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Abstract. Freezing of gait (FOG) is one of the most incapacitating
symptoms among the motor alterations of Parkinson’s disease (PD).
Manifesting FOG episodes reduce patients’ quality of life and their
autonomy to perform daily living activities, while it may provoke falls.
Accurate ambulatory FOG assessment would enable non-pharmacologic
support based on cues and would provide relevant information to neu-
rologists on the disease evolution.

This paper presents a method for FOG detection based on deep learn-
ing and signal processing techniques. This is, to the best of our knowl-
edge, the first time that FOG detection is addressed with deep learning.
The evaluation of the model has been done based on the data from 15
PD patients who manifested FOG. An inertial measurement unit placed
at the left side of the waist recorded tri-axial accelerometer, gyroscope
and magnetometer signals. Our approach achieved comparable results to
the state-of-the-art, reaching validation performances of 88.6% and 78%
for sensitivity and specificity respectively.

Keywords: Freezing of gait · Parkinson’s disease · Deep learning ·
Signal processing · Inertial measurement unit

1 Introduction

Parkinson’s disease (PD), with a prevalence of approximately 1% among peo-
ple of age above 65, is the second most common neurodegenerative disorder 
[15,16,23,26]. PD patients manifest several motor and non-motor symptoms.
Accurate automatic symptoms detection in PD patients’ provides relevant indi-
cators about their condition [4]. Clinicians by disposing of these indicators can
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maintain an updated assessment over the patient’s regimen, which permits to
improve the patient’s quality of life.

Freezing of gait (FOG) is a symptom associated with PD condition. FOG is
usually manifested in episodes shorter than 10 s [20]. Suffering FOG episodes may
provoke falling accidents when patients are willing to perform walking related
actions [3]. According to Nieuwboer and Giladi [14], FOG might be defined as
an inability to deal with concurrent cognitive, limbic, and motor inputs, causing
an interruption of locomotion. Many medical research studies have been carried
out to discover strategies to combat this symptom. These studies have proved that
techniques such as to induce an auditory or visual external a rhythm stimulus to
PD patients to improve their walking capacity while minimising FOG’s incisive
frequency [2]. Automatic FOG monitoring would permit to provide online support
to patients through rhythmic auditory cues, which may significantly enhance the
patients’ autonomy during their activities of daily living (ADL) [2,28].

Recently, with the increase of computing power of small devices and the adop-
tion of wearable sensors for biomedical research, wearable sensors are increas-
ingly becoming a common practice for detecting motor symptoms in PD patients
within the research community. The state-of-the-art on algorithms for automatic
FOG detection is shallow machine learning (ML) algorithms applied to signals
acquired from inertial wearable sensors [12,13,18]. The state-of-the-art perfor-
mance for FOG detection is defined by performances within the range [85%, 95%]
for the geometric mean (GM) between sensitivity and specificity. However, the
complexity in designing handcrafted features and the scarcity of data from PD
patients collected under real-life-like conditions for developing reliable solutions
for monitoring FOG in naturalistic environments, are the major impediments
preventing the research community from mastering the problem.

Feature learning is a set of techniques that learns a transformation of raw
data input to a representation that can be exploited by ML methods. Deep
learning (DL) methods are feature learning methods with multiple levels of rep-
resentation. DL models can learn feature extractions that can easily handle mul-
timodal data, missing information and high dimensional feature spaces. Thus,
when working with DL methods, the manual feature engineering can be obvi-
ated, which is otherwise necessary for traditional ML methods. Furthermore, DL
models can outperform shallow ML algorithms when enough data to represent
the complexity of a target problem are provided adequately.

To the best of our knowledge, this is the first paper to present a DL model
for addressing FOG detection in PD patients from inertial sensors data. Our
approach implements an 8-layer convolutional neural network (ConvNet), which
is composed of: 5 convolutional layers, 2 dense (i.e. fully-connected) layers and
an output layer. In the experiments performed, this model achieved compara-
ble performances to the state-of-the-art. Concretely, the presented models were
able to achieve performances of 88.6% and 78% for sensitivity and specificity
respectively. The main contribution of this study is to serve as a basis from
which designing DL models capable of mastering FOG detection from inertial
data collected in naturalistic environments.
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2 Related Work

Automatic FOG detection is an open research issue which has been widely
addressed by several combinations of devices and algorithms. This section
reviews some of these approaches.

In 2008, Moore et al. [13] presented the Moore-Bächlin FOG Algorithm
(MBFA), a novel method for automatic FOG detection in PD patients that
manifest FOG. The MBFA mainly consists of a freeze index (FI) threshold,
where FI is defined as the ratio between the power spectral density in the gait
freezing band (i.e. 3–8 Hz) and in the locomotion band (i.e. 0.5–3 Hz). This app-
roach was able to achieve highly accurate results, considering the simplicity of
the method. Concretely, they were able to detect 78% of FOG events correctly.
These results were retrieved by a general threshold across all patients data. How-
ever, they also proved that calibrating the threshold to each patient increased
the method’s performance about an 11%.

In 2012, Mazilu et al. [12] presented a novel approach for monitoring FOG in
PD patients, which combines the usage of smartphones and wearable accelerome-
ters as devices, while using, for the first time, ML algorithms for the online FOG
detection task. Some of the ML algorithms they tested were: random forests
(RF), decision trees (C4.5), naive Bayes (NB) and k-nearest neighbours (k-NN).
They reported top results of 66.25% and 95.38% for sensitivity and specificity,
respectively, using user-independent settings.

In 2016, Rodŕıguez et al. [18] presented a study aiming at FOG detection
in PD patients during their ADL, and adopting the support vector machines
(SVMs) for the FOG bi-classification task. They proposed an innovative feature
extraction which is designed to be implementable in low-power consumption
wearables for online FOG detection. The data, which was composed of iner-
tial signal recordings at 40 Hz from a single inertial measurement unit (IMU)
placed at the left side of the waist, was acquired following the same conven-
tions reviewed in [13]. However, laboratory data acquisition biases the data with
information related to the experiment characteristics as in [12,13]. Thus, they
collected the data at the patients’ homes, configuring each test to adapt to the
real activities in which the patient would experience FOG, rather than employing
homogeneous lab settings to force patients to trigger FOG events. Although they
have not reported test error results in this work, they performed a comparative
study of the state-of-the-art feature extraction techniques for FOG detection,
while reporting cross-validation error when training a model for each combina-
tion of ML algorithm (e.g. k-NN, RF, NB and SVM) and feature extraction
strategy. Furthermore, they considered different window sizes (i.e. ranging from
0.8 to 6.4 s) to maximise the representation power of each configuration. Their
results suggested that SVMs with their proposed feature generation are power-
ful strategies for FOG detection since the cross-validation performance for this
configurations were the most accurate among all regardless of the window size.
Concretely, highest results were achieved by using a window duration of 1.6 s,
for which they reported 89.77% as the GM between sensitivity and specificity.
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Recently, in 2017, Rodŕıguez et al. [19] presented an extension of [18] and
[17]. In this study, they showed performance results for the GM between sensi-
tivity and specificity of 76%, which was determined by using an episode-based
evaluation strategy, instead of the window-based strategy.

3 Deep Learning for FOG Detection

3.1 Feature Extraction with ConvNets

A ConvNet is a type of feed-forward deep neural network, which typically com-
bines convolutional layers with traditional dense layers to reduce the number
of weights composing the model. Convolutional layers enforce local connectivity
between neurones of adjacent layers to exploit spatially local correlation. Con-
cretely, convolutional layers are formed by kernels that share weights and, thus,
permit to learn position invariant features from the input data.

Therefore, convolutional layers can extract features from data that have
underlying spatial or temporal patterns, such as images or signal data. Fur-
thermore, stacking these layers permits to extract progressively more abstract
patterns.

While traditional DL models are composed of stacked dense layers, which
lead to an overwhelming number of weights, ConvNets implement a powerful
and efficient alternative if the target data present underlying spatial patterns.

3.2 Architecture

The presented approach is a one-dimensional ConvNet, which is described as

C(16|3) − C(16|3) − C(16|3) − C(16|3) − C(16|3) − D(32) − D(32) − L

where C(x|y) corresponds to a convolutional layer of x kernels of length y, D(z)
corresponds to a dense layer of z neurons, and L is the last layer of the network.

FOG events detection was treated as a bi-classification task, such that FOG
instances were labelled as positive values (i.e. 1) whereas non-FOG instances
were labelled as negative values (i.e. −1). The models, thus, should be able to
retrieve negative and positive values. A linear function with L2 weight regular-
isation penalty coefficient set to 0.01 was, thus, implemented as the activation
function of the last layer, which was set to a dense layer of 1 neurone.

3.3 Data Representation and Augmentation

A common practice to enhance ML models’ training quality is to normalise
the data. Data were, thus, normalised by the precomputed sample standard
deviation from the overall training dataset.

The most common technique to deal with classification tasks in time-series
data is to use a windowing strategy. Windowing consists of splitting the data
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into equally-sized consecutive parts to address the classification task window-
wisely instead of instance-wisely. The classification task was, therefore, addressed
window-wisely.

Data augmentation techniques permit to increase the knowledge extracted
from data by performing replications on the data that are consistent with the
task’s domain. Data augmentation strategies implemented were:

– To randomly shift the window starting points.
– To rotate each windowed signal by simulating a rotation on the waist-sensor

through a rotation matrix generated by sampling angles (see Fig. 1 for the axis
reference) over a distribution defined by the following ranges: x-axis: [−30◦,
+30◦]; y-axis: [−45◦, +45◦]; and z-axis: [−10◦, 10◦]; which were designed to
resemble naturally introduced rotations due to the patient’s waist form and
movements.

DL models are powerful feature extractors, however, if being provided with
insufficient information, these models would fail to solve the classification task.
Rodŕıguez et al. [19] performs a feature extraction which is computed from the
current and previous windows. This window transitional information usage sug-
gested that data from one single window could be insufficient to succeed in the
FOG detection task. To provide the DL models with a sample representation
from which they could learn which part of sample data belonged to the cur-
rent window and which to the transition between windows, a novel strategy
was implemented which is hereinafter referred as stacking. The stacking strat-
egy can be seen as a function which outputs the window to fed to the model
from the current and the previous window data plus a value for the stacking
parameter p; thus, Sn = stacking(Wn,Wn−1, p) where: Sn refers to the nth

stacked window used for feeding the model; Wn and Wn−1 refer to the current
and previous windowed data, respectively; and p is a trade-off parameter of the
stacking(Wn,Wn−1, p) function, which is hereafter defined:

1. The previous and the current windows are split into p equally-sized parts.
2. Each ith part of the current window is paired with the (i-1)th part, even if

this one belongs to previous or to the same window, in which case that part
is replicated. The parts from the previous window which were not paired are
removed.

3. Each remaining part is transformed by applying the fast Fourier transform
(FFT).

4. Each part of the current window is complemented by its predecessor part by
just concatenating the columns of the current part to the difference between
both parts, which produces a new extended part composed of 18 columns (i.e.
9 of the current window + 9 of the predecessor part of this concrete part).

5. Finally all parts are re-stacked together maintaining the initial temporal
order.
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4 Experiments

4.1 Data Collection

The dataset [18] employed is composed of inertial signals from 15 PD patients
recorded by a single IMU placed at the left side of the patient’s waist, as shown in
Fig. 1. This IMU generated 9 signals sampled at 200 Hz as output. The 9 signals
represented the measurements of 3 tri-axial sensors: gyroscope, accelerometer
and magnetometer.

Fig. 1. The data collector device and its location on body [18].

The data collection was performed within the scope of the Freezing in Parkin-
son’s Disease: Improving Quality of Life with an Automatic Control System
(MASPARK)1 project. Inclusion criteria were: (I) being diagnosed with PD
according to the UK Brain Bank; (II) having Hoehn & Yahr stage above 2
in OFF state; (III) not having dementia according to DSM-IV criteria; (IV)
and giving their written informed consent for using the collected data in the
research carried out. All data was, furthermore, gathered at the patients’ homes
to increase the resemblance of targeting the same problems in real-life environ-
ments. The patients performed a set of activities such as showing their place and
carrying an object from one room to another. These activities were afterwards
labelled by clinicians relying only on the video recording. The data collection
protocol included some activities which were specially introduced to increase
the difficulty of the FOG detection task. Concretely, adding data from activi-
ties such as brushing their teeth, painting and erasing in a sheet of paper, was
endeavoured to force models to learn robust representations of FOG.

4.2 Training and Tested Configurations

A complete exhaustive search of the hyperparameter space was infeasible due
to computational and time constraints. The hyperparameters exploration was

1 http://futur.upc.edu/15557508.

http://futur.upc.edu/15557508
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undertaken following an iterative semi-heuristic strategy formed by several
stages, in each of which some hyperparameters were set to the optimal con-
figurations tested; thus reducing significantly the combinations of configurations
to consider. Note that the adoption of this strategy implies that the presented
approaches constitute only local minima over the overall hyperparameters space
considered.

The model’s hyperparameters are hereafter described while discussing the
ranges of values contemplated and the suboptimal configurations selected for
each of them.

Architecture. The values considered for the architecture exploration were:

– Number of convolutional layers: all integer values within the range [2, 10].
– Number of dense layers: 1, 2 and 3.
– Number of kernels per convolutional layer: 8, 16, 32, 64, 128, 256 and 512.
– Number of neurons per dense layer: 16, 32, 64, 128, 256, 512 and 1024.
– Kernel lengths: 3 and 5.

The architecture configuration of the best validation models trained were defined
as: 4 and 5 convolutional layers, 2 dense layers, 16 kernels per convolutional layer,
32 neurons per dense layer and kernels of length 3.

Data Augmentation. Data augmentation parameters that determine the number
of shifts and rotations to be performed were set to:

– Number of shifts = 4 (data is always shifted).
– Number of added rotations = 1 (original data was included).

From the augmentation process, the amount of training data was, thus, 8 times
higher.

Stacking Parameter p. Values considered for the p stacking parameter were: 1,
2, 3, 4 and 8. Finally, p was set to values 1, 2 and 3.

Sampling Frequency and Window Duration. Rodŕıguez et al. [18] performed
successfully FOG detection on a subset of the same dataset here considered by
adopting a subsampling frequency of 40 Hz and window duration of 3.2 s This
previous study suggested, thus, that that windows of at least 3.2 s and a sampling
frequency at least of 40 Hz were sufficient values to address the detection task.
Therefore, the values tested were:

– Sampling frequency (Hz): 40, 50, 100 and 200.
– Window duration (s): 2.56, 3, 3.2, 5.12 and 10.24.

Finally, these hyperparameters were set to 100 Hz and 2.56 s for sampling fre-
quency and window duration respectively.
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Batch Size. DL models are trained batch-wisely instead of sample-wisely, being
each sample composed by a windowed group of instances already processed (i.e.
normalised and stacked). A batch is a fraction of the overall processed training
data to be fed into the DL model, which is generated from splitting these data
into equally sized parts. Then, DL models compute the gradients and perform
the weight corrections batch-wisely; thus, applying fewer corrections during the
training process.

According to Goodfellow et al. [7], generalisation error is often best for a
batch size of 1. However, this strategy is time-consuming. Batch sizes tested,
thus, were: 1, 8, 16, 32, 64 and 128. From these values, 16 was selected.

Number of Epochs. DL models are trained iteratively with the aim of approach-
ing relevant local optima on the neurones’ weights space to successfully represent
the target problem. These iterations are denoted as epochs. Correctly estab-
lishing the number of epochs is important to avoid useless computation when
the model has converged while preventing overfitting. The number of epochs
by which a model may reach convergence will usually be correlated to several
other characteristics, such as the model’s architecture, the data, the optimisation
method and its internal parameters (e.g. learning rate), and the regularisation
strategies being employed. The hyperparameters process performed kept the
models’ architectures and the dropout indexes as variable throughout the over-
all study. An early-stopping strategy was, thus, implemented instead of fixing
the number of epochs.

Activations. The most widely exploited activation function for DL methods is
the rectified linear unit (ReLU) [11,22]. Besides, training DL models with ReLU
activations increases the training time efficiency significantly, which is a major
bottleneck when working with DL techniques. Therefore, all activations, except
for the activation function of the last layer, are set to ReLU functions.

Error Loss. FOG detection is addressed as a binary classification tasks. Hinge
loss algorithm is a loss error method specialised for bi-classification problems,
which is defined as:

Lhinge = mean(max(0, 1 − ytrue ∗ ypred)) (1)

where ytrue are the real labels of the data, which can either be −1 or 1, while
ypred are the model label predictions which can adopt real values in the range
[−∞,+∞].

However, it was noted that the class imbalance in the training data was
preventing the model from learning strong FOG representations. Therefore, the
weighted version of the hinge loss function, which is hereafter defined, was imple-
mented in the final models.

L+
w−hinge = max(0, 1 − y+

true ∗ ypred) ∗ Pno−FOG

L−
w−hinge = max(0, 1 − y−

true ∗ ypred) ∗ PFOG

Lw−hinge = mean(L+
w−hinge + L−

w−hinge)
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where y+
true defines the real positive samples in the data while y−

true defines the
negative ones, PFOG is the prior of FOG samples in the training data (i.e. the
percentage of fog samples in the training dataset) and Pno−FOG is the prior of
non-FOG samples in the training data.

Optimizer. In DL models the loss optimisation responsibility is delegated to a
stochastic gradient-based algorithm. The algorithms considered were: root mean
square propagation (RMSProp) [24]; AdaDelta [29], which is an extension of
adaptive gradient algorithm (AdaGrad) [5]; and adaptive momentum (Adam)
[9]. However, no significant difference was found from the initial results between
the tested algorithms. Finally, it was decided to select Adam, due to taking into
account the momentum which adds robustness to the gradients and lowers the
effect of outlier batches on the weight updates [9]. Moreover, Adam is the most
widely implemented of all algorithms considered [1,8,10,25,27]. Therefore, the
models presented were trained via backpropagation and Adam algorithm as the
optimisation method.

Learning Rate. In DL models, the learning rate is a parameter of the optimizer
algorithm which indicates the size of the step to be applied when correcting the
model’s weights by the newly computed gradient. Finally, the tested values for
the learning rate were within the range [5 · 10−3, 5 · 10−5].

Weight Initialization. Although being a crucial hyperparameter for successfully
training DL models, it has been stated that several initializations will usually
allow a DL model to train in a proper way [7]. The weight initialization strat-
egy was, thus, set to the method presented by Glorot et al. [6], which, indeed,
permitted to train our models successfully.

Regularization. Models trained initially were prone to overfit on the training
data; thus, dropout strategies were implemented after every layer of the models’
[21]. Dropout indexes considered were: 0, 0.1, 0.15, 0.2, 0.25 and 0.5.

5 Results

Table 1 presents the models’ designs that achieved the highest validation GM
values between sensitivity and specificity. From the top configuration results, it
was observed that only models trained with windows of 2.56 s achieved validation
GM above 80%.

From Table 1 it can be observed that the best models’ configurations pre-
sented are defined by 4 and 5 convolutional layers, each of which was composed
of 16 kernels of length 3; 2 dense layers of 32 neurons; a dropout measure within
the range [0.1, 0.25]; stacking p parameter equals 1 and 2; and the remaining
common characteristics for all trained models which are commented in Sect. 4.2.

The performance of ML algorithms is usually compared using benchmarking
datasets. Rodŕıguez et al. [18] replicate other authors’ feature extraction strategies
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Table 1. Top validation models. Columns naming description: ‘# c-layers’ → number
of convolutional layers; ‘# kernels’ → number of kernels per layer; ‘# d-neuron’ →
number of neurons of each dense layer; ‘stacking’ → number of parts that each win-
dow was split before re-stacking (p stacking parameter); ‘dropout’ → dropout index;
‘val sen’ and ‘val spe’ → validation values of sensitivity and specificity.

# c-layer # kernel # d-neuron stacking dropout val sen val spe

5 16 32 1 0.25 86.5% 79.2%

4 16 32 1 0.10 80.2% 83.8%

4 16 32 1 0.20 82.8% 81.4%

4 32 64 2 0.20 85.2% 78.1%

5 16 32 2 0.20 85.2% 78.4%

4 16 32 2 0.20 78.3% 85.0%

to compare a novel SVM-based method on 6 patients’ data to the state-of-the-art
for FOG detection. These data matches to a subset of the data considered here.
Thus, our approach was compared to results reported by Rodŕıguez et al. [18].
Hence the results table in Rodŕıguez et al. [18] was adapted to include our app-
roach, producing Table 2. However, Rodŕıguez et al. [18] perform a 10-fold cross-
validation over 6 patients’ data, while our results from Table 1 were produced from
4 validation patients which were never used for training the models. Note that this
disadvantage advocates our approach.

Table 2. State-of-the-art for FOG detection evaluated on a subset of 6 patients’ accord-
ing to [18]. Values illustrated correspond to the best validation GM result reported in
[18] for that ML algorithm, while in column ‘DL’ shows the top validation GM achieved.

k-NN RF NB SVM DL

Rodriguez et al. [18] 83.71 84.36 79.99 89.77 -

Mazilu et al. [18] 81.85 82.9 82.08 84.24 -

Tripoliti et al. [18] 75.04 62.25 79.15 79.57 -

Moore et al. [18] 71.07 70.46 71.39 78.43 -

FFT + stacking - - - - 82.1

Table 2 indicates that our approach exhibited comparable validation perfor-
mance to the state-of-the-art results replicated by Rodŕıguez et al. [18] on data
from the same distribution. However, some of the methods to which our approach
was compared to, were specially designed for being implementable in real-time.
These other methods are intended to be implementable in low-power consump-
tion devices, while our approach requires significant memory and computational
resources.
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6 Conclusion

This paper is, to the best of our knowledge, the first study to present a method
for FOG detection based on DL models. However, our approach was just a first
attempt to tackle the FOG detection problem by employing DL techniques which
achieved comparable results to the state-of-the-art methods referred from [18].

Interesting extensions of our approach are:

– To replace the last dense layers of the model by recurrent neural networks
(RNNs) or long short term memory (LSTM) layers to enhance the current
representation of temporal data.

– To implement personalization strategies, such as to retrain the model with
partial information on each patient before evaluating on it. These techniques
discern from the common practices adopted in the DL literature. However,
they are usually considered by clinicians, who prioritise robustness of models
over scalability.

Finally, our results suggest that exploring time-series endeavoured DL tech-
niques (e.g. RNNs and LSTMs) could lead to outperforming the state-of-the-art
for automatic FOG detection.
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18. Rodŕıguez-Mart́ın, D., Samà, A., et al.: Comparison of features, window sizes and
classifiers in detecting freezing of gait in patients with parkinson’s disease through
a waist-worn accelerometer. In: Frontiers in Artificial Intelligence and Applications,
vol. 288 (2016)
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