APLICACIÓN DE UN SIMULADOR COMERCIAL EN LAS ASIGNATURAS DE PROCESOS EN EL PROGRAMA DE QUÍMICA INDUSTRIAL

TRABAJO DE INVESTIGACIÓN FORMATIVA

LUÍS MIGUEL CARDONA GARCÍA 1093226740

MARIA CAMILA BARRETO CORREA 1015419866

DIRECTOR ING. MELVIN AROLDO DURÁN RINCÓN

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS QUÍMICA INDUSTRIAL 2017

Contenido

Introducción	1
Historia de la simulación	3
Aspen-Hysys	5
Consideraciones generales	6
1. Balance de Materia y Energía	9
Balance sin reacción química	9
Producto de mezcla	9
Fraccionamiento de mezcla	13
Balance de materia en un absorbedor	16
Balance con reacción química	20
Balance de materia con una única reacción	
Balance de materia con reacciones secuenciales	25
Balance de energía	
Balance de energía con reacción química	
Balance de energía en un intercambiador de calor	
2. Fluidos y Sólidos	
Hidrodinámica	
Sistema hidrodinámico con bomba	41
3. Transferencia de Calor	
Cálculo de flujos y temperaturas en intercambiadores de calor	
Diseño de un intercambiador de calor	51
4. Transferencia de Masas	59
Destilación	59
Humidificación	73
Extracción líquido-líquido	78
5. Instrumentación y Control de Procesos	
Sintonización de controladores	
Control de temperatura frente a una perturbación	90
Conclusiones y Recomendaciones	
Bibliografía	97

Introducción

Es indudable la importancia adquirida por las nuevas tecnologías de la información y comunicaciones (TIC) en todos los órdenes de la sociedad y, en particular, en el ámbito de la Educación Superior donde han introducido nuevas formas de trabajo, relación e, incluso, cambios en los métodos pedagógicos con los que se superan los métodos tradicionales de difusión de la documentación por parte del profesor [1].

Las herramientas interactivas constituyen un elemento muy potente que permite reflejar la componente visual subyacente al control automático bajo la abstracción de conceptos matemáticos, así como estimular la intuición de los estudiantes. De esta forma un alumno puede trabajar sobre un problema de forma gráfica y observar como el cambio en un determinado elemento se ve reflejado de forma inmediata en el resto, como si estuviera ante el proceso real. [2].

Hoy en día, la enseñanza moderna no puede ser entendida sin el uso del ordenador, esto se hace aún más evidente cuando se desarrollan estudios técnicos. Las computadoras permiten, en el campo ingenieril, la resolución de cálculos complejos con rapidez y habilidad, de manera que las empresas dedicadas al diseño en ingeniería (aeronáutico, automovilístico, químico-industrial) han adoptado, para su trabajo diario, programas de diseño asistido por ordenador y de simulación. La Universidad no debe ser ajena a este fenómeno, por lo que el uso de esos recursos informáticos debe ser ofrecido al alumnado al tiempo que se estudian los fundamentos teóricos de las técnicas de cálculo. Así, los simuladores logran una aplicación práctica inmediata de dichos conocimientos [3].

En los últimos tiempos se reconoce que el estudio sistemático y complejo de las operaciones básicas y de los procesos químico-industriales con una proyección profesional, no puede afrontarse eficazmente sin la utilización de herramientas computacionales adecuadas. De hecho, se ha desarrollado el concepto de aprendizaje a través de los simuladores [4] y la Simulación de Procesos, como materia de enseñanza, se ha generalizado en las carreras de Ingeniería Química y otras relacionadas en muchas universidades de todo el mundo.

Los simuladores de proceso están ganando un espacio en la docencia universitaria a nivel internacional pues permiten, por un lado, abordar el estudio de procesos complejos a un coste asumible de tiempo y esfuerzo y, por otro, dotan a los alumnos de experiencia en una herramienta que es ampliamente utilizada en la actividad profesional relacionada con la química. Este fenómeno es de tal alcance que ya se habla de un cambio en el paradigma de realizar los cálculos en la actividad docente de las carreras afines a la química [5].

El empleo de simuladores comerciales, como Aspen-Hysys, se ha llevado a cabo fundamentalmente en cursos avanzados de diseño industrial, obviando su aplicación en asignaturas introductorias a las operaciones básicas de los procesos químicos donde el carácter intuitivo de los entornos gráficos de estos programas y su gran potencia de cálculo (que evita al estudiante los tediosos desarrollos numéricos, permitiéndole concentrarse en aspectos conceptuales) podría aumentar su motivación por la materia [6].

En sus estudios Ferro et al. [7], ha señalado los beneficios del uso de los simuladores de proceso en la docencia universitaria de Ingeniería Química. Por ejemplo, se ha argumentado que los simuladores permiten al estudiante comprender procesos e instalaciones complejas, que son difícilmente comprensibles aún mediante el contacto directo con la instalación. También, se insisten en el hecho de que el uso de los simuladores de procesos soporta, refuerza y estimula la independencia de los estudiantes. Además, se considera que los simuladores ofrecen el beneficio adicional de permitir a los estudiantes experimentar la titularidad de los resultados de un estudio complejo, lo que les compromete con el trabajo y fomenta su motivación.

Sin la utilización de simuladores de procesos es prácticamente imposible que los estudiantes puedan resolver problemas con verdadero interés práctico (y en correspondencia con carácter formativo) como parte de su trabajo individual fuera del aula. En las condiciones de un proceso docente centrado en el estudiante y con tareas de una complejidad adecuada para su formación profesional, prescindir de los simuladores de proceso en el trabajo docente de las asignaturas del área de química, exigiría la presencia constante de los profesores para guiar el trabajo del estudiante en tareas de cálculo que poco tienen que ver con la verdadera esencia del aprendizaje en química, limitaría el planteamiento de problemas a aquellos más sencillos donde no se analiza la operación desde la perspectiva del desarrollo industrial y, consumiría unas cantidades de tiempo inadmisibles en el contexto curricular existente [7].

El software comercial Aspen-Hysys, como en general todos los programas de simulación de procesos, presentan una serie de ventajas para la enseñanza: permiten la reproducción económica de procesos costosos; facilitan la comprensión de operaciones en un entorno similar al real; simplifican los cálculos numéricos; permiten el desarrollo de aspectos más conceptuales; posibilitan la verificación cualitativa y cuantitativa de hipótesis; y refuerzan el aprendizaje autónomo. Sin embargo, los simuladores comerciales disponibles en Química no están orientados específicamente para el aprendizaje y no incorporan modelos psicopedagógicos que tengan como centro de atención al estudiante [8].

Por tal razón, se pretende realizar la adaptación de ejercicios prácticos como estrategia didáctica en las asignaturas de procesos del programa de Química Industrial de la Universidad Tecnológica de Pereira para su posterior realización mediante el empleo del software Aspen-Hysys que servirá como herramienta para facilitar el aprendizaje y fortalecer la comprensión de los principios teóricos dictados en las asignaturas.

Historia de la Simulación

La historia de la simulación se puede remontar a la década de 1950 donde se inician las primeras aplicaciones de la programación lineal a la industria petroquímica en la creación de modelos que simulan la mezcla de gasolinas y de aceites. Los primeros programas fueron escritos inicialmente para grandes ordenadores VAX, IBM, etc. y gradualmente para ordenadores personales tipo IBM-PC o compatibles, reduciéndose su precio [9].

Posteriormente, a partir del uso masivo de la computadora digital, y de la revolución que implica la informática en todos los campos de la ingeniería, se evolucionó lentamente de la simulación analógica a la digital, habiendo prácticamente desaparecido la simulación digital en muchas aplicaciones [10].

Con la aparición de los microprocesadores a partir de la década de los setenta, cuya consecuencia inmediata resultó ser la masificación de las computadoras, al introducirse comercialmente en los ochenta las computadoras personales (PC's), se produce una revolución "informática", en el sentido de tener acceso prácticamente a bajo costo; tanto los profesionales como los estudiantes y docentes, a una computadora relativamente eficiente, hecho que anteriormente solo estaba permitido a pocas personas con acceso a centros de cómputos, cuyo costo de mantenimiento era elevado. En la actualidad los sistemas multimedia, las supercomputadoras y las "autopistas informáticas" representan el avance logrado [11].

Como consecuencia de estos sucesos, se comienza a cubrir la brecha entre los métodos pre-computadora y los algoritmos numéricos programados aplicados a la ingeniería química. En el año 1974 aparece el primer simulador de procesos químicos, el FLOWTRAN [11].

Existe actualmente una gran variedad de simuladores de procesos comerciales, de las cuales son poderosas herramientas de cálculo en procesos industriales, con enormes bases de datos y un fuerte respaldo de bibliotecas para cálculos de equipos y bibliotecas de modelos para cálculos termodinámicos, que le dan al simulador la ventaja de una gran versatilidad [10].

Algunos de estos simuladores de procesos de propósitos generales son:

Aspen Plus (de Aspen Technology, Inc), SimSci PRO/II (de Schneider Electric Software, LLC), Aspen-Hysys (de Aspen Technology, Inc), Chemcad (de Chemstations, USA), etc. Aspen Plus, SimSci PRO/II y Chemcad son simuladores de procesos en estado estable. Aspen-Hysys es útil para realizar simulaciones en estado estable y proceso dinámico [12]. Hysys fue concebida y creada primero por la compañía canadiense Hypotech, fundada por investigadores de la universidad de Calgary. En

mayo del año 2002, AspenTech adquiere Hypotech, incluyendo Hysys, que a partir de entonces se llamó Aspen-Hysys.

Un aspecto muy importante en los simuladores de procesos es la disponibilidad de propiedades termodinámicas y de transporte de las corrientes del proceso, estas propiedades son fundamentales para efectuar los balances de materia y energía al grado de que, si tenemos buenos datos o buenas correlaciones para las propiedades, entonces los resultados de la simulación serán altamente confiables [11]. Además, se debe tener en cuenta que los simuladores modernos permiten la selección de los modelos de propiedades termodinámicas adecuados para la naturaleza de los componentes químicos, estado de agregación y condiciones de operación [12]. Las corrientes del proceso pueden ser:

1. Gases a baja y alta presión.

2. Soluciones líquidas con componentes no polares, polares y electrolitos a baja y alta presión.

3. Sólidos en suspensión o finamente divididos.

Como visión general lo simuladores de procesos están hechos para facilitar las labores que en la ingeniería de procesos resultan ser tediosas, y frecuentemente presentan error humano. Estas herramientas van de la mano con los avances tecnológicos del mundo actual, siempre estando a la vanguardia en todos los campos de la ingeniería.

Aspen-Hysys

Aspen HYSYS® es una herramienta de simulación de procesos muy poderosa, ha sido específicamente creada teniendo en cuenta lo siguiente: arquitectura de programa, diseño de interfase, capacidades ingenieriles, y operación interactiva. Este software permite simulaciones tanto en estado estacionario como en estado transitorio.

Los variados componentes que comprende Aspen HYSYS® proveen un enfoque extremadamente poderoso del modelado en estado estacionario. Sus operaciones y propiedades permiten modelar una amplia gama de procesos con confianza.

Para comprender el éxito de Aspen HYSYS® no se necesita mirar más allá de su fuerte base termodinámica. Sus paquetes de propiedades llevan a la presentación de un modelo más realista.

En los últimos años, este programa ha sido ampliamente usado en la industria para investigación, desarrollo, simulación y diseño. Aspen HYSYS® sirve como plataforma ingenieril para modelar procesos como: procesamiento de gases, instalaciones criogénicas, procesos químicos y de refinación, etc. También ha sido utilizado en universidades en cursos introductorios y avanzados, especialmente en ingeniería química [13].

Consideraciones generales

Para llevar a cabo la resolución de cualquier ejercicio o simulación en Aspen-Hysys es necesario seguir un algoritmo que de manera general se repetirá en todos los casos. Dicho algoritmo se muestra a continuación:

1. Empezar un nuevo caso en Aspen-Hysys:

Una vez abierto el programa, hacer clic en el icono Este se encuentra situado al lado izquierdo de la pantalla. Por defecto Aspen-Hysys se sitúa en la pestaña **Component list**.

💐 📊 🚽 📴 🛀 Untitled - Aspen HYSYS V8.0 - aspenONE — 🗖						o >	<			
File Home View Customize Get Star	ted								\$	0
¥ Cut Copy• Component Lists Lists	t Map Components	Petroleum Assays	Hypothetical Manager Convert Remove Duplicates	Oil •	Aspen Properties	PVT Laboratory Measurements				
Clipboard Navigate	Components	Refining 🖙	Hypotheticals		Options	PVI Data				-
Properties < Start Page × Co										-
All Items Lis	Name	5	Source		Associa	ted Fluid Packages			Sta	Â.
Component Lists										
Fluid Packages										
Cil Manager										
Reactions										=
Component Maps										
Contraction Contra										
Add	Сору	De	lete							
7 Properties										Ŧ
									•	
C C Simulation Messages									↓ 1	١×
Required Info : Fluid	Packages Select prope	rty package								
Required Info : Components Empty component list										
Required Info : Mast	er Component List Emj	oty component list								
							n% 🖨 (7	

Figura A. Pestaña de lista de componentes.

2. Adición de Componentes:

- a. Hacer clic en el botón
- b. Se buscan los componentes en la barra de búsqueda
- c. presiona clic en el botón Add
- d. Repetir los pasos anteriores para cada componente a adicionar.

3. Selección del paquete termodinámico:

- a. Hacer clic en 📮 Fluid Packages
- b. Seleccionar Add -

Se desplegará la lista de los diferentes paquetes termodinámicos dentro de Aspen-Hysys, seleccionar uno haciendo clic sobre este.

<none></none>	*
Amine Pkg	
Antoine	
ASME Steam	=
Braun K10	
BWRS	
Chao Seader	
Chien Null	
Clean Fuels Pkg	
Esso Tabular	
Extended NRTL	
GCEOS	
General NRTL	
Glycol Package	
Grayson Streed	
Kabadi-Danner	Ŧ

Figura B. Lista de paquetes termodinámicos Aspen-Hysys.

- c. Si no se tiene conocimiento de cual paquete termodinámico se va a emplear, Aspen-Hysys cuenta con la herramienta **Methods Assistance** que a través de una serie de preguntas acerca de los componentes adicionados, seleccionará el o los paquetes termodinámicos más adecuados.
- d. Para entrar en la herramienta se presiona clic en el icono Methods Assistant se desplegará la ventana del asistente de paquete termodinámico.

🖳 Assistant - Property pag	kage selection	_		×
Getting started	Start by selecting one of the • <u>Specify component</u> • <u>Specify process type</u>	e following <u>type</u> ✓	options:	< >
About Report		(ا	Clo	ose

Figura C. Asistente de paquete termodinámico.

Allí se siguen las instrucciones y el asistente mostrará las opciones más adecuadas para el tipo de componentes seleccionados.

4. Entorno de simulación:

Hacer clic en a continuación, se desplegará la ventana **Model Palette** donde se pueden seleccionar todas las operaciones unitarias necesarias para la simulación.

🎦 Palette	_	- 🗆	×
	•		
Dynamics	Upstream	Refining	
Common	Columns	Custom	

Figura D. Ventana Modele Palette.

Esta ventana también puede ser mostrada presionando F4 o dirigiéndose a la pestaña **View** y seleccionando **Model Palette**.

5. Corrientes de materia y propiedades:

- a. Para añadir las corrientes de materia se selecciona el icono
- b. Las corrientes de materia están definidas una vez se ingresan los valores de temperatura, presión, flujo y composición.
- c. Para insertar dichas propiedades, hacer clic en la corriente de materia, se desplegará esta ventana:

orksheet Attachme	ents Dynamics		
Worksheet	Stream Name	1	
Conditions	Vapour / Phase Fraction	<empty></empty>	
Properties	Temperature [C]	<empty></empty>	
Composition	Pressure [kPa]	<empty></empty>	
Oil & Gas Feed	Molar Flow [kgmole/h]	<empty></empty>	
K Value	Mass Flow [kg/h]	<empty></empty>	
User Variables	Std Ideal Liq Vol Flow [m3/h]	<empty></empty>	
Notes	Molar Enthalpy [kJ/kgmole]	<empty></empty>	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	<empty></empty>	
Normalized Yields	Heat Flow [kJ/h]	<empty></empty>	
	Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	
	Fluid Package	Basis-1	
	Utility Type		

Figura C. Corriente de materia Aspen-Hysys

d. En la pestaña **Conditions** se pueden insertar los valores de temperatura, presión y flujo. En la pestaña **Composition** se insertan los valores de composición que pueden ser ingresados como fracción másica o molar, flujos másicos o molares y flujos volumétricos evitando los cálculos para convertir de una unidad a otra.

L Balance de Materia y Energía

Balance sin reacción química

Producto de Mezcla:

Dos mezclas etanol-agua se encuentran en dos matraces separados. La primera mezcla contiene 35% en peso de etanol, y la segunda contiene 75% en peso del mismo. Si se combinan 350 g de la primera mezcla con 200 g de la segunda, ¿cuál es la masa y la composición del producto? Suponga condiciones estándar para temperatura y presión [14].

Solución:

Balance total de masa:

$$350g + 200g = M$$
$$550g = M$$

Balance parcial de masa para Etanol:

$$0,35(350g) + 0,75(200g) = x550g$$

x = 0,4955

Solución en Aspen-Hysys:

- 1. Componentes: Etanol, agua.
- 2. Paquete termodinámico: Antoine
- 3. Añadir tres corrientes de materia con las siguientes propiedades:

	Conditions					
Stream Name	Corriente 1	Corriente 2	Corriente 3			
Temperature	25°C	25°C	25°C			
Pressure	1 atm	1 atm	1 atm			
Mass Flow	350 g/h	200 g/h				
Con	Composition (Mass Fraction)					
Etanol	0,35	0,75				
Agua	0,65	0,25				

Tabla 1.1. Propiedades de corriente de materia, balance de materia sin reacción.

Operación Unitaria:

 En este caso se utilizará la herramienta Balance de la ventana Model palette, para esto se selecciona el icono trabajo para añadirla.

Esto es lo que se tiene hasta ahora:

🎽 i 🔒 n 🍪 🥅 🚆 🔹 i	<no document=""> - Aspen HYSYS V8.0 - aspenONE Flowsheet</no>	- o ×
💹 P — 🗆 🗙	s Dynamics View Customize Get Started Flowsheet/Modify	۵ 🔞
Upstream Refining	Image: State in the state	
Custom Dynamics	Start Page × Flowsheet Main × +	•
	Corriente 1 BAL-1 2	Ŷ
EO L		
<u>T</u> T	Messages Required Info : BAL-1 Requires an Inlet Stream Required Info : BAL-1 Requires an Outlet Stream Required Info : BAL-1 Waknown Balance Type Optional Info : 3 Unknown Compositions	- 4 ×
Solver (Main) - Ready	94% (€ €

Figura 1.1. Diagrama de procesos Aspen-Hysys.

Conexión de la herramienta Balance con las corrientes.

1. Hacer doble clic en la herramienta **BAL-1**.

2. En **Inlet Streams** se seleccionan las corrientes 1 y 2, y en **Outlet Streams** se selecciona la corriente Salida.

Balance: BAL-1		- d ×
Connections	Name BAL-1	A
Connections Notes	Inlet Streams Corriente 1 Corriente 2 Corr	E
	Unknown Balance Type	

Figura 1.2. Conexión de corrientes de materia Aspen-Hysys

3. Luego de esto, se debe seleccionar el tipo de balance a realizar. Para ello, se dirige a la pestaña **Parameters** y se selecciona el tipo de balance **General**. Una vez la barra inferior se encuentra en color verde con aviso de ok, se procede a revisar el resultado del ejercicio.

Resultado:

1. Hacer doble clic sobre la corriente **Salida**, allí podremos observar la primera respuesta que es el flujo másico de esta corriente

Material Stream: Salida					- d X
Worksheet Attachme	ents Dynamics				
Worksheet	Stream Name	Salida	Liquid Phase	Aqueous Phase	
Conditions	Vapour / Phase Fraction	0.0000	0.2776	0.7224	
Properties	Temperature [C]	25.00	25.00	25.00	
Composition	Pressure [kPa]	101.3	101.3	101.3	
Oil & Gas Feed	Molar Flow [kgmole/h]	2.132e-002	5.919e-003	1.540e-002	E
Petroleum Assay	Mass Flow [kg/h]	0.5500	0.2726	0.2774	
User Variables	Std Ideal Liq Vol Flow [m3/h]	6.204e-004	3.424e-004	2.780e-004	
Notes	Molar Enthalpy [kJ/kgmole]	-2.832e+005	-2.788e+005	-2.849e+005	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	2.879	-6.696	6.559	
Normalized Yields	Heat Flow [kJ/h]	-6038	-1650	-4387	
	Liq Vol Flow @Std Cond [m3/h]	6.200e-004	3.421e-004	2.778e-004	
	Fluid Package	Basis-1			
	Utility Type				
					.

Figura 1.3. Flujo másico en corriente de salida

2. Para ver las composiciones en fracción másica se selecciona **Composition**, luego se hace clic en **Basis** y se selecciona **Mass Fraction**.

Material Stream: Salida					- 8 ×
Worksheet Attachme	ents Dynamics				
Worksheet		Mass Fractions	Liquid Phase	Aqueous Phase	
Conditions	Ethanol	0.4955	0.9997	0.0000	
Properties	H2O	0.5045	0.0003	1.0000	
Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields					=
	Total 1.	00000			Ţ

Figura 1.4. Fracción másica en corriente de salida.

Se observa que el resultado obtenido a partir de la simulación es exactamente igual al calculado por métodos tradicionales.

Fraccionamiento de mezcla:

1500 kg/h de una mezcla de benceno y tolueno que contiene 55% en masa de benceno se separan, por destilación, en dos fracciones. La velocidad de flujo másico en la parte superior es de 875 kg/h. Se desea que el producto de fondo tenga un 96% en masa de tolueno. ¿Cuál debe ser el flujo másico en la corriente de fondo y la fracción de benceno en la parte superior para lograr este propósito?

Solución:

Balance total de masa:

$$1500kg = 875kg + y$$
$$y = 625 Kg$$

Balance parcial de masa para Benceno:

$$1500Kg(0,55) = 875kg(x) + (0,04)625kg$$
$$x = 0,91$$

Solución en Aspen-Hysys:

- 1. Componentes: Benceno, tolueno.
- 2. Paquete termodinámico: Antoine.
- 3. Añadir tres corrientes de materia con las siguientes propiedades:

Conditions						
Stream Name	Corriente 1	Parte superior	Fondos			
Temperature	80°C	25°C	25°C			
Pressure	1 atm	1 atm	1 atm			
Mass Flow	1500 kg/h	875 kg/h				
Con	Composition (Mass Fraction)					
Benceno	0,55		0,04			
Tolueno	0,45		0,96			

Tabla 1.2. Propiedades de corrientes de materia, balance sin reacción química.

Operación Unitaria:

- 1. Seleccionar la herramienta Balance de la ventana Model Palette.
- 2. Conectar la herramienta **Balance** a las corrientes, presionando doble clic en la herramienta **BAL-1**. En **Inlet Streams** se selecciona **Corrientes 1**, y en **Outlet Streams** se seleccionan las corriente **Parte Superior** y **Fondos**.

Figura 1.5. Conexión de corrientes de materia.

3. Dirigirse a la pestaña **Parameters** y se selecciona el tipo de balance **Component Mole Flow**. Una vez la barra inferior se encuentra en color verde con aviso de ok, se procede a revisar el resultado del ejercicio.

Resultado:

1. Hacer doble clic en la corriente **Fondos** allí se puede observar el resultado del flujo másico en esta corriente.

Material Stream: Fondo	5			- 1 🗙
Worksheet Attachme	ents Dynamics			
Worksheet	Stream Name	Fondos	Liquid Phase	
Conditions	Vapour / Phase Fraction	0.0000	1.0000	
Properties	Temperature [C]	25.00	25.00	
Composition	Pressure [kPa]	101.3	101.3	
Oil & Gas Feed	Molar Flow [kgmole/h]	6.832	6.832	
K Value	Mass Flow [kg/h]	625.0	625.0	=
User Variables	Std Ideal Liq Vol Flow [m3/h]	0.7180	0.7180	
Notes	Molar Enthalpy [kJ/kgmole]	1.371e+004	1.371e+004	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	-110.7	-110.7	
Normalized Yields	Heat Flow [kJ/h]	9.366e+004	9.366e+004	
	Liq Vol Flow @Std Cond [m3/h]	0.7150	0.7150	
	Fluid Package	Basis-1		
	Utility Type			
				*
	1			

Figura 1.6. Flujo másico en la corriente Fondos.

2. Hacer doble clic en la corriente **Parte Superior**, a continuación, seleccionamos **Composition**, luego se hace clic en **Basis** y finalmente se selecciona **Mass Fraction**.

Material Stream: Parte S	uperior			- 6	X
Worksheet Attachme	ents Dynamics				A
Worksheet		Mass Fractions	Liquid Phase		וור
Conditions	Benzene	0.9143	0.9143		1
Properties	Toluene	0.0857	0.0857		
Oil & Gas Feed Petroleum Assay					Ξ
K Value					
User Variables					
Cost Parameters					
Normalized Yields					
	Total	1.00000			
					-

Figura 1.7. Fracciones másicas en corriente parte superior.

Los resultados arrojados por Aspen-Hysys coinciden con los obtenidos a mano, se destaca que el simulador calcula las fracciones con cuatro cifras decimales lo que proporciona un resultado más preciso.

Balance de Materia en un absorbedor:

Puede recuperarse acetona de un gas portador, disolviéndola en una corriente de agua pura en una unidad llamada absorbedor. En el diagrama de flujo de la figura, 300 mol/h de una corriente con 35% de acetona se tratan con 1500 mol/h de una corriente de agua pura, lo que produce un gas de descarga libre de acetona y una solución de acetona en agua. Supóngase que el gas portador no se disuelve en agua. Calcule todas las variables de corrientes desconocidas.

Solución:

Balance global de materia:

$$300 \ mol + 1500 \ mol = M_2 + M_4$$

$$1800 \ mol = M_2 + M_4$$

Balance parcial de masa para Aire:

$$300 \ mol(0,65) = M_2$$

 $M_2 = 195 \ mol$
 $M_4 = 1800 \ mol - M_2$
 $M_4 = 1800 \ mol - 195 \ mol$

 $M_4 = 1605 \, mol$

Balance parcial de masa para Agua:

 $1500 \ mol = (x)1605 \ mol$ x = 0,93y = 1 - 0,93y = 0,07

Solución en Hysys:

- 1. Componentes: Agua, acetona y nitrógeno.
- 2. Paquete termodinámico: Antoine.
- 3. Insertar cuatro corrientes de materia con las siguientes propiedades:

Stream Name (1) Acetona-Gas (2) Gas (3) Agua (4) Acetona-Agua Temperature 25°C 25°C 25°C 25°C Pressure 1 atm 1 atm 1 atm 1 atm Molar Flow 300 mol/h 1500 mol/h 1 atm Composition (Mole Fraction) Aire 0,65 1,0 0,0 Acetona 0,35 0,0 0,0 1 0	Conditions								
Temperature 25°C 25°C 25°C 25°C Pressure 1 atm 1 atm 1 atm 1 atm Molar Flow 300 mol/h 1500 mol/h 1 Composition (Mole Fraction) Composition (Mole Fraction) Composition (Mole Fraction) Aire 0,65 1,0 0,0 Composition (Mole Fraction) Aire 0,35 0,0 0,0 Composition (Mole Fraction) Composition (Mole Fraction)	Stream Name	(1) Acetona-Gas	(2) Gas	(3) Agua	(4) Acetona-Agua				
Pressure 1 atm 1 atm 1 atm 1 atm Molar Flow 300 mol/h 1500 mol/h 1 atm Composition (Mole Fraction) Composition (Mole Fraction) Composition (Mole Fraction) Aire 0,65 1,0 0,0 Composition (Mole Fraction) Aire 0,35 0,0 0,0 Composition (Mole Fraction) Composition (Mole Fraction)	Temperature	25°C	25°C	25°C	25°C				
Molar Flow 300 mol/h 1500 mol/h Composition (Mole Fraction) Aire 0,65 1,0 0,0 Acetona 0,35 0,0 0,0 Arua 0.0 1.0 1.0	Pressure	1 atm	1 atm	1 atm	1 atm				
Composition (Mole Fraction) Aire 0,65 1,0 0,0 Acetona 0,35 0,0 0,0	Molar Flow	300 mol/h		1500 mol/h					
Aire 0,65 1,0 0,0 Acetona 0,35 0,0 0,0 Agua 0.0 0.0 1.0	Composition (Mole Fraction)								
Acetona 0,35 0,0 0,0	Aire	0,65	1,0	0,0					
Agua 0.0 0.0 1.0	Acetona	0,35	0,0	0,0					
Agua 0,0 0,0 1,0	Agua	0,0	0,0	1,0					

 Tabla 1.3. Propiedades de corrientes de materia balance sin reacción

Operación Unitaria:

- 1. Insertar la herramienta Balance. Hacer doble clic sobre esta.
- 2. En la pestaña **Connections** se pueden ingresar las corrientes de entrada (**Inlet Stream**) que en este caso son (1) y (3). Así mismo las corrientes de salida (2) y (4) se seleccionan en **Oulet Stream**.
- 3. En la pestaña **Parameters** se selecciona el tipo de balance **Component Mole Flow.**
- 4. Se sabe que en la corriente de salida (4) no hay aire, sin embargo, no se puede especificar una fracción de 0,0 en esta corriente. Este problema se soluciona implementando la herramienta **Adjust**:
 - Seleccionar el icono 🛃 y colocar la operación en el diagrama.
 - Hacer doble sobre esta. Se abrirá esta ventana:

ADJ-1						
Connections	Parameters Monitor	User Variables				
Connections	A	djust Name	ADJ-1			
Connections Notes	Adjusted Variab Object:	le		Select Var		
	Target Variable Object:			Select Var		
	Target Value — Source —				J	

Figura 1.8. Herramienta Adjust.

- Se seleccionará la variable a ajustar (Adjusted Variable) en este caso Aire, para ellos se oprime clic en Select Var....
- Seleccionar la corriente (2) Gas, luego la variable a ajustar Molar Flow, finalmente OK.

Flowsheet	Object	Variable		Variable Specifics	011
ase (Main)	(1) Acetona-Gas (2) Gas (3) Agua (4) Acetona-Agua BAL-1 FeederBlock_(1) Acetonc FeederBlock_(2) Gas FeederBlock_(3) Agua FeederBlock_(4) Acetonc ProductBlock_(2) Gas ProductBlock_(3) Agua ProductBlock_(4) Acetor	BO Std Vol Flow - Overall BO Std Vol Flow - Water BO Surface Tension BO Viscosity Coefficient A BO Viscosity Coefficient B BO Water Cut BO Water Oil Ratio BO Water Oil Ratio State Oil Ratio BO Water Oil Ratio Stat Cond Macrocut Assay Data Macrocut Gas Composition MacroCut LightEnds Mass Flow Molar Enthalpy Molar Flow	× III		OK Object Filte All Streams UnitOps Logicals Utilities Column(Custom Custom Disconne

Figura 1.9. Parámetros herramienta Adjust.

- Se repite este procedimiento con la variable objetico (Target Variable).
- En este caso será la corriente (4) Acetona-Agua, la variable **Master Comp Mole Fraction** y el componente **Air**.
- Pasar a la pestaña **Parameters** y especificar las características de iteración:

Method	Secant
Tolerance	1e-6
Step Size	10gmol/h
Maximum Irerations	1000

- Aun así, no se resolverá el sistema, se tiene que dar un valor al flujo de aire que comience la iteración. Cerrar la ventana y abrir la corriente (2) Gas, especificar un flujo de 100 gmol/h. Rápidamente se observa cómo se ajusta al valor de 195 gmol/h. Esto quiere decir que el ajustador está activo y el sistema resuelto.

Resultados:

Una forma sencilla de observar los resultados es hacer clic derecho sobre el diagrama de procesos, en la ventana desplegada seleccionar **Add Workbook Table.** Seleccionar el tipo de tabla, en este caso **Compositions** y **Material Streams.**

Compositions								
		(1) Acetona-Gas	(2) (Gas	(3) Agua	a (4) Acetona-	Agua	
Comp Mole Frac (Air)		0,6500	1,0	000	0,000	0 0	,0000,	
Comp Mole Frac (Ace	etone)	0,3500	0,0	000	0,000	0,0654		
Comp Mole Frac (H2	Comp Mole Frac (H2O)		0,0	000	1,000	0 0	,9346	
Material Streams								
		(1) Acetona-(Gas	(2) G	as	(3) Agua	(4) Aceto	
Veneur Freetien		0.0	220		4 0000	0.0000		

		(1) Acetona-Gas	(2) Gas	(3) Agua	(4) Acetona-Agua			
Vapour Fraction		0,9339	1,0000	0,0000	0,0000			
Temperature	С	25,00	25,00	25,00	25,00			
Pressure	kPa	101,3	101,3	101,3	101,3			
Molar Flow	kgmole/h	0,3000	0,1950	1,500	1,605			
Mass Flow	kg/h	11,74	5,645	27,02	33,12			
Liquid Volume Flow	m3/h	1,414e-002	6,418e-003	2,708e-002	3,480e-002			
Heat Flow	kJ/h	-2,350e+004	-1,268	-4,274e+005	-4,536e+005			

Figura 1.10. Tabla de resultados de las corrientes de materia.

Enfocándose en los valores del flujo molar de las corrientes de materia 2 y 4 así como las composiciones de la corriente 4, se puede notar que los resultados coinciden perfectamente con los calculados a mano.

Balance con Reacción Química:

Balance de materia con una única reacción:

Los procesos modernos para producir HNO₃ (ácido nítrico) utilizan un primer paso que consiste en la reacción de NH₃ (amoniaco) con oxígeno sobre un catalizador de platino para producir óxido nítrico:

$$4 NH_3 + 5 O_2 \rightarrow 4 NO + 6 H_2O$$

Si se obtiene una conversión del 90% de NH_3 con una alimentación de 40 kmol/h de NH_3 y 60 kmol/h de O_2 . Calcule el flujo de salida del reactor, así como las fracciones de cada componente en esta corriente.

Solución:

Moles de NH₃ que reaccionan:

$$n_{NH_3=} 0,9(40 \ kmol)$$

 $n_{NH_3=} 36 \ kmol$

Balance parcial de masa para NH₃:

Entrada + Producción = Salida + Consumo

 $40 \ kmol = n_{3NH_3} + 36 \ kmol$ $n_{3NH_3} = 4 \ kmol$

Balance parcial de masa para O₂:

$$60 \text{ kmol} = n_{3O_2} + \left(36 \text{ kmol } NH_3 \times \frac{5 \text{ kmol } O_2}{4 \text{ kmol } NH_3}\right)$$
$$n_{3O_2} = 15 \text{ kmol}$$

Balance parcial de masa para NO:

$$\left(36 \text{ kmol } NH_3 \times \frac{4 \text{ kmol } NO}{4 \text{ kmol } NH_3}\right) = n_{3NO}$$
$$n_{3NO} = 36 \text{ kmol}$$

Balance parcial de masa para H₂O:

$$\left(36 \text{ kmol } NH_3 \times \frac{6 \text{ kmol } H_2 0}{4 \text{ kmol } NH_3}\right) = n_{3H_{20}}$$
$$n_{3H_{20}} = 54 \text{ kmol}$$

$$n_{3} = n_{3NH_{3}} + n_{3O_{2}} + n_{3NO} + n_{3H_{2O}}$$

$$n_{3} = 4 \ kmol + 15 \ kmol + 36 \ kmol + 54 \ kmol$$

$$n_{3} = 109 \ kmol$$

Fracción de NH₃ en (3):

$$x_{NH_3} = \frac{4 \text{ kmol}}{109 \text{ kmol}}$$
$$x_{NH_3} = 0,0367$$

Fracción de O₂ en (3):

$$x_{O_2} = \frac{15 \ kmol}{109 \ kmol} \\ x_{O_2} = 0,1376$$

Fracción de NO en (3):

$$x_{NO} = \frac{36 \ kmol}{109 \ kmol}$$
$$x_{NO} = 0,3303$$

Fracción de H₂O en (3):

$$x_{H_{20}} = \frac{54 \ kmol}{109 \ kmol}$$
$$x_{H_{20}} = 0,4954$$

Solución en Aspen-Hysys:

- 1. Componentes: NH_3 , O_2 , $NO \ y \ H_2O$.
- 2. Paquete Termodinámico: Peng Robinson.

Reacción química:

Se debe tener en cuenta que la ecuación química debe estar previamente balanceada para llevar a cabo la simulación.

- 1. Seleccionar la pestaña Reactions.
- 2. Hacer clic en Add.
- 3. En la parte inferior de la ventana, hacer clic en Add Reaction.
- 4. Seleccionar Conversion y nuevamente Add Reaction.
 - Esto es lo que se tiene hasta ahora:

🎘 📊 🗐 📄 •	•	Untitled	d - Aspen HYSYS V8.0) - aspenONE			-	- 0	×
File Home View (Customize Get Started								۵ 🔞
Component Fluid Component Clists Nav	Methods Assistant Market Mark	lap Components pdate Properties Components R	Petroleum Assays Refining S	othetical Manager vert ove Duplicates vpotheticals	Oil Aspen Properties Options	PVT Laboratory Measurements PVT Data			
Properties <	Start Page × Set-1 (Read	tion Set) × +		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-
All Items	Set Info Set Type Con	version	Not I	Ready (endent (Ranking)	Add to FP Detach from FP Advanced				E
Set-1	Active Reactions	Т	Гуре	Configured Or	perations Attached				
Component Maps User Properties	R R R R R R R R R R R R R R R R R R R	xn-1	Conversion	×					
Image: Simulation Image: Messages Messages Image: Messages									
69 Energy Analysis	Required Info : Set-1 React Warning : Set-1 Reaction s Required Info : Rxn-1 Rxn i Warning : All reactions set	ion set is not comple et is not complete s not complete s are not complete	ete 🔹						
						10	0% Θ 👘		•

Figura 1.11. Ventana de reacciones.

5. Hacer doble clic en **Rxn-1.** Se desplegará esta ventana:

		Basis	
Mole Weight	Stoich Coeff	Base Component	<empty></empty>
•		Rxn Phase	Overall
		Со	<empty></empty>
		C1	<empty></empty>
		C2	<empty></empty>
		(T in Kelvin)	
Balance Error	0.00000		
Reaction Heat (25 C)	<empty></empty>		
1			
	Mole Weight	Mole Weight Stoich Coeff Mole Weight Stoich Coeff Balance Error 0.00000 Reaction Heat (25 C) <empty></empty>	Basis Basis Base Component Rxn Phase Co C1 C2 Conversion (%) = Co + C1*T + C2*T^2 Conversion (%) = Co + C1*T + C2*T^2 Conversion (%) = Co + C1*T + C2*T^2 Balance Error 0.00000 Reaction Heat (25 C) <empty></empty>

Figura 1.12. Adición de reacciones.

6. Hacer clic en ****Add Comp**** y seleccionar los componentes de la reacción.

- 7. En **Stoich Coeff** se ingresan los coeficientes estequiométricos de la reacción, teniendo en cuenta que para los reactivos se debe ingresar un signo menos, seguido del coeficiente debido a que estos componentes son consumidos.
- 8. En la sección **Basis**, se inserta el porcentaje de conversión de la reacción en la casilla **Co**, en este caso 90%. La barra de aviso ahora debería de estar en verde y OK.

Ammonia 17.030 -4.000 Rxn Phase Oxygen 32.000 -5.000 Co Co NO 30.006 4.000 C1	Overall 90.00
Oxygen 32.000 -5.000 Co	90.00
NO 30,006 4,000 C1	
	<empty></empty>
H2O 18.015 6.000 C2	<empty></empty>
(T in Kelvin)	
Balance Error 0.00000 Reaction Heat (25 C) -2.3e+05 k1/komole	

Figura 1.13. Adición de reacciones y porcentaje de conversión.

- 9. Cerrar esta ventana, dar clic en Add to FP
- 10. En la ventana que se despliega dar clic en Add Set to Fluid Package

Simulación:

- De la ventana Model Palette, adicionar al diagrama de procesos la unidad Conversion Reactor presionando el icono sección Columns.
- 2. Adicionar tres corrientes de materia y añadir las siguientes propiedades:

Conditions								
Stream Name	(1) Amoniaco	(2) Oxigeno	(3) Salida					
Temperature	25°C	25°C						
Pressure	1 atm	1 atm	1 atm					
Molar Flow	40 kmol/h	60 kmol/h						
Composition (Mole Fraction)								
\mathbf{NH}_{3}	1	0,0						
O_2	0,0	1,0						
NO	0,0	0,0						
H_2O	0,0	0,0						

 Tabla 1.4 Corrientes de materia en balance de materia con reacción química.

Operación Unitaria:

- 1. Hacer doble clic sobre la herramienta **CRV-100**
- 2. En la pestaña **Connections** se insertan las corrientes de entrada (**Inlets**) de **Amoniaco** y **Oxígeno**, en **Vapour Outlet** se selecciona la corriente **Salida**. En **Liquid Outlet** escribir "Salida Liquido", aunque el producto de la reacción es netamente gaseoso, para llevar a cabo la simulación es necesario introducir una corriente de líquido.
- 3. En la pestaña Reactions, dirigirse a Reaction Set y seleccionar Set-1.

Resultados:

Hacer clic derecho sobre el diagrama de procesos, en la ventana desplegada seleccionar Add Workbook Table. Seleccionar el tipo de tabla, en este caso Compositions y Material Streams.

Compositions							
		(1) Amoniaco	(2) Oxigeno	(3) Salid	a Balio	da Liquido	
Comp Mole Frac (Ammonia)		1,0000	0,0000	0,036	7	0,0367	
Comp Mole Frac (Oxygen)		0,0000	1,0000	0,137	6	0,1376	
Comp Mole Frac (NO	Comp Mole Frac (NO)		0,0000	0,330	3	0,3303	
Comp Mole Frac (H2	0)	0,0000	0,0000	0,495	0,4954 0,49		
	Material Streams						
		(1) Amoniac	co (2) Oxiger	10 (3) Sa	lida	Salida Lio	luido
Vapour Fraction		1,000	00 1,00	00	1,0000	0,0	0000
Temperature	С	25,0	00 25,0	00	1871		1871
Pressure	kPa	101	,3 101	,3	101.3	1	01,3
Molar Flow	kgmole/	'h 40,0	00 60,0	00	109,0	0,0	0000
Mass Flow	kg/h	681	,2 19	20	2601	0,0	0000
Liquid Volume Flow	m3/h	1,10	06 1,6	38	16,65	0,0	0000
Heat Flow	kJ/h	-1,831e+00)6 -572	2,6 -1,831	1e+006	-0.0	0000

Figura 1.14. Resultados balance de materia con reacción química.

Analizando los resultados seleccionados en los recuadros rojos, se puede decir que coinciden a la perfección con los calculados a mano.

Balance de materia con reacciones secuenciales:

La conversión de combustibles en hidrógeno puede llevarse a cabo mediante la oxidación parcial. El método de oxidación parcial se basa en la reacción del combustible, por ejemplo, metano con aire, para producir óxidos de carbono e hidrógeno.

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$$

 $CH_4 + O_2 \rightarrow CO_2 + 2H_2$

Si se alimentan 100 kmol/h de metano a 27°C y 4 bar en un reactor con 350 kmol/h de aire a las mismas condiciones. Cuáles son los flujos molares de los productos de salida, teniendo en cuenta que la reacción de producción de monóxido de carbono tiene una conversión de 40%, mientras que la reacción de producción de dióxido de carbono tiene una conversión de 60%.

Solución:

 $n_{CH_4,rxn 1} = 100 \ kmol \times 0,4$ $n_{CH_4,rxn 1} = 40 \ kmol$

 $n_{CH_{4},sin\,reaccionar} = 100 \ kmol - 40 \ kmol$ $n_{CH_{4},sin\,reaccionar} = 60 \ kmol$

$$n_{CH_4,rxn \ 2} = 60 \ kmol \times 0,6$$
$$n_{CH_4,rxn \ 2} = 36 \ kmol$$

Balance parcial de masa de CH₄:

Entrada + Producción = Salida + Consumo

 $100kmol = 40 kmol + 36 kmol + n_{3,CH_4}$ $n_{3,CH_4} = 24 kmol$

Balance parcial de masa de CO:

$$\left(40 \ kmolCH_4 \times \frac{1 \ kmolCO}{1 \ kmolCH_4}\right) = n_{3,CO}$$
$$n_{3,CO} = 40 \ kmol$$

Balance parcial de masa O₂:

- O₂ consumido en la reacción 1:

$$40 \ kmolCH_4 \times \frac{0.5 \ kmolO_2}{1 \ kmolCH_4} = 20 \ kmol$$

- O₂ consumido en la reacción 2:

$$36 \ kmolCH_4 \times \frac{1 \ kmolO_2}{1 \ kmolCH_4} = 36 \ kmol$$

$$350 \ kmol \times 0,21 = 20 \ kmol + 36 \ kmol + n_{3,0_2}$$

 $n_{3,0_2} = 17,5 \ kmol$

Balance parcial de masa de H₂:

- H₂ producido en la reacción 1:

$$40 \ kmolCH_4 \times \frac{2 \ kmolO_2}{1 \ kmolCH_4} = 80 \ kmol$$

- H₂ producido en la reacción 2:

$$36 \, kmolCH_4 \times \frac{2 \, kmolO_2}{1 \, kmolCH_4} = 72 \, kmol$$

80 kmol + 72 kmol =
$$n_{3,H_2}$$

 $n_{3,H_2} = 152 \ kmol$

Balance parcial de masa de CO₂:

$$36 \ kmolCH_4 \times \frac{1 \ kmolO_2}{1 \ kmolCH_4} = n_{3,CO_2}$$
$$n_{3,CO_2} = 36 \ kmol$$

Balance parcial de masa de N₂:

$$350 \ kmol \times 0.79 = n_{3,N_2}$$

 $n_{3,N_2} = 276, 5 \ kmol$

Solución en Aspen-Hysys:

- 1. **Componentes:** CH₄, O₂, CO, CO₂, H₂, N₂.
- 3. Paquete Termodinámico: Peng-Robinson.

Reacción química:

Se debe tener en cuenta que la ecuación química debe estar previamente balanceada para llevar a cabo la simulación.

- 1. Seleccionar la pestaña Reactions.
- 2. Hacer clic en Add.
- 3. En la parte inferior de la ventana, hacer clic en Add Reaction.
- 4. Seleccionar **Conversion** y nuevamente **Add Reaction.** Realizar este paso una segunda vez para hacer la adición de otra reacción. Esto es lo que se tiene hasta ahora:

Active Reactions Type Configured Operations Attached Rxn-1 Conversion X Rxn-2 Conversion X
Rxn-1 Conversion X Rxn-2 Conversion X
Rxn-2 Conversion X

Figura 1.15. Adición de dos reacciones.

- 5. Hacer doble clic en **Rxn-1**.
- 6. Hacer clic en ****Add Comp**** y seleccionar los componentes de la reacción.
- 7. En **Stoich Coeff** se ingresan los coeficientes estequiométricos de la reacción, teniendo en cuenta que para los reactivos se debe ingresar un signo menos, seguido del coeficiente debido a que estos componentes son consumidos.
- En la sección Basis, se inserta el porcentaje de conversión de la reacción en la casilla Co, en este caso 40%. La barra de aviso ahora debería de estar en verde y OK. Cerrar la ventana.
- 9. Hacer doble clic en **Rxn-2**
- 10. Ingresar los componentes de reacción, los coeficientes y el porcentaje de conversión para la segunda reacción. Cerrar ventana.
- 11. Hacer clic en Add to FP

12. En la ventana que se despliega dar clic en **Add Set to Fluid Package.** Hasta ahora esto es lo que se tiene:

et Type	Conversion		Indep	endent				
						Detach from FP		
				Rankin	g	Advanced		
							1	
Active Re	actions	Туре		Configured		Operations Attached		
	Rxn-1	(Conversion	 Image: A second s				
	Rxn-2	(Conversion	1				
					_			

Figura 1.16. Ventana de reacciones con parámetros establecidos.

13. Hacer doble clic en Ranking e insertar la información como se muestra a continuación:

🔀 Reaction Ranks: Set-1		—		\times
Reaction	Rank	User Spec		
Rxn-1	0	v		
Rxn-2	1	v		
Cancel	Reset	Acc	ept	

Figura 1.17. Selección de reacciones secuenciales.

Esto se hace con el fin de hacer las reacciones secuenciales, la primera reacción en ocurrir será la de menor valor en este caso 0, la siguiente será la de valor 1.

Simulación:

- 1. De la ventana **Model Palette**, adicionar al diagrama de procesos la unidad **Conversion Reactor**.
- 2. Adicionar tres corrientes de materia y añadir las siguientes propiedades:

	Conditions						
Stream Name	(1) Metano	(2) Aire	(3) Salida				
Temperature	27°C	27°C					
Pressure	4 bar	4 bar					
Molar Flow	100 kmol/h	350 kmol/h					

Composition (Mole Fraction)					
CH_4	1	0,0			
O_2	0,0	0,21			
CO	0,0	0,0			
CO_2	0,0	0,0			
\mathbf{N}_2	0,0	0,79			
\mathbf{H}_2	0,0	0,0			

Tabla 1.5. Propiedades de corrientes de materia en balance con reacciones químicas simultaneas.

Operación Unitaria:

- 4. Hacer doble clic sobre la herramienta CRV-100
- 5. En la pestaña Connections se insertan las corrientes de entrada (Inlets) de Metano y Aire, en Vapour Outlet se selecciona la corriente Salida. En Liquid Outlet escribir "Salida Liquido", aunque el producto de la reacción es netamente gaseoso, para llevar a cabo la simulación es necesario introducir una corriente de líquido.
- 6. En la pestaña Reactions, dirigirse a Reaction Set y seleccionar Set-1.

Resultados:

- 1. Hacer doble clic en la corriente Salida.
- 2. Dirigirse a la pestaña **Composition**.
- 3. Hacer clic en **Basis...** y seleccionar **Mole Flows.** Allí se podrán observar los flujos molares de todos los componentes en esta corriente.

Material Stream: Salida					- 6 ×
Worksheet Attachme	ents Dynamics				A
Worksheet		Molar Flows	Vapour Phase	Liquid Phase	
Conditions	Methane	24.0000	24.0000	0.0000	
Properties	Hydrogen	152.0000	152.0000	0.0000	
Composition	Nitrogen	276.5000	276.5000	0.0000	
Detroleum Assav	Oxygen	17.5000	17.5000	0.0000	=
K Value	CO2	36.0000	36.0000	0.0000	
User Variables	CO	40.0000	40.0000	0.0000	
Notes					
Cost Parameters Normalized Yields					
	Total 5-	46.00000 kgmole/h			
					Ŧ

Figura 1.18. Resultados balance con reacciones químicas simultaneas.

Una vez más se puede apreciar que cada uno de los flujos molares calculados por el simulador son exactamente iguales a los calculados a partir de métodos tradicionales.

Balance de energía con reacción química:

Considere la oxidación del amoniaco:

$$4 NH_3 + 5 O_2 \rightarrow 4 NO + 6 H_2O$$

Un reactor se alimenta con 220 moles/h de NH_3 y 350 mol/h de O_2 a 200°C, en donde el amoniaco se consume totalmente. El flujo de producto sale como gas a 450°C. Calcule el calor transferido hacia o desde el reactor suponiendo que el proceso se efectúa, aproximadamente a 1 atm.

Solución:

Balance parcial de masa de NO:

$$220molNH_3 \times \frac{1 mol NO}{1molNH_3} = n_{3,NO}$$
$$n_{3,NO} = 220mol$$

Balance parcial de masa de H₂O:

$$220molNH_{3} \times \frac{6 mol H_{2}O}{4molNH_{3}} = n_{3,H_{2}O}$$
$$n_{3,H_{2}O} = 330 mol$$

Balance parcial de masa de O_{2:}

$$\begin{array}{l} n_{3,O_{2}}=n_{1,O_{2}}-n_{O_{2}reaccionan} \\ n_{3,O_{2}}=350mol-\left(220molNH_{3}\times\frac{5\ mol\ O_{2}}{4molNH_{3}}\right) \\ n_{3,O_{2}}=75\ mol \end{array}$$

Balance de Energía:

$$Q = \Delta H_R = \Delta H^{\circ}_R + \sum \Delta H_{salida} - \sum \Delta H_{entrada}$$

$$\Delta H^{\circ}_{R} = \sum \Delta H^{\circ}_{f,productos} - \sum \Delta H^{\circ}_{f,reactivos}$$

$$\Delta H^{\circ}_{R} = \left[\left(220 molNO \times 90,37 \frac{KJ}{molNO} \right) + \left(330 molH_{2}O \times -241,83 \frac{KJ}{molH_{2}O} \right) \right] - \left[220 molNH_{3} \times -46,19 \frac{KJ}{molNH_{3}} \right]$$

$$\Delta H^{\circ}_{R} = \frac{-49760,7kJ}{220 \times 10^{-3} kmol NH_{3}}$$

$$\Delta H^{\circ}_{R} = -2,3 \times 10^{5} \frac{KJ}{kmol}$$

$$\Sigma \Delta H_{salida} = \left(m_{NO} \int_{25+273}^{450+273} Cp_{NO} \, dt \right) + \left(m_{H_2O} \int_{25+273}^{450+273} Cp_{H_2O} \, dt \right) + \left(m_{O_2} \int_{25+273}^{450+273} Cp_{O_2} \, dt \right)$$

En este caso los Cp están en función de la temperatura y están dados por la siguiente expresión:

$$Cp = a + bT + cT^2 + dT^3$$

Los valores de los coeficientes para cada componente se resumen a continuación:

Componente	a	b	С	d
\mathbf{NH}_3	27,568	2,5630x10 ⁻²	0,99072x10 ⁻⁵	-6,6009x10 ⁻⁹
H_2O	32,24	0,1923X10 ⁻²	1,055x10 ⁻⁵	-3,595x10 ⁻⁹
O ₂	25,48	1,520x10 ⁻²	-0,7155x10 ⁻⁵	1,312x10 ⁻⁹
NO	29,34	-0,09395x10 ⁻²	0,9747x10 ⁻⁵	-4,187x10 ⁻⁹

Tabla 1.6. Capacidades caloríficas en función de la temperatura [15].

$$\Sigma \Delta H_{salida} = 8880,2523 \ kJ$$

$$\Sigma \Delta H_{entrada} = \left(m_{H_2O} \int_{25+273}^{200+273} Cp_{NH_3} dt \right) + \left(m_{O_2} \int_{25+273}^{200+273} Cp_{O_2} dt \right)$$
$$\Sigma \Delta H_{entrada} = 3342,0470 \ kJ$$

$$Q = -49760,7kJ + 8880,2523 kJ - 3342,0470 kJ$$

$$Q = -44222,4947 \ kJ$$

 $Q = -4,422 \times 10^4 \ kJ$

Solución en Aspen-Hysys:

- 1. Componentes: NH₃, O₂, NO, H₂O.
- 2. Paquete Termodinámico: Peng-Robinson.

Reacción química:

- 1. Seleccionar la pestaña Reactions.
- 2. Hacer clic en Add.
- 3. En la parte inferior de la ventana, hacer clic en Add Reaction.
- 4. Seleccionar Conversion y nuevamente Add Reaction.
- 5. Hacer doble clic en **Rxn-1**.
- 6. Hacer clic en ****Add Comp**** y seleccionar los componentes de la reacción.
- 7. En **Stoich Coeff** se ingresan los coeficientes estequiométricos de la reacción, teniendo en cuenta que para los reactivos se debe ingresar un signo menos, seguido del coeficiente debido a que estos componentes son consumidos.
- 8. En la sección **Basis**, se inserta el porcentaje de conversión de la reacción en la casilla **Co**, en este caso 100%. La barra de aviso ahora debería de estar en verde y OK. Cerrar la ventana.
- 9. Hacer clic en Add to FP
- 10. En la ventana que se despliega dar clic en Add Set to Fluid Package.

Simulación:

- 1. De la ventana **Model Palette**, adicionar al diagrama de procesos la unidad **Conversion Reactor**.
- 2. Adicionar tres corrientes de materia y añadir las siguientes propiedades:

	Conditions					
Stream Name	Amoniaco	Oxígeno	Salida vapor			
Temperature	200°C	200°C	450°C			
Pressure	1 atm	1 atm	1 atm			
Molar Flow	220 mol/h	350 mol/h				
Co	Composition (Mole Fraction)					
\mathbf{NH}_3	1	0,0				
O_2	0,0	1,0				
NO	0,0	0,0				
H_2O	0,0	0,0				

 Tabla 1.7. Propiedades corrientes de materia en balance de energía con reacción química.

Operación Unitaria:

- 1. Hacer doble clic sobre la herramienta **CRV-100**
- 2. En la pestaña Connections se insertan las corrientes de entrada (Inlets) de Amoniaco y Oxígeno, en Vapour Outlet se selecciona la corriente Salida. En Liquid Outlet escribir "Salida Liquido", aunque el producto de la reacción es netamente gaseoso, para llevar a cabo la simulación es necesario introducir una corriente de líquido. En Energy escribir "Q", de esto dependerá que la herramienta realice los cálculos de energía.
- 3. En la pestaña **Reactions**, dirigirse a **Reaction Set** y seleccionar **Set-1**. En este punto, la barra de notificación debería estar en verde y Ok así como las corrientes deberían tener un color azul oscuro indicando que el proceso ha sido resuelto.

Figura 1.18. Diagrama del proceso de reacción.

Resultados:

Hacer clic derecho sobre el diagrama de procesos, en la ventana desplegada seleccionar Add Workbook Table. Seleccionar el tipo de tabla, en este caso Energy Streams.

Energy Streams				
		Q		
Heat Flow	kJ/h	-4,398e+004		

Como se puede apreciar el valor no es totalmente exacto al encontrado por métodos convencionales, esto se debe a las propiedades termodinámicas que adquieren los componentes con la selección del paquete termodinámico Peng Robinson.

Balance de energía en un intercambiador de calor:

Un intercambiador de calor se utiliza para enfriar aire caliente con agua fría. El aire caliente entra por el lado del tubo del intercambiador de calor con un flujo másico de 0,035 kg/s y 227°C para enfriarse a 127°C. El agua de enfriamiento en el lado de la coraza fluye a razón de 0,055 kg/s a una temperatura de 20°C. Determine la temperatura de salida del agua.

Solución:

Balance de energía:

$$Q_{aire} = Q_{H_2O}$$

 $m_{aire}Cp_{aire}\Delta T_{aire} = m_{agua}Cp_{agua}\Delta T_{agua}$

Calculo del flujo de calor del aire:

$$Q_{aire} = m_{aire} C p_{aire} \Delta T_{aire}$$

Para el valor del Cp del aire se debe realizar el promedio de estos a las temperaturas de entrada (*Cp a 227°C=1,029 kJ/kg°C*) y salida (*Cp a 127°C=1,013 kJ/kg°C*) [15].

$$Cp_{aire} = \frac{(1,013 + 1,029)\frac{kj}{kg^{\circ}C}}{2}$$

$$Cp_{aire} = 1,021 \frac{kj}{kg^{\circ}C}$$

$$Q_{aire} = \left(0,035\frac{kg}{s}\right) \left(1,021\frac{kJ}{kg}^{\circ}C\right) (500 - 400)^{\circ}C$$

$$Q_{aire} = 3,5735 \, kJ/s$$

Calculo del ΔT_{agua} :

$$Q_{aire} = m_{agua} C p_{agua} \Delta T_{agua}$$
$$\Delta T_{agua} = \frac{Q_{aire}}{m_{agua}Cp_{agua}}$$
$$\Delta T_{agua} = \frac{3,5735\frac{kJ}{s}}{\left(0,055\frac{kg}{s}\right)\left(4,138\frac{kJ}{Kg}\circ C\right)}$$
$$\Delta T_{agua} = 15,53^{\circ}C$$

Calculo de la temperatura de salida del agua:

$$\Delta T_{agua} = T_4 - T_3$$
$$T_4 = \Delta T_{agua} + T_3$$
$$T_4 = 15,53^{\circ}C + 20^{\circ}C$$
$$T_4 = 35,53^{\circ}C$$

Solución en Aspen-Hysys:

- 1. Componentes: Aire, agua
- 2. Paquete Termodinámico: Peng-Robinson.

Simulación

1. Insertar al diagrama de procesos un intercambiador de calor con el icono que se encuentra en **Model Palette** en la sección **Common**.

2. Añadir cuatro corrientes de materia con las siguientes características:

Conditions							
Stream Name	Aire Caliente	Aire Frio	Agua Fría	Agua Caliente			
Temperature	227°C	200°C	20°C				
Pressure	1 atm	1 atm	1 atm	1 atm			
Mass Flow	0,035 kg/s	0,035 kg/s	0,055 kg/s	0,055 kg/s			
	Composition (Mass Fraction)						
Aire	1	1	0,0	0,0			
H ₂ O	0,0	0,0	1	1			

 Tabla 1.8. Propiedades corrientes de materia en balance de energía en intercambiador de calor.

Conexión de las corrientes de materia:

- 1. Hacer doble clic sobre la herramienta E-100.
- 2. Se debe distinguir entre dos tipos de entradas y salidas en un intercambiador de calor, la que fluye por los tubos y la que fluye por la coraza. En este caso el aire

fluye por el tubo, por tanto, en **Tube Side Inlet** se selecciona la corriente **Aire Caliente** y en **Tube Side Outlet.** Así mismo dado que el agua fluye por la coraza, en **Shell Side Inlet** se selecciona la corriente **Agua Fría** y en **Shell Side Outlet** se selecciona la corriente **Agua Caliente**.

Figura 1.19. Conexión de corrientes de materia en un intercambiador de calor.

Resultados

Una vez se hayan seleccionado las corrientes, Aspen-Hysys calcula automáticamente la temperatura del agua. Para observar el resultado hay que dirigirse a la corriente **Agua Caliente** y en la ventana **Conditions** se puede apreciar el resultado.

Material Stream: Agua (Caliente			
Worksheet Attachme	ents Dynamics			
Worksheet	Stream Name	Agua Caliente	Aqueous Phase	
Conditions	Vapour / Phase Fraction	0.0000	1.0000	
Properties	Temperature [C]	35.07	35.07	
Composition	Pressure [kPa]	101.3	101.3	
Oil & Gas Feed	Molar Flow [kgmole/h]	10.99	10.99	_
K Value	Mass Flow [kg/h]	198.0	198.0	=
User Variables	Std Ideal Liq Vol Flow [m3/h]	0.1984	0.1984	
Notes	Molar Enthalpy [kJ/kgmole]	-2.854e+005	-2.854e+005	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	56.28	56.28	
Normalized Yields	Heat Flow [kJ/h]	-3.137e+006	-3.137e+006	
	Liq Vol Flow @Std Cond [m3/h]	0.1951	0.1951	
	Fluid Package	Basis-1		
	Utility Type			
				-

Figura 1.20. Temperatura en corriente Agua caliente.

La temperatura determinada a partir de la simulación varia levemente con respecto a la encontrada por realización manual, esto debido a las propiedades termodinámicas del fluido empleado.

2 Fluidos y Sólidos

Hidrodinámica:

Agua a 25°C fluye a través de una tubería lisa horizontal de 8,5 m a razón de 3,5 m/s. La densidad del agua es 1000 kg/m³ y la viscosidad es de 0,001 kg/m s. La tubería es de cédula 40 y posee un diámetro nominal de 2 in (5,32 cm de diámetro interno). La presión del agua a la entrada es de 1,2 atm. Calcular:

a. La caída de presión en el sistema.

b. Cuál sería la caída de presión si se la tubería fuera de 9 m?

Solución:

Parte a:

Calculo del número de Reynolds:

$$Re = \frac{\rho VD}{\mu} = \frac{\left(1000 \frac{kg}{m^3}\right) \left(3.5 \frac{m}{s}\right) (0.0532m)}{0.001 \, kg/m \, s} = 1.862 \times 10^5$$

Sabiendo que el número de Reynolds es superior a 40000, el flujo es turbulento. La porosidad de la tubería lisa se calcula así:

$$\varepsilon/D = \frac{0}{0,04\,m} = 0$$

El factor de fricción *f*, puede ser determinado mediante la siguiente expresión:

$$f = \frac{0.25}{\left[\log\left(\left(\frac{\varepsilon}{3.7D}\right) + \left(\frac{5.74}{Re^{0.9}}\right)\right)\right]^2} = \frac{0.25}{\left[\log\left(\left(\frac{0}{3.7D}\right) + \left(\frac{5.74}{(1.862 \times 10^5)^{0.9}}\right)\right)\right]^2} = 0.0158$$

Una vez calculada el factor de fricción *f*, la caída de presión está dada por la expresión:

$$\Delta P_L = f \frac{L}{D} \rho \frac{V^2}{2}$$

$$\Delta P_L = (0,0158) \frac{8,5 m}{0,0532 m} \frac{(1000 \ kg/m^3)(3,5 \ m/s)^2}{2} \left(\frac{1kN}{1000 \ kg \cdot m/s}\right) \left(\frac{1 \ kPa}{1 \ kN/m^2}\right)$$

$$\Delta P_L = 15,46 \ KPa$$

Solución en Aspen-Hysys:

- 1. Componentes: Agua.
- 2. Paquete Termodinámico: ASME STEAM.
- 3. Adicionar una corriente de materia y nombrarla como Entrada.
- 4. Especificar el flujo volumétrico *Q*, basándose en la velocidad de 3,5 m/s y el diámetro interno de la tubería de 0,0532 m.

$$Q = A_c \times V = \frac{\pi (0.0532 \ m)^2}{4} \times \frac{3.5 \ m}{s} \left(\frac{3600 \ s}{1 \ h}\right) = 28,008 \ m^3/h$$

Ingresar los siguientes valores a la corriente:

Conditions					
Stream Name	Entrada				
Temperature	25°C				
Pressure	1,2 atm				
Std Ideal Liq Vol Flow	28 m³/h				
Composition (Mole Fraction)					
Agua	1				
Tabla 2.1. Propiedades corrier	nte de agua.				

Simulación:

- 1. Adicionar la herramienta **Pipe Segment** haciendo doble clic en el icono y arrastrarlo al diagrama de procesos. Hacer doble clic sobre esta herramienta.
- 2. En la pestaña **Rating**, hacer clic en **Select segment**. En la casilla **Length** se ingresa el valor de 8,5 m y en **Material** se selecciona **Smooth**.
- 3. Hacer clic en **Viem segment** e ingresar los valores como se muestra en la figura:

pe Schedule			Schedule	40
ominal Dian	neter		50.80	000
nner Diamete	er		52.50	018
pipe Material			Smo	oth
loughness			0.000e	-01
pipe Wall Con	ductivity		45.0	000
vailable Nom	inal Diamet	ers —		
vailable Nom	inal Diamet	ers]	
vailable Nom 25.40	inal Diamet	ers		
vailable Nom 25.40 38.10	inal Diamet 152.4 203.2	406.4 457.2		
vailable Nom 25.40 38.10 50.80	inal Diamet 152.4 203.2 254.0	ers 406.4 457.2 508.0	Speci	ify
vailable Nom 25.40 38.10 50.80 76.20	inal Diamet 152.4 203.2 254.0 304.8	406.4 457.2 508.0 609.6	Speci	ify

Figura 2.1 Parámetros de la tubería.

- 4. Dirigirse nuevamente a la pestaña **Connections,** en **Inlet** seleccionar la corriente **Entrada** y en **Outlet** ingresar una corriente con el nombre **Salida**. Así mismo, se requiere una corriente de energía para llevar a cabo el proceso, para eso en **Energy** se ingresa una corriente con el nombre **Q**.
- 5. Hacer doble clic en esta corriente **Salida** e ingresar la temperatura de 25°C para que se lleve a cabo un proceso isotérmico. En este punto la barra de notificación debería de estar en verde y ok.

Resultados:

Hacer clic derecho en la tubería, seleccionar **Show Table**. Hacer doble clic sobre la tabla y en la ventana emergente hacer clic en **Add Variable**,seleccionar **Pressure Drop**. Hacer clic en **Ok**.

PIPE-100					
Feed Pressure 121,6					
Product Pressure	105,5	kPa			
Pressure Drop	16,05	kPa			

Figura 2.2 Resultado de la caida de presión en el sistema.

Parte b.

Si el diámetro de la tubería es de 9 m, se tiene que recalcular la caída de presión, sin embargo, los valores del número de Reynolds y la constante de fricción f permanecen constantes:

$$P_{L} = f \frac{L}{D} \rho \frac{V^{2}}{2}$$

$$\Delta P_{L} = (0,0158) \frac{9 \ m}{0,0532 \ m} \frac{(1000 \ kg/m^{3})(3,5 \ m/s)^{2}}{2} \left(\frac{1kN}{1000 \ kg \cdot m/s}\right) \left(\frac{1 \ kPa}{1 \ kN/m^{2}}\right)$$

$$\Delta P_{L} = 16,37 \ KPa$$

En Aspen-Hysys modificar este parámetro se hace de manera simple:

- 1. Dirigirse a la pestaña Rating en la herramienta PIPE-100
- 2. Introducir el nuevo valor de longitud 9 m en la casilla Length
- 3. Dirigirse de nuevo a la pestaña **Parameters** y observar el resultado de la caída de presión en este caso 16,99 kPa.

Sistema hidrodinámico con bomba:

Agua a 20 ° C se bombea desde un tanque de alimentación a una presión de 4,7 atm hasta un tanque de almacenamiento elevado de 12 m de altura a una velocidad de 20 m³/h. Todas las tuberías son tuberías comerciales de acero de 4 pulgadas cédula 4. La bomba tiene una eficiencia del 70%. Calcular la potencia necesaria para que la bomba pueda superar la pérdida de presión en la tubería.

Datos:

 $\rho = 998 \text{ kg/m}^3$, $\mu = 1.0 \times 10^{-3} \text{ kg/ms}$, diámetro interno para tubería de 4 in. cédula 40 es ID=0.1023 m, área transversal de la tubería A =8.22×10⁻³ m².

Solución:

Ecuación de energía:

$$\frac{P_1}{\rho} + gz_1 + \frac{V_1^2}{2} = \frac{P_2}{\rho} + gz_2 + \frac{V_2^2}{2} + W_s + \Sigma F$$

Calculo del número de Reynolds:

$$Re = \frac{\rho VD}{\mu} = \frac{(998 \ kg/m^3) \left(\frac{5,556 \times 10^{-3} \ m^3/s}{8,22 \times 10^{-3} \ m^2}\right) \left(4 \ in \times \frac{0,0254 \ m}{1 \ in}\right)}{1 \times 10^{-3} \ kg/ms} = 6,85 \times 10^4$$

Sabiendo que el número de Reynolds es superior a 40000, el flujo es turbulento. Es necesario realizar el cálculo del factor de fricción para ello se emplea el valor de la rugosidad de $4,57 \times 10^{-5}$ m [16].

El factor de fricción *f*, puede ser determinado mediante la siguiente expresión:

$$f = \frac{0.25}{\left[\log\left(\left(\frac{\varepsilon}{3.7D}\right) + \left(\frac{5.74}{Re^{0.9}}\right)\right)\right]^2} = \frac{0.25}{\left[\log\left(\left(\frac{4.57 \times 10^{-5}m}{3.7(0.1016m)}\right) + \left(\frac{5.74}{(6.85 \times 10^4)^{0.9}}\right)\right)\right]^2}$$

$$f = 0,0213$$

Las pérdidas por fricción:

$$\Sigma F = f \frac{L}{D} \frac{V^2}{2} + \frac{V^2}{2} (K_c + 2K_e + K_{ex})$$

Pérdida por contracción en la salida del tanque de alimentación, A₂/A₁=0, si A₁>>A₂=0

$$K_c = 0.55 \left(1 - \frac{A_2}{A_1} \right) = 0.55(1 - 0) = 0.55$$

Pérdida por expansión en la entrada del tanque de almacenamiento:

$$K_{ex} = \left(1 - \frac{A_1}{A_2}\right)^2 = (1 - 0) = 1,0$$

Sumatoria de pérdidas por fricción:

$$\Sigma F = 0,0213 \frac{146 m}{0,1023 m} \frac{(0,6759 m/s)^2}{2} + \frac{(0,6759 m/s)^2}{2} (0,55 + 2(0,75) + 1)$$
$$\Sigma F = 7,64 m^2/s^2$$

Ecuación de energía:

$$0 = \frac{P_2 - P_1}{\rho} + g(Z_2 - Z_1) + \frac{V_2^2 - V_1^2}{2} + W_s + \Sigma F$$

$$0 = 0 + 9.8 \, m/s^2 \, (12 - 0) + 0 + W_s + 7.64 \, m^2/s^2$$

$$W_s = -125 \, m^2/s^2$$

Potencia de la bomba:

$$W_s = -\eta W_p$$
$$-125 = -0.70 W_p$$

$$W_p = 178 \, m^2 / s^2$$

La potencia en kW se deberá calcular multiplicando por el flujo másico:

$$W = mW_p$$
$$W = (5,556 \times 10^{-3} \, m^3/s)(998 \, kg/m^3)(178 \, m^2/s^2) \left(\frac{1 \, kJ}{1000 \, kgm^2/s^2}\right)$$

$$W = 0,99 \ kW$$
$$W = 1,32 \ hp$$

Solución en Aspen-Hysys:

- 1. Componentes: Agua.
- 2. Paquete Termodinámico: ASME Steam.
- 3. Crear una corriente de materia con las siguientes propiedades:

Conditions				
Stream Name	1			
Temperature	20°C			
Pressure	4,7 atm			
Std Ideal Liq Vol Flow	20 m ³ /h			
Composition (Mole F	raction			
Agua	1			
Tabla 2.2 Propiedades de la c	orriente 1.			

- 1. Adicionar la herramienta **Pipe segment** al diagrama de procesos. Hacer doble clic sobre la herramienta.
- 2. Dirigirse a **Rating**. Hacer clic en **Append Segment**, y luego adicionar las tuberías y accesorios como se muestra a continuación:

Length - Elevation Profile —		
Segment	1	2
Fitting/Pipe	Coupling/Union	Pipe
Length/Equivalent Length	0.1921	4.000
Elevation Change	0.0000	0.0000
Outer Diameter	<empty></empty>	114.3
Inner Diameter	102.3	102.3
Material	Mild Steel	Mild Steel
Roughness	4.572e-005	4.572e-005
Pipe Wall Conductivity	45.00	45.00
Increments	1	5
FittingNo	1	<empty></empty>

Figura 2.3 Propiedades de accesorios en el sistema.

- 4. Hacer clic en **Design**, en **Inlet** seleccionar la corriente 1 y en **Outlet** ingresar una corriente llamada 2 y luego en **Parameters**. Insertar 0 en la casilla **duty**, debido a que no interesan las pérdidas térmicas.
- 5. Insertar la herramienta **Pump** de la ventana **Model Palette**, haciendo clic en el ícono y arrastrarlo al diagrama de procesos.
- 6. Hacer doble clic sobre la herramienta **P-100** e insertar los valores como se muestra en la figura:

Figura 2.4 Conexión de corrientes de materia en la bomba.

Adicionalmente en la pestaña **Parameters** especificar la eficiencia de la bomba, en este caso es de 70%.

- 7. Adicionar una segunda tubería (Pipe segment)
- 8. Repetir los pasos del numeral 3 y luego adicionar las tuberías y accesorios como se muestran a continuación:

Segment	1	2	3	4	5	6		
Fitting/Pipe	Pipe	Elbow: 90 Std	Pipe	Elbow: 90 Std	Pipe	Coupling/Union		
length/Equivalent Length	40.00	2.345	12.00	2.345	90.00	0.1921		
levation Change	0.0000	0.0000	12.00	0.0000	0.0000	0.0000		
Outer Diameter	114.3	<empty></empty>	114.3	<empty></empty>	114.3	<empty></empty>		
nner Diameter	102.3	102.3	102.3	102.3	102.3	102.3		
Material	Mild Steel	Mild Steel	Mild Steel	Mild Steel	Mild Steel	Mild Steel		
Roughness	4.572e-005	4.572e-005	4.572e-005	4.572e-005	4.572e-005	4.572e-005		
Pipe Wall Conductivity	45.00	45.00	45.00	45.00	45.00	45.00		
ncrements	5	1	5	1	5	1		
FittingNo	<empty></empty>	1	<empty></empty>	1	<empty></empty>	1		
Append Segment	Insert Segment Vi	ew Segment						
Delete Segment Clear Profile								

Figura 2.5. Propiedades de accesorios en el sistema.

- 9. Repetir los pasos del numeral 4, en este caso Inlet se llama 3 y Outlet 4.
- 10. Finalmente especificar en la corriente 4, la temperatura de 20°C y una presión de 4,7 atm, con esto el ejercicio se da por finalizado.

Resultados:

Dirigirse a la herramienta **P-100** y en la pestaña **Parameters** se podrá observar el valor de la potencia.

Design Rating	Worksheet	Performance	Dynamics	
Design Connections Parameters Curves Links User Variables Notes	Delta P 124.7 Pressur 1.262 Duty 0.989107	kPa e Ratio		Adiabatic Efficiency 70.00 %
Delete				OK

Figura 2.6 Resultado potencia de la bomba.

El valor de potencia entregado por la simulación (0,989107 kW) es mucho más preciso que el calculado a mano (0,99 kW), es aquí donde se aprecia la clara ventaja que entrega Aspen-Hysys a la hora de realizar cálculos precisos.

3 Transferencia de Calor

Cálculo de flujos y temperaturas en intercambiadores de calor:

Agua caliente a 230°C y 980 psig es usada para calentar una corriente de agua en un intercambiador de calor. La temperatura de entrada y la presión de la corriente de agua fría es de 20°C y 110 psig respectivamente. La temperatura de salida de las corrientes de agua fría y caliente son 130°C y 200°C, respectivamente. Si el flujo de la corriente de agua caliente es de 110 kg/h:

a. Determine el flujo de la corriente de agua fría que pasa por el intercambiador. b. Si el proceso se acelera y se deben calentar 45 kg/h de agua, cual es la nueva temperatura de salida teniendo en cuenta que entra a las mismas condiciones (20° C y 110 psig)?

Datos:

 $Cp_{agua,230^{\circ}C}=4,65 \text{ kJ/kg}^{\circ}C$ $Cp_{agua,200^{\circ}C}=4,45 \text{ kJ/kg}^{\circ}C$ $Cp_{agua,130^{\circ}C}=4,26 \text{ kJ/kg}^{\circ}C$ $Cp_{agua,20^{\circ}C}=4,18 \text{ kJ/kg}^{\circ}C$

Solución

a. Balance de Energía:

$$Q_h = Q_c$$
$$m_h C_{p,h} \Delta T_h = m_c C_{p,c} \Delta T_c$$

Debido a que existe una diferencia de temperatura entre la entrada y salida del intercambiador es necesario realizar un promedio entre los Cp a cada temperatura:

$$Cp_{h,prom} = \frac{C_{p,230^{\circ}C} + C_{p,200^{\circ}C}}{2}$$

$$Cp_{h,prom} = \frac{(4,65 + 4,45) \, kJ/kg^{\circ}C}{2}$$

$$Cp_{h,prom} = 4,55 \, kJ/kg^{\circ}C$$

$$Q_h = (110 \, kg)(4,55 \, kJ/kg^{\circ}C)(230 - 200)^{\circ}C$$

$$Q_h = 15015 \, kJ$$

Nuevamente se debe hacer el promedio de Cp para las temperaturas de entrada y salida del agua a calentar:

Despejando m_c de la ecuación:

$$Cp_{h,prom} = \frac{C_{p,130^{\circ}C} + C_{p,20^{\circ}C}}{2}$$

$$Cp_{h,prom} = \frac{(4,26 + 4,18) \, kJ/kg^{\circ}C}{2}$$
$$Cp_{h,prom} = 4,22 \, kJ/kg^{\circ}C$$

$$Q_h = m_c C_{p,c} \Delta T_c$$

$$m_c = \frac{Q_h}{C_{p,c}\Delta T_c} = \frac{15015 \ kJ}{(4,22 \ kJ/kg^{\circ}C)(130 - 20)^{\circ}C}$$

$$m_c = 32, 35 \ kg$$

b. Dado que el flujo másico de agua ha cambiado, se debe recalcular la temperatura de salida así:

$$Q_h = 15015 \, kJ$$

Calculo del ΔT_{agua} :

$$Q_{h} = m_{c}Cp_{c}\Delta T_{c}$$
$$\Delta T_{c} = \frac{Q_{h}}{m_{c}Cp_{c}}$$
$$\Delta T_{agua} = \frac{15015 \ kJ/h}{(45 \ Kg/h)(4,18 \ kJ/kg^{\circ}C)}$$
$$\Delta T_{agua} = 79,82 \ ^{\circ}C$$

Calculo de la temperatura de salida del agua:

$$\Delta T_{c} = T_{4} - T_{3}$$

$$T_{4} = \Delta T_{c} + T_{3}$$

$$T_{4} = 79,82^{\circ}C + 20^{\circ}C$$

$$T_{4} = 99,82^{\circ}C$$

Solución en Aspen-Hysys:

Parte a:

- 1. Componentes: Agua
- 2. Paquete termodinámico: ASTM Stream

Simulación:

- 1. Seleccionar el icono de la ventana **Model Palette** e insertarlo en el diagrama de procesos. Hacer doble clic sobre este.
- 2. Insertar la información como se muestra a continuación:

Heat Exchang	jer: E-100			
Design Rating	Worksheet Performance Dynam	nics Rigorous	Shell&Tube	
Design	Tube Side Inlet	Name	E-100	Shell Side Inlet
Connections Parameters Specs User Variables				3
Notes	Tubeside Flowshee Cas	t <mark>e (Main)</mark>	Shellside Flow	sheet Case (Main)
	Tube Side Outlet		Switch streams	Shell Side Outlet 4 Shell Side Fluid Pkg Basis-1

Figura 3.1. Conexiones de corrientes de materia en intercambiador de calor.

- 3. Dirigirse a la pestaña **Worksheet** e ingresar los datos de las corrientes de materia:
- 4. Ingresar las propiedades conocidas de cada corriente de materia:

Conditions							
Stream Name	1	2	3	4			
Temperature	230°C	200°C	20°C	130°C			
Pressure	980 psig	980 psig	110 psig	110 psig			
Mass Flow	110 kg/h	110 kg/h					
Composition (Mass Fraction)							
H ₂ O	1	1	1	1			
Tabla 3.1 P	roniedades conoci	das de las corrie	ntes de materia				

Tabla 3.1. Propiedades conocidas de las corrientes de materia.

Resultados:

Hacer clic derecho sobre el diagrama de procesos, en la ventana desplegada seleccionar Add Workbook Table. Seleccionar el tipo de tabla, en este caso Material Streams.

Material Streams							
		1	2	3	4		
Vapour Fraction		0,0000	0,0000	0,0000	0,0000		
Temperature	С	230,0	200,0	20,00	130,0		
Pressure	kPa	6858	6858	859,7	859,7		
Molar Flow	kgmole/h	6,106	6,106	1,804	1,804		
Mass Flow	kg/h	110,0	110,0	32,50	32,50		
Liquid Volume Flow	m3/h	0,1102	0,1102	3,257e-002	3,257e-002		
Heat Flow	kJ/h	-1,643e+006	-1,658e+006	-5,149e+005	-4,998e+005		

Figura 3.2. Resultado flujo másico en las corrientes 3 y 4.

Parte b:

- 1. Hacer doble clic en la herramienta E-100, dirigirse a la pestaña Worksheet.
- 2. Eliminar el dato de temperatura en la corriente 4 (130°C).
- 3. En la corriente 3, insertar el valor del nuevo flujo másico (45 kg/h).

Resultados

Directamente en la ventana **Worksheet** se podrá visualizar el resultado de la temperatura de la corriente **4**.

Heat Exchanger: E	E-100					- d ×
Design Rating	Worksheet Performance Dynamics	Rigorous Shell&Tube				
Worksheet	Name	1	2	3	4	
Conditions	Vapour	0.0000	0.0000	0.0000	0.0000	
Properties	Temperature [C]	230.0	200.0	20.00	99.70	
Composition	Pressure [kPa]	6858	6858	859.7	859.7	
PF Specs	Molar Flow [kgmole/h]	6.106	6.106	2.498	2.498	=
	Mass Flow [kg/h]	110.0	110.0	45.00	45.00	
	Std Ideal Liq Vol Flow [m3/h]	0.1102	0.1102	4.509e-002	4.509e-002	
	Molar Enthalpy [kJ/kgmole]	-2.690e+005	-2.715e+005	-2.854e+005	-2.794e+005	
	Molar Entropy [kJ/kgmole-C]	46.89	41.85	5.336	23.48	
	Heat Flow [kJ/h]	-1.643e+006	-1.658e+006	-7.128e+005	-6.978e+005	

Figura 3.3. Resultado temperatura en la corriente 4.

Ambas respuestas calculadas a partir de métodos convencionales son muy similares a las entregadas por Aspen-Hysys, sin embargo el simulador entrega una respuesta más confiable debido a que posee las propiedades termodinámicas en estado real de los componentes.

Diseño de un intercambiador de calor:

Diseñar un intercambiador de calor de 1 paso por la coraza y 4 pasos por los tubos para enfriar 50000 lb/h de una solución de dietanolamina (0,2 fracción másica de dietanolamina/ 0,8 de agua) desde 144°F a 113°F usando agua a 77°F calentada hasta 100°F. Asuma una resistencia por incrustación en el los tubos de R_{fi}=0,004 ft₂ h °F/Btu, ignorando la resistencia por incrustación en la coraza [17].

Datos:

Agua (88,5°F)
59,87
1,0
0,77
0,36

Tabla 3.2. Propiedades físicas a temperatura promedio.

Solución:

El calor requerido Q_{req:}

$$Q_{req} = m_h C p_h (T_{h,entrada} - T_{h,salida}) = m_c C p_c (T_{c,salida} - T_{c,entrada})$$
$$Q_{req} = (50000 \, lb/h) (0,92 \, Btu/lb^{\circ}F) (144 - 113)^{\circ}F = 1,426 \times 10^6 \, \frac{Btu}{h}$$

El flujo másico de la corriente de agua:

$$Q_{req} = m_c C p_c (T_{c,salida} - T_{c,entrada})$$
$$m_c = \frac{Q_{req}}{C p_c (T_{c,salida} - T_{c,entrada})} = \frac{1,426 \times 10^6 \ Btu/h}{(1 \ Btu/lb^\circ F)(100 - 77)^\circ F} = 62000 \ \frac{lb}{h}$$

1

Asumiendo un valor apropiado para el coeficiente global de transferencia de calor (U), según Ghasem [17], este valor debe estar entre 140 a 200 Btu/ft² h °F para soluciones entre agua y aminas.

Asumir U_i =150 Btu/ ft² h °F

Calculo de la temperatura media logarítmica:

$$\Delta T_{LM} = \frac{(T_1 - t_2) - (T_2 - t_1)}{ln\left[\frac{(T_1 - t_2)}{(T_2 - t_1)}\right]} = \frac{(144 - 100) - (113 - 77)}{ln\left[\frac{144 - 100}{113 - 77}\right]} = 40 \,^{\circ}F$$

El rango de temperatura entre el fluido caliente y frio R,

$$R = \frac{(T_1 - T_2)}{(t_2 - t_1)} = \frac{144 - 113}{100 - 77} = 1,35$$

El rango de temperatura del fluido frio a la máxima diferencia de temperatura S,

$$S = \frac{(t_2 - t_1)}{(T_1 - t_1)} = \frac{100 - 77}{144 - 77} = 0,343$$

El factor de configuración F,

$$F = \frac{\sqrt{R^2 + 1} ln\{1 - S/1 - RS\}}{(R - 1)ln[2 - S(R + 1 - \sqrt{R^2 + 1})/2 - S(R + 1 + \sqrt{R^2 + 1})]}$$

Sustituyendo los valores en la ecuación, el valor de F=0,93

El área de transferencia de calor interna A_{i_i}

$$A_i = \frac{Q}{U_i F \Delta T_{LM}} = \frac{1,426 \times 10^6 \ Btu/h}{(150 \ Btu/ft^2 h^\circ F)(0,93)(40^\circ F)} = 255 \ ft^2$$

La velocidad dentro de los tubos se podría sumir manteniendo un flujo turbulento, un valor apropiado está entre 3 a 10 ft/s, esto hace que la velocidad dentro de los tubos sea de U_i =5 ft/s. El área transversal total por paso, A_{ci} ,

$$A_{ci} = \frac{m}{\rho_i \mu_i} = \frac{50000 \, lb/h}{(59,76 \, lb/ft^3)(5 \, ft/s)(3600 \, s/h)} = 0,0465 \, ft^2$$

Seleccionando una longitud de tubo de 14 ft, con un diámetro $\frac{3}{4}$, 11 BWG, (diámetro interno=0,482 in). El número de tubos por paso N_{t_i}

$$N_t = \frac{A_{ci}}{\pi D_i^2 / 4} = \frac{0.0465 \, ft^2}{\pi (0.482 \, in)^2 / 4} \times \frac{144 \, in^2}{ft^2} = 36.68 \frac{tubos}{paso} \approx 37 \frac{tubos}{paso}$$

El área de transferencia de calor por tubo A_t ,

$$A_t = \pi D_i L = \pi (0.482 \text{ in}) \frac{ft}{12in} \times 14 \text{ ft} = 1.75 \frac{ft^2}{tubo}$$

El número de pasos por los tubos:

$$N_p = \frac{A_i}{A_t N_t} = \frac{255 \, f t^2}{(1.75 \, f t^2 / tubo)(37 \, tubos / paso)} = 3.94 \, pasos \approx 4 \, pasos$$

Teniendo este valor N_p =4, es necesario recalcular el área de transferencia de calor interna A_{i_p}

$$A_i = N_p N_t (\pi D_i) L = 4 \times 37 \times \pi \times \frac{0.482}{12} \times 14 = 262 \, ft^2$$

El valor real del coeficiente global de transferencia de calor, teniendo en cuenta el área de transferencia de calor interna recalculada,

$$U_i = \frac{1,426 \times 10^6 Btu/h}{(262 ft^2)(0,93)(40^\circ F)} = 146 \frac{Btu}{ft^2 h^\circ F}$$

El diámetro hidráulico efectivo De,

$$D_e = \frac{4(P_t^2 - \pi D_o^2/4)}{\pi D_o} = \frac{4(1^2 - \pi (0.75)^2/4)}{\pi (0.75)} = 0.948 \text{ in}$$

Según Ghasem [17], para un intercambiador de cuatro pasos por los tubos y 148 tubos el diámetro interno de la coraza $D_s=17 \frac{1}{4}$ in. Teniendo en cuenta que el rango de espacio entre los discos de soporte es b=10 in, y el espacio=0,25 in, el área transversal entre los discos de soporte y el eje de la coraza, A_{cf} ,

$$A_{cf} = \frac{D_s}{P_t} \times espacio \times b$$
$$A_{cf} = \frac{17,25 \text{ in}}{1 \text{ in}} \times \left(0,25 \text{ in} \frac{1 \text{ ft}}{12 \text{ in}}\right) \times \left(10 \text{ in} \frac{1 \text{ ft}}{12 \text{ in}}\right) = 0,30 \text{ ft}^2$$

La velocidad másica a través de la coraza G_o ,

$$G_o = \frac{m_o}{A_{cf}} = \frac{62000 \ lb/h}{0.30 \ ft^2} = 207,026 \frac{lb}{ft^2h}$$

El número de Reynolds en el lado de la coraza N_{Reo}

$$N_{Reo} = \frac{D_e G_o}{\mu_o} = \frac{0.948 in(1 ft/12 in)207,026 lb/ft^2 h}{0.77 cP(1 lb/ft s)(3600 s/h)/1488 cP} = 8779$$

El númeo de Prandtl en el lado de la coraza N_{Pro},

$$N_{Pro} = \frac{C_{Po}\mu_o}{k_o} = \frac{(1 \ Btu/lb^\circ F)(0.77 \ cP(1 \ lb/ft \ s)(3600 \ s/h)/1488 \ cP}{0.36 \ Btu/ft^2h^\circ F} = 5.2$$

Despreciando el cambio de la viscosidad, se tiene que

$$N_{Uo} = \frac{h_o D_e}{k_o} = 0.36 N_{Reo}^{0.55} N_{Pro}^{\frac{1}{3}} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
$$N_{Uo} = \frac{h_o D_e}{k_o} = 0.36(8779)^{0.55}(5.2)^{\frac{1}{3}}(1)^{0.14} = 92$$

El coeficiente de transferencia de calor de lado de la coraza h_{o} ,

$$h_o = N_{Uo} \frac{k_o}{D_e} = 92 \frac{(0,36 \ Btu/ft^2h^\circ F)}{0,948 \ in \ (1 \ ft/12 \ in)} = 419 \frac{Btu}{ft^2h^\circ F}$$

De manera similar, se calcula el coeficiente de transferencia de calor para los tubos usando la ecuación que propone Ghasem [17]:

$$N_{Ui} = \frac{h_i D_i}{k_i} = 0,027 N_{Rei}^{0,8} N_{Pri}^{\frac{1}{3}} \left(\frac{\mu_i}{\mu_w}\right)^{0,14}$$

El número de Reynolds en el lado de los tubos N_{Rei}

$$N_{Reo} = \frac{D_i \rho_i u_i}{\mu_i} = \frac{0,482 in(1 ft/12 in)(59,76 lb/ft^3)(5 ft/s)}{0,75 cP(1 lb/ft s)/1488 cP} = 23812$$

El número de Prandtl en el lado de los tubos N_{Pri}

$$N_{Pri} = \frac{C_{Pi}\mu_i}{k_i} = \frac{(0.92 \ Btu/lb^\circ F)(0.75 \ cP(1 \ lb/ft \ s)(3600 \ s/h)/1488 \ cP}{0.30 \ Btu/ft^2h^\circ F} = 5.56$$

Sustituyendo los valores en la ecuación:

$$N_{Ui} = \frac{h_i D_i}{k_i} = 0,027(23812)^{0,8}(5,56)^{1/3} (1)^{0,14} = 152$$

El coeficiente de transferencia de calor del lado de los tubos h_i

$$h_i = N_{Ui} \frac{k_i}{D_i} = 152 \frac{0.3 \ Btu/ft \ h^{\circ}F}{0.482 \ in \ (1 \ ft/12 \ in)} = 1133 \frac{Btu}{ft^2 h^{\circ}F}$$

El coeficiente global de transferencia de calor basado en el área interna U_i

$$\frac{1}{U_i} = \frac{D_i}{D_o h_o} + \frac{D_i \Delta x}{D_{LM} k_w} + \frac{1}{h_i} + R_{fi} + \left(\frac{D_i}{D_o}\right) R_{fo}$$

El grosor del tubo Δx ,

$$\Delta x = \frac{D_o - D_i}{2} = \frac{0.75 - 0.482}{2} = 0.134 \text{ in}$$

El diámetro medio logarítmico D_{LM},

$$D_{LM} = \frac{D_o - D_i}{\ln(D_o/D_i)} = \frac{0.75 - 0.482}{\ln(0.75/0.482)} = 0.606 \text{ in}$$

La conductividad térmica del acero carbono es 30 Btu/h ft °F. El coeficiente global de transferencia de calor basado en las especificaciones de diseño:

$$\frac{1}{U_i} = \frac{0,482 \text{ in}}{(0,75 \text{ in})(419 \text{ Btu/ft}^2h^\circ F)} + \frac{0,482 \text{ in}(0,134 \text{ in})(1 \text{ ft/12 in})}{0,606 \text{ in}(30 \text{ Btu/h ft}^\circ F)} + \frac{1}{1133 \text{ Btu/ft}^2h^\circ F} + 0,004 \text{ ft}^2h^\circ F/Btu$$

$$U_i = 149 \frac{Btu}{ft^2 h^\circ F}$$

Por lo tanto,

$$U_o = U_i \frac{D_i}{D_o} = 149 \ Btu/ft^2 h^{\circ} F\left(\frac{0.482}{0.75}\right) = 95.6 \frac{Btu}{ft^2 h^{\circ} F}$$

El coeficiente global de transferencia de calor calculado basado en el área interior del tubo ($U_i = 149$ Btu /h ft² °F), es cercano al supuesto valor de diseño ($U_i = 146$ Btu /h ft² °F), por lo tanto, las especificaciones del intercambiador diseñado son satisfactorias. Si el coeficiente de transferencia de calor calculado basado en las especificaciones del intercambiador es menor que el valor inicialmente asumido, entonces el calor proporcionado por el intercambiador diseñado es menor que el calor requerido. El coeficiente estimado de transferencia de calor basado en las características de diseño del intercambiador debe estar cerca del valor de diseño supuesto; la forma más simple es calcular el coeficiente de transferencia de calor del lado de la coraza (h_o), basado en el valor corregido supuesto ($U_i = 146$ Btu /h ft² °F),

$$h_o = \frac{1}{D_o/D_i [1/U_i - 1/h_i - (D_i \Delta x/D_{LM}k) - R_{fi}]}$$
$$h_o = \frac{1}{(0.75/0.482)[(1/146) - (1/1133) - 2.96 \times 10^{-4} - 0.004]} = 385 \frac{Btu}{ft^2 h^\circ F}$$

	Coraza	Tubos
Componentes	Agua (100%)	DEA/Agua (0,2/0,8)
Flujo Másico (lb/h)	100000	50000
Temperatura (°F)	77/100	144/113
Presión (bar)	1,0	1,0
Pasos	1	4
Diámetro interno coraza	17¼	
Tubos: $D/D_i/P_t$ (in)		0,75/0,482/1

Configuracion de Tubos		Cuadrado
Longitud (ft)		14
Número total de Tubos		148
Factor de Incrustación (ft ² h°F/Btu)		0,004
LMTD	40	
Factor <i>F</i>	0,93	
<i>U₀</i> (Btu∕ h ft²°F)	95,6	
Flujo de Calor (Btu/h)	1426000	

Tabla 3.3. Especificaciones de diseño del intercambiador de calor.

Solución en Aspen-Hysys:

- 1. Componentes: Agua, dietanolamina.
- 2. Paquete termodinámico: NRTL.
- 3. De la ventana Modele Palette insertar la herramienta Heat Exchanger al diagrama de procesos. Hacer doble clic sobre esta.

3

- 4. Las corrientes e materia son: Tube Side Inlet: Shell Side Inlet: 1 **Tube Side Outlet** 2 Shell Side Outlet: 4
- 5. En la pestaña Worksheet se añaden las propiedades de cada corriente de materia:

Conditions						
	Tubos Coraza					
Stream Name	(1)	(2)	(3)	(4)		
Temperature	144°F	113°F	77°F	100°F		
Pressure	1 bar	1 bar	1 bar	1 bar		
Mass Flow	50000 lb/h	50000 lb/h				
Composition (Mass Fraction)						
DEA	0,2	0,2	0,0	0,0		
Agua	0,8	0,8	1	1		

 Tabla 3.3. Propiedades corrientes de materia en intercambiador de calor.

- 1. En la pestaña Design, en la sección Parameters, se selecciona Simple steady state rating en Heat Exchanger Model.
- 2. Dirigirse a la pestaña Rating e ingresar la siguiente información en las celdas:

Overall

Tube passes per Shell 4 Number of Shell passes 1

Shell	
Shell diameter	17,25 in
Number of tubes per Shell	148
Tube pitch	1 in
Tube layout	Square (90 degrees)
Baffle cut	25%
Baffle spacing	11,75 in
Tube	
OD	0,75 in
ID	0,482 in
Tube Length	14 ft
Tube Fouling	0,004 Btu/h ft² °F

Resultados:

- 1. Hacer clic derecho sobre la herramienta **E-100**, seleccionar **Show Table**, allí se pueden seleccionar las variables que se desean ver.
- Hacer clic derecho en el diagrama de procesos, seleccionar Add Workbook Table, y seleccionar Material Streams. Estas son algunas de las variables que se pueden observar junto a los flujos másicos de las corrientes.

			E-10)				
Duty			1,395	e+006	Btu/hr			
	Ft Factor		0	,9200				
	Overall U	J		93,51	Btu/hr-	ft2-F		
	UA		3,804	e+004	Btu/F-h	ır		
	Tube thi	dkness	0	,1340	in			
		Mate	erial Str	eams				
		1		2		3		4
Vapour Fraction		(0,0000,0		0,0000		0,0000	0,0000
Temperature	F		144,0		113,0		77,00	100,0
Pressure	psia		14,50		14,50		14,50	14,50
Molar Flow Ibmole/hr			2315		2315		3334	3334
Mass Flow	lb/hr	5,000		5,000)e+004	6,00	5e+004	6,005e+004
Liquid Volume Flow	barrel/day	l/day			3370		4120	4120
Heat Flow	Btu/hr	-2,893	e+008	-2,907	/e+008	-4,08	3e+008	-4,069e+008

Figura 3.4. Resultados especificaciones de diseño del intercambiador de calor.

Es indudable la suma de cálculos matemáticos que implica este tipo de diseño. De forma simple Aspen-Hysys puede calcular todos estos parámetros de manera precisa como se aprecia en los resultados calculados a mano y los obtenidos por la simulación.

4 Transferencia de Masas

Destilación

Una mezcla hexano-octano de composición 35% de octano se somete a una destilación continua (1,2 atm) para obtener un destilado de composición 0.92 fracción molar y un producto de fondo de composición 0.07 fracción molar de hexano. Si la alimentación entra a 102°C, con un 15,95% de vapor y la relación de reflujo es 80% mayor a la mínima, calcule:

- A. Cantidades de destilado y residuo.
- B. Número de platos ideales y plato de alimentación.
- D. Calor en el rehervidor.

Solución

Para el cálculo de los puntos de ebullición de los componentes a presión de 1,2 atm, se utiliza la ecuación de Antoine y sus respectivas constantes [18]:

Componente	Α	В	С
n-hexano	6,88555	1175,817	224,867
n-octano	6,91874	1351,756	209,100

Tabla 4.1 Constantes de Antoine para n-hexano y n-octano.

De la ecuación de Antoine,

$$log_{10}P^* = A - \frac{B}{C+T}$$

Donde p^* está en mmHg, T en °C. Se despeja la temperatura y se obtienen los valores de los puntos de ebullición:

$$T = \frac{B}{A - \log_{10} P^*} - C$$
$$T_{eb,hexano} = \frac{1175,817}{6,88555 - \log_{10} \left(1,2 \ atm \frac{760 \ mmHg}{1 \ atm}\right)} - 224,867 = 74,66 \ ^\circ C$$

$$T_{eb,octano} = \frac{1351,756}{6,91874 - \log_{10}\left(1,2 \ atm \frac{760 \ mmHg}{1 \ atm}\right)} - 209,1 = 132,36 \ ^{\circ}C$$

La tabla de datos de equilibrio se calcula a partir de las ecuaciones:

$$x_A = \frac{P - P^\circ_B}{P^\circ_A - P^\circ_B} \qquad ; \qquad y_A = \frac{x_A P^\circ_A}{P}$$

T(°C)	$P_A^{\circ}(\text{mmHg})$	$P_B^{\circ}(\text{mmHg})$	X_A	\mathcal{Y}_A
74,66	912	-	1	1
80,43	1081,84	177,81	0,81	0,96
86,2	1275,27	219,37	0,66	0,92
91,97	1494,31	268,47	0,52	0,86
97,74	1741,07	326,08	0,41	0,79
103,51	2017,71	393,23	0,32	0,71
109,28	2326,42	470,99	0,24	0,61
115,05	2669,44	560,51	0,17	0,49
120,82	3049,00	663,00	0,10	0,35
126,59	3467,37	779,73	0,05	0,19
132,36	-	912	0	0

Tabla 4.2. Tabla de datos de equilibrio.

El diagrama de fases:

Figura 4.1. Diagrama de fases n-hexano, n-octano.

La curva de equilibrio líquido-vapor:

Figura 4.2. Curva de equilibrio líquido-vapor de n-hexano, n-octano.

Parte A:

A=n-hexano; B=n-octano.

$$\frac{1}{M} = \frac{w_A}{M_A} + \frac{w_B}{M_B} = \frac{0,35}{86,17 \ g/mol} + \frac{0,65}{114,22 \ g/mol}$$
$$M = 102,5377 \ g/mol$$
$$w_A = \frac{x_A M_A}{M}$$

Despejando la fracción molar $x_{A_{,}}$

$$x_A = \frac{Mw_A}{M_A} = \frac{(102,5377 \ g/mol)(0,35)}{86,17 \ g/mol} = 0,4165$$
$$x_B = 1 - 0,4165 = 0,5835$$

Balance molar global:

$$F = D + W$$

100 kmol = D + W (1)

Donde F=alimentación, D=destilado, W=residuo.

Balance molar por componentes:

$$Fx_F = Dx_D + Wx_w$$

$$(100 \ kmol)(0,4165) = 0,92D + 0,07W$$

 $41,65 \ kmol = 0,92D + 0,07W$ (2)

Resolviendo el sistema de ecuaciones (1) y (2):

$$D = 40,7647 \ kmol$$

 $W = 59,2353 \ kmol$

Parte B:

Las moles de líquido saturado en el alimento $n_{liq,F}$,

$$n_{liq,F} = 100 \; kmol(1 - 0,1595) = 84,05 \; kmol$$

La fracción líquida que entra con el alimento q,

$$q = \frac{n_{liq,F}}{n_F} = \frac{84,05 \ kmol}{100 \ kmol} = 0,8405$$

La línea de alimentación (en rojo):

$$y = \frac{q}{q-1}x - \frac{x_F}{q-1}$$
$$y = \frac{0,8405}{0,8405 - 1}x - \frac{0,4165}{0,8405 - 1}$$
$$y = 2,6113 - 5,2696x$$

Figura 4.3. Líneas de alimentación y reflujo mínimo.

De la línea de reflujo mínimo (en azul):

$$y = \frac{R_{min}}{R_{min} + 1}x + \frac{x_D}{R_{min} + 1}$$
$$0,6180 = \frac{x_D}{R_{min} + 1}$$

$$R_{min} = 0,4887$$

 $R = 1,8(0,4887) = 0,8796$

La línea de enriquecimiento:

$$y = \frac{R}{R+1}x + \frac{x_D}{R+1}$$
$$y = \frac{0,8796}{0,8796+1}x + \frac{0,92}{0,8796+1}$$
$$y = 0,4680x + 0,4895$$

Conocida la línea de enriquecimiento (en azul) y su intercepto con la línea de alimento (en rojo), se puede trazar la línea de empobrecimiento (en verde). Así mismo, se pueden calcular el número de platos ideales:

Figura 4.4. Cálculo de platos ideales.

Gráficamente se puede observar que el número de platos ideales es 6, y el plato de alimentación es el número 3.

Parte C:

Se debe tener pleno conocimiento de todas las fracciones y temperaturas en las diferentes corrientes del proceso. Para ello, se utiliza el diagrama de fases y la curva de equilibrio. Los cálculos y la tabla que resume todas estas propiedades se muestran a continuación:

$$n_{vapor,A,F} = 15,95 \ kmol(0,724) = 11,5478 \ kmol$$

 $n_{vapor,B,F} = 15,95 \ kmol(1 - 0,724) = 4,4022 \ kmol$
 $n_{liquido,A,F} = 84,05 \ kmol(0,358) = 30,0899 \ kmol$
 $n_{liquido,B,F} = 84,05 \ kmol(1 - 0,358) = 53,9601 \ kmol$

En la zona de enriquecimiento:

$$R = \frac{Lo}{D}$$

 $Lo = RD = 0,8796(40,7647 \ kmol)$ $Lo = 35,8566 \ kmol$

V = L + D $V = 35,8566 \ kmol + 40,7647 \ kmol$ $V = 76,6213 \ kmol$

 $n_{A,v} = 76,6213 \ kmol(0,92) = 70,4916 \ kmol$ $n_{B,v} = 76,6213 \ kmol(1-0,92) = 6,1297 \ kmol$

 $n_{A,D} = 40,7647 \ kmol(0,92) = 37,5035 \ kmol$ $n_{A,D} = 40,7647 \ kmol(1 - 0,92) = 3,2612 \ kmol$

 $n_{A,Lo} = 35,8566 \ kmol(0,92) = 32,9881 \ kmol$ $n_{B,Lo} = 35,8566 \ kmol(1 - 0,92) = 2,8685 \ kmol$

En la zona de empobrecimiento:

$$n_{A,W} = 59,2353 \ kmol(0,07) = 4,1465 \ kmol$$

 $n_{B,W} = 59,2353 \ kmol(1-0,07) = 55,0888 \ kmol$

Corriente	kmol	Temperatura(°C)	
Alimento			
$n_{vapor,A}$	11,5478		
$n_{vapor,B}$	4,4022	102	
$n_{liquido,A}$	30,0899	102	
${oldsymbol{n}}_{liquido,B}$	53,9601		
Condensador			
$n_{A,v}$	70,4916	05	
$n_{B,\nu}$	6,1297	85	
$n_{A,D}$	37,5035	א דד	
$n_{B,D}$	3,2612	//,4	
$n_{A,Lo}$	32,9881	77 /	
$n_{B,Lo}$	2,8685	//,4	
Fondos			
$n_{A,W}$	4,1465	125	
$n_{B,W}$	55,0888	125	

Tabla 4.3. Propiedades de las corrientes de materia.

Propiedades de los componentes:

Capacidades caloríficas en función de la temperatura:

$$Cp = a + bT + cT^{2} + dT^{3} + eT^{4} = J/mol(^{\circ}C \ o \ K)$$

n-hexano [18]	Т	a	b	С	d	e
Líquida	Κ	31,421	0,97606×10 ⁻²	-235,37×10 ⁻⁵	3092,7×10 ⁻⁹	
Vapor	0	137,44	40,85×10 ⁻²	-23,92×10 ⁻⁵	57,66×10 ⁻⁹	
_	С					
n-octano [19]						
Líquida	Κ	38,2405	1,14275	-2,1303×10 ⁻³	2,39204×10 ⁻⁶	
Vapor	Κ	51,7608	2,9555×10 ⁻¹	9,66806×10 ⁻⁴	-1,62822×10 ⁻⁶	7,68379×10 ⁻¹⁰
Tabla 4.4. Capacidades caloríficas del n-hexano y n-octano en función de la temperatura.						

Entalpías de vaporización:

Compuesto	kJ/mol
n-hexano [18]	28,85
n-octano [19]	34,94

Tabla 4.5. Entalpias de vaporización del n-hexano y n-octano.

Calor que entra con el vapor, *V*:

$$Q_V = Q_{V,A} + Q_{V,B}$$

$$Q_{V,A} = n_{A,V} \left[\int_{Tb,A}^{TV} Cp_{V,A} + \Delta H_{v,A} + \int_{25^{\circ}C}^{Tb,A} Cp_{L,A} \right]$$
$$Q_{V,A} = 70,4916 \times 10^{3} mol \left[1758,63 \frac{J}{mol} + 28,85 \times \frac{10^{3}J}{mol} - 5294,94 \frac{J}{mol} \right]$$
$$Q_{V,A} = 1784402,51 \ kJ$$

$$Q_{V,B} = n_{B,V} \left[\int_{Tb,B}^{TV} Cp_{V,B} + \Delta H_{v,B} + \int_{25^{\circ}C}^{Tb,B} Cp_{L,B} \right]$$
$$Q_{V,B} = 6,1297 \times 10^{3} mol \left[-10950,34 \frac{J}{mol} + 34,94 \times 10^{3} \frac{J}{mol} + 30184,39 \frac{J}{mol} \right]$$

$$Q_{V,B} = 332070,67 \, kJ$$

 $Q_V = 1784402,51 \, kJ + 332070,67 \, kJ = 2116473,18 \, kJ$

Calor que sale con el destilado, Q_D :

$$Q_{D} = Q_{D,A} + Q_{D,B}$$

$$Q_{D,A} = n_{A,D} \int_{25^{\circ}C}^{TD} Cp_{L,A}$$

$$Q_{D,A} = 37,5035 \times 10^{3} mol \left(-5625,06\frac{J}{mol}\right) = -210959,44 \, kJ$$

$$Q_{D,B} = n_{B,D} \int_{25^{\circ}C}^{TD} Cp_{L,B}$$

$$Q_{D,B} = 3,2612 \times 10^{3} mol \left(13961,74\frac{J}{mol}\right) = 45532,02 \, kJ$$

$$Q_D = -210959,44 \, kJ + 45532,02 \, kJ = -165427,42 \, kJ$$

Calor que se retorna con el reflujo, Lo:

$$Q_{Lo} = Q_{Lo,A} + Q_{Lo,B}$$

$$Q_{Lo,A} = n_{A,Lo} \int_{25^{\circ}C}^{TD} Cp_{L,A}$$

$$Q_{Lo,A} = 32,9881 \times 10^{3} mol \left(-5625,06\frac{J}{mol}\right) = -185560,04 \, kJ$$

$$Q_{D,B} = n_{B,D} \int_{25^{\circ}C}^{TD} Cp_{L,B}$$

$$Q_{Lo,B} = 2,8685 \times 10^{3} mol \left(13961,74\frac{J}{mol}\right) = 40049,25 \, kJ$$

$$Q_{Lo} = -185560,04 \, kJ + 40049,25 \, kJ = -145510,79 \, kJ$$

Calor en el condensador Q_c:

$$Q_C = Q_V - Q_D - Q_{Lo}$$

$$Q_C = 2116473,18 \ kJ - (-165427,42 \ kJ) - (-145510,79 \ kJ)$$

$$Q_C = 2427411,39 \ kJ$$

Calor que sale con la corriente de fondos Q_W :

$$Q_{W} = Q_{W,A} + Q_{W,B}$$

$$Q_{W,A} = n_{A,W} \int_{25^{\circ}C}^{TW} Cp_{L,A}$$

$$Q_{W,A} = 4,1465 \times 10^{3} mol \left(-11923,08 \frac{J}{mol}\right) = -49439,05 \, kJ$$

$$Q_{W,B} = n_{B,W} \int_{25^{\circ}C}^{TW} Cp_{L,B}$$

$$Q_{W,B} = 55,0888 \times 10^3 mol\left(27912,63\frac{J}{mol}\right) = 1537673,51 \, kJ$$

$$Q_W = -49439,05 \, kJ + 1537673,51 \, kJ = 1488234,46 \, kJ$$

Calor que entra con el alimento Q_F :

$$Q_F = Q_{vapor,F} + Q_{liquido,F}$$
$$Q_{vapor,F} = Q_{vapor,A,F} + Q_{vapor,B,F}$$

$$Q_{Vapor,A,F} = n_{vapor,A,F} \left[\int_{Tb,A}^{TF} Cp_{V,A} + \Delta H_{v,A} + \int_{25^{\circ}C}^{Tb,A} Cp_{L,A} \right]$$
$$Q_{Vapor,A,F} = 11,5478 \times 10^{3} mol \left[4693,79 \frac{J}{mol} + 28,85 \times \frac{10^{3}J}{mol} - 5294,94 \frac{J}{mol} \right]$$

$$Q_{Vapor,A,F} = 326212,07 \ kJ$$

$$Q_{Vapor,B,F} = n_{vapor,B,F} \left[\int_{Tb,B}^{TF} Cp_{V,B} + \Delta H_{v,B} + \int_{25^{\circ}C}^{Tb,B} Cp_{L,B} \right]$$
$$Q_{Vapor,B,F} = 4402,2mol \left[-7147,08 \frac{J}{mol} + 34,94 \times 10^{3} \frac{J}{mol} + 30184,39 \frac{J}{mol} \right]$$

$$Q_{Vapor,B,F} = 255227,69 \, kJ$$

 $Q_{Vapor,F} = 326212,07 \, kJ + 255227,69 \, kJ = 581439,76 \, kJ$

$$Q_{liquido,F} = Q_{liquido,A,F} + Q_{liquido,B,F}$$

$$Q_{liquido,A,F} = n_{liquido,A,F} \int_{25^{\circ}C}^{TF} Cp_{L,A}$$

$$Q_{liquido,A,F} = 30,0899 \times 10^{3} mol \left(-8752,39 \frac{J}{mol}\right) = -263358,54 \, kJ$$

$$Q_{liquido,B,F} = n_{liquidoB,F} \int_{25^{\circ}C}^{TF} Cp_{L,B}$$

$$Q_{liquido,B,F} = 53,9601 \times 10^{3} mol \left(21014,81 \frac{J}{mol}\right) = 1133961,26 \, kJ$$

$$Q_{liquido,F} = -263358,54 \, kJ + 1133961,26 \, kJ = 870602,72 \, kJ$$

$$Q_F = 581439,76 \, kJ + 870602,72 \, kJ = 1452042,48 \, kJ$$

Calor en el rehervidor Q_R :

$$Q_R = Q_C + Q_D + Q_W - Q_F$$

$$Q_R = 2427411,39 \ kJ - 165427,42 \ kJ + 1488234,46 \ kJ - 1452042,48 \ kJ$$

$$Q_R = 2298175,95 \ kJ$$

Solución en Aspen-Hysys:

- 1. Componentes: n-hexano, n-octano.
- 2. Paquete Termodinámico: Peng Robinson.
- 3. Insertar una corriente de materia con las siguientes propiedades:

Conditions	
Stream Name	Alimentación
Temperature	102°C
Pressure	1,2 atm
Mass Flow	100 kmol/h
Composition (Mass Fraction)	
n-hexano	0,35
n-octano	0,65

Tabla 4.5. Propiedades de la corriente alimentación.
Operación Unitaria:

- De la ventana Model Palette, en la sección Columns, insertar la herramienta Short Cut Distillation haciendo clic sobre el icono y arrastrarlo al diagrama de procesos.
- 2. Hacer doble clic sobre la herramienta **T-100**, en el apartado **Connections** insertar los siguientes valores como se muestra en la figura:

Shortcut Colu	ımn: T-100							
Design Rating	g Worksheet	Performance	Dynamics					
Design	Name	T-100					Condenser Duty	
Connections							Qc	•
Parameters						_		
User Variables						\checkmark		
Notes					>(\)	Distillate	
				-	\mathcal{V}		Destilade	
			6	—)			Destilado	
	Inlet			1	<u> </u>			\rightarrow
	Alimen	tación	• _	2				
			\rightarrow				Reboiler Duty	
	Fluid Pac	kage		- 2			Qr	•
	Basis-1		-	11-2	-	-		
			— L	n-1		\sim		
	⊂ Top Pro	duct Phase		\checkmark	n (S)	Bottoms	
					\sim	/	Pasiduas	-
	Ulqu	id 🔍 Vap	our		1		Residuos	
								\rightarrow

Figura 4.5. Conexión de las corrientes de materia en columna de destilación.

3. Dirigirse al apartado Parameters e insertar los valores como se muestra a continuación:

Shortc	ut Coli	umn: T-10	0				
Design	Rating	Worksheet	Performance	Dynamic	s		
Desi	gn	Componer	nts				-
Connections Parameters User Variables		Light Key in Bottoms Heavy Key in Distillate			Component n-Hexane n-Octane	Mole Fraction 0.0700 0.0800	
Notes		Pressures Condense	er Pressure		121.590 kPa		
		Reboiler Pressure Reflux Ratios External Reflux Ratio			121.590 kPa		
					0.979		
		Minimum Reflux Ratio			0.529		
	Delete						

Figura 4.6. Parámetros de diseño en columna de destilación.

Resultados

Dirigirse a la pestaña **Performance**, en esta se aprecian todos los valores obtenidos del proceso:

5	heet Performance Dynamics			
	Trays			
	Minimum Number of Trays	3.230		
	Actual Number of Trays	6.520		
	Optimal Feed Stage	3.409		
_ Temperatures				
Condenser [C]				
	Reboiler [C]	124.9		
	- Flows			
	Rectify Vapour [kgmole/h]	80.670		
	Rectify Liquid [kgmole/h]	39.907		
	Stripping Vapour [kgmole/h]	64.723		
	Chairman and the shall flamma also find	123,960		
	Stripping Liquid [kgmole/n]			
	Condenser Duty [kJ/h]	-2472961.812		

Figura 4.7. Resultados número de platos y corrientes de energía.

El número de platos calculado manualmente coincide con el resultado entregado por Aspen-Hysys. El valor de los calores Q_C y Q_R son muy semejantes. Las propiedades termodinámicas incluidas en Aspen-Hysys hacen que los valores de energía obtenidos tengan mas confiabilidad.

Humidificación:

Se utiliza aire a condiciones de 30°C y $H_r = 65\%$ para secar 400 kg/h de sacarosa. La sacarosa pasa de tener una humedad del 35% en peso a contener solo el 5% de humedad. El proceso cuenta con un condensador donde se deshumidifica el aire que sale del secador. Del condensador, el aire sale completamente saturado. Del condensador, el aire pasa a un intercambiador de calor donde se recalienta, obteniendo una temperatura de 60°C y una $H_r=10\%$, de este aire húmedo se recicla 1000 m³/h en la corriente M y en la otra parte (2000 m³/h) sale del sistema hacia los extractores por la corriente K. Calcular:

- A. Kg/h de agua condensada.
- B. La masa de aire que entra al condensador E.
- C. Calor suministrado en el intercambiador (kJ/h).
- D. Masa de aire húmedo que debe entrar en la corriente C.

Solución:

$$kg_{B} = kg$$
 aire seco

En la corriente A:

$$(H_2O)_A = 400 \ kg(0,35) = 140 \ kg$$

sólido seco = 400 $kg(0,65) = 260 \ kg$

En la corriente *B*:

$$(H_2O)_B = 260 \ kg \ ss \times \frac{100 \ kg \ B}{95 \ kg \ ss} \times \frac{5 \ kg \ H_2O}{100 \ kg \ B} = 13,6842 \ kg$$
$$B = s \circ lido \ seco + (H_2O)_B$$

$$B = 260 kg + 13,6842 kg = 273,6842 kg$$

Se calcula el volumen específico V_H en la corriente N, para posteriormente hallar la masa de aire seco y agua en las corrientes M y K:

Según la carta psicrométrica a 1 atm de presión total [15], la humedad absoluta ha del aire a las condiciones de N es de ha=0,012.

$$V_{H_N} = \left(\frac{1}{28,97} + \frac{ha}{18,02}\right) \frac{RT}{P} = \left(\frac{1}{28,97} + \frac{0,012}{18,02}\right) \frac{(8,314 \ J/molK) \ (333,15 \ K)}{1011,325 \ kPa}$$
$$V_{H_N} = 0.9618 \ m^3/kg_B$$

En la corriente *K*:

$$kg_{B_{K}} = 2000 \ m^{3} \times \frac{kg_{B}}{0,9618 \ m^{3}} = 2079,4344 \ kg$$
$$(H_{2}O)_{K} = kg_{B_{K}} \cdot ha_{N} = 2079,4344 \ kg \times 0,012 = 24,9532 \ kg$$
$$K = kg_{B_{K}} + (H_{2}O)_{K} = 2079,4344 \ kg + 24,9532 \ kg = 2104,3876 \ kg$$

En la corriente *M*:

$$kg_{B_M} = 1000 \ m^3 \times \frac{kg_B}{0,9618 \ m^3} = 1039,7172 \ kg$$
$$(H_2O)_M = kg_{B_M} \cdot ha_N = 1039,7172 \ kg \times 0,012 = 12,4766 \ kg$$
$$M = kg_{B_M} + (H_2O)_M = 1039,7172 \ kg + 12,4766 \ kg = 1052,1938 \ kg$$

En la corriente *C*:

Según la carta psicrométrica a 1 atm de presión total [15], la humedad absoluta ha del aire a las condiciones de C es de ha=0,012.

Balance parcial de aire seco en todo el sistema:

$$kg_{B_{C}} = kg_{K}$$

$$kg_{B_{C}} = 2079,4344 \ kg$$

$$(H_{2}O)_{C} = kg_{B_{C}} \cdot ha_{C} = 2079,4344 \ kg \times 0,017 = 35,3504 \ kg$$

$$C = (H_{2}O)_{C} + kg_{B_{C}} = 35,3504 \ kg + 2079,4344 \ kg = 2114,7848 \ kg$$

Balance parcial de agua en todo el sistema:

$$(H_20)_C + (H_20)_A = (H_20)_B + (H_20)_F + (H_20)_K$$

 $35,3504 kg + 140 kg = 13,6842 kg + (H_2O)_F + 24,9532 kg$

$$(H_2 O)_F = 136,7130 \ kg$$

Balance de masa en el condensador:

$$E = F + G$$

Considerando que G=N:

$$N = K + M = 2104,3876 kg + 1052,1938 kg = 3156,5814 kg$$

$$E = 136,7130 \ kg + 3156,5814 \ kg = 3293,2944 \ kg$$

Balance de masa en el secador:

$$D + A = E + B$$
$$D = E + B - A = 3293,2944 \ kg + 273,6842 \ kg - 400 \ kg$$
$$D = 3166,9786 \ kg$$

En la corriente D:

$$kg_{B_D} = kg_{B_C} + kg_{B_M} = 3159,1516 \ kg$$
$$(H_2O)_D = D - kg_{B_D} = 3166,9786 \ kg - 3159,1516 \ kg = 7,8270 \ kg$$

Cálculo de Q:

Según la carta psicrométrica a 1 atm de presión total [15], la temperatura de saturación del aire a las condiciones de salida del condensador (ha=0,012) es de 17°C.

La entalpía en G:

$$H_G = (1,005 + 188ha)T + 2501,4ha$$

$$H_G = (1,005 + 188(0,012)) \cdot 17 + 2501,4(0,012) = 47,4853 \ kJ/kg_B$$

La entalpía en N:

$$H_N = (1,005 + 188(0,012)) \cdot 60 + 2501,4(0,012) = 91,6704 \ kJ/kg_B$$

Balance de energía en el intercambiador de calor:

$$Q + Q_G = Q_N$$

$$Q = Q_N - Q_G = kg_{B_N} \cdot H_N - kg_{B_N} \cdot H_G$$
$$Q = kg_{B_N}(H_N - H_G) = 3119,1516 \ kg(91,6704 - 47,4853) \ kH/kg$$
$$Q = 137820,0254 \ kJ$$

Solución en Aspen-Hysys:

- 1. Componentes: Agua, aire
- Debido a que la sacarosa no se encuentra en la base de datos de Aspen-Hysys, se debe ingresar como un componente hipotético [20], para ello, en la pestaña Component List -1, en la sección Select se selecciona Hypotetical Solid. Luego, hacer clic en New Solid. Ingresar el nombre sacarosa, el peso molecular de 342,3 y la densidad de 1590 kg/m³. Finalmente hacer clic en Add.
- 3. Paquete termodinámico: Peng Robinson.
- 4. De la ventana **Model Palette** seleccionar cinco herramientas de balance y las respectivas corrientes de materia para realizar el diagrama mostrado a continuación en el diagrama de procesos:

Figura 4.8. Diagrama del proceso a simular.

5. Modificar las propiedades de las corrientes de materia según la siguiente tabla:

Corriente	T(0C)	Flujo Másico (kg/h)				
Corriente	$I(\mathbf{C})$	Aire	Agua	Sacarosa		
А	20	0	140	260		
В	20	0	13,6842	260		
С	30	-	-	-		
D	-	3159,1516	7,8270	0		
E	-	-	-	-		

La presión para todas las corrientes será de 1 atm.

F	-	-	-	-
G	17	3119,1516	37,4298	0
Κ	60	2079,4344	24,9532	0
М	60	1039,7172	12,4766	0
Ν	60	3119,1516	37,4298	0
			• • •	

Tabla 4.6. Propiedades de las corrientes de materia.

Para ingresar el flujo másico de cada componente, se dirige a la pestaña Composition, se hace clic en Basis y se selecciona Mass Flow.

6. Seleccionar el tipo de balance Mass Flow en todas las herramientas de balance a excepción del intercambiador de calor donde el tipo de balance es Heat Flow. Para ello, hacer doble clic sobre la herramienta balance, dirigirse a la pestaña Parameters y seleccionar el tipo de balance.

Resultados:

Liquid Volume Flow

Heat Flow

m3/h

kJ/h

2,400

-4,641e+005

3.600

-6,027e+004

Hacer clic derecho en el diagrama de procesos, seleccionar Add Workbook Table, seleccionar Material Streams y Enery Streams.

			Γ	Energy Streams							
			Γ		Q						
				Heat Flow	kJ/h 1,367e	+005					
				Mater	ial Streams						
		С	D	М	A	В	E	F	G	N	К
Vapour Fraction		1,0000	1,0000	1,0000	0,0000	1			0,9999	1,0000	1,0000
Temperature	С	30,00	39,50	60,00	20,00	1			17,00	60,00	60,00
Pressure	kPa	101,3	101,3	101,3	101,3	101,3	101,3		101,3	101,3	101,3
Molar Flow	kgmole/h	73,79	109,6	36,61	8,531	1,519			109,8	109,8	73,21
Mass Flow	ka/h	2115	3167	1052	400.0	273.7	3293	136.7	3157	3157	2104

1.195

-1,308e+005

Figura 4.9. Resultados del proceso de humidificación.

0,3038

-2,233e+006

0,1772

3.584

-5,290e+005

3.584

-3,923e+005

2.389

-2,615e+005

Observando los valores enmarcados en los recuadros rojos, puede apreciarse que los resultados obtenidos por Aspen-Hysys son muy similares a los calculados a mano.

Extracción Líquido-Líquido:

300 kg/h de una solución de acetona-agua de composición 33 % en masa de acetona se somete a una extracción en contracorriente para reducir su concentración hasta 4%. La extracción se lleva acabo con una solución de 94% en metil-isobutil-cetona (MIBK) y 6% de acetona. Calcular la composición del extracto final y el número de etapas necesarias para la extracción cuando la cantidad de disolvente empleado es 350 kg/h.

Solución:

A= agua. B= MIBK. C= acetona.

1. Se realiza la gráfica de equilibrio con los datos mostrados a continuación:

Fase Pesada					Fase Liviana	l
Agua	Acetona	MIBK	_	Agua	Acetona	MIBK
2,0	2,0	96,0	_	97,0	1,0	2,0
2,5	6,0	91,5		95,0	3,0	2,0
3,0	10,0	87,0		91,0	6,0	3,0
3,5	16,0	80,5		88,0	9,0	3,0
4,0	20,0	76,0		83,0	13,0	4,0
4,5	25,0	70,5		79,0	17,0	4,0
5,0	30,0	65,0		74,5	20,0	5,5
7,0	36,0	57,0		68,0	26,0	6,0
9,0	40,0	51,0		62,0	30,0	8,8
14,0	48,0	38,0		49,0	40,0	11,0
33,0	49,0	18,0		33,0	49,0	18,0

Tabla 4.7. Tabla de datos de equilibrio Acetona-Agua-MIBK.

- 2. Ubicar los puntos *F*, *S* y *Rn*, correspondientes a las concentraciones de acetona en el alimento, solvente y la concentración final a la que se quiere llegar.
- 3. Trazar una línea entre *F* y *S* (azul), se aplica la ley de la palanca para hallar el punto de mezcla *M*:

$$\frac{F}{S} = \frac{X_{C,M} - X_{C,F}}{X_{C,F} - X_{C,M}}$$

$$X_{C.M} = \frac{FX_{C,F} + SX_{C,S}}{F+S} = \frac{(300 \ kg/h \times 0.33) + (350 \ kg/h \times 0.06)}{(300+350) \ kg/h} = 0.18$$

- 4. Ubicar el punto *M*=0,18.
- 5. Trazar una línea entre Rn y M (azul) y prolongarla hasta cortar la curva binoidal este será el extracto final E1 cuyas composiciones son:

Acetona	0,24
Agua	0,04
MIBK	0,72

- 6. Trazar una línea entre F y E1 (rojo) y prolongarla fuera del diagrama de fases.
- 7. Trazar una línea entre *Rn* y *S* (rojo) y prolongarla hasta interceptar la línea anteriormente trazada, este será el punto *P*. Esto es lo que se tiene hasta ahora.

Figura 4.10. Gráfica de equilibrio y ubicación de los puntos *P* y *E1*.

- 8. Trazar una línea de reparto que pase por *E1* (verde) y prolongarla hasta cortar la curva, este será *R1* para esto, tomar como referencia las líneas de reparto de color violeta.
- 9. Trazar una línea desde *R1* hasta *P* (rojo), el punto en el que se corta con la curva binoidal será *E2*.
- 10. Seguir el procedimiento descrito en 8 y 9 hasta cubrir el punto *Rn*:

Figura 4.11. Calculo de etapas necesarias para llegar a 4% de acetona.

Se necesitaron tres etapas para cubrir el punto Rn, estas se visualizan con las rectas E1-R1, E2-R2 y E3-R3 trazadas en color verde.

Solución en Aspen-Hysys:

- 1. Componentes: Acetona, agua, MIBK.
- 2. Paquete termodinámico: NTRL.
- 3. Dirigirse a la pestaña **Binary Coeffs** dentro de la selección del paquete termodinámico. En la sección **Coeffs Estimation**, seleccionar **UNIFAC LLE** y hacer clic en **Unknowns Only**.
- 4. Insertar dos corrientes de materia con las siguientes propiedades:

Conditions					
Stream Name	F	S			
Temperature	25°C	25°C			
Pressure	1 atm	1 atm			
Mass Flow	300 kg/h	350 kg/h			
Compositi	Composition (Mass Fraction)				
acetona	0,33	0,06			
agua	0,67	0,0			
MIBK	0,0	0,94			

Tabla 4.8. Propiedades de las corrientes de materia.

5. Seleccionar una columna de extracción líquido-líquido en la sección **Columns** de la ventana **Modele Palette**.

que se encuentra

6. Hacer doble clic en la columna de extracción e insertar la información como se muestra a continuación:

Figura 4.12. Conexión de corrientes de materia en columna de extracción.

En Aspen-Hysys se debe ingresar el número de etapas para que el software calcule las composiciones de extracto y refinado, por tal motivo se ingresa un número de tres etapas en la sección **Num of Stages**.

7. Hacer clic en **Next**, insertar una presion de 1 atm en la columna y hacer clic en **Done**. Hacer clic en **Run**.

Resultados:

Dirigirse a la corriente E y observar la composición en fracción másica de los componentes.

Material Stream: e					
Worksheet Attachments Dynamics					
Workshe	et	Mass Fractions	Liquid P		
Conditions	M-i-B-Ketone	0.7256			
Properties	H2O	0.0184			
Oil & Gas	eed Acetone	0.2560	=		

Figura 4.13. Composiciones del extracto final *E1*.

A pesar de que el método gráfico convencional no es tan preciso, puede verse que los valores calculados por Aspen-Hysys tiene gran similitud.

5 Instrumentación y Control de Procesos

Sintonización de controladores:

Se desea realizar la separación de 120 kmol/h una mezcla de hidrocarburos compuesta de etano, propano, i-butano y n-butano cuyas fracciones molares son 0.2/0.3/0.1/0.4 respectivamente. La mezcla está a 70°C y 25 bar de presión. Se pretende establecer un controlador de flujo en la alimentación, un controlador de presión en la salida de valor y un controlador de nivel en la salida de líquido.

Solución:

Simulación en estado estacionario:

- 1. Componentes: etano, propano, n-butano, i-butano.
- 2. Paquete termodinámico: Peng Robinson.
- 3. Adicionar una corriente de materia con las siguientes propiedades:

Conditions			
Stream Name	Mezcla		
Temperature	70°C		
Pressure	19,7385 atm		
Molar Flow	100 kmol/h		

Composition			
metano	0,1		
propano	0,2		
n-butano	0,3		
n-pentano	0,4		
Table 5 1 Propiedades de la corriente Mazela			

Tabla 5.1. Propiedades de la corriente Mezcla.

- 4. Adicionar un separador presionando en el icono que se encuentra en la sección Common de la ventana Model Palette.
- 5. Hacer doble clic sobre el separador, en la sección Connections se insertan las entradas y salidas del separador:

Inlet:	1
Vapour Outlet:	2
Liquid Outlet:	3

Pasar a la sección **Parameters** e insertar un volumen de 2 m³. Cerrar ventana.

- 6. Adicionar tres válvulas de control presionando el icono **, ,** que se encuentra en la sección Common de la ventana Model Palette.
- 7. Insertar las siguientes propiedades en las válvulas de control:

Name	V1	V2	V3	
Inlet	Mezcla	2	3	
Outlet	1	4	5	
Delta P	14,8038 atm	1,9785 atm	1,9785 atm	
Tabla 5.2. Propiedades de las válvulas.				

8. En la pestaña Dynamics de cada válvula, hacer clic en Size valve para que se calcule el valor de la conductancia.

Modo dinámico:

- 1. Hacer clic en el menú Dynamics de la barra de herramientas de Aspen-Hysys, después hacer clic en el icono Dynamics Mode Se abrirá una ventana N emergente, hacer clic en Si.
- 2. Se abrirá una ventana de cambios para el modo dinámico, hacer clic en Make Changes y luego en Finish. Cerrar ventana.
- 3. Nuevamente hacer clic en Dymanics Mode y hacer clic en Si. Esto con el fin de confirmar la entrada al modo dinámico de Aspen-Hysys.

Control de alimentación:

- 1. Seleccionar un controlador PID de la ventana **Model Palette** presionando el icono que se encuentra en la sección **Dynamics**.
- 2. Hacer doble clic sobre el controlador, se nombrará como "Control Alimentación".
- Seleccionar Select PV para seleccionar la variable controlada en este caso el flujo molar, para esto en la ventana desplegada seleccionar Mezcla en la sección Object y en la sección Variable seleccionar Molar Flow. Finalmente hacer clic en OK.

🔀 Select Input PV For Contro	ol Alimentación				- 🗆 ×
Flowsheet	Object	Variable		Variable Specifics	ОК
Case (Main) Case (Main) Navigator Scope Other	1 2 3 4 5 FeederBlock_Mezcla Mezcla ProductBlock_4 ProductBlock_5 V1 V-100 V2 V3	Master Comp Volume Frac Molar Density Molar Enthalpy Molar Entropy Molar Flow Molar Heat Capacity Molar Volume Molecular Weight Normalized Yields (Fraction) Normalized Yields (Percent) Partial Pressure CO2 Petroleum Assay Type Destroleum Branetty			Object Filter All Streams Logicals ColumnOps Custom Custom
BasisUtility		Phase - Heat Flow Phase - Liq Vol Flow	•		Disconnect
Variable Description:	Molar Flow				Cancel

Figura 5.1. Variable a controlar.

Seleccionar la variable manipulada, haciendo clic en **Select OP**, en la ventana desplegada seleccionar **V1** en la sección **Object** y en la sección **Variable**, seleccionar **Actuator Desired Position**. Finalmente hacer clic en **OK**.

Select OP Object For Cor	ntrol Alimentación			- 🗆 ×
Flowsheet	Object	Variable	Variable Specifics	ОК
Case (Main) Navigator Scope © Flowsheet © Case © Basis © Utility	2 3 Mezcla V1 V2 V3	Actuator Desired Position		Object Filter All Streams UnitOps Logicals ColumnOps Custom Custom
Variable Description:	Actuator Desired Position			Cancel

Figura 5.2. Variable manipulada.

- 4. En la pestaña **Parameters** seleccionar la acción **Reverse.** La acción es reversa debido a que un aumento en el flujo implica una disminución en la apertura de la válvula.
- 5. Fijar un set point **SP** de 100 kmol/h. Esto se logra ingresando los valores mínimos y máximos para la variable de proceso (PV). En la sección **Range** ingresar un valor mínimo de 90 kmol/h y un máximo de 110 kmol/h.
- 6. Dirigirse a la pestaña Autotuner, en la sección Autotuner Parameters seleccionar el control proporcional-integral **PI**. Presionar **Start Autotuner**.
- 7. Presionar el icono **Run** para iniciar el modo dinámico y observar los valores calculados de Kc y Ti.
- 8. Ingresar los valores calculados al controlador haciendo clic en **Accept** en la sección **Autotuner Results** en la pestaña **Autotuner**.
- 9. Cambiar a modo automático seleccionando **Auto** en la casilla **Mode** de la sección **Operational Parameters**.

Si se desea ver gráficamente como cambian las variables con respecto al tiempo es necesario instalar registradores gráficos:

1. En la pestaña **Stripchart** del controlador, seleccionar **SP**, **PV**, **OP Only** en la casilla **Variable Set**. Hacer clic en **Create Scripchart** y luego presionar **Display** en la ventana que aparece.

Figura 5.3. Controlador de alimentación sintonizado.

Se puede apreciar que con los valores calculados por el autotuner el sistema se encuentra perfectamente sintonizado, pues el PV coincide con el SP de 100 kmol/h. Sin embargo, si se modifica el valor de alguna constante se puede apreciar el cambio en la sintonía del controlador.

Como ejemplo en este caso, se han cambiado los valores de las acciones integral y derivativa del controlador. Se puede observar como el PV se eleva a un valor de 111,4 kmol/h alejándose del SP de 100 kmol/h, esta acción también se ve reflejada en la apertura de la válvula OP que para este caso pasó de un 50% a un 37,2%.

Figura 5.4. Controlador de alimentación fuera de control.

Control de nivel:

 Hacer doble clic sobre el separador. Dirigirse a la pestaña Dynamics, seleccionar Add/Configure Level Controller. Con esta acción se ha añadido un controlador PID con todas sus propiedades especificadas para su sintonización proporcionalintegral, incluyendo SP. Realizar el autotuner del controlador y dar clic en Accept para añadir estos valores calculados.

Parameters Operational Parameters Configuration Action: Reverse Direct Advanced SP Mode: Local Remote McD Design Scheduling Internal Scheduling SP 49.95 % PV 49.99 % OP Signal Processing OP 48.78 % Range PV Minimum 0.0000 % PV Maximum 100.0000 % PV Maximum
Action: Reverse Direct Advanced Autotuner MC Design Cheduling Narms VC Conditioning SP VC Conditioning Signal Processing reedForward Model Testing nitialization Range VC Maximum 0.0000 % VC Maximum 100.0000 % VC Maximum
Advanced Autotuner MC Design Scheduling Alarms VV Conditioning Signal Processing FeedForward Mode <u>Auto</u> Execution <u>Internal</u> SP <u>49.95 %</u> PV <u>49.99 %</u> OP <u>48.78 %</u> Range PV Minimum <u>0.0000 %</u> PV Maximum <u>100.0000 %</u> Fundamentary <u>Algorithm Type</u> Kc <u>9.25</u>
Autotuner MC Design Scheduling Alarms SV Conditioning Signal Processing FeedForward Mode <u>Auto</u> Execution <u>Internal</u> SP <u>49.95 %</u> PV <u>49.99 %</u> OP <u>48.78 %</u> Range PV Minimum <u>0.0000 %</u> PV Maximum <u>100.0000 %</u> Tuning Parameters <u>Algorithm Type</u> Kc <u>9.25</u>
MC Design Scheduling Alarms PV Conditioning Signal Processing FeedForward Model Testing initialization PV Minimum 0.0000 % PV Maximum 100.0000 % PV Maximum 100.0000 % PV Maximum 100.0000 %
Scheduling Alarms SP 49.95 % PV Conditioning Signal Processing FeedForward Model Testing nitialization OP 48.78 % PV Minimum 0.0000 % PV Maximum 100.0000 % PV Maximum 100.0000 % Tuning Parameters Algorithm Type Kc 9.25
Alarms PV Conditioning Signal Processing FeedForward Model Testing Initialization PV Minimum 0.0000 % PV Maximum 100.0000 % Tuning Parameters Kc 9.25 Hysys
OP 48.78 % Signal Processing 0P FeedForward 48.78 % Model Testing Initialization Initialization PV Minimum PV Maximum 100.0000 % Tuning Parameters Algorithm Type Kc 9.25
Range PV Minimum PV Maximum 100.0000 % PV Maximum 100.0000 % Tuning Parameters Kc 9.25 Hysss
Model Testing Initialization PV Minimum 0.0000 % PV Maximum 100.0000 % Tuning Parameters Kc 9.25 Hysys
PV Maximum 100.0000 % Tuning Parameters Algorithm Type Kc 9.25 Hyses V
Tuning Parameters Algorithm Type
Tuning Parameters Kc 9.25
Kc 9.25 Hysys -
Ti 0.289
Td 0.000 Algorithm Subtype
PID Velocity Form

Figura 5.5. Parámetros del controlador de nivel.

Se puede apreciar el estado de las variables con respecto al tiempo añadiendo un registrador gráfico, siguiendo el mismo procedimiento que realizó para el control de nivel:

Figura 5.6. Controlador de nivel sintonizado.

En este caso se puede observar que, al suprimir la acción integral del controlador, el sistema sufre un cambio drástico estando fuera de control.

Figura 5.7. Controlador de nivel fuera de control.

Control de presión:

1. Instalar un controlador PID con las siguientes propiedades:

Nombre	Control Presión
Variable controlada	Presión
Variable a manipular	Flujo de corriente a través de la válvula V2

Select Input PV For Contro	ol Presión			_		\times
Flowsheet	Object	Variable	Variable Specifics		OK	
Case (Main) Navigator Scope Image: Scope flowsheet Image: Case Image: Basis Image: Utility	2 3 4 5 Control Alimentación Control Nivel FeederBlock_Mezcla LIC-100 Mezcla ProductBlock_4 ProductBlock_5 V1 V-100 V2 V3	pHValue Power Pressure Product Nozzle Elevation Properties Specific Gravity Specific Gravity rel Air Std Gas Flow Std Ideal Liq Mass Density Std Ideal Liq Vol Flow Std Liq Vol Flow Std Liq Vol Flow Spec Steady State Specs Stock Tank Density Surface Tension Temperature Thermal Conductivity			bject Filte) All) Streams) UnitOps) Logicals) Column() Custom Custom	Dps
Variable Description:	Pressure				Cance	

Figura 5.8. Variable controlada.

Select OP Object For Cont	rol Presión			- 🗆 X
Flowsheet	Object	Variable	Variable Specifics	ОК
Case (Main) Navigator Scope Flowsheet Case Basis Utility 	2 3 Control Alimentación Control Nivel LIC-100 Mezcla V1 V2 V3	Actuator Desired Position		Object Filter All Streams UnitOps Logicals ColumnOps Custom Custom Disconnect
Variable Description:	Actuator Desired Position			Cancel

Figura 5.9. Variable a manipular.

- 2. En la pestaña **Parameters** seleccionar la acción **Direct**. La acción es directa debido a que un aumento de presión en la corriente implica un aumento en la apertura de la válvula para mantener una presión constante en el tanque.
- 3. En la sección **Range** insertar el PV mínimo 4000 kPa, y el PV máximo de 6000 kPa para ajustar el set point ST a 5000 kPa.
- 4. Realizar el autotuner de igual forma como se realizó con el control de alimentación y nivel.

onnections . are	ameters Mo	onitor	Stripchart	User Variables	Notes
Parameters	Operation	nal Par	rameters —		
Configuration	Action:	0	Reverse	Direct	t
Advanced	SP Mode	e: 🔘	Local	Remo	ote
lutotuner	Mode		_		Man
MC Design	Executio	on			Internal
Marmor	SP				500.0 kPa
PV Conditioning	PV				500.0 kPa
Signal Processing	OP				50.00 %
	PV Max	imum		6	00.0000 kPa
	Tuning Pa	arame	ters	Algorithm	n Type
	Kc		1.45	Hysys	*
	Tel		0.000		
			0.000	Algorithm	n Subtype
				PID Velo	ocity Form

Figura 5.10. Parámetros control de presión.

5. Añadir un registrador gráfico siguiendo el mismo procedimiento que en los controladores de alimentación y nivel.

Figura 5.11. Controlador de presión sintonizado.

6. Modificar el valor de las constantes para apreciar el cambio con respecto al tiempo.

Figura 5.12. Controlador de presión fuera de control.

Control de temperatura frente a una perturbación:

Se desea separar nitrógeno N_2 de una mezcla de hidrocarburos compuesta por n-pentano y n-octano, los cuales están en una proporción de 0.3/0.2/0.5 en fracción molar respectivamente. Al sistema de separación entran 98.18 kmol/h de mezcla a una temperatura de 80°C y una presión de 29,1 psia, y una corriente de 25 kmol/h de n-octano a 10°C a la misma presión. Se pretende establecer un control de temperatura, que permita mantener constante la temperatura del líquido.

Solución en Aspen-Hysys:

- 1. Componentes: nitrógeno, n-pentano, n-octano.
- 2. Paquete termodinámico: Peng Robinson.
- 3. Adicionar dos corrientes de materia con las siguientes propiedades:

Conditions					
Stream Name	Mezcla	Perturbación			
Temperature	80°C	10°C			
Pressure	29,1 psia	29,1 psia			
Molar Flow	98.18 kmol/h	25 kmol/h			
Composit	Composition (Mole Fraction)				
nitrógeno	0,3	0,0			
n-octano	0,5	1,0			
n-pentano	0,2	0,0			

 Tabla 5.3. Propiedades de las corrientes de materia en control de temperatura.

- 4. Adicionar una corriente de energía y nombrarla Q. Hacer doble clic sobre esta corriente. Dirigirse a la pestaña Dynamics y hacer clic en Utility Valve. Establecer los valores minimo (o kJ/h) y máximo (1x10⁷ kJ/h) de energía. En la pestaña Stream insertar un flujo de calor de 8,3x10⁵ esto se hace con el fin de que el sistema se resuelva, una vez se entre al modo dinámico se observará como este valor cambia.
- 5. Adicionar un separador.
- 6. Hacer doble clic sobre el separador, en la sección **Connections** se insertan las entradas y salidas del separador:

Inlet:	Alimentación, Perturbación, Q.
Vapour Outlet:	Vapor
Liquid Outlet:	Líquido

Pasar a la sección **Parameters** e insertar un volumen de 11,33 m³ y una capacidad del 60%. Cerrar ventana.

7. Adicionar dos válvulas de control. Insertar las siguientes propiedades en las válvulas de control:

Name	V1	V2
Inlet	Vapor	Líquido
Outlet	1	2
Delta P	0,001225 bar	0,02011
T 11	FAD 11111	/1 1

Tabla 5.4. Propiedades de las válvulas.

- 9. En la pestaña **Dynamics** de cada válvula, hacer clic en **Size valve** para que se calcule el valor de la conductancia.
- 10. Entrar en el modo dinámico de Aspen-Hysys.

Control de nivel:

 Hacer doble clic sobre el separador. Dirigirse a la pestaña Dynamics, seleccionar Add/Configure Level Controller. Con esta acción se ha añadido un controlador PID con todas sus propiedades especificadas para su sintonización proporcionalintegral, incluyendo SP. Realizar el autotuner del controlador y dar clic en Accept para añadir estos valores calculados.

onnections	Parameters	Monitor	Stripchart	User Variables	Notes	
Parameter	rs Ope	rational Pa	rameters —			
onfiguration	n Act	ion: 🔘	Reverse	Oirect	t	
dvanced	SP	Mode:) Local	Remo	ote	
utotuner AC Design	M	ode			Aut	to
/IC Design	Ex	ecution			Intern	al
larms	SP				56.49	%
V Condition	ing PV				56.49	%
gnal Proces	sing OF	OP		49.43 %		
	Tun	ng Parame	ters	Algorithm	n Type	1
	Kc		18.4	Hysys	•	
	Ti		0.448			
	Td		0.000	Algorithn	n Subtype	
				PID Velo	ocity Form	

Figura 5.13. Parámetros del controlador de nivel.

Control de Temperatura:

1. Instalar un controlador PID con las siguientes propiedades:

Nombre	Control Temperatura		
Variable controlada	Temperatura		
Variable a manipular	Flujo de calor en la corriente de energía		

Flowsheet	Object	Variable	Variable Specifics	ОК
Case (Main)	1 2 Alimentación Control Nivel FeederBlock, Alimentación FeederBlock, Perturbación Líquido Perturbación ProductBlock_1 ProductBlock_2 Q	pHValue * Power * Pressure * Product Nozzle Elevation * Properties Specific Gravity Specific Gravity rel Air * Std Gas Flow * Std Ideal Liq Mass Density * Std Ideal Liq Vol Flow * Std Liq Vol Flow Spec *		Object Filter —
 Flowsheet Case Basis Utility 	V1 V-100 V2 Vapor	Steady State Specs Stock Tank Density Surface Tension Temperature		Custom
- , 				Disconnect

Figura 5.14. Variable controlada.

Select OP Object For TIC	-100		-	- 🗆 X
Flowsheet	Object	Variable	Variable Specifics	OK
Case (Main) Navigator Scope Flowsheet Case Basis Utility 	Alimentación Control Nivel Líquido Perturbación Q V1 V2 Vapor	Control Valve		Object Filter
Variable Description:	Control Valve			Cancel

Figura 5.15. Variable a manipular.

- 2. En la pestaña **Parameters** seleccionar la acción **Reverse**. La acción es reversa debido a que un aumento de temperatura implica una disminución en la apertura de la válvula para suministrar un menor flujo de calor.
- 3. En la sección **Range** insertar el PV mínimo 90°C, y el PV máximo de 100°C. Se observa como el set point ST se fija en 92,73°C.
- 4. Realizar el autotuner de igual forma como se realizó con el control de alimentación y nivel.

Descriptions	Mon	itor Stripcha	rt User Variables Notes
Parameters	Action:	Reverse	Direct
Advanced	SP Mode:	Local	O Remote
Autotuner	Mode		Man
IMC Design	Execution		Internal
Alarms	SP		92.73 C
PV Conditioning	PV		92.73 C
Signal Processing	OP		8.95 %
	- Tuning Para	ameters	Algorithm Type
	Kc	1.3	B8 Hysys V
	Ti	8.54e-00	12
	Ti Td	8.54e-00 0.00	Algorithm Subtype
	Ti Td	8.54e-00 0.00	Algorithm Subtype
	Ti Td	8.54e-00 0.00	Algorithm Subtype
	Ti Td	8.54e-00 0.00	Algorithm Subtype
	Ti Td	8.54e-00 0.00	Algorithm Subtype

Figura 5.16. Parámetros del controlador de temperatura.

- 5. Hacer doble clic sobre el separador y dirigirse a la pestaña **Dynamics**, entrar en la sección **Stripchart**. En **Variables Set** se selecciona **PFD Table Entries.** Hacer clic en **Create Stripchart**. Seleccionar únicamente las casillas **Vassel Temperature** y **Duty**. Hacer clic en **Display**.
- 6. Hacer clic derecho sobre la corriente de energía Q y seleccionar **Show Table** con el fin de mostrar el valor del flujo de calor en el diagrama de procesos.

Figura 5.17. Controlador de temperatura sintonizado.

Se observa que el proceso se encuentra controlado con la temperatura de salida del líquido en un valor constante de 92,37°C y un flujo de calor de $8,952 \times 10^5 \text{ kJ/h}$.

Para observar la respuesta del sistema frente a la perturbación, se modifica la temperatura de la corriente **Perturbación**. inmediatamente se observa como el flujo de calor se ajusta, para que la temperatura permanezca constante:

Material Stream: Perturbación	- • ×	💽 🗈 V-100-DL4 📃 🔲 🗶
ents Dynamics		
Stream Name	Perturbación =	
Vapour / Phase Fraction	0.0000	
Temperature [C]	35.00	
Pressure [kPa]	200.6	
Molar Flow [kgmole/h]	25.00	92,87
Mass Flow [kg/h]	2856	
Std Ideal Liq Vol Flow [m3/h]	4.049	17.453e+005 (kJ/h)
Molar Enthalpy [kJ/kgmole]	-2.469e+005	
Malar Entrony Ik//kamala_C1	40.0E	
Q		
Heat Flow 7,453e+005	i kJ/h	81,73 2,254e+004 2,256e+004 2,258e+004 2,260e+004 Minutes
<		

Figura 5.18. Respuesta del controlador frente a un cambio de temperatura.

Si la temperatura en la corriente **Perturbación** es alta, como en este caso de 160°C, el sistema de control deja de funcionar debido a que el flujo de calor a suministrar está por fuera de los límites establecidos.

Figura 5.19. Respuesta del controlador frente a una temperatura alta.

Otro caso semejante ocurre si se le da un valor negativo a la temperatura (-15°C). El flujo de calor se ajusta para entregar el valor de temperatura deseado (92,73°C).

Figura 5.20. Respuesta del controlador a frente a una temperatura baja.

Conclusiones y Recomendaciones

Se ha desarrollado un documento que permite familiarizarse con los simuladores de proceos existentes en la industria química. Aspen-Hysys proporciona todas las herramientas necesarias para implementar los conocimientos adquiridos en las asignaturas de procesos y utilizarlos de forma práctica con la resolución de ejercicios, lo que lleva a un desarrollo de habilidades computacionales y un afianzamiento en los conocimientos técnicos, además de la clara ventaja de simplificar cálculos matemáticos y análisis extensos.

Aspen-Hysys como herramienta multifuncional permite la simulación de diversos casos que se presentan en la industria. Resalta la capacidad que tiene este software para visualizar los procesos en estado dinámico, lo que proporciona un enfoque mas realista de cada operación que se lleva a cabo en los procesos.

Se recomienda guardar cada progreso que se logre en las simulaciones para tener una referencia clara de los procedimientos que se realizan. Así mismo, la utilización del modo dinámico y las diferentes operaciones unitarias incluidas en Aspen-Hysys deben ser de frecuente uso para obtener destreza con la herramienta de simulación.

Bibliografía

- [1] Area Moreira M. (2000). "Que aporta Internet al cambio pedagógico en la Educación Superior?", en Redes Multimedia y diseños virtuales. Actas del III Congreso Internacional de Comunicación Tecnología y Educación, Universidad de Oviedo, septiembre, pp 128-135.
- [2] Vaquero J. (2007), "Herramienta interactiva para la enseñanza y entrenamiento en la técnica de control predictivo", tesis en opción al grado de master, Instituto Politécnico José Antonio Hecheverria, La Habana. Cuba.
- [3] Cuevas-Aranda, M., Fernández-Valdivia, D. G., Parra-Ruiz, M. L., & Navarro-Nieto, S. (2014). Uso de simulaciones por ordenador para mejorar la enseñanza en el laboratorio de ingeniería química. Modelling in Science Education and Learning, 7, 93-102.
- [4] Streicher, S. J., West, K., Fraser, D. M., Case, J. M., & Linder, C. (2005). Learning through simulation: Student engagement. Chemical Engineering Education, 39(4), 288-295.
- [5] García, G. J., Ibarra, C.P., Félix, F. M., & Ríos, M. G. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), 1-9.
- [6] Fernandes F. (2002). Use of process simulators for the unit operations education of undergraduate chemical engineers. Computer Applications in Engineering Education, 10, 155-160.
- [7] Ferro V. R., Gómez J. O., Palomar J. F., Gómez L. M. (2006). Estrategia didáctica tipo ECTS basada en el uso de simuladores de proceso en la titulación de Ingeniero Técnico Industrial, especialidad en Química Industrial. Actas del XIV Congreso Universitario de Innovación Educativa en las Enseñanzas Técnicas (CUIEET), Gijón, España.
- [8] Corpas, C. C., Ramos, E. R., Galiano, E. C., Valdivia, D. F., Vilar, M. M., Pulido, I. R., ... & Lozano, F. E. (2010). Aplicación del programa de simulación de procesos Hysys para el diseño de actividades de aprendizaje de operaciones unitarias en las áreas de Ingeniería Química y Tecnologías del Medio Ambiente. Iniciación a la Investigación, (e4).
- [9] Maldonado, D. B. (2011). Simulación y modelos matemáticos. EXPEDITIO, (7).

- [10] Ramírez Avelar, M. C. (2005). Desarrollo de módulos de simulación de procesos en Ingeniería Química (Doctoral dissertation, Universidad de El Salvador).
- [11] Scenna, N. J., Aguirre, P. A., Benz, S. J., Chiotti, O. J., Espinosa, H. J., Ferrero, M. B., ... & Salomone, H. E. (2015). Modelado, simulación y optimización de procesos químicos.
- [12] Sifuentes, V. H. M. (2000). Simulación de procesos en Ingeniería Química. Plaza y Valdés.
- [13] Gonzalez, C., & Vital, M. (2010). Curso Electivo: Simulación de procesos en Aspen HYSYS. Laboratorio de Simulacion de Procesos Facultad de Ciencias Aplicadas a la Industria, UNCuyo.
- [14] Londoño R. (2015). Balance de Materia y Energía. Universidad Tecnológica de Pereira.
- [15] Çengel, Y. A., & Boles, M. A. (2015). Termodinámica (8a. McGraw Hill Mexico).
- [16] Mott, R. L. (2006). Mecánica de fluidos. Pearson educación.
- [17] Ghasem, N. (2011). Computer methods in chemical engineering. CRC Press.
- [18] Himmelblau, D. M. (1997). Principios básicos y cálculos en ingeniería química. Pearson Educación.
- [19] Reklaitis, G. V., & Schneider, D. R. (1983). Introduction to material and energy balances (pp. 55-56). New York: Wiley.
- [20] Hamid, M. K. A. (2007). HYSYS®: An Introduction to Chemical Engineering Simulation. Apostila de Hamid.