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Influencing factors in energy use of housing blocks: A new methodology, based on clustering 
and energy simulations, for decision making in energy refurbishment projects 

 
 

ABSTRACT 
In recent years big efforts have been dedicated to identify which are the factors with highest influence in the energy 
consumption of residential buildings. These factors include aspects such as weather dependence, user behaviour, socio-
economic situation, type of the energy installations, and typology of buildings. The high number of factors increases the 
complexity of analysis and leads to a lack of confidence in the results of the energy simulation analysis. This fact grows 
when we move one step up and perform global analysis of blocks of buildings. The aim of this study is to report a new 
methodology for the assessment of the energy performance of large groups of buildings when considering the real use 
of energy. We combine two clustering methods; Generative Topographic Mapping and k-Means, to obtain reference 
dwellings that can be considered as representative of the different energy patterns, and energy systems of the 
neighbourhood. Then, simulation of energy demand and indoor temperature against the monitored comfort conditions in 
a short period is performed to obtain end-use loads disaggregation. This methodology was applied in a district at 
Terrassa city (Spain), and six reference dwellings were selected. Results show that the method was able to identify the 
main patterns, and provide occupants with feasible recommendations so that they can make required decisions at 
neighbourhood level. Moreover, given that the proposed method is based on the comparison with similar buildings, it 
could motivate building occupants to implement community improvement actions, as well as to modify their behaviour. 
 
Keywords: Building energy use; Energy building simulation; Clustering analysis; Urban energy refurbishment 
 
 
Highlights: 

• Energy audits, tenant’s surveys, and empirical tests in households are performed  
• Normalization and selection of relevant variables with respect to energy use are obtained 
• Clustering of variables is carried out to characterize the different groups of dwellings  
• Refinement of energy simulation of representative dwellings with monitoring data is presented 
• Energy disaggregation and stock aggregation to the whole district is calculated  
• Results serve to evaluate the energy current situation and related socio-economical impacts 
• Potential impact of energy saving measures are finally presented 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviations: IEA-EBC: International Energy Agency-Energy in Building and Communities. EPBD: European Union 
Energy Performance of Buildings Directive. EUI: Energy Use Intensity. 
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1. INTRODUCTION 

In recent years, there has been a growing interest in understanding and analysing the real energy performance of 
buildings. This interest has been mainly driven by the evidence of the high variability in the energy consumption of 
buildings with very similar characteristics (IEA-CBCS Annex 33 2010; IEA-CBCS Annex 53 2013). This high 
variability, along with the lack of confidence in the estimation of real energy use is at its most relevant, and sometimes a 
critical factor, in projects oriented at the neighbourhood level (IEA-CBCS Annex 33). At such level, the improvement in 
energy efficiency is not only determined by urban and architectural aspects, but also by the upgrading of installations 
and/or by changes in users’ behaviour. This variety of factors increases the complexity of analysis of the real energy use 
of buildings. This complexity can be partly explained by defining the influencing factors in energy use of buildings. In 
the IEA-EBC Annex 53 the main influencing factors of building energy consumption were proposed to fall into six 
categories: 1) climate, 2) building envelope, 3) building services and energy systems, 4) building operation and 
maintenance, 5) occupant activities and behaviour, and 6) indoor environmental quality. The three first categories are 
related to variables influencing building energy performance and, as defined by the European Union Energy 
Performance of Buildings Directive (EPBD) (Directive 2010/31/EU 2010) they are usually calculated by fixing 
standard conditions for the other three categories, which are specifically related to actual building functions. As a 
consequence, the building energy performance is calculated assuming that all of the analysed buildings operate under 
the same standardized functioning conditions, as outlined in (IEA-EBC Annex 33 2010). This approach allows a 
coherent comparison of the calculated building energy performance, but this calculation is not strictly related to the real 
energy consumption (IEA-CBCS Annex 53 2013). This type of calculation allows obtaining the Asset Ratings energy 
performance indicators, in contrast to the Operational Ratings which are based on measured energy use, often 
normalized for relevant variables like climate and level of energy service (Goldstein 2014). When the focus moves to 
the real use of buildings, all six categories of influencing factors must be taken into account. The influencing factors 
could be seen as driving forces for changing energy use and are of great relevance if we extend the analysis from an 
isolated building to a group of buildings, or to a neighbourhood level.  
 
Several models for the integration of the influence of occupants’ behaviour into building energy performance 
calculations have recently been proposed. A number of studies (Nakagami 1996; Lopes et al 2005; Yu et al 2011) 
suggest that an optimal approach to the quantification of the global effect of occupants’ behaviour should be based on 
knowledge extraction from monitored data and from occupants’ surveys rather than on improving theoretical building 
energy simulation models. Moreover, neighbourhoods or large group of buildings often yield less data (and are less 
frequently surveyed) than individual buildings. This fact increases the uncertainty of simulations, due to the broad 
assumptions about input data that must be often relied upon. The results of the reviewed studies (IEA-CBCS Annex 33 
2010; Yu et al 2010; Yu et al 2011) show that a combination of statistical analysis with prediction models (both heuristic 
simulation and inverse models), complemented in some cases with monitoring data analysis, can be a powerful tool for 
the development of energy urban actions aiming at reducing the energy consumption in existing buildings. According to 
this approach, descriptive statistics have been used to identify the most important factors and reference members of the 
set, by grouping the buildings/houses according to them (Räsänen et al 2008; Loughlin et al 2012). The identification of 
factors may help the better implementation of subsequent steps of the simulation of the current situation and of energy 
improvement scenarios (Yu et al 2011; Ueno 2006). In the same way, results of a framework to model personalized 
occupancy profiles for representing occupants’ long-term presence patterns presented in (Yang 2014), shows that the 
personalized occupancy profiles acquired through time-series modelling, pattern recognition modelling and stochastic 
process modelling, outperform the fixed design profiles currently used in building energy simulations. A brief 
description of common bottom-up modelling techniques (statistical and building physics-based) can be found in 
(Kavgic et al 2010; Murray et al 2014). An example of statistical modelling is also described in (Yu et al 2010), where a 
decision tree method for building energy demand characterization was proposed and applied to historical data from a 
sample of Japanese residential buildings. Taking the same statistical approach, some studies about classification of 
buildings according to the relevant factors and the different hourly profiles of users have been carried out. The user 
behaviour in these studies are usually represented as time-based profiles or patterns. As a general rule in this approach, 
clustering  is used to group energy consumers of similar characteristics (Chicco et al 2003; Chicco 2012), to predict 
future energy demand, or to detect atypical, usually undesired, behaviours (Räsänen et al 2008, Tsekouras et al 2008; 
yang et al 2014; Li et al 2010). 
 
On the other hand, and considering only the building physics models at district level, the reported approaches generally 
include the energy calculation of a sample of houses considered to be representative of the 
neighbourhood/district/nation stock, as described in (Swan et al 2009). In some cases, simulation methods were used to 
conduct building energy consumption calculations, in order to identify the correlation between building energy 
consumption and different influencing factors (e.g., building relative compactness, building control strategies) (Ourghi  
et al 2007).. However, simulation methods do not perform so well in simulating energy performance for occupied 
buildings as compared to non-occupied buildings, due to a lack of sufficient knowledge about occupant behaviour 
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patterns, which are normally very difficult to parameterize. Moreover, the calibration of building simulation programs 
against real conditions is a normally complex undertaking and the learning process is time-consuming (Yu et al 2011). 
 
The main goal of the current study is the assessment of the energy performance of medium and large groups of 
buildings when aiming at eliciting common characteristics of building/dwelling typologies and the main factors 
influencing in their energy consumption. Improving the understanding of these influencing factors will allow us not 
only to improve the accuracy of prediction or classification methods, but also to incorporate the socio-economic impact 
in decision making for urban refurbishment projects. In order to achieve this objective, the paper is structured as 
follows: First, the methodology is described as a combination of innovative and standard statistics methods for 
clustering (Generative Topographic Mapping and K-means), together with simulation tools that are employed to obtain 
realistic assumptions about user behaviour in the main representative groups of dwellings of a neighbourhood. These 
assumptions enable the estimation of present energy consumption at the level of individual properties as well as at the 
neighbourhood level. Then, this approach is implemented in a case study involving a district of the city of Terrassa 
(Spain), including an estimation of the potential impact of improvement measures. Finally, a discussion of the 
appropriateness of the approach is also provided.   
 

2. METHODOLOGY 

The analytical framework involves both quantitative and qualitative household information (inputs), the steps of the 
working process (process), and the results obtained at each step (outputs). The developed methodology is presented in  
Figure 2. The quantitative dataset comprises electricity and gas bills, complemented with electricity consumption and 
indoor temperature measurements over 15-minute periods, as well as results of blowing door tests. The qualitative 
dataset includes the household occupants’ responses to surveys and interviews carried by the researcher team. 

2.1 Data acquisition and treatment 
A study entitled “Diagnostic and analysis of energy improvements in low income districts in Catalonia region: case 
study in Can Jofresa's neighbourhood (Terrassa)” was carried out by CIMNE from May 2008 to May 2010. The 
investigated neighbourhood is located in the city of Terrassa (Barcelona, population 215,517, as of 2014), in NE Spain, 
and consists of twelve H-shaped fifteen-story tower blocks (60 dwellings per tower, 720 households in total, see  
Figure 1 
 

 

 

Fig. 1 General site view (left) and pilot tower detail (right) 

For this study, field surveys of energy-related data and other relevant information were carried out in 166 of the 720 
residential dwellings. Table 1 shows the surveyed items and the corresponding extracted variables. A blowing door test 
was also carried out in four dwellings representing the four different types of existing windows, in order to determine 
the most common infiltration rates. Real samples, together with thermography of façades, were also performed to 
estimate the average U-value of the external walls and to detect the main existing thermal bridges. 
Data reduction and aggregation was then performed to obtain a more parsimonious representation of the original data. 
Normalization of the yearly energy consumption per unit of surface (kWh/m2·yr) was applied (called Energy Use 
Intensity, EUI). An aggregation was carried out in some of the surveyed items for a more clear understanding of the 
variables under analysis. For instance, questions related to the type of window frames, type of glass, and degree of 
windows tightness were grouped in a categorization of the quality of windows (1=very poor, 2=poor, 3=good, 4=very 
good). This process of related-questions grouping was also carried out for the categorical answers, in order to have a 
more understandable classification.   
 
Subsequently, a data transformation was applied to variables showed in Table 1 to deal with the differences in scale and 
in categories of the obtained dataset. Specifically, Min–Max normalization was performed to scale the values so that 
they fell within a predetermined range. This technique of linear normalization has the advantage of preserving the 
relationships between the original data. In this study, the new range is defined as (0, 1). 

 

Fig. 2. Global view of the working process 

2.2 Selection of relevant variables 
The first approach to obtain the relevance of the attributes with respect to the EUI entails correlation analysis. This 
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relevance corresponds to a weighting scheme that returns the squared value of the correlation as the attribute weight. 
Only those variables with a correlation weight over 0.35 were selected as relevant (typical). In a subsequent step, the 
covariance matrix is calculated in order to quantify the rank correlations between variables. A threshold value of 0.8 
was set as a minimum criterion to consider two variables as highly correlated. These two processes yield a selection of 
the most relevant (typical) variables.  

Table 1 List of variables selected in this study to analyse their influence in energy consumption. 

Code Name Acronym Range value Value 
X1 Space heating Heating yes/no (1,0) 
X2 Type of space 

heating 
TypeHeating elec.stove/gas stove/gas boiler/heat 

pump 
(1 to 4) 

X3 Type of windows Typewindows very poor/poor/ normal/good (1 to 4) 
X4 Number of months 

heating 
NumMonthHeating Number (month) (0 to 6) 

X5 Heating schedules HeatingSchedule little/morning-afternoon/ lunch-
dinner/afternoon/night/all day 

(1 to 6) 

X6 Degree of comfort Comfort very low, low, medium, high (1 to 4) 
X7 Number of rooms 

unheated 
NumRooms Unheat all/all bedrooms/one bedroom/only 

dining room/only kitchen/none  
(1 to 6) 

X8 Air conditioning 
(AC) 

AC yes/no (1,0) 

X9 Use of AC UseAC never/occasionally/few/noon-
night/always 

(1 to 4) 

X10 Number of adults 
and children 

NumPeople number (person) (1 to 6) 

X11 Total monthly 
income 

TotalMonthIncome number (€/month) 1160-6000 

X12 Degree of good 
practices in heating 

BPSwitch 
Heating 

little awareness/normal awareness/high 
awareness 

(1 to 3) 

X13 Use of awnings AwningsUse much use/none (1,0) 
X14 Type of cooking 

facilities 
TypeKitchen gas/ceramic hob (1,0) 

X15 Type of fridge Fridge large/medium (1,0) 
X16 Use of washer UseWasher very 

inefficient/inefficient/normal/efficient/
very efficient 

(1 to 5) 

X17 Number of 
appliances 

Nuppliances number (units) (0 to 27) 

X18 Switch off 
appliances by night 

StndbyOffSleep yes/no (1,0) 

X19 Number of energy 
saving lamps 

NumEfficLamps number (units) (0 to 20) 

X20 Number of 
fluorescent tubes 

NumFluoresc number (units) (0 to 5) 

 

2.3 Data clustering with the GTM and k-Means algorithms 
Clustering is a process in which we aim to infer data grouping structure that is unknown beforehand. It is often used as 
an exploratory strategy that attempts to partition the data into groups that are internally homogeneous and different 
enough from other groups. Unlike in classification, no groups are predefined and there is no explicit modelling of the 
relationship between data and class labels. In this study, we combine two clustering methods, the namely Generative 
Topographic Mapping (GTM) (Bishop et al 1998) and k-Means (Jain 2010)], in the exploratory process of grouping the 
parameterized data. GTM is a probabilistic alternative to the well-known Self-Organizing Maps (SOM) (Kohonen 
2001), which has successfully been applied to energy use profiling. In both methods, data clustering becomes secondary 
to exploratory data visualization in a low-dimensional space (usually, in 2-D), as outlined in (Vellido et al 2011). GTM 
is preferred to the more standard SOM in this study because its probabilistic definition ensures the convergence towards 
a minimum of a properly defined error function, as well as the adaptive estimation of the optimum values of some of its 
variables. Formally, GTM is a non-linear latent variable model (Bishop 1998) of the manifold learning family and, as 
such, data are modelled through a low-dimensional manifold embedded in the data space. Such manifold is defined as a 
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mesh whose knots are the centers of probability distributions (usually Gaussians) that become prototype representatives 
of groups of data. These prototypes are cluster centers and also the building elements of a mixture of distributions. In 
different variants, GTM has been used for missing data imputation (Vellido et al 2010) , outlier detection (Tosi and 
Vellido 2013), or time series analysis (Tosi et al 2014), as well as applied in areas such as medicine (Cruz and Vellido 
2011)or e-learning (Etchells et al 2006), amongst others.  
 
The GTM is mathematically defined as a nonlinear mapping from points u  in a low dimensional latent space onto the 
prototypes y  residing in data space, with a functional form described as: ( )WuΦ=y , where Φ  is a set of M basis 
functions ( ) ( ) ( ){ }u,,u=uΦ M1 …  and W is a matrix of adaptive weights that defines an specific mapping. The 

probability distribution for data point x  in a data space { }Nx,,x=X …1  with Dℜ∈x , being generated by a latent point 

u , is defined as an isotropic Gaussian noise distribution with common inverse variance β , from which the likelihood 
of the model can be defined. The adaptive parameters of the model ( βW, ) can then be estimated through maximum 
likelihood using, for instance, the Expectation-Maximization (EM) algorithm (Dempster et al 1977). In order to use 
GTM for visualization, the relation between each data point x  and each latent space point u  is quantified as a 
conditional probability ( )nk x|up  and its calculation is a by-product of the maximization step of EM. This probability 

is known as the responsibility knr  of each latent point ku  for the generation of each data point nx . Each data point 

nx  can therefore be visualized by its assignment to the location in the latent space (to the cluster) where the mode of 
the corresponding conditional probability is highest, that is: 

kn
kue r=u

xam gramod
  

 
This type of visualization, known as mode projection, was used in the experiments reported in Section 3. The fact that 
clustering is somehow subordinated to visualization in GTM means that the resulting clustering solution is often too 
detailed for practical purposes. To overcome this limitation, the well-trodden k-Means algorithm, which, as SOM, has 
been used for energy use profiling, was used to cluster the prototypes resulting from GTM. This becomes, de facto, a 
two-stage clustering procedure that yields a parsimonious final cluster partition that can be interpreted in terms of the 
original data variables with the assistance of the GTM visualization maps.  

2.4 Definition of reference dwellings  
The definition of reference dwellings is then carried out by identifying those which meet two main criteria: first, having 
the values of relevant variables closest to the values of the centroid of each cluster in terms of Euclidean distance; 
second, having the monthly EUI (kWh/m2·month) of gas and electricity closest to the median monthly value of each 
cluster, also in terms of Euclidean distance.  

2.5 Thermal simulation and refinement of the reference dwellings 
In order to check the real indoor conditions in the selected reference dwellings and to calculate their related heating and 
cooling demands, a thermal simulation was performed with Energy Plus software [34]. The adjustment parameters for 
simulation acceptance were  natural ventilation rate, use of shading devices, indoor set point temperature, hours/day 
being at home, internal energy demand (number of electrical appliances, nominal power and artificial lighting) and use 
of AC (in dwellings with AC system).The monitoring indoor temperature, electricity hourly consumption, and outdoor 
temperature in the representative dwellings (see section 3.8) were chosen as reference for adjusting the energy demand 
simulation. 

2.6. Extrapolation of results for the entire neighbourhood 
Extrapolation of results and calculation of disaggregated energy consumption for the whole district were carried out 
considering a tower of 60 dwellings with the same distribution of types of households as those obtained from the 
clustering procedure as a pilot. This pilot tower was considered to be an appropriate representative of the 12 towers of 
the district. A proportional aggregation according to the surface area, of dwellings in each cluster was implemented to 
estimate the total energy demand of the neighbourhood. We used the so-called weighting coefficient which is the 
number of buildings of the stock which are represented by each archetype building, as presented in (Mata et al 2014) 
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3. EXPERIMENTAL RESULTS  

3.1. Data collection and pre-processing 
A close scrutiny of the data from the 166 surveys, for which 59 have a yearly period of monthly energy data, revealed 
that only 146 sets of socio-economic data and 51 sets of energy monthly data were complete. As previously explained, 
aggregation of related questions from surveys was carried out resulting on a dataset of 26 variables for the 146 
dwellings. Table 1 shows the complete list of variables extracted from the questionnaires. Finally, and also as previously 
described, data transformation to a range of [0, 1] was applied to deal with the differences in scale and in categories. 

3.2 Selection of influencing variables 
Correlation between variables and EUI was calculated for the 51 samples with monthly bills, under the assumption that 
this result will apply to the rest of samples. The covariance matrix was then calculated over the remaining variables of 
the 146 dwellings. This resulted in a selection of 13 variables for clustering. From those variables (see Table 1 for 
coding), five are related to heating use and comfort (X1, X4, X5, X6, and X7), two are related to electricity 
consumption (X15, X17), four to energy behaviour and awareness (X12, X13, X18, and X24), one to the economic 
situation (X11), and one to hot water consumption (X22). Note that none of the variables are related to summer comfort, 
air conditioning, or the kitchen. The reason for this is that only a few dwellings have air conditioning systems (around 
25% of the total) and their use is low (as will be confirmed in the next section).  

3.3 Two-stage clustering results  
The selected data (13 relevant variables from 146 dwellings) underwent a two-stage, fully unsupervised, clustering 
process in which GTM was first used to obtain a loose data partition into natural groups with a focus on exploratory 
visualization. For the experiments reported in this study, the visualization grid of GTM latent nodes was fixed to square 
layouts of 10×10 nodes (i.e., 100 constrained mixture components). Figure 4 (right) shows the 2-D representation of the 
146 13-D points on the GTM 2-D visualization space, according to their mode projection as described in section 2.3. 
Each square corresponds to one of the latent points in the 10x10 grid and its relative size corresponds to the ratio of 
cases (dwellings) assigned to that point. The different square sizes and the empty spaces in some areas are a clear 
indication that the analysed data have some intrinsic cluster structure. The k-Means algorithm was then applied to the 
obtained prototypes (the functional images of the latent points) in order to further group the different visualization 
regions into a specific number of clusters. 
The adequate number of clusters must be estimated according to some criterion. In our experiments, we used the 
silhouette index, which provides a succinct graphical representation of how well each data item (a dwelling in our 
experiments) lies within its cluster. It was first described by (Rousseeuw 1987) and a value near 1 indicates that the data 
item are assigned to the right cluster whereas a value near -1 indicates that the items should have been assigned to a 
different one. This index suggested a number of six clusters as the optimal choice, yielding a maximum silhouette value 
of 0.3, which is acceptable taking into account the small dimension of the data matrix (146×13). The distribution of 
colours in the map of Figure 3(right) reflects the results of this 2nd stage of the clustering process. Importantly in terms 
of usability and data consistency assessment, the 6 cluster solution is shown to partition the data in mostly self-
contained independent map areas with minimal cluster overlapping and very little cluster discontinuity.  

3.4 Reference maps and feature-Based Interpretation 
In order to make practical sense of these 6 clusters, an interpretation on the basis of the original 13 variables is needed. 
GTM provides such interpretation through the so-called reference maps, shown in Figure 3(left). Each reference map 
displays a variable’s relative contribution over the representation map (and thus how it contributes to the clustering 
solution as a whole). Given that features, whose reference maps that exhibit a “regular” distribution over the map are 
likely to induce a similarly regular structure on the GTM visualization map, this property could be used to select a 
subset of data features that are the most relevant at determining the shape of the map and consequently the clustering of 
groups of households.  
 
The reference maps are coded in grey-scale, from black (lowest values) to white (highest values), allowing a 
straightforward interpretation. It can be seen, for instance, that the reference map relative to variable X1 (space heating), 
which reflects whether the household has central space heating system (yes) or stoves (no), is neatly partitioned 
vertically according to low/high values. Its correspondence with the GTM map in Figure 3(right) reveals that almost all 
households with only stoves (electric or gas) are located on the left-hand side of the map, which corresponds strictly to 
cluster 3 (in yellow). This cluster also seems to be neatly characterized by low values (black colour on the left) of X4 
and X5 (months of heating and heating schedule) and, therefore, variable X1dominates the first level of the partition. 
Similar exploratory interpretations can be carried for other clusters using the reference maps 
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Fig. 3 a)(right): GTM 10×10 cluster map: blue)cluster 0, light blue)cluster 1, green) cluster 2, yellow) cluster 3, red)cluster 4, 
brown)cluster 5.b) (left) reference maps of single 13 variables. 

Through visual interpretation, we can say that only some variables seem to significantly contribute to explaining the 
final cluster partition in Figure 3 (right). The selected 9 variables are: X1=Space Heating, X4=Num. month heating, 
X5= Heating Schedule, X7 = Num. rooms unheated, X11= Total month Income, X13=Use of awnings in summer, X17= 
Number appliances, X18=Switch off appliances by night, and X22= Time shower. 

3.5 Characterization of groups of households 
Beyond visual exploration, we would like to quantify the specificity of the clusters according to actual characteristics. 
For this, we could display, in the categorical variables, the percentage of households that exhibit a specific categorical 
value, while, for real-valued variables, we could display the quartile values of their distribution in each of the identified 
clusters identified (see Figure 6).  
 
Beyond the subset of relevant variables considered in the previous section, there are others that are unevenly distributed 
over the different clusters. Due to this different distribution over groups, they could also be considered when trying to 
understand the characteristics of groups. This second set of variables could be denoted as complementary features of the 
different groups of households. It includes X3 = Quality of windows, X8= AC system, X9= Use of AC, X26= Time at 
home (see Figure 7 top). Additionally, the distribution of the yearly aggregated monthly bills (gas and electricity 
collected in some of the households), can be obtained for each cluster (Figure 6 bottom).  A description that summarises 
the mean values for the predicted variables and the energy consumption in each cluster is shown, in Table 2, as a 
characterization of the groups of households. In this table, we can see that 12 variables have finally been selected (both 
representative and complementary) as the main representative to characterize the different clusters. It should be noted 
that, rather than selecting X1, which can only discriminate those households without centralized space heating (see 
Figure 3 left), we selected X2 as representative variable (it is in fact highly correlated to X1) because households 
without centralized space heating will be determinant in making decisions about energy improvements at building level 
due to their low comfort, consumption and low incomes (they represent 10% of the whole analysed sample). In the 
practical description of groups we have also included the number of people living at home, but only to complement the 
selected information.  
 
Some relevant conclusions can also be extracted from the rejected variables. For instance, the number of efficient lamps 
and the number of people are not directly related to the electricity or the gas consumption, as the variation in these 
variables is not coherent with their equivalent consumption. (Most clusters have the same median and range of number 
of people at home (see Figure 7 bottom). As outlined in Table 2, the average income per family is split into two main 
groups, with incomes around 2,300€ and 3.000€ per month (in year 2008). Furthermore, when asked about the 
possibility of engaging in energy efficiency projects that entailed the introduction of a fee, the vast majority of 
households (97%) rejected the idea. They are, however, prone to accept the measures if no extra payment is required. 
The majority of investments carried out in the past in the analysed area focused on improving the quality of windows 
(around of 40% of windows are double glazed, with the exception of Cluster 3) and installing natural gas heating 
systems (around 85%, again with the exception of Cluster 3). 
 
In relation to energy consumption, we can affirm that households of people spending long periods at home (Cluster 5) 
and small families spending very limited time at home (Cluster 3) are representative of the  group with lowest energy 
consumption rates (both gas and electricity). In contrast, families with high comfort and medium time spent at home 
(Cluster 4) represent the highest energy consumption, followed by Cluster 2, Cluster 1, and Cluster 0. These last three 
clusters show very similar gas and electricity consumption rates, due to the similarities in the time spent at home, 
income and comfort. The small increase in energy consumption observed for Cluster 2 over clusters 0 and 1 is due to 
small variations in combinations of these variables related to energy use (mainly use of heating, income, and comfort). 
The big differences observed between Clusters 3 and 5, on one hand, and Cluster 4, on the other, are mainly due to: 
Firstly, the different type and use of their heating energy systems as well as their thermal comfort; secondly, their 
different monthly income and number of appliances; and thirdly, their level of energy awareness related to the use of 
AC, awnings and appliances by night. In contrast, these high differences in energy consumption are not reflected in 
same differences in energy cost, due to the structure of energy tariffs in Spain, where the fixed terms are very high 
(especially in electricity). All groups spent around 3% of their monthly income in energy consumption. However, this 
percentage may increase up to 11% for Cluster 3 and Cluster 5 in months of high energy consumption (winter).  
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3.6 Differences of energy consumption within clusters 
In order to examine the variability in annual gas and electricity consumption within each cluster, the yearly EUI of gas 
and electricity was normalized and plotted (see Figure 4). The normalization is based on dividing all the EUI of 
dwellings by the median value in each cluster, thus highlighting the variability and allowing the EUI to be plotted 
together on the same scale. We consider large variations those with values over 1.5 or below 0. 5. Regarding the figures, 
all clusters have their values corresponding to the first and third quartile included within this variation in the case of gas, 
with the exception of Cluster 3 and Cluster 4, for which higher ranges of variation in electricity consumption were 
observed. This means that the clustering procedure has predicted a very good similarity of gas consumption within 
clusters, and an acceptable one in the case of electricity consumption. This can be explained because it is easier to 
define variables that explain the use of heating than defining variables that explain the use of electrical appliances 
adequately. 

3.7 Selection of reference dwellings  
The next step of the analysis consists on the characterization of the reference dwellings that can represent each cluster. 
This task was carried out by selecting those dwellings that complied with the two criteria previously defined in section 
2.6 (minimum Euclidean distance of all relevant variables and monthly energy consumption to the centroid of each 
cluster). An example for Cluster 0 of visualization of the monthly EUI values of gas and electricity, with their 
corresponding median value is shown in Figure 5. The dashed grey line corresponds to the median value, while the red 
line corresponds to the reference building. It can be seen that the monthly distance between the median and the selected 
reference dwelling is acceptable, as significant differences are identified only in two months. According to this 
procedure, the ID of the six selected reference dwellings, together with their related energy consumption, were obtained 
(see Table 2). The results of corresponding variables of each reference dwelling are summarized in Table 3. 
 
 

Fig. 4 Box plots of the normalized EUI of gas (left)  and electricity (right) in each cluster. 

 

Fig. 5 Monthly gas and electricity consumption of households in Cluster 0. 

 

Table 2 Yearly EUI of gas and electricity, and energy thermal demand for cooling and heating of reference buildings 

GROUP % 
 Dwellings 

Surface 
(m²) 

ID 
 Reference 
Dwelling 

Gas  
(kWh/yr·m²) 

Electricity 
(kWh/yr·m²) 

Heating  
Demand 
(kWh/m²·yr)⁴* 

Cooling 
 Demand 
(kWh/m²·yr)⁵* 

C0 21% 89 38 57 27 38 0,0 
C1 19% 89 44 53 46 36,5 -16,0 
C2 21% 65,5 139 64 42 44,3 -10,5 
C3 10% 65,5 123 32 23 21,23 0,0 
C4 11% 89 32 93 68 63,20 -17,6 

4* heating demand is obtained by simulating with a ideal heating system that covers the defined equivalent  winter T set point  
5* cooling demand is obtained by simulating with an ideal AC system that covers the set point T  when the household has air 
conditioned system 

3.8 Energy simulation of the reference buildings of each cluster 
We then proceeded to the estimation of the parameters for the calculation of the hourly thermal demand of the reference 
dwellings. A summary of those simulation parameters is shown in Table 4. Some of these parameters, like U values, 
infiltration rate (ACH), and type of windows were obtained from ad-hoc tests and measures (a hole in walls of two 
unoccupied dwellings; visits to check the quality of windows; and blowing door tests were conducted). Other 
parameters such as number of people, internal gains, use of night ventilation, comfort temperature and schedule time at 
home were estimated according to relevant variables of each cluster. These last group of parameters, in the case of our 
study, were refined with data obtained from a monitoring period (summer) of indoor temperature and hourly electricity 
consumption in the reference dwellings (see next section), in order to check the reliability of our parameters. In the 
energy model created with Energy Plus simulation software (Energyplus Software 2009), each zone represents one 
room of the dwelling. The measurements of indoor T are also carried out in one bedroom and in the dining room. The 
rest of the dwellings in the building were used only for shadowing simulation purposes, as well as the rest of the 
buildings in the district. Figure 9 displays views of the computer modelled buildings. 
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Figure 6.a) top) Distribution of relevant categorical variables for each cluster; b)bottom) max., min., median, 25% and 75% quartiles of continuous variables within each cluster. 

 

 

 

Fig. 7a). Top) Distribution of predicted categorical variables within each cluster; b)Bottom) max., min., median, 25% and 75% quartiles of EUI of gas and electricity. 
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Table 3 Relevant variables which define the different features of the groups of households 

GROUP % dwellings Description Total 
income 

(€/month) 

Gas 
(kWh/yr·m²) 

Electricity 
(kWh/yr·m²) 

Average   Energy 
costs (€/Month)* 

Stand by 
 Appliances off 

by night  

Use of Awnings 

    X26, X7, X2, X4, X5, X17, X8, X9 X11       X18 X13 

C0 21% 

Family with around 3-4 members (middle 
age adults) . Medium-High time at home and 

thermal comfort. Centralized heating. 
Medium heating period with medium use. 

High number appliances. Few  of them with 
AC and low use 

3190±1580 57±32 34±13 92,52 MOSTLY YES 
(70%) 

MOST OF 
THEM 

 ALWAYS  
(70% always) 

C1 19% 

Family with 2-3 members. Medium time at 
home and thermal comfort. Centralized 

heating. Highest heating period with high 
use. High number appliances. Some of them 

with AC with low use 

3000±1327 60±39 32±20 91,55 MIXED 
 (60% no) 

ALWAYS  
(90%) 

C2 21% 

family with 3-4 members (middle age 
adults). Little time at home. Medium-high 
thermal comfort and appliances. Central 

heating. High period of heating with 
medium use. No AC 

2900±1814 64±33 34±18 94,96 MOSTLY YES 
(70%) 

NEVER  
(100%) 

C3 10% 

Young couple or little family (2-3 members), 
little time at home. Heating with gas stoves. 
Low thermal comfort. No AC. Low number 

of appliances. Short period heating 

2300±1100 34±12 21±20 71,41 MOSTLY YES 
(65%) 

MIXED 
 (50% never, 
50% always) 

C4 11% 

Family with around 3 members. Medium 
time at home. High thermal comfort and 

appliances. Central Heating. Short period of 
heating, but intensive use. With AC and 

some use. 

3150±950 93±11 29±22 100,03 NO NEVER 
 (100%) 

C5 19% 

Family with 2-3 members (mainly Elderly, 
or family with elderly). Long time at home. 

Central heating. Medium-low thermal 
comfort. Low period of heating with 

medium use. Low-medium number of 
appliances. Some of them  with AC but low 

use. 

2400±1100 37±11 25±17 76,48 YES  
(90%) 

ALWAYS 
 (90%) 
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3.8.1 Refinement of thermal simulations 
As outlined above, the adjustment of an overall infiltration rate for each dwelling was defined according to blowing 
door tests (see Table 4: Infiltration rate column). For night ventilation, time at home, internal gains and heating period 
definition, the indoor temperature was simulated (without HVAC system) against the real indoor T during the 
monitoring period. Within this refinement process, the outdoor temperature for the simulation was taken from an 
automated meteorological station installed on the roof, and the indoor real temperature corresponds to the measured 
temperature in the dining room. Results for both simulated and real indoor temperature (dining room) for the reference 
dwelling of Cluster 3 (low consumption) and Cluster 4 (high consumption) in August are shown in Figure 10. These 
results show that the relative error was above 10% only the 0.94% of the total monitoring time, which reaches the 
acceptable accuracy threshold in adjustment of an energy simulation model defined by (AHSRAE 1999). To reach this 
accuracy, the infiltration rate in Cluster 3 reference dwelling was defined as 1,5 ACH for June and September (from 21h 
to 10h), 3ACH for July (21h to 10h), 1,5ACH for August half time unoccupied. This adjustment procedure was applied 
also in Cluster 4 reference and results also showed an error above 10% in only 1,94% of total hours. Small variations of 
these conditions were selected for the rest of reference dwellings according to their related influencing variables as 
shown in Table 4. An extended simulation based on results obtained from the monitoring period was performed in order 
to obtain the energy demands for the whole year (also in winter). 
 
Figure 10 shows results of typical Cluster 3 non-air conditioned dwelling, where the hourly indoor temperature in July 
is around 26ºC during the day and around 24ºC at night (average in summer is 25.5 ºC during the day and 23 ºC during 
the night). In winter, the average of measured temperature is 18ºC for the complete day and 14ºC over night (these types 
of dwellings have butane gas or electric stoves as heating systems). Thermal energy demands for dwellings considering 
these comfort conditions are 21,23kWh/m2·yr for heating (see Table 3). Small variations when simulating the Cluster 5 
reference dwelling were obtained. In the case of Cluster 0, the higher heating demand is due to the use of a centralized 
heating system that allows the inhabitants to get better thermal set points and comfort. Thermal energy demands for 
Cluster 4 representative dwelling are 77,4kWh/m2·yr for heating and -17,58Kwh/m2·yr for cooling, as shown in Table 3. 
Conditions of less comfort, especially in winter, were assumed for Clusters 2 and 1. 

3.9 Disaggregation of consumption and stock aggregation for the whole district 
To obtain energy consumption and demand for the whole district we assume that results obtained in the pilot tower may 
be extrapolated, after refinement, to the whole district. Taking the percentage of dwellings in each cluster together with 
their respective energy demands, the total energy demand of the tower was calculated. Then, some assumptions were 
made in order to disaggregate the gas and electricity consumption: for the gas stoves and gas heater (centralized), 
performance were assumed to be, in turn, 75%, and 79%, and for split units, they were assumed to be 111,6%, 
according to the official annex document of the national energy certification (Salmerón et al 2009; CTE 1999). Results 
are shown in Table 5. 
 

.  

Fig. 8. Computer Model. Top left) complete district, top right) complete building (15 stories, 60 dwellings)  reference dwellings of 
each cluster in grey shades, bottom left) WO dwelling. Bottom right) East-oriented dwelling. 

 

 

Fig. 9 Simulation results for indoor T for the C3 reference non Air-Conditioned Dwelling’s Calibrated Model in August (top), and the 
Cluster 4 reference air conditioned dwelling, also in August (bottom). 
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4. CONCLUSIONS 

4.1. Analysis of the current situation 
In summary, we can affirm that in dwellings with only gas stoves or electric heaters for space heating, thermal 
conditions in summer are not as bad as expected prior to analysis. In visits, even during some especially hot summer 
days, indoor conditions were found to be comfortable. Even though the building’s envelope characteristics were in 
general rather bad (low insulation level), it was found that the building’s cooling loads in the dwelling are extremely 
low, and heating loads are not very high, as a consequence of climate’s characteristics in the area, natural ventilation 
potential, passive techniques (such as orientation and canopies), and low internal gains. Instead, conditions of 
discomfort were found in winter. This is a rather interesting finding, as there are a lot of similar social-housing districts 
in the country, all with similar shapes, surroundings (in the outskirts of cities, free of the obstructions and, as a result, 
exposed to the wind) and envelope’s characteristics.  
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Table 4 Simulation parameters that define the different reference buildings of each group of households 

 
T comfort 
cooling⁶* 

T 
comfort 

heating⁶* 

Windows 
quality. 

Equivalent 
U 

(W/m²·K) 
Use 

of AC Natural ventilation 

Infiltratio
n rate 

ACH*** 
(1/h) Time at home N 

Internal 
gains 

(W/m²) 
Lighting internal gains 

(W/m²) 
Heating 
period 

C0 
23º by 

night, 26ºC 
by day 

18ºC by 
night, 

20ºC by 
day 

50% double 
glass  

(U=3,24), 
50% single 

glass 
(U=6,14) 

no 

Winter: 0.4ACH from 0h to 24h. 
Spring and Autumn: 1.5ACH from 
21h to 10h. July: 3ACH from 21h 
to 10h. August: 1.5ACH from 0h 

to 24h. 

0,4 

 11 months a year: 
0.015 people/m2 

from 7:00 to 
10:00, and 16:00 

to 24:00  

3 55 

Winter: 1.5  from 8:30 to 9:30 
and from 17:30 to 24:00. 

Summer: 1.2 from 20:00 to 
24:00. 

evening, 
mid-lunch 

and 
breakfast 

C1 
23º by 

night, 24ºC 
by day 

17ºC by 
night, 

19ºC by 
day 

55% double 
glass  

(U=3,24), 
45% single 

glass 
(U=6,14) 

medi
um 

Winter: 0.4 ACH from 0h to 24h. 
Spring and Autumn: 0.9ACH from 

18:00 to 24:00. Summer: 2ACH 
from 01:00 to 6:00. 

0,4 

January to 
December: 0.02 
people/m2 from 
8:30 to 9:30 and 

from 15:00 to 
24:00  

4 55 

Winter: 1.5  from 8:30 to 9:30 
and from 17:30 to 24:00. 

Summer: 1.2 from 20:00 to 
24:00. 

Mid-lunch 
and 

evening 

C2 

23º by 
night, 

24,5ºC by 
day 

18ºC by 
night, 

21ºC by 
day 

50% double 
glass  

(U=3,24), 
50% single 

glass 
(U=6,14) 

low 

Winter: 0.4 ACH from 0h to 24h. 
Spring and Autumn: 0.9ACH from 

18:00 to 24:00. Summer: 2ACH 
from 01:00 to 6:00. 

0,4 

 11 months a year: 
0.015 people/m2 

from 7:00 to 
10:00, and 20:00 

to 24:00  

3 60 

Winter: 1.5  from 8:30 to 9:30 
and from 17:30 to 24:00. 

Summer: 1.2 from 20:00 to 
24:00. 

only in the 
evening 
(from 

20h-24h 
in week 

days, and 
from 18h-
24h week 

end) 

C3 
24º by 

night, 26ºC 
by day 

15ºC by 
night, 

18ºC by 
day 

15% double 
glass  

(U=3,24), 
85% single 

glass 
(U=6,14) 

no 

Winter: 0.6ACH from 0h to 24h. 
Spring and Autumn: 1.5ACH from 
21h to 10h.July: 3ACH from 21h 
to 10h. August: 1.5ACH from 0h 

to 24h. 

0,6 

 11 months a year: 
0.015 people/m2 

from 7:00 to 
10:00, and 20:00 

to 24:00  

2 45 

Winter: 2.4 from 7:00-9:00 
and 4 from 17:30-24:00. 
Spring, Summer and Autumn 
(except August): 2.4 from 
7:00 – 8:00, and 3.2 from 
20:00-24:00. 

only in the 
evening 
(week 

days, and 
from 18h-
24h week 

end) 

C4 
23º by 

night, 24ºC 
by day 

18ºC by 
night, 

23.5ºC by 
day 

45% double 
glass  

(U=3,24), 
55% single 

glass 
(U=6,14) 

medi
um 

Winter: 0.5ACH from 0h to 24h. 
Spring and Autumn: 0.9ACH from 

18:00 to 24:00. Summer: 2ACH 
from 01:00 to 6:00. 

0,5 

January to 
December: 0.02 
people/m2 from 
8:30 to 9:30 and 

from 15:00 to 
24:00  

3,
5 65 

Winter: 2.4 from 7:00-9:00 
and 4 from 17:30-24:00. 
Spring, Summer and Autumn 
(except August): 2.4 from 
7:00 – 8:00, and 3.2 from 
20:00-24:00. 

Mid-lunch 
and 

evening 

C5 
24º by 

night, 26ºC 
by day 

15ºC by 
night, 

19ºC by 
day 

50% double 
glass , 50% 
single glass 
(U=6,14) 

no 

Winter: 0.4ACH from 0h to 24h. 
Spring and Autumn: 1.5ACH from 
21h to 10h.July: 3ACH from 21h 
to 10h. August: 1.5ACH from 0h 

to 24h. 

0,4 

September to July 
and September to 
December: 0.01 
people/m2 from 
7:00 to 23:00. 

2,
5 45 

Winter: 2.4 from 7:00-9:00 
and 4 from 17:30-24:00. Rest 
of year(except August): 2.4 
from 7:00 – 8:00, and 3.2 
from 20:00-24:00. 

All day 
(from 8h 
to 24h) 
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Table 5 aggregated results for the whole pilot tower and district. 

  
number 
dwellings 

Yearly heating 
consumption 
(Mwh/yr) 

HW + kitchen 
(Mwh/yr) 

Cooling 
consumption 
(Mwh/yr) 

Appliances + 
light 
(MWh/yr) 

C0 13 53,7 10,2 0,0 30,3 
C1 11 46,7 7,1 14,7 32,0 
C2 12 43,9 6,4 7,5 25,5 
C3 6 11,1 1,5 0,0 9,0 
C4 7 46,8 7,9 9,3 30,6 
C5 11 22,6 5,1 0,0 20,2 
Tower 60 225 38,2 31 148 
Whole 
district 720 2696 457,9 378 1771 
%   51% 9% 7% 33% 

 

As consequence, results of energy disaggregation are quite different than expected: 29% of the residences consumed in 
similar patterns to the two non AC dwellings, which was originally supposed to be one of the minor energy consumers 
in the district. These dwellings are often occupied by one or two elderly people (high time at home), little families, or 
couples spending little time at home, with low incomes and sacrificing their thermal comfort in winter to not to spend 
too much money in heating their homes.  
 
On the other hand, dwellings with AC and central heating radiators, with higher incomes and with a high number of 
appliances, represent only 11% of the district. Dwellings with centralized space heating but normal conditions of 
comfort (around 55-60% of hours per year with comfort), some of them with AC but low use in summer, and with 
middle-range time spent at home and middle-range incomes, are the main group of the district (Cluster1, Cluster2 and 
Cluster0 represent 61% of the total). The reference consumption of gas for heating in Barcelona Metropolitan Region is 
62.3 kWh /m2·yr (according to the national energy code [37]. The consumption in 89% of the analysed dwellings is 
lower than this reference value. However, in the minority of households that consume more, this difference is 
considerable: up to 35%. In these dwellings, the greatest consumption is due to heating, followed by electricity 
consumption due to light and appliances, which represents 29% to 41% of total energy consumption. These results also 
strongly correlate with the level of income of the families, since their 36% of difference in monthly income (between 
Clusters 3 and 4) is enough to be the cause of big changes in the type of space heating systems and in number and use of 
appliances. 

4.2 Decision making for the implementation of energy improvement actions 
It can be concluded that the methodology used in this study is relatively simple and reliable, as intended. The clustering 
of data obtained from surveys, in combination with refined simulation models, allowed the evaluation of the current 
situation and of the impact of tenants’ behaviour in a realistic way. The increase in time effort, as compared to 
simulations based on standard characterization of dwellings, is compensated by the higher quality of results in to the 
objective of understanding the real situation. The proposed methodology is useful in evaluating the possibilities of 
implementing a real project of refurbishment in existing districts, where the different impacts in the different groups of 
tenants could be a key factor in decision making, and where the big differences (almost a factor of 2.5) in energy 
consumption between dwellings due to socio-economical aspects is also a relevant aspect to take into account. 
 
Is there any room for action in these types of neighbourhoods?. Yes, provide any improvement that implies a certain 
level of economic investment should consider finance mechanisms that help make costs affordable, offering subsidies to 
the poorest families. Innovative financial measures based on sharing of investments costs according to the potential of 
economic savings, or on the level of energy consumption should be considered in designing of theses financial schemes. 
In future research, other actions beyond traditional isolation systems, such as energy management control systems, 
boiler replacement, micro-generation systems, solar heat water systems, or freezer replacement, will be considered to 
obtain improvements with low or even none economical cost. It should also be considered that improvements in heating 
systems and in thermal comfort might lead to an increase of the energy consumption in households with less comfort, so 
any technology to be implemented should offset this increase through a corresponding increase in energy efficiency or 
renewable energy contribution. In this sense the effect of the phenomenon of “heat theft” should be also considered, as 
it is showed in (Dall’O 2014) where it has been proven that is an important issue which can provide  the possibility of 
reducing to zero the quota of expenses from consumption whilst still benefiting from comfortable temperatures  
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