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Abstract. Public cloud providers offer a wide range of instance types,
with different processing and interconnection speeds, as well as varying
prices. Furthermore, the tasks of many parallel applications show dif-
ferent computational demands due to load imbalance. These differences
can be exploited for improving the cost efficiency of parallel applications
in many cloud environments by matching application requirements to
instance types. In this paper, we introduce the concept of heterogeneous
cloud systems consisting of different instance types to leverage the differ-
ent computational demands of large parallel applications for improved
cost efficiency. We present a mechanism that automatically suggests a
suitable combination of instances based on a characterization of the ap-
plication and the instance types. With such a heterogeneous cloud, we
are able to improve cost efficiency significantly for a variety of MPI-based
applications, while maintaining a similar performance.
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1 Introduction

Executing large parallel applications in the cloud has reached the mainstream
and has become a major research topic in recent years. Compared to clusters, the
cloud provides a higher flexibility and lower up-front costs for the hardware [14].
Public cloud providers such as Amazon’s EC2 and Microsoft’s Azure provide a
large number of cloud instance types with different numbers of cores, processing
speeds, and network interconnections [18]. Research in this area focuses mostly
on porting applications to the cloud [12], evaluating their performance and cost
efficiency [13,18], and improving communication performance [4,3,2].

An aspect that has received less attention is building a multi-instance cloud
system out of different instance types. We refer to such a system as a hetero-
geneous cloud in this paper. Most multi-instance clouds currently use the same
instance types, or use different instance types only in the context of accelera-
tors (such as GPUs) [5]. A heterogeneous cloud is an interesting solution for
the execution of large parallel applications, as these applications typically have
heterogeneous computational demands, with some tasks performing more work
than others. In such a scenario, tasks that perform more work can be executed
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on faster but more expensive instances, while tasks that perform less work can
be executed on slower and more cost-efficient instances.

In this paper, we investigate heterogeneous clouds, focusing on their poten-
tial for cost-efficient execution of parallel applications. Our main contributions
are the following:
• We perform an in-depth evaluation of heterogeneous clouds with a variety of
instance combinations and parallel application behaviors.
• We present a mechanism for determining instance combinations that is based
on application behavior and instance characteristics.

Our proposal is compatible with a wide range of applications and requires no
changes to the applications or runtime environments. In an evaluation with ten
MPI-based benchmarks and scientific applications on several types of Microsoft
Azure instances, we show that our proposal results in drastic cost reductions
of executing parallel applications in heterogeneous clouds, while maintaining a
similar performance, which leads to substantial improvements in cost efficiency
of up to 18% (6.6% on average).

2 Performance and cost differences in the cloud

Most public cloud providers offer a wide variety of instance types with different
characteristics and prices. This section provides an analysis of homogeneous
cloud clusters, that is, clusters that are composed of cloud instances of the same
type, in terms of their computational performance and cost. We also measure
the load imbalance of a set of parallel applications. Combining these two aspects
leads us to motivate the introduction of heterogeneous clouds.

2.1 Methodology of the analysis

Experiments in this section were performed with the following methodology.
First, we selected a group of homogeneous clouds to run performance and cost
tests, focusing on instance types that are similar to provide a better comparison.
Based on these results, we selected instance types that will be used for the rest of
this work. Second, we verified the computational load profile of several parallel
applications by measuring the number of instructions per task.

All experiments were performed on the Microsoft Azure public cloud, which
was selected since it has the largest number of instance types among the main
cloud providers. We selected the A10, D4 v2, F8, G3, and H8 instances of Azure
to verify their efficiency in terms of performance and cost. All chosen instance
types consist of eight cores, which is the most common instance size in Azure.
The multi-instance experiments use eight nodes, for a total number of 64 cores in
all cases. The software environment consists of Ubuntu server 16.04, with Linux
kernel 4.4. We use Open MPI [7] 1.10.2 as the parallel runtime environment. All
applications were compiled with gcc/gfortran 5.4.0, using the -O2 optimization
level. We measured the raw computational performance of a single instance of
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Table 1. Characteristics of the Azure instance types. Instance types that are evaluated
in depth in this paper are marked in bold.

Instance name Price/hour Linpack perf. (GFlops) Price/TFlop

A10 US$ 0.780 155.35 US$ 5.02
D4 v2 US$ 0.559 265.00 US$ 2.11
F8 US$ 0.513 246.10 US$ 2.08
G3 US$ 2.440 280.17 US$ 8.71
H8 US$ 0.971 324.34 US$ 2.99
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Fig. 1. Cost per execution (in US$ cents) of each NAS benchmark on homogeneous
eight-instance cloud systems.

each type with the High Performance Linpack (HPL) benchmark [11]. To eval-
uate the cost of the machines we calculate the price of a TFlop, based on per-
formance results and the price for each instance, with the Linpack performance.
Table 1 presents an overview of the characteristics of these instance types as well
as the performance and cost results.

Experiments were performed with a variety of MPI-based parallel applica-
tions. We use the MPI implementation of the NAS Parallel Benchmarks (NPB) [1],
version 3.3.1. Experiments were performed with input class C, which represents
a medium-large input size. The DT application was not used because it needs
at least 85 MPI processes to execute using input size C. BRAMS (Brazilian de-
velopments on the Regional Atmospheric Modeling System) [6] is the extended
version of the RAMS (Regional Atmospheric Modeling System) weather predic-
tion model. Alya [9] is a simulation code for multi-physics problems, based on a
variational multi-scale finite element method for unstructured meshes.

The location used to allocate the machines on Microsoft Azure was ”West
USA”. All experiments were executed 10 times. Applications were configured
to run with 64 ranks (1 rank per core). In our experiments, we did not notice
significant differences between executions at different times of day and between
different allocations of instances.
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2.2 Cost of homogeneous clouds

This section presents the cost results of executing the NAS benchmarks on ho-
mogeneous cloud instances. The instance types selected for the rest of this work
are also discussed.

The cost per execution of the NAS benchmarks are shown in Figure 1. The
cost was calculated by multiplying the price per second of each instance with the
execution time of the benchmark. The G3 instance presented the highest cost
of all benchmarks. Despite its high performance, G3 has a cost that is several
times bigger than the other instances. The other instance types show a similar
behavior among them. The D4 v2 and F8 instances presented the lowest cost
among all the instances tested, resembling thus the cost analysis of Linpack.

Based on these preliminary results, we selected two instance sizes, D4 v2 and
F8, for our analysis in this paper. They were chosen because they have the best
relation of cost and performance among all the types we evaluated. Furthermore,
despite having differences in the price per hour and performance, their relation
between cost and performance is very similar and therefore provides an inter-
esting tradeoff between price and speed. For simplicity, the D4 v2 instance type
will be referred to as D4 in the rest of the paper.

2.3 Load imbalance

Another important aspect of our proposal is that parallel applications have dif-
ferent computational demands. Such a load imbalance can be caused for various
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Fig. 2. Load distribution of the benchmarks, running with 64 ranks. Each bar corre-
sponds to the number of instructions executed by a rank. Ranks are sorted according
the numbers of instructions executed.
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reasons, such as an imperfect distribution of work, interference from other appli-
cations or users, or if an algorithm has different complexities for different regions
of the input data. To evaluate the load imbalance of the parallel applications,
we used the perf tool [10], measuring the number of instructions executed by
each MPI rank. All applications were executed with 64 ranks.

Results of this experiment are shown in Figure 2. In the figure, we show the
numbers of instructions executed by each rank for each benchmark, sorted in
descending order. The results show varying degrees of imbalance between the
applications. In general, imbalance is considerable, with differences between the
minimum and maximum numbers of instructions for each benchmark reaching
up to 35% in the case of Alya. Some applications, such as FT , SP , and Alya,
have considerable sequential parts that increase their imbalance. Others, such as
BT , EP , and FT , show two distinct levels of numbers of instructions executed
by the ranks. Executing the applications multiple times results in a very similar
load profile, with similar loads for each rank.

3 A mechanism to improve cost efficiency in the cloud

This section describes our proposed mechanism to automatically leverage the
heterogeneity for an improved cost efficiency. The mechanism calculates for a
given profile of an application and cloud instance types how many instances of
each type should be used, and which MPI ranks should be executed on each
instance. An overview of our proposal is shown in Algorithm 1.

Our mechanism receives as input the load profile of the application, the
instance profile of the possible instance types. Currently, two different instance
types are taken into account, which we refer to as HI (higher performance and
cost) and LO (lower performance and cost), which correspond to the D4 and F8
instances in our experiments, respectively. We focus on two instance types since
many of the applications show a two-level load distribution. The mechanism
outputs the instance combination, that is, how many instances of each type
should be used, and which ranks should be placed on each instance.

3.1 Mechanism inputs

Our mechanism requires the following inputs. The first two, application profile
and instance profile, are generated automatically.

Application profile. The load profile of the application is generated via the
perf tool [10]. We focus on the number of instructions per rank, as in Section 2.
This could be extended to a more fine-grained differentiation for several types of
instructions (for example, floating point or integer operations) and other types
of resources (such as communication, memory, I/O). This application profile
usually needs to be generated only once for a given set of input data and number
of ranks. The result of this stage is the load vector of the application.
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Algorithm 1: Algorithm of our proposed mechanism

Data: Application profile, Instances profiles
Result: MPI rankfile (mapping of MPI ranks to instances)

1 calculate instance performance ratio;
2 while ranksize/VMs count < rankgroup do
3 calculate ratio (rankgroup[n], rankgroup[n+1]);
4 if rankgroup ratio < instance performance ratio then
5 assign rankgroup to a HI VM;
6 fetch next rankgroup;

7 else
8 assign rest of rankgroups to LO VMs;
9 end

10 end
11 output rankfile;

Instance profile. The mechanism generates the instance profile of the instance
types by measuring the execution time of the desired application on homogeneous
instances. The result of this stage is the relative performance between the two
instance types.

3.2 Mechanism outputs

Our mechanism outputs the instance combination, as well as which ranks should
run on which instance. For the discussion in this section, we first sort the load
vector in descending order, as shown in the load distributions in Figure 2.

Instance combination. The first output step of our mechanism is to determine
the instance combination. We group the sorted list of ranks into groups of the
same size as the number of cores per instance and calculate the cumulative
load of each group. The mechanism then iterates over the list of groups and
calculates the load ratio between subsequent groups. Until the ratio reaches a
threshold, groups will be executed on HI instances. When the ratio is above the
threshold, all subsequent groups will be executed on LO instances. The threshold
is determined by the performance ratio of the instance types.

Rank placement. After determining the number of HI and LO instance types,
our mechanism assigns ranks to the instances in the following way. It iterates
over the sorted list of ranks, and assigns ranks to instances sequentially, starting
with the ranks with the highest load, which are assigned to the HI instances.
As soon as one instance has the maximum number of ranks assigned to it, the
mechanism continues the rank placement with the next instance, until all ranks
are assigned. In the final step, our mechanism creates a rank file that specifies
the task to instance assignment for Open MPI [15].
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4 Results

This section presents the evaluation methodology used to validate our proposal,
as well as the obtained results.

For our experiments, we use the same Azure instance types as before, D4
and F8. All experiments use eight instances for a total of 64 cores. We vary the
mix of instances between:
• fully homogeneous: all eight instances are of the same type, D4 or F8.
• heterogeneous to varying degrees: 1–7 instances of each type, totaling eight
instances.
We evaluate all possible combinations of the D4 and F8 instances.

Machines of all instance types were only allocated once and not reallocated
between executions. Further experiments after deallocating and allocating new
instances of the same types (not shown in the paper) resulted in quantitatively
and qualitatively very similar behaviors. Results show the average values of
10 executions. We begin with a discussion of the NAS benchmarks, followed by
the BRAMS and Alya applications.

4.1 The NAS benchmarks

The cost efficiency results of the NAS benchmarks are shown in Figure 3. In the
figures, the line represents the cost efficiency when varying the mix of instance
types. To calculate the cost efficiency metric, we use the following equation [13].

cost efficiency = execution time × price of execution (1)

Lower values of the metric indicate a higher cost efficiency.

In the figures, the y axes show the values of the metric, while the x axes
indicate the mix of instance types in the form a/b, where a represents the number
of D4 instances and b represents the number of F8 instances. 0/8 and 8/0 are the
homogeneous clouds, while 1/7 – 7/1 are heterogeneous instances. The most cost
efficient instance combination is marked with a dashed circle ( ). The results
of the instance combination determined by our mechanism are marked with an
unbroken circle ( ).

Several interesting results can be pointed out. First of all, heterogeneous
clouds are the most cost efficient environments for the majority of the bench-
marks. Heterogeneous environments are beneficial for five out of the eight bench-
marks (BT , EP , FT , MG , and SP), while homogeneous environments are more
appropriate for CG , IS , and LU . The five benchmarks have an increased cost
efficiency between 3.0% (SP) and 18.0% (FT ) compared to the best cost effi-
ciency of a homogeneous environment. Over all NAS benchmarks, cost efficiency
was improved on average by 6.6%. These results show that cost efficiency can
be improved substantially via heterogeneous clouds.

Although not achieving the optimal gains for all applications, our mechanism
is able to result in substantial cost efficiency improvements close to the optimum
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Fig. 3. Cost efficiency results for the NAS benchmarks on the D4 and F8 instances for
different combinations of instances. Lower values indicate a higher cost efficiency. The
highest cost efficiency is marked with a dashed circle . The results of our mechanism
are marked with an unbroken circle .
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Fig. 4. Cost efficiency results for BRAMS and Alya on the D4 and F8 instances.
Lower values indicate a higher cost efficiency. The highest cost efficiency is marked
with a dashed circle . The results of our mechanism are marked with an unbroken
circle .

in most scenarios, with an average improvement of 4.7%. This shows that pro-
filing all possible instance combinations is not required in order to reduce costs.
Another important result is that almost the whole spectrum of heterogeneous
and homogeneous instances is the most cost efficient environment at least in
one experiment. This indicates that simple policies that do not take the specific
characteristics of the environment and application behavior into account can not
result in optimal cost efficiency.

The performance analysis of the heterogeneous allocations is also an impor-
tant aspect for the user. There are four benchmarks that presented performance
losses (BT , EP , MG , and SP), between 0.2% (SP) to 5.5% (MG). It is im-
portant to remark that when comparing the performance loss with the cost
efficiency gain, the heterogeneous allocations present better ratios for all the
cases. This means that the performance decrease is less than the cost efficiency
gain. The best ratios were obtained with SP (0.2% performance loss, 3.0% cost
efficiency gain) and EP (0.7% performance loss, 3.1% cost efficiency gain). On
average, performance was reduced by 0.4% in the optimal case, and 1.2% with
our mechanism.

4.2 BRAMS and Alya

The cost efficiency results for the two scientific applications, BRAMS and Alya,
are shown in Figure 4. The results echo our analysis of the NAS benchmarks.
Both applications can benefit significantly from a heterogeneous environment
and show significant cost efficiency improvements in almost all cases. When
comparing the results of BRAMS , we observed that BRAMS presented a cost
efficiency gain of 4.6%.

When analyzing the results of Alya, we observed a performance loss of 0.4%,
while presenting a cost efficiency gain of 1.8% for the cloud tenant. Observing
the load distribution of Alya in Figure 2, we note that the imbalance of Alya
is high, with a few processes executing much more operations than the average.
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The instances used in our experiments, D4 and F8, present a close performance.
Due to the Alya load distribution, we can conclude that it could benefit from
instances with higher differences between them, and from mixing more instances
types.

5 Related work

Yeo et al. [17] analyzed how periodically upgrading hardware in datacenters
introduced heterogeneity and how the service provider could mitigate its impact
on performance for the end user. However, this work does not allow the cloud
tenants to exploit the information about the underlying infrastructure to improve
the cost/efficiency of their applications.

Zhang et al. [19] present a dynamic capacity provisioning manager that allows
workload division using a heterogeneity-aware algorithm. Their work considers
heterogeneity in machine hardware from production datacenters and from the
workload in them. They evaluate their algorithm simulating a heterogeneous
cluster. They were able to improve the utilization of the cluster and scheduling
without compromising the workload. Their work takes the heterogeneity of VMs
into account, but their focus is on improvements from the provider perspective.

Gupta et al. [8] propose a technique to improve the performance of paral-
lel applications in the cloud with task placement. The authors place the tasks
according to the interference between different applications by analyzing their
cache memory usage, and from a description provided by the user. They do not
take different types of instances into account.

Zhang et al. [20] exploited cloud heterogeneity in several MapReduce clusters
to select the best cost/performance deployment. They simulate their configura-
tions of 3 instance sizes looking to obtain the same application performance
but with different provisioning costs. The validation was done on Amazon using
MapReduce jobs with no data dependencies between them. Their results showed
a difference in cost when using homogeneous or heterogeneous deployments. For
some of the applications evaluated they obtained significant cost savings. Our
work include MPI applications, and benchmarks with communication between
instances.

Carreño et al. [4] created a communication-aware task mapping for cloud en-
vironments with multiple instances. Their work analyzes heterogeneity in com-
munication between the tasks and in the network interconnections between cloud
instances. They use this information to map tasks that communicate a lot to
faster instances, improving inter-instance communication performance. However,
their work uses the same type of VMs for each execution and they do not take
computational performance into account. In our work, we compare the perfor-
mance when mixing different types of VMs.

Wang et al. [16] developed a task-level scheduling algorithm to comply with
budget and deadline constrains. They analyze heterogeneity as the variety of
options of virtual machines from a provider and the underlying variations in
hardware that exists for each instance. They developed a parallel greedy algo-
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rithm that improves deployment to comply with the constrains. Their work is
different because it does not try to optimize the cost/efficiency of the solution
but tries to respect the user constrains. Also their work was not validated using
an actual public cloud infrastructure.

6 Conclusions

The cloud has become an interesting environment for the execution of parallel
applications due to the easy and flexible availability of different instance types
that vary in performance and price. Most current cloud deployments for par-
allel applications are homogeneous, that is, they are composed of a number of
instances of the same type. In this paper, we motivated and analyzed a new
type of deployment that is based on heterogeneous instances of different types.
Since the computational demands of parallel applications are not uniform in
most cases, such a heterogeneous cloud can better match the requirements of
the application, improving the price and cost efficiency of the execution.

Our evaluation with MPI-based applications on an Azure cloud shows that
the cost efficiency can be improved significantly, by up to 18%, depending on
the load imbalance of the application, while maintaining a similar performance.
Gains achieved by our mechanism were close to the optimum in most cases,
showing that improvements from heterogeneous execution do not require a time-
consuming evaluation of all possible instance combinations.

For the future, we plan to take communication within the parallel application
into account when making placement decisions, and we will extend our analysis
to consider more than two different types of instances with different numbers of
cores on each type.
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