. ACM, 25(1):146–167, 1978.

135

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput.

Sci., 3(1):1–22, 1976.

[Tar33] Alfred Tarski. Pojȩcie prawdy w jȩzykach nauk dedukcyjnch. Prace To-

warzystwa Naukowego Warzawskiego, 1933. English translation in [Tar56]:

The Concept of Truth in Formalized Languages.

[Tar56] Alfred Tarski. Logic, Semantics, and Metamathematics. Clarendon Press,

Oxford, 1956.

[Tho82] Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput.

Syst. Sci., 25(3):360–376, 1982.

[Tur01a] José Maŕıa Turull Torres. On the expressibility and the computability of

untyped queries. Ann. Pure Appl. Logic, 108(1-3):345–371, 2001.

[Tur01b] José Maŕıa Turull Torres. A study of homogeneity in relational databases.

Ann. Math. Artif. Intell., 33(2-4):379–414, 2001. Also see erratum in

42(4):443–444, 2004.

[Tur06] José Maŕıa Turull Torres. Relational databases and homogeneity in logics

with counting. Acta Cybern., 17(3):485–511, 2006.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume I. Computer Science Press, Rockville, Maryland, 1988.

[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume II. Computer Science Press, Rockville, Maryland, 1989.

[Var82] Moshe Y. Vardi. The complexity of relational query languages. In Proceed-

ings of the Fourteenth Annual ACM Symposium on Theory of Computing,

pages 137–146, San Francisco, California, USA, May 1982. ACM.

[Zák83] Stanislav Zák. A turing machine time hierarchy. Theor. Comput. Sci.,

26:327–333, 1983.

136

Index

(Σ1
1)
≤r, 39

Fϕ, 11

Fϕ
∞, 11

Fϕ
n , 11

RSi(r), 71

TrL,σ(x), 69

Uτ , 28

V O, 36

V τ , 28

[Σi
m]≤r, 35, 58

∆p
m, 19

∆Pr
m , 100

Πi
m, 30

Π1,ω
m , 95

ΠmTIME(f(n)), 19

Πp
m, 19

ΠPr
m , 100

Σ0
m, 75

Σi
m, 30

Σi
m-Th(B), 77

Σ1,ω
m , 94

ΣmTIME(f(n)), 19

Σp
m, 19

ΣPr
m , 100

ā, 8

≡, 10

≡k, 15

≡Ck
, 124

≡L, 10

∃BLOCKSATm(V , x1, x2), 55

∃BLOCK (x1, x2, x3), 54

∃k, 94

∀BLOCKSATm(V , x1, x2), 55

∀BLOCK (x1, x2, x3), 54

ˆ̂ϕ, 87

ϕ̂, 77

ι, 27

≤k, 16

AAΠi(r,m), 41

AAΣi(r,m), 41

AAi hierarchies, 41

AAi(r,m), 41

AND(x1, x2, x3), 52

ASSIGNS τ (V τ ′ , Y τ , x), 50

ATOMSAT (V , x1, x2), 53

ATOM Pj
(x1, x2), 52

ATOMXτ (x1, x2), 52

AUTOSAT (F), 44

DIAG(F), 44

HAAΠi(r,m), 63

HAAΣi(r,m), 63

HAAi hierarchies, 63

HAAi(r,m), 63

INDEX τ (x, y1, y2), 49

Mod(ϕ), 10

NOT (x1, x2), 52

137

OR(x1, x2, x3), 52

POS τ
j (x1, x2), 52

QFREESAT (V , x1, x2), 53

SAME τ (x1, x2), 49

SAT , 17

VAL(V), 50

VALτ (V τ ′), 50

VARτ (x), 49

VEQUIV (V 1, V 2, x1, x2), 54

WFF (F), 44

WFF (x1, x2), 52

arity(M), 98

ba, 35

enc(I), 20

free(ϕ), 10, 29

ma, 27

rs , 22

typ(i, r), 27

ATIME(f(n)), 58

Ck, 124

DSPACE(s(n)), 17

DSPACEr(s(n)), 24

DTIME(t(n)), 17

DTIMEr(t(n)), 24

FO, 11, 30

FOk, 15

FOk-type, 15

GSNF, 30

HO, 30

HOi, 30

HOi,r, 30

IFP, 12

LFP, 12

MSO, 37

NFP, 13

NP, 17

NPr, 24

NSPACE(s(n)), 17

NSPACEr(s(n)), 24

NTIME(t(n)), 17

NTIMEr(t(n)), 24

PFP, 12

PH, 18

PHr, 100

PSPACE, 17

PSPACEr, 24

P, 17

Pr, 24

SO, 30

SOω, 94

coC, 17

expi, 35

sizek(I), 23

|=, 10

|=L, 10

ρ, 43, 48

ρ′, 43, 48

', 8

pwq, 69

ϕ′, 43, 48

ϕ′(w0, w1), 77

ϕI, 10

k-size, 23

max(A), 79

min(A), 79

tpLI (ā), 14

vA, 79

B, 76

138

Iϕ′ , 43

typ, 27

Bρ, ≥ 279

Bσ, 8, 9

CL, 18

L = L′, 10

L ⊂ L′, 10

L ⊆ L′, 10

L(M), 24

L[σ], 10

Lω∞ω, 13

L∞ω, 13

Abiteboul-Vianu theorem, 25

arity, 7

automorphism, 8

basic-arity, 35

Boolean model, 76

Boolean vocabulary, 76

capturing

NP, 21

PH, 21

PSPACE, 22

P, 22

complexity class, 21

relational complexity classes, 24

classes of restricted size, 71

closed under ≡k, 15

complete for a complexity class, 17

data complexity, 21

database, 8

domain, 8

instance, 8, 9

schema, 7, 9

definable, 10

equivalence, 10

finite-order logic, 27

i-th order logic, 30

alphabet, 28

atomic formula, 29

semantics, 29

well-formed formula (wff), 28

fixed point, 11

FM-representable relation, 69

FM-truth definition, 69

free variables, 29

generalized Skolem normal form, 30

graph, 31

3-colorable, 31

regular, 31

grid, 38

hard for a complexity class, 17

hierarchies

alternation, 37

arity, 39

arity and alternation, 41, 63

higher-order logics, 30

maximal-arity of a formula, 30

inflationary fixed point, 12

isolating formula, 16

isomorphism, 8

least fixed point, 12

logic, 9

machine

139

Πm machine, 19

Σm machine, 19

alternating Turing machine, 19

oracle Turing machine, 18

monadic second-order logic, 37

nondeterministic fixed point, 13

oracle, 18

partial fixed point, 12

polynomial-time hierarchy, 18

relational, 100

prenex normal form, 30

query

Boolean, 9

computable, 8

domain-independent, 7

partial, 9

total, 9

typed, 8

untyped, 8

reducibility, 17

relational

calculus, 7

complexity, 22

language, 23, 98

machine, 22, 95

polynomial-time hierarchy, 100

store, 22

structure, 9

vocabulary, 9

relational machine, 95

acceptor, 98

arity, 98

computation, 98

configuration, 97

deterministic, 96

nondeterministic, 99

oracle, 99

relational store (rs), 96

satisfaction, 10

schema, 7

structure, 9

Tarski theorem (for finite models), 70

tuple, 8

type, 27

arity, 27

maximal-arity, 27

object of, 28

of tuple, 14

order, 27

realized, 15

valuation, 10, 29

V τ -equivalent, 29

variable

higher-order, 28

individual, 28

variable order logic, 36

vocabulary, 9

vocabulary ρ, 43

word models, 37

140

	Copyright statement.pdf
	thesis.pdf

