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Every Timestamp Counts: Accurate Tracking of Network Latencies
using Reconcilable Difference Aggregator

Yongquan Fu, Pere Barlet-Ros and Dongsheng Li

User-facing services deployed in data centers must respond
quickly to user actions. The measurement of network latencies
is of paramount importance. Recently, a new family of compact
data structures has been proposed to estimate one-way latencies.
In order to achieve scalability, these new methods rely on
timestamp aggregation. Unfortunately, this approach suffers from
serious accuracy problems in the presence of packet loss and
reordering, given that a single lost or out-of-order packet may
invalidate a huge number of aggregated samples.

In this paper, we unify the problem to detect lost and
reordered packets within the set reconciliation framework. Al-
though the set reconciliation approach and the data structures
for aggregating packet timestamps are previously known, the
combination of these two principles is novel. We present a
space-efficient synopsis called Reconcilable Difference Aggregator
(RDA). RDA maximizes the percentage of useful packets for
latency measurement by mapping packets to multiple banks and
repairing aggregated samples that have been damaged by lost
and reordered packets. RDA simultaneously obtains the average
and the standard deviation of the latency. We provide a formal
guarantee of the performance and derive optimized parameters.
We further design and implement a user-space passive latency
measurement system that addresses practical issues of integrating
RDA into the network stack. Our extensive evaluation shows
that compared to existing methods, our approach improves the
relative error of the average latency estimation in 10-15 orders
of magnitude, and the relative error of the standard deviation in
0.5-6 orders of magnitude.

Index Terms—Passive measurement, loss, reorder, reconcilia-
tion, latency.

I. INTRODUCTION

Most user-facing services are deployed in data centers.
These services must respond quickly to user actions in order
to provide a fluid experience to end users. Even delays of a
few milliseconds may have a severe impact on the quality
of experience [24], [25], [13], [14], [12], [11]. Although
significant progress has been made in the design of new
network architectures and transport protocols for data centers
[5], [6], [11], [29], meeting the tail of the latency distribution
still remains a challenge, given the complexity of scale-out
services and the varying queueing latencies typical from bursty
data center workloads. Therefore, the measurement of network
latencies is of paramount importance to assess the compliance
of application deadlines and to diagnose problematic tail
response times.
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Unfortunately, measuring network latencies in data centers
is extremely challenging. Traditional latency measurement
methods based on active probing are not accurate enough.
Active probing collects measurement samples of the injected
probing packets, but not those from the packet streams be-
tween measurement points. Consequently, the sampled end
to end latencies provide coarse-grained metrics, but have low
fidelity unless the sampling rates are very high. For example,
software bugs or faulty interfaces in switches may randomly
produce failures on some packets according to the route in
the network or packet header information [31]. Unfortunately,
high sampling frequencies have high bandwidth cost, com-
puting cost, and storage overhead. Due to the large number
of servers and the high probing frequencies required, active
measurements do not scale well with data center speeds and
size, which can even interfere with regular data center traffic
[15].

Passive methods are generally preferable for measuring
latencies in data centers, assuming that measurement points
can synchronize their clocks. In passive methods, one measure-
ment point (called sender) records the timestamps of outgoing
packets to the other measurement point (called receiver), while
the receiver records the timestamps of packets coming from the
sender, and vice versa1 At the end of a measurement interval,
the sender and the receiver exchange the timestamps and
subtract them to obtain the one-way packet latency. Although
this approach is very accurate, it does not scale well with
increasing traffic volumes.

To address this scalability problem, some studies have
recently proposed a new set of efficient data structures, such
as LDA (Lossy Difference Aggregator) [19], FineComb [22],
LDS (Lossy Difference Sketch) [27] and COLATE [28]. The
main intuition behind these proposals is that to measure packet
latencies it is not necessary to exchange individual timestamps,
but instead they can be aggregated to an array of buckets,
where each packet is mapped to a random bucket and each
bucket accumulates the timestamps and the total number of
packets. Nevertheless, the accuracy of these methods still
degrades drastically in the presence of packet loss and re-
ordering. As modern data centers may use multiple alternative
paths to increase the aggregate bandwidth or to provide fault
tolerance [5], while multi-path routing protocols (e.g., equal
cost multipath) may balance the load among different paths.
Data centers may also drop packets because of congestion

1The term “timestamp” refers to the time a packet was sent or the time a
packet was received. The sender and the receiver do not need to be the origin
and destination of the traffic, but the two network points from where we want
to estimate the latency, e.g., two switches in a data center.
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resulting from bursty traffic [11] or even due to packet black
holes [15].

In order to achieve robustness against lost packets and re-
ordered packets, these problematic packets should be detected
and removed from the buckets. Unfortunately, detecting lost
or reordered packets in a space-efficient way is challenging.
FineComb [22] and LDS [27] detect and discard a pair of
buckets that have some different packets. However, discarded
buckets may contain many useful packets for computing
the latency. Further, FineComb repairs buckets that are only
damaged by reordered packets, however, FineComb cannot
identify lost packets at the sender. Moreover, even with a small
number of lost packets, the number of useful buckets decreases
fast, as shown in Subsection III-C, which may result in too
many samples discarded. Finally, FineComb adopts a brute-
force approach to find buckets that contain reordered packets,
which incurs a high computational cost.

In this paper, we unify the problem to detect lost packets
and reordered packets within the set reconciliation framework.
Although the set reconciliation approach [10] and the data
structures for aggregating packet timestamps are previously
known, the combination of these two principles is novel.
Based on the observation, we proposed a naive synopsis that
simultaneously aggregates the timestamps and detects lost
packets and reordered packets using a unifying hashing based
data structure. Unfortunately, the naive synopsis is space-
redundant and fails to compute the standard deviation of the
latency.

Next, we presented a space-efficient data structure (RDA)
that obtains the average and the standard deviation of the
latency. RDA maximizes the percentage of useful packet
samples for latency measurements by mapping packets to
multiple banks and repairing aggregated samples that have
been damaged by lost and reordered packets. We provide a
formal guarantee of the performance and derive optimized
parameters.

Further, we designed and implemented a user-space end-
to-end passive latency measurement system. Different from
existing studies, we are able to measure the packet stream in
a pipelined approach by delimiting the measurement interval
with the already synchronized clock between measurement
points instead of controlling packets.

Finally, our experimental results show that compared to
existing methods, our proposal improves the relative error of
estimating the average latency in 10-15 orders of magnitude,
and the relative error of estimating the standard deviation in
0.5-6 orders of magnitude.

Going forward, Section II introduces background of passive
synopsis based latency aggregation. Section III states the
problem of problematic packets. Next, Section IV proposes
a unified framework to detect these packets and presents a
naive synopsis that reconciles lost and reordered packets and
estimates the average latency. Then, Section V introduces RDA
that is space-efficient and accurately computes the average and
the standard deviation. Section VI presents the performance
bounds for RDA. Section VII presents extensive evaluation
results. Section VIII presents the implementation of RDA
based passive latency measurement in user space. Section IX

reports a prototype deployment on a small data center. Finally,
we conclude in Section X. We summarize related work in
the Appendix, which is available in the online supplemental
material.

II. BACKGROUND

We introduce the background of synopsis based passive
latency measurement in this section.

A. Requirements

Many applications deployed in data center have tight latency
requirements. For example, high frequency algorithmic trad-
ing applications have very short holding period, even delays
greater than 100 µs can cause financial losses [19], storage-
area networks (SAN) use Fiber Channel over Ethernet to
deliver similar latencies as the traditional IO bus between
CPUs and remote disks [20], Spark provides millisecond
large-scale data processing [26]. Unfortunately, the latency
distributions of these requests are usually long-tail [11], where
the average and the tail latency may differ by several orders
of magnitude, which significantly increases the completion
time of the service, since the number of users is usually
on the orders of millions to billions. Understanding and
troubleshooting fine-grained latency issues needs packet-level
information.

In this paper, we measure fine-grained, packet-level latency
without sampling. The measurement is divided into intervals.
A measurement interval seeks to capture the latency of a
maximum number n of packets, where n is a constant. Our
passive latency measurement is based on the coordinated
measurement scheme proposed by Kompella et al. [19]: (i)
Average, captures the central tendency of latency, which
characterizes the long-term latency trend [11]; (ii) Variance,
measures how far the latencies are spread out, which correlates
with the latency tail: the higher the variance, the worse
the long-tail problem [17], [30]. Estimating other metrics
like the order statistics such as the maximum delay or the
quantiles requires knowledge of the latency value of each
packet, unfortunately, the coordinated measurement scheme
does not fulfill this requirement as it mixes the latency values
of different packets.

B. Assumptions

We follow the same assumptions for passive latency mea-
surement problem [19]:

(i) Timestamps are not embedded in packet headers, as in
LDA, FineComb and LDS. UDP packets do not carry the time
stamps. TCP protocol contains a timestamp field [8], which
unfortunately incurs an additional overhead for every TCP
packet. For a 32-bit timestamp, the bandwidth consumption
could increase by 10% [19].

(ii) Two measurement points should have synchronized
their clocks to the microsecond-level precision before the
measurement starts [19], [22], [27]. End points are synchro-
nized using the Network Time Protocol (NTP) [1] or the
IEEE 1588 Precise Time Protocol (PTP) [2]. Both NTP and
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PTP provide microsecond-level (10−6 second) precision in a
local area network (LAN). Moreover, the Global Positioning
System (GPS) provides up to nanosecond-level (10−9 second)
precision [23] at the expense of the dedicated GPS hardware.
Recently, the Datacenter Time Protocol (DTP) [21] provides
nanosecond-level precision time synchronization across the
whole data center via the physical layer (PHY) protocols.

C. Synopsis based Latency Aggregation

We next briefly introduce the coordinated measurement
scheme [19]. A bucket consists of a timestamp accumulator
and a counter. For two LDAs with the same number of buckets
and the same hash function, a packet is always mapped to the
same bucket. The accumulator accumulates the timestamps of
all packets inserted to the bucket, while the counter maintains
the number of packets inserted to that bucket. The sender and
the receiver uses the same hash function to ensure that a packet
is always mapped to the same position in the array.

Assuming that two measurement points record the same set
of packets, for each pair of buckets in the same location at
the sender and receiver, the difference between the sum of
accumulated timestamps, divided by the sum of accumulated
numbers of packets, amounts to the average latency of packets
that are inserted to this bucket. Using an array of buckets en-
sures that a single lost or reordered packet may not invalidate
all aggregated timestamps, since if a lost or reordered packet
exists in a bucket, then the set of packets aggregated at this
bucket will be different from those at the other measurement
point, and the subtraction of the aggregated timestamps of two
buckets will no longer amount to the sum of latencies.

In order to estimate the average latency, the sender sends
its LDA to the receiver, and then the receiver computes the
difference between both LDAs for each pair of useful buckets.
A pair of buckets is useful if the value of their counters is the
same in both LDAs. The remaining buckets are discarded as
not useful. Then, the average latency is computed as the sum
of the differences in the timestamp aggregators divided by the
sum of the counters.

For brevity, given two LDAs DA and DB with m × 1
timestamp accumulator arrays maintained at the sender A and
the receiver B, respectively. Let D [i].T denote the timestamp
accumulator and D [i].C the packet counter for the i-th bucket,
where i ≤ m. In LDA, a pair of buckets are called useful if
their packet counters match with each other.

The average latency is computed using all pairs of useful
buckets, while the standard deviation is calculated efficiently
without additional storage overhead. Let

D̃A [j] .T = DA [2j] .T −DA [2j − 1] .T

D̃B [j] .T = DB [2j] .T −DB [2j − 1] .T

D̃A [j] .C = DA [2j] .C +DA [2j − 1] .C

D̃B [j] .C = DB [2j] .C +DB [2j − 1] .C

(1)

be the collapsed timestamp accumulator and packet counters,
where j ∈ [1, bm/2c]. Let

F =

∑
j∈{i|D̃A[i].C=D̃B [i].C }

(
D̃B [j] .T − D̃A [j] .T

)2
∑
D̃A[i].C=D̃B [i].C D̃A [i] .C

(2)

Fig. 1. The timeline of a measurement interval.

Then the standard deviation is approximated as:

σ2 = F 2 − µ2 (3)

III. PROBLEM STATEMENT

Having presented the background, we next present a new
measurement interval that continuously monitors the end to
end latency. Next, we discuss challenges to obtain accurate
latency aggregation due to problematic packets.

A. Continuous Monitoring via Pipelined Measurement In-
terval

Existing approaches use delimiting packets to define a
measurement interval. To start a measurement interval, the
sender sends an interval-start message to the receiver. When
the receiver records up to n packets into its synopsis, the re-
ceiver sends an interval-end message to the sender to terminate
the measurement interval. Unfortunately, due to the delay of
processing the interval-start and interval-end messages, we are
unable to continuously monitor the end-to-end latency between
a pair of measurement points.

Different from existing studies, we propose to measure
the packet stream in a pipelined approach by delimiting the
measurement interval with the already synchronized clock be-
tween measurement points instead of delimiting packets. Each
measurement interval i is defined by a beginning timestamp
ti and an interval-length parameter δi (say one second). A
pair of measurement points capture packets during the interval
delimited by two timestamps (ti, ti + δi). As a result, the
problem of continuously aggregating the latency can be simply
solved: we only need to set the beginning timestamp ti+1 of
the successor measurement interval i + 1 to the beginning
timestamp of the last measurement interval plus the interval-
length parameter, i.e., ti+1 = ti + δi.

During each measurement interval, each measurement point
maintains a separate synopsis that aggregates the timestamps
of packets within this measurement interval and calculates
the average and the standard deviation of the latency of this
measurement interval.

B. Problematic Packets

Figure 1 illustrates a measurement interval. We can see that
each measurement point records some problematic packets in
Figure 1:
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• The receiver records packets P1 and P2, while the sender
misses these two packets.

• The sender records packets P4 and P5 that are lost dur-
ing the measurement interval, consequently, the receiver
misses these two packets.

• The sender records P9 and P10, but the receiver misses
these two packets, as packets P9 and P10 are sent before
the sender terminates the measurement interval.

• Further, some packets may arrive in an out-of-order
sequence, e.g., packets P6 arrives at the receiver later
than P7. However, as long as both packets are stored at
the sender and the receiver, we do not care about such
packets during the latency aggregation process.

In order to obtain truthful latency statistics, we need to
discard the lost packets and the reordered packets from the
latency aggregation. If two measurement points are within the
same router or directly connected, there may be few lost or
reordered packets between them. While if these devices are
several hops away, significant loss or reordering may arise
with increasing traffic volumes, since a packet that passes one
device may not traverse the other one due to multipath routing
or load balancing.

Lost and reordered packets interfere with latency measure-
ments, since only one measurement point obtains this packet,
while the other measurement point is agnostic to this packet.
Consequently, these packets should be eliminated from the
latency estimation.

In an extreme case, a packet that is sent in the previous
measurement interval from the sender may arrive at the
receiver at the next measurement interval. At the previous
measurement interval, this packet is only stored at the sender,
i.e., a lost packet, while for the next measurement interval, this
packet is only stored at the receiver, i.e., a reordered packet.

Besides the lost and reordered packets, duplicate packets
may arise, e.g., timeout packets, or duplicated acknowledge-
ment packets to trigger the fast retransmission. The duplication
issue has not been discussed in the literature to the best
of our knowledge. Unfortunately, it is difficult to determine
the duplicated packets without storing all packets. A simple
approach is to record the packets with unique identifiers
into a cache and to discard all the other duplicated packets.
An interesting open question is how to preserve as many
duplicates as possible to maximize the number of useful
packets for latency computation.

C. Challenges for Existing Aggregation Approaches

Having stated the problematic packets that may occur during
the measurement process, we next analyze the useless buckets
caused by problematic packets for LDA and FineComb. In the
next section, we propose a unifying framework to detect the
lost and reordered packets and a naive approach based on the
set reconciliation and discuss its limitations.

1) LDA
LDA [19] selectively samples packets from the packet

stream and maps them to a number of buckets. Unfortunately,
even if the counters of two buckets match with each other,
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Fig. 2. An example of LDA that are damaged by problematic packets. The
sender sends packets P1 to P9 to the receiver. A measurement interval begins
before packet P1 and ends after packet P6. However, P5 is lost and thus
not recorded at the receiver. Further, due to packet reordering, P9 arrives at
the receiver earlier than the ending message, which is thus recorded at the
receiver. In (a), the sender inserts the timestamps (shown in the upper-level
box) of packets P1, P2, P3, P4, P5, P6 into its LDA. In (b), the receiver
inserts the timestamps of packets P1, P2, P3, P4, P6 and P9 into its LDA.

these two buckets may contain different packets due to differ-
ent combinations of lost and reordered packets, as shown in
Figure 2.

In Figure 2, all pairs of buckets are useful in LDA. The
average latency using all useful buckets is ((420 − 270) +
(260−150) + (390−250) + (760−310) + (450−330))/(2+
1+1+1+1) = 161. However, the actual latency is 104 using
the successfully delivered packets P1, P2, P3, P4 and P6. This
is because the fourth pair of buckets have two different packets
P9 and P5.

2) FineComb
FineComb detects whether each bucket is damaged by

problematic packets, by appending a parity-string field to each
bucket. The parity string is computed as the XOR value of
entire packets that are mapped to this bucket. If two buckets
have some different packets, we can see that their parity strings
will differ from each other, and they will be discarded as
useless.

Further, FineComb tries to remove reordered packets from
buckets, by maintaining a stash of packets that are likely to
be reordered at the receiver. After the measurement interval
ends, the receiver obtains the sender’s FineComb and subtracts
each pair of buckets at the same location in two FineCombs.
The result is stored in a new bucket. Next, for each of these
new buckets, the receiver compares its parity string with
the XOR result of each possible combination of packets in
the stash: If these two XOR values match with each other,
then FineComb assumes that this combination of packets are
reordering packets in its bucket.

However, if a bucket contains some lost packets, FineComb
will be unable to repair this bucket, and all useful samples in
this bucket become useless. As a lost packet may be spread to
any bucket, we next compute the expected number of buckets
that contain at least one lost packet in Theorem 1:

Theorem 1. Suppose that a number nl of lost packets are
inserted into a FineComb with m buckets using a perfectly
random hash function. The expected number ml of buckets
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that contain at least one lost packet is m ·
(
1− e−nl/m

)
.

The proof is presented in the Appendix, which is available
in the online supplemental material. Theorem 1 gives the
expected number of buckets that contain lost packets. For
example, when m = 100, nl = 50, the expected number ml of
buckets having lost packets is approximately 40, which means
that only with 50 lost packets, 40% of the buckets used by
FineComb would be useless.

IV. NAIVE APPROACH

Having stated the challenges, we propose a unifying frame-
work to detect the problematic packets from the synopsis.
Next, based on the connection with the set reconciliation
problem [10], we propose a naive synopsis sRDA (simple Rec-
oncilable Difference Aggregator). sRDA simultaneously solves
two problems with a unifying hashing based data structure:
(i) detecting and removing lost packets and reordered packets
between a pair of measurement points, and (ii) computing
aggregated latency using the useful packets that are recorded
at both sides. Finally, we discuss the limitations of sRDA. In
the next section, we present a novel synopsis that addresses
these limitations.

A. Detecting Problematic Packets and the Set Reconciliation

Recall that each packet’s identifier is invariant at both the
sender and the receiver, while the timestamp of each packet
varies between the sender and the receiver. Let SS be the set
of identifiers of packets that are intercepted by the sender. Let
SR be the set of identifiers of packets that are intercepted by
the receiver. The set intersection SS ∩ SR of the two sets
correspond to the set of identifiers of packets stored at both
measurement points. The union of the identifiers of the lost
and reordered packets refers to the set difference for SS and
SR. Let SR = {x |x /∈ SR } and SS = {x |x /∈ SS } refer
to the complement sets of SS and SR, respectively. The set
difference SS ⊕ SR can be represented as

SS ⊕ SR =

p
∣∣∣∣∣∣∣p ∈

(
SS ∩ SR

)︸ ︷︷ ︸
Lost

∪
(
SR ∩ SS

)︸ ︷︷ ︸
Reordered


The problem of finding the identifiers of the lost and the

reordered packets is transformed to the problem of detecting
the set difference SS⊕SR for the packets stored at the sender
and those at the receiver. We can see that the packets in
the set intersection SS ∩ SR are useful for computing the
latency metric, while the packets in the set difference should
be eliminated from the latency calculation.

As the synopsis mixes the timestamps of individual packets,
each measurement point is agnostic of the packets that will be
lost or reordered a priori, consequently, each measurement
point has to keep a local cache of packets, in order to filter
out the timestamps of lost and reordered packets from the
synopsis.

B. Synopsis Structure

A sRDA keeps a flat array of buckets that store the aggre-
gated timestamps and the necessary information to find the
lost and reordered packets:

• To aggregate the latency, each bucket records the sum of
the timestamps of the packets (TS field) and counts the
number of packets inserted to that bucket ( ∆ field).

• To detect the set reconciliation, each bucket accumulates
the XOR value of the identifiers of the inserted packets
(ID field), and accumulates the XOR value of the hashing
number of the packet identifiers using an independent
hash function H() (IDSH field).
Both ID and IDSH fields are used to reconcile the set
difference between the packets stored at the sender and
those at the receiver. First, for a pair of buckets that
have some common packets, we can see that XORing the
ID fields of these two buckets cancels the identifiers of
common packets, but preserves the set difference in two
buckets. Second, IDSH enables us to determine whether
a bucket contains a unique packet.

Figure 3 shows an example of two sRDAs at the sender
and the receiver. We can see that each pair of buckets in two
sRDAs have some lost packets, or reordered packets or even
both. As a result, all buckets are useless for latency estimation.
We need to detect the lost and reordered packets and remove
them from the sRDAs.

P1,70 P2,150 P3,200 P4,250

270

2

P5,310

400

2

760

3

710

3

480

2

P6,330

P1,110 P2,260 P4,390

P1

110

H(P1)

1

1320

3

P4

390

H(P4)

1

650

2

1470

3

P6,450

(a) Sender

(b) Receiver

P9,760

Index: 1 2 3 4 5

ID

IDSH

TS

Δ

1 3⊕P P

( ) ( )1 3⊕H P H P

1 6⊕P P

( ) ( )1 6⊕H P H P

3 4 5⊕ ⊕P P P

( ) ( )

( )

3 4

5

⊕

⊕

H P H P

H P

2 4 5⊕ ⊕P P P

( ) ( )

( )

2 4

5

⊕

⊕

H P H P

H P

2 6⊕P P

( ) ( )2 6⊕H P H P

1 6 9⊕ ⊕P P P

( ) ( )

( )

1 6

9

⊕

⊕

H P H P

H P

2 4⊕P P

( ) ( )2 4⊕H P H P

2 6 9⊕ ⊕P P P

( ) ( )

( )

2 6

9

⊕

⊕

H P H P

H P

Index: 1 2 3 4 5

Fig. 3. The sRDAs of the sender and the receiver. There are five buckets in
each sRDA, and each packet is hashed to two random buckets. The timestamp
of each packet is appended to the packet identifier. Solid lines are used
to represent the mapping relationship between the packets and the buckets.
Packets P3 and P5 are lost at the receiver, while the packet P9 is reordered
and not stored at the sender.

A packet is hashed to k (2 by default) buckets using k
independent hash functions. When a new packet arrives at the
sender or the receiver, we hash the identifier of this packet
and obtain at most k different buckets. Then, for each of these
unique buckets, we update the bucket as follows: (a) ID = ID
⊕ packet’s identifier; (b) TS = TS + packet’s timestamp; (c)
IDSH = IDSH ⊕ H(packet’s identifier); (d) ∆ = ∆ + 1.
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Fig. 4. Repaired sRDAs in Figure 3.

C. Detecting Lost Packets and Reordered Packets

First, we construct a subtraction sRDA that preserves the
set difference, but cancels out the identifiers of packets in the
set intersection. To that end, we exploit the XOR operation of
two identical identifiers cancelling out this identifier. For each
pair of buckets (Is, Ir) at the same location, we construct a
new subtraction bucket whose: (a) ID field amounts to the
XOR value of two IDs in the two buckets: Ir.ID ⊕Is.ID; (b)
IDSH field amounts to the XOR value of two IDSHes in the
two buckets: Ir.IDSH ⊕Is.IDSH; (c) ∆ field amounts to the
subtraction of two ∆ values: Ir.∆ - Is.∆. We do not modify
the TS field, since our goal is to list the identifiers of packets
in the set difference.

Second, let a bucket be pure if this bucket contains only
one packet, we next iteratively list all pure buckets and delete
the corresponding packet from the subtraction sRDA until no
pure buckets exist. As the subtraction sRDA only contains the
problematic packets, we decode all packets inserted to this
subtraction sRDA based on the set reconciliation [10].

The set reconciliation is based on two key ideas: (i) Pure
condition: Intuitively, for a non-pure bucket i, hashing its
ID fields using the hash function H(·) will differ from its
IDSH field; moreover, if I(i).∆ = ±1, the numbers of packets
stored at two original buckets differ by one. Therefore, if
H(I(i).ID) = I(i).IDSH and I(i).∆ = ±1 both hold, this
bucket i is claimed to be pure. (ii) Separation: Further, we
determine whether the packet inserted into a pure bucket is a
lost packet or a reordered packet:

• ∆ = 1: the receiver’s bucket must contain one more packet
from the sender’s bucket, consequently, this packet is only
stored at the receiver, i.e., this packet is reordered.

• ∆ = -1: the sender’s bucket must contain one more packet
than the receiver’s bucket, therefore, this packet is stored
only at the sender, i.e., this packet is lost.

The detailed decoding procedure of sRDA is presented in
the Appendix, which is available in the online supplemental
material.

D. Calculate Latency Aggregation

We can estimate the average latency after removing the
lost packets and the reordered packets. For example, Figure
4 shows the repaired sRDAs in Figure 3. The accumulated
subtraction of the timestamps in all buckets is computed as:
(110− 70) + (560− 400) + (390− 250) + (650− 400) +
(710− 480) = 820. The accumulated numbers of packets in
all buckets is 1+2+1+2+2=8. Therefore, the average latency is
820
8 = 102.5, which matches the ground-truth average value.
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Fig. 5. RDA has multiple banks of buckets. A packet is inserted into a
randomly selected bucket in each bank.

Further, we hope to compute the standard deviation. Ac-
cording to Eq (3), we can collapse adjacent buckets and
derive the standard-deviation metric. Nevertheless, sRDA has
a serious flaw. For example, in Figure 4, we collapse four
adjacent buckets and obtain two collapsed buckets as fol-
lows: (i) Sender: the collapsed timestamps are 400-70=330,
400-250=150, respectively, and the collapsed counters are 3,
3, respectively; (ii) Receiver: the collapsed timestamps are
560-110=450, 650-390=260, respectively, and the collapsed
counters are 3, 3, respectively. We next use collapsed buck-
ets to compute the standard deviation according to Eq (3)
as: (450−330)2+(260−150)2

3+3 - 102.52 = -6089.6, however, the
ground-truth standard deviation is 43.49! This is because
collapsing the first and the second bucket cancels out the
timestamp of P1, while collapsing the third and the fourth
bucket cancels the timestamp of P4, consequently, the first
term (450−330)2+(260−150)2

3+3 = 4416.7 is much smaller than
the squared average latency. Unfortunately, sRDA always has
a probability to map a packet to adjacent buckets, and this
probability increases as more packets are inserted to the sRDA.

Space-redundancy: Besides the above flaw, the IDSH field
contains redundant information with respect to the ID field.
Removing this redundant field saves 25% space, which is
necessary to scale to large numbers of buckets.

V. RDA

Having presented the limitations of the naive approach, we
next introduce a novel synopsis data structure RDA that is
space-efficient and accurately calculates the average and the
standard deviation.

A. Organization and Bucket Structure

In RDA, each bucket consists of the ID, TS and the ∆
fields that are defined in the sRDA structure. We organize
buckets into a multi-bank structure that consists of k banks
of buckets, where each bank contains m buckets. We set the
number of hash functions to k, so that we insert each incoming
packet into a random bucket in each bank. As a result, no bank
has two identical packets and RDA avoids each packet to be
inserted to adjacent buckets. Figure 5 shows an RDA with two
banks of four buckets.

In order to ensure constant time to access any bucket, we use
one contiguous array to store the RDA in the main memory.
Let a bank consist of m buckets. To logically split the array
to k banks, the first bank contains the buckets from 1 to
m, while the i-th (i ≥ 1) bank consists of the buckets of
[(i− 1) ·m+ 1, i ·m].
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To insert a packet into the RDA, we hash the packet’s
identifier and timestamp into each bank. Specifically, we select
a bucket uniformly at random from each bank, by hashing the
identifier of the packet with an independent hash function. For
each of these buckets, we update the packet as follows: (a) ID
= ID ⊕ packet’s identifier; (b) TS = TS + packet’s timestamp
for insertion, and TS = TS - packet’s timestamp for deletion;
(c) ∆ = ∆ + 1 for insertion, and ∆ = ∆− 1 for deletion.

B. Detect Lost Packets and Reordered Packets

For a pair of RDAs, we next present a lightweight approach
to detect the lost and reordered packets using a new decoding
process that does not need the IDSH field of the sRDA.

(i) Cancel common items: We perform a subtraction
operation on a pair of RDAs to cancel out items that are
inserted into both RDAs. The subtraction cancels the packet
identifiers that are inserted to both RDAs, but preserves the
identifiers of the lost packets and reordered packets.

We subtract the receiver’s RDA using the sender’s RDA,
which yields a subtraction RDA. For each pair of buckets at
the same location in two RDAs, we put a new bucket into the
subtraction RDA that is constructed: (a) ID = ID ⊕ I.ID; (b)
∆ = ∆ - 1.

(ii) Decode: We next define a new decoding process on the
subtraction RDA. As we have removed the IDSH field in the
sRDA, we need to define a new pure condition in order to
find buckets that contain only one identifier. Our key insight
is that, the ID field of a bucket amounts to the XOR of the
packets that are mapped to this bucket, consequently, if an
RDA bucket contains only one packet, then hashing the ID
field of this bucket via this bank’s hash function will obtain
the index of this bucket in the bank; while if a bucket contains
multiple packets, hashing the XOR of these packets will obtain
a different index in this bank. Therefore, a bucket is claimed
to be pure if hashing the ID field of this bucket via this bank’s
hash function amounts to the index of this bucket in this bucket,
and its ∆ field simultaneously amounts to 1 or -1.

Algorithm 1 summarizes the process to list problematic
packets in a subtraction RDA. Lines 3 to 6 record pure buckets
into a set Υ by traversing each bucket in each bank. Next,
lines 7 to 23 iteratively decode lost packets and reordered
packets. First, line 8 removes a bucket record from the set
of recorded pure buckets. This bucket may become empty
due to the update of the last iteration. If the bucket becomes
empty, no problematic packets exist, so we move to the next
iteration. Otherwise, we continue this iteration. Lines 12 to 16
extract the packet identifier using the ID field of this bucket
and classify this packet to lost or reordered based on the ∆
field of this bucket. Next, lines 17 to 21 delete this packet from
each bank of the subtraction RDA; meanwhile, if an updated
bucket becomes pure, we save this bucket index into the set
of pure buckets. Then we turn to the next iteration until no
pure buckets exist.

The time to scan all buckets takes O(k ·m), while the time
to delete all pure buckets amounts to O(k ·d), where d denotes
the total number of lost and reordered packets. Thus, we need
an overall O(k·(m+d)) time. We can see that RDA’s decoding

Algorithm 1: Decode problematic packets for a subtrac-
tion RDA.

1 Decode(IAB)
input : IAB : subtraction RDA: IB − IA.
output: IDAB : lost packets. IDAB : reordered packets.

2 Υ = {}, IDAB={}, IDAB={};
3 for each bank l ∈ [1, k] do
4 for each i ∈ [1,m] do
5 if hl(IAB(i, l).ID) == i ∧ |IAB(i, l).∆| == 1 then
6 Υ= Υ ∪ {(i, l)} ;

7 while Υ 6= ∅ do
8 Remove a record (i, l) from Υ, where i denotes the bucket

index, and l denotes the index of the bank;
9 if bucket i becomes empty, i.e., IAB(i, l).∆ = 0,

IAB(i, l).ID = 0 then
10 continue;

11 else
12 id = IAB(i, l).ID;
13 if IAB(i, l).∆ ==1 then
14 IDAB = IDAB ∪ {id} ;

15 else
16 IDAB = IDAB ∪ {id};
17 delta = IAB(i, l).∆;
18 for each bank l ∈ [1, k] do
19 q = hl(id);
20 IAB(q, l).ID = IAB(q, l).ID

⊕
id;

21 IAB(q, l).∆ = IAB(q, l).∆− delta;
22 if |IAB(q, l).∆| == 1 ∧ hl(IAB(q, l).ID) == q

then
23 Υ = Υ ∪ {(q, l)} ;

24 return IDAB , IDAB ;

complexity is independent of the size of the cache. In contrast,
FineComb finds the reordered packets in each bucket using a
brute-force approach whose time complexity depends on the
size of the stored packets. Let m be the number of buckets,
and

∣∣SStashR

∣∣ the size of the receiver’s cache, then FineComb’s
expected complexity amounts to O(m2|S

Stash
R |).

C. Latency Aggregation

Having presented the process to detect the lost and reordered
packets, we next compute the average latency and the standard
deviation. We propose a new algorithm to compute the stan-
dard deviation.

Average Latency: We compute the average latency using
all buckets that do not have lost and reordered packets. As
each packet is mapped to each bank, we can see that the
timestamp of a packet may be aggregated multiple times in
different buckets, since each packet is mapped to multiple
banks. The redundancy usually increases the number of useful
latency samples when some buckets are useless due to the lost
or reordered packets.

Standard deviation: To compute the standard deviation, we
need to collapse adjacent buckets in each bank. In LDA, every
two adjacent buckets are directly collapsed. Unfortunately,
some buckets may be empty; meanwhile, when the decoding
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Algorithm 2: Collapse two RDAs.
1 Collapse(I1, I2)

input : I1, I2: a pair of RDAs.
output: I ′1, I ′2: a pair of collapsed RDAs.

2 I ′1= ∅, I ′2= ∅ ;
3 for each i in k do
4 Ψ = ∅ ;
5 for j ∈ [(i− 1) ·m+ 1, i ·m] do
6 if I1[j].ID == I2[j].ID AND I1[j].∆ > 0 then
7 Ψ = Ψ ∪ {j};

8 if |Ψ| ≥ 2 then
9 for c ∈ [2, |Ψ|] do

10 p = Ψ [2c− 1], q = Ψ [2c];
11 B1.ID = I1[p].ID ⊕ I1[q].ID;
12 B1.∆ = I1[p].∆ + I1[q].∆;
13 B1.TS = I1[p].TS - I1[q].TS;
14 I ′1.add(B1);
15 B2.ID = I2[p].ID ⊕ I2[q].ID;
16 B2.∆ = I2[p].∆ + I2[q].∆;
17 B2.TS = I2[p].TS - I2[q].TS;
18 I ′2.add(B2);

19 return I ′1, I ′2 ;

Algorithm 3: Estimate the standard deviation.
1 STD(I ′1, I ′2, µ̂)

input : I ′1, I ′2: collapsed RDAs, µ̂: estimated average latency.
2 SqSum=0, Count = 0;;
3 for each i in |I ′1| do
4 Count=Count+I ′1 [i].∆;
5 SqSum = SqSum+ (I ′1 [i].TS - I ′2 [i].TS)2;

6 return SqSum
Count

- µ̂2 ;

process does not completely succeed, some buckets may still
contain lost packets or reordered packets.

As a result, collapsing physically adjacent buckets leads to
two drawbacks: First, if one of the collapsed buckets contains
some lost packets or reordered packets, then the collapsed
bucket will be useless, since it still contains these problematic
packets. Second, if one of the collapsed buckets contains no
packets, then this collapsing is ineffective to derive accurate
standard deviation, as packets in the collapsed bucket should
be assigned randomized signs.

In order to address the above limitations, we propose a
new Algorithm 2 to selectively collapse buckets for a pair
of RDAs. Lines 5 to 7 select nonempty buckets that do not
contain problematic packets. Lines 8 to 18 collapse selected
buckets. If the number of available buckets is smaller than
two, no collapsing is feasible, so we move to the next bank.
Otherwise, we collapse every two buckets from lines 10 to 18,
and store the collapsed bucket to a vector of buckets. We can
see that two buckets being collapsed may not be adjacent with
each other in the original RDA. Since we need to iterate over
each bucket, Algorithm 2 requires O(km) time.

After collapsing all banks, we next compute the standard
deviation based on Eq (3). Algorithm 3 shows the computation
using a pair of vectors of collapsed buckets.

VI. RDA THEORETICAL GUARANTEES

We state performance guarantees for RDA in this section.
Detailed derivations can be found in the Appendix, which is
available in the online supplemental material.

Theorem 2. Let SS and SR be the set of packets recorded at
the sender and the receiver, respectively. Let d = |SS ⊕ SR|
be the cardinality of the set difference. Let k be the number
of hash functions. Let the number m of buckets per bank be
2d. The failure probability to reconcile all lost and reordered
packets SS ⊕ SR is at most O(d−k).

We next analyze the number of useless packets for latency
measurement due to the decoding failure.

Lemma 1. For a RDA with k banks of buckets, where each
bank is of size m. Let n be the total number of packets that are
recorded into this RDA. Let {Li} for i ∈ [1, k], Li ∈ [0,m]
denote the numbers of buckets that cannot be repaired in each
bank. The expected number of useless packets for the latency
measurement amounts to n ·

∏k
i=1 Li

mk .

RDA preserves most packets using multiple banks. For a
RDA with two hash functions, i.e., two banks of buckets, let
the percentage of buckets that cannot be repaired in two banks
be 0.1 and 0.1, respectively, then the expected percentage of
useless packets amounts to L1

m ·
L2

m = 0.1·0.1 = 0.01. Therefore,
most packets are useful for the latency measurement.

We next analyze the effect of the skew of the time synchro-
nization on the aggregation accuracy.

Lemma 2. Assume that a pair of clocks between two mea-
surement points are shifted by a constant δ. Let n be the
total number of packets. The estimated average latency will
be shifted by δ from the one with the perfect time synchro-
nization, while the expected standard deviation are shifted by
2δ · µ (n− 1).

Having bounded the effect of the time drift, we next ask
how many samples are enough to bound the accuracy to
estimate the latency metric. Intuitively, if the latency does not
change, one sample is enough to compute an accurate average
metric and the standard deviation is zero. While if the latency
constantly varies, we need more samples to approximate the
expected latency metric.

Lemma 3. Let µ and σ be the actual average and standard
deviation of the packet stream, respectively. For ε, φ ∈ [0, 1],
given 2σ2 (log 2− log φ) /

(
ε2µ

2
)

sampled packets, the esti-
mated average latency is bounded within (1 ± ε) times the
actual average latency holds true with a probability at least
(1− φ).

We further discussed the sampled requirements for approx-
imating the standard deviation, which can be found in the
online supplemental material.

VII. SIMULATION

Having presented the theoretical results, we next evaluate
the performance of RDA using real-world traces.
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TABLE I
STATISTICS OF THE TRACE.

Metric DC Univ
packets 2,041,744 1,694,553
First packet 2009-12-18 00:26:04 2016-11-28 23:23:26

A. Simulation Setup

We built a simulator written in Java that replays real-
world traces in the experiments, enforces different loss and
reordering rates on the packets, and passively measures the
average and the standard deviation using different approaches.

Data Set: The measurement of the latency requires packet
traces that involve two monitoring endpoints with synchro-
nized clocks. Unfortunately, no such traces are publicly avail-
able to the best of our knowledge. Therefore, we resort to the
same network traffic traces collected at one endpoint used in
existing studies [22], [28].

We use two data sets for the following simulation, as
summarized in Table I:
• DC [7]: This trace is collected at routers that contain the

arrival time and the packet header information for packets
recorded in the ethernet interface.

• Univ: We collect packets at a server with the tcpdump
tool [3] in a small data center located in our laboratory.

Delay Model: We set the delay distribution to the same
with that used in LDA and FineComb [19], [22]. We draw the
one-way delay using the Weibull delay distribution with cumu-
lative distribution function P (X ≤ x) = 1− exp

(
(−x/α)

β
)

where α and β denote the shape and the scale parameters,
respectively. We use the same shape parameter 0.6 ≤ α ≤ 0.7
used in the evaluation of LDA and FineComb.

Network Model: We follow the same loss and reordering
models in FineComb [22]: The loss model simulates random
packet losses, since each lost packet is mapped to a random
bucket in the synopsis even for two back-to-back packets;
the reordering model simulates the problematic reordered
packets occurred at the beginning and the ending period of the
measurement interval, while the reordered packets that arrive
at the receiver within the same measurement interval does not
affect the synopsis, since both endpoints record such packets.

Previous researchers have shown that the synopsis’ perfor-
mance is independent of the loss or reordering distribution
[19], [22]. This is because the hashing operation randomizes
the mapping locations of incoming packets, as a result, corre-
lated lost or reordered packets are decorrelated after hashing
to randomized locations. Therefore, random loss or reordering
distributions should be sufficient for simulation.

Compared Methods: As our objective is to estimate the
aggregated one-way latency under packet loss or reordering
between a pair of measurement points, we compare RDA
with two state-of-the-art methods LDA and FineComb. Other
studies [27], [28] directly rely on LDA or FineComb to
bypass buckets that contain lost or reordered packets. For fair
comparison, we set the same storage size for these synopses.
Further, FineComb maintains a stash of elements that is of the
same size as the number of buckets as recommended in [22].
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Fig. 6. The decoding time of RDA and FineComb.

RDA maintains a cache of packets at both the sender and the
receiver.

Metrics: We evaluate the decoding efficiency and the mea-
surement accuracy using two metrics: (i) Decoding success
probability: the ratio between the number of packets decoded
by RDA and the size of the set difference. (ii) Relative
error: the ratio between the absolute value of the subtraction
between the ground-truth metric fg and the estimated metric
fe:

|fg−fe|
fg

. The smaller the relative error, the closer the
estimated metric to the ground truth.

All experiments are repeated in ten times. We report both
the mean value and the 95-th confidence interval of the above
two performance metrics. All experiments are performed on
a PC with a Intel Core i7-3520 CPU (2.90GHz), 8 GB RAM
and a Java runtime environment 1.7.0.

Due to space limitations, we briefly reported the comparison
results, more simulation results are presented in the Appendix,
which is available in the online supplemental material.

B. Results Comparison

For RDA, we set the number of hash functions to two and
allocate an optimized number of buckets based on Theorem
2 when the size of the set difference is known, otherwise,
we allocate a static number of buckets per bank. We use the
recommended parameters for LDA [19] and FineComb [22].
We replay all packets in the trace.

1) Decoding Time
We compare the decoding time of RDA and FineComb.

For RDA, we set the number of hash functions to two and
the number of buckets to 4,000. For FineComb, we have
implemented the proposed brute-force approach to repair the
buckets.

Figure 6 shows that RDA is orders of magnitude faster
than FineComb. We can see that the decoding time of RDA
increases gracefully with increasing number of lost and re-
ordered packets, however, the computation time for FineComb
is unacceptably long even for a stash of size 40, since we need
to enumerate any combinations of packets in the stash for each
impaired bucket in FineComb.

As a result, for the rest of the evaluation, we implemented an
“ideal” repairing procedure for FineComb, given that we know
the actual set of lost and reordered packets that are inserted at
each bucket. Note that this approach is not implementable in
practice, as we will not know these values in a real scenario.
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2) Varying Set Difference
We next compare the relative error of prediction results

when the loss and reordering rates are unknown a priori.
We set the number k of hash functions to two and the

number of buckets of RDA to 5,000. We dimension LDA and
FineComb with the recommended parameters in [19] and [22].
We set the loss rate and the reordering rate to be identical
with each other and vary the set difference from 0 to 10,000.
Varying the loss or reordering rates changes the curves, but
the same conclusion still holds. We report the average latency
for brevity.

Figures 7 and 8 show the relative errors of the estimated
average latency and the standard deviation. For RDA, some
lower confidence-interval values are negative and not shown in
the plots. We see that all methods increase the relative errors as
we increase the set difference, since more packets are useless
for the latency calculation. LDA has the highest relative error,
since LDA is agnostic of the packets inserted into each bucket.

RDA consistently outperforms FineComb and LDA. For
example, when the size of the set difference is smaller than
2,000, RDA’s average-latency estimation incurs over 10 orders
of magnitude smaller relative errors than those of FineComb
and LDA. This is because when the set difference is smaller
than 2,000, we can decode nearly all problematic packets.

The real-world decoding performance is better than the
bound provided by Theorem 2. From Theorem 2, we can
see that when the size d of the set difference is smaller than
5,000
2·k ≈ 1, 250, the decoding fails with a probability at most
O(d−2).

Moreover, RDA’s performance experiences a sharp transi-
tion with increasing problematic packets. after the set dif-
ference is greater than 2,000, RDA’s relative error increases
sharply, from 10−14 to around 10−4, The sharp transition is
due to a fraction of useless buckets that consist of lost or
reordered packets. However, RDA is still much more accurate
than FineComb since RDA can repair more packets than
FineComb. Predicting the sharp transition is still an open
problem, as estimating the number of failed decoding is
challenging [18]. Our theoretical results in Section VI only
loosely bound the failure probability of the decoding process.

We can see that the standard-deviation estimation is less
accurate than the average metric, since the estimation of the
standard deviation is not precise, while the average metric
is an unbiased estimator of the ground-truth number. How-
ever, RDA’s standard deviation estimation still incurs around
0.5 orders of magnitude smaller relative errors than that
of FineComb, since RDA uses more packets to derive the
standard deviation.

VIII. IMPLEMENTATION

We have implemented the RDA based passive latency ag-
gregation in the software layer. This software captures packets
using libpcap [3] from user space, maintains RDAs in the
main memory and continuously calculates the latency analytics
between a pair of measurement points.
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Fig. 7. The relative errors as we enlarge the set difference for LDA, FineComb
and RDA on the DC data set. Negative numbers are omitted for the error bar
due to the logarithmic-scale y-axis.
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Fig. 8. The relative errors as we enlarge the set difference for LDA, FineComb
and RDA on the Univ data set. Negative numbers are omitted for the error
bar due to the logarithmic-scale y-axis.

Fig. 9. The pipelined measurement interval.

A. Architecture

We continuously monitor the end to end latency via the
pipelined measurement interval, as shown in Figure 9. At
the beginning of a measurement interval, each measurement
point keeps incoming packets into a separate RDA for this
measurement interval. At the end of this measurement interval,
the measurement point performs concurrent packet aggregation
and triggers the next measurement interval.

The software can be flexibly deployed in data center net-
works. First, we may deploy the software on servers to track
server-to-server one-way latency information. Second, we may
place a pair of dedicated measurement nodes that passively
capture streams of packets from mirror ports of a pair of
switches, which should be less intrusive with respect to server
performance.

Identifier Generation and Hash Function: In order to
correctly aggregate the timestamp for each packet, hashing
should ensure that different packets correspond to different
identifiers. Therefore, the hash functions should minimize the
collision probability of mapping different packets to identical
identifiers, otherwise, the program will incorrectly aggregate
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the latencies for these packets. Further, as hashing computation
consumes CPU cycles, we need to maximize the efficiency of
the hashing algorithm to process as many packets as possible.

Each packet contains a number of checksums, including
Ethernet-level, IP-level, and transport-level checksums. Un-
fortunately, checksums have several limitations to be used as
identifiers: (i) A packet’s checksum may be modified. First,
as a packet usually traverses multiple Ethernet segments in
data center networks, the Ethernet-level checksum needs to
be recomputed for each Ethernet segment. Second, since the
switch decreases the TTL field in the IP header per routing
hop, the IP-level checksum also needs to be recomputed by
the switch. Third, when a packet traverses NAT devices or
transport congestion options are enabled, some transport-level
fields need to be modified, as a result, the transport-level
checksum needs to be recomputed as well. Consequently,
modified checksums become useless to uniquely identify a
packet. (ii) Checksum calculation leads to high collision
possibilities. Checksums are used for checking errors in the
packet header and payload, which is calculated by summing up
packet contents for fast processing. Although the sum operator
is faster than other alternatives, it increases the collision
probability [4]. Consequently, two different packets may have
identical checksums. (iii) Captured packets may not have
calculated checksums. If the packet checksum computation is
offloaded to hardware, then the packet checksum captured by
libpcap becomes useless to uniquely identify a packet.

Henke et al. [16] have extensively studied the collision
performance of a set of hash functions and found that the
Bob hash function overall provides the best performance. In
this paper, we choose the Bob hash function to create the
identifier of each packet and to compute the bucket indexes.
We assign a distinct 64-bit identifier for each unique packet in
the packet stream using the distinct information of the packet,
including the entire packet payload at the IP layer to minimize
the overhead of extracting packet information.

Further, if NAT is used, then a packet’s address becomes
non-unique, therefore, we do not use the addresses of packets
for creating the identifier. Moreover, if the packet header
experiences modifications across the routing path, e.g., the
TCP header is modified, then this packet would lead to two
different identifiers at two measurement points. As a result,
these two identifiers would become problematic for the latency
aggregation. Fortunately, we can decode these problematic
identifiers, since this pair of identifiers are equivalent to a lost
packet and a reordered packet.

Pipelined Measurement Interval: In order to bootstrap
the pipelined process, the software sets up the beginning
timestamp of the first measurement interval for the sender
and the receiver. To that end, the sender selects a timestamp
that is larger than both clocks so that both the sender and
receiver have enough free time to start the first measurement
interval. Then the sender exchanges this timestamp with the
receiver. Afterwards, both measurement points register the first
measurement interval event at the specified timestamp and the
successor measurement interval. When reaching the specified
timestamp, both measurement points independently begin the
measurement.

Late-binding RDA Maintenance: According to Theorem
2, we need to set the number m of buckets in each bank
to twice the size of the set difference, in order to reconcile
the lost and the reordered packets with failure probability at
most O(d−k). Unfortunately, the size of the set difference is
unknown a priori until the measurement interval ends.

In order to decode all problematic packets, we adopt a late-
binding approach to configure the RDA data structure. During
the measurement interval, we extract the identifier of each
intercepted packet, and store the corresponding timestamp into
an in-memory hash table. The receiver’s RDA is transmitted
to the sender during the latency aggregation procedure, while
the cache is never transmitted and is flushed after the latency
aggregation.

After the measurement interval ends, we estimate the size of
the set difference via the MinHash estimator [9], [10] based on
a pair of caches at two measurement points. Next, we configure
the RDA such that the number of buckets per bank amounts
to twice the estimated size of the set difference. Finally, we
insert each cached packet into the RDA data structure and
trigger the latency aggregation procedure.

Latency Aggregation: After the measurement interval ends,
the sender requests and obtains the receiver’s RDA. When the
receiver receives this request, it sends its RDA data structure
immediately back to the sender. Then, the sender determines
whether any of the buckets contain lost or reordered packets
and decodes them if necessary. After the decoding process, the
sender obtains a set of packets identifiers for lost and reordered
packets.

Next, the sender needs to request the timestamps of the
reordered packets from the receiver if any, since the lost
packets are stored in the sender’s cache, while the reordered
packets are stored at the receiver’s cache. Then, the sender
deletes the lost packets from its own RDA using its own cache,
and deletes the timestamps and the identifiers of the reordered
packets from the receiver’s RDA. Finally, the sender calculates
the average and the standard deviation of the latency using the
repaired RDAs.

Timing: During a measurement interval, the sender and
the receiver aggregate the identifiers and the timestamps of
packets. If two measurement points’ clocks drift significantly,
then the two measurements may not capture the same set of
packets. Therefore, the measurement process heavily depends
on a good time synchronization and precise event timing.
We implemented the precise timing using IEEE 1588 Preci-
sion Time Protocol and events are timed using Linux high-
resolution timers.

B. Parameter Configuration

Number of Hash Functions: The selection of the number
of hash functions is a trade-off between the decoding failure
probability and the time complexity. Let d be the total number
of lost and reordered packets. When the number of buckets per
bank is at least 2d, the decoding failure probability decreases
exponentially according to Theorem 2. Further, we empirically
found that, when we fix the total number k·m of buckets in the
RDA, increasing the number k of hash functions from one to
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two increases the percentage of decoded problematic packets,
while more than two hash functions decreases the decoding
probability. Therefore, we set the default number k of hash
functions to two.

Bucket Width: We represent a timestamp using a 64-
bit unsigned fixed-point value based on RFC-1305 [1]. We
represent the ∆ field using a 64-bit long integer. In addition,
the ID field takes 64 bits as discussed in Subsection II-B.
Thus, a bucket takes up to 64 · 3 = 192 bits. For an RDA with
two banks and 100 buckets in each bank, the storage size is
4.69 KB.

Cache Size: To bound the size of the cache, we can simply
adapt the number of stored packets according to the link speed
or sample the incoming packets. By varying the sampling rate,
we can adapt to different traffic rates. For example, with a
1% sampling rate on a 500,000 packets-per-second link, the
sampled packet rate would become 5,000 packets per second
in the worst case, and a measurement interval of 1 million
packets would last at least 200 seconds. We need to ensure
that both the sender and the receiver sample the same subset
of packets in order to calculate the one-way delay using the
sampled packets. To that end, we sample packets based on a
flow identifier that uses the same hash function at the sender
and the receiver, which enables the synopsis and the cache to
record the same set of packet identifiers. The sampling process
reduces the number of packets for latency measurement. As
we are interested in the aggregated latency, we are still able
to accurately compute the latency.

IX. PROTOTYPE EVALUATION

In this section, we evaluate the performance of the prototype
on two servers in the same rack. Both servers connect to a
gigabit top-of-rack (ToR) switch with a 1 Gbits/s Ethernet
network interface card. Each server has two Intel Xeon E5-
2640 2.5 GHz processors with 12 threads and 48 GB RAM. A
server runs iperf to generate traffic (5 TCP flows) to the other
server. Other servers in the same rack have been allocated to
several tenants that create a variety of background network
traffic that compete for the processing capacity of the same
rack-level switch.

Our prototype is multi-threaded event-driven, which incurs
negligible performance reduction for co-located tasks on the
server. We cache all packets in the measurement interval in
order to obtain the finest-grained results. For RDA, we set
the number of hash functions to two, and set the number of
buckets per bank to twice the size of the set difference that is
estimated by the Min-wise Estimator [9].

Validation: We first validate whether the software continu-
ously produces useful results. We set the measurement interval
to one second and thus report latency statistics of aggregate
packets per second.

Figure 10 plots the dynamics of the average and the standard
deviation of the one-way latency between the two servers.
We can see that the software captures detailed fluctuations
of the one-way latency: the average latency approximately
centers around 0.05 ms, while the standard deviation varies
from 0.05 ms to 1 ms. As a result, the software provides fine-
grained information of underlying network flows.
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Fig. 10. One-way latency results between two servers reported by RDA based
passive latency measurement software.
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(b) Relative errors for the standard
deviation results.

Fig. 11. The variations of relative errors of estimated average latency and
the standard deviation.

We next verify the prediction quality of each measurement
interval. We stored the cached packets into the disk and
extracted the ground-truth one-way latency results by reading
packet timestamps that are cached at the sender and the
receiver. Figure 11 plots the dynamics of the relative errors of
the software compared to the ground-truth one-way latency.
We can see that the relative error of predicting the average
latency incurs varies from 10−7 to 10−8, while the relative
error of predicting the standard deviation keeps around 0.01
to 0.1 in most cases. The accuracy varies primarily due to the
dynamics of available packets and the percentage of repaired
buckets, however, the relative error is low enough to monitor
fine-grained one-way latency.

Further, we also aggregated the minimum RTT values via
the ICMP protocol based Ping that should be insensitive to
system noises, which yielded a minimum RTT 0.15 ms and a
standard deviation 0.42 ms. As the routing path is symmetric,
halving the minimum RTT approximates the one-way average
latency in Figure 10.

Overhead: Having shown that RDA captures fine-grained
latency dynamics, we next quantify the overhead of producing
latency results: (i) transmitting the RDA to the other mea-
surement point; (ii)decoding the set difference with a pair of
RDAs; (iii) requesting missing timestamps of decoded pack-
ets; (iv) erasing timestamps of packets in the set difference;
(iv) computing the latency statistics with a pair of repaired
RDAs.

Figure 12 plots the stacked delays of these subprocesses for
each measurement interval. We can see that the overall delay
is around 20 ms, which enables fast network troubleshoot-
ing. Further, transmitting RDAs and requesting timestamps
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Fig. 12. Stacked delays to produce measurement results.
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Fig. 13. iPerf generated loads (left y-axis) VS. Overall delays (right y-axis).

of missing packets takes up over 70% of the overall delay,
while decoding the set difference, erasing the missing packets
and computing the statistics take less time. Recall that the
measurement interval is of one second, so a few tens of
milliseconds incurs a low overhead.

Next, we contrast the measurement overhead with network
traffic between two servers. Figure 13 plots the overall delay to
produce measurement results and the network traffic generated
via the iPerf software. We can see that the traffic vary slightly
around 940 to 942 Mbits per seconds, while the overall delay
is approximately around 20 ms.

Scalability: Having illustrated that RDA produces useful
latency information with modest overhead, we next test the
system scalability.

(a) RDA Transmission: We first measure the variation of
the time needed to send the RDA data structure with an
increasing number of buckets. The time required to transmit
the RDA data structure includes the processing time at the
network stack of the two servers and the network transmission
time. Figure 14(a) plots the dynamics of the time needed
to transmit RDA between two servers. We can see that the
time increases modestly with the number of buckets due to a
compact design of the bucket structure.

(b) Missing-Packets Transmission: We next test the vari-
ation of the time required to request missing timestamps
of decoded packets. Figure 14(b) plots the requesting delay
with an increasing number of sent records. We can see that
the transmission delay increases linearly with respect to the
number of records, as both timestamp and identifier need to
be sent for each missing packet.

(c) Latency Aggregation: We next evaluate the processing
scalability to calculate the average and the standard deviation
of the latency as we increase the number of buckets.
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(a) Sending RDA.
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(b) Sending packet records.

Fig. 14. The time of transmitting RDAs and that of sending the packet records
that consist of the timestamps and identifiers of missing packets.
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(a) Calculating the average metric.
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(b) Calculating the standard deviation.

Fig. 15. Computing delays of the average and those of the standard deviation
with an increasing number of buckets.

Figure 15(a) plots the time required to calculate the average
latency. We can see that the cost is modest, as averaging
over 20,000 buckets only requires three ms. Further, the
cost increases linearly with the number of buckets, since
computing the average requires a linear scan of all buckets.
Next, Figure 15(b) shows the time required to compute the
standard deviation. We can see that the cost is super-linear to
the number of buckets, since the standard deviation calculation
needs several passes over the buckets.

X. CONCLUSIONS AND FUTURE WORK

The synopsis based passive latency measurement approach
scales well with increasing traffic volumes, however, the
estimation accuracy degrades significantly under the presence
of reordered or lost packets. Unfortunately, identifying these
problematic packets from the synopsis is still a challenging
problem. In this paper, we unify this problem within a set
reconciliation framework that has been independently studied
in the theoretical field. We propose a space-efficient synopsis
named RDA that uses a multi-bank data structure to maximize
the percentage of useful packets under the lost or reordered
packets. RDA accurately estimates the average latency and the
standard deviation. Our theoretical analysis shows that RDA
preserves nearly all useful packets, while the space complexity
is proportional to the number of packets that are lost or
reordered. We designed and implemented a passive latency
measurement system based on RDA. Our experimental results
show that RDA obtains accurate latency statistics under the
presence of loss and reordering events with modest overhead.
As future work, we plan to extend RDA to support other tail
statistics.
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