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Abstract—In this paper, we propose a new block selection 

policy for Last-Level Caches (LLCs) that decides, based on Reuse 

Detection, whether a block coming from main memory is inserted, or 

not, in the LLC. The proposed policy, called ReD, is demanding in 

the sense that blocks bypass the LLC unless their expected reuse 

behavior matches specific requirements, related either to their 

recent reuse history or to the behavior of associated instructions. 

Generally, blocks are only stored in the LLC the second time they 

are requested in a limited time window. Secondarily, some blocks 

enter the LLC on the first request if their associated requesting 

instruction has shown to request highly-reused blocks in the past. 

ReD includes two table structures that allow tracking, measuring 

and correlating reuse for specific block addresses and requesting 

program counters within a constrained storage budget. It can be 

implemented on top of any other base replacement algorithm. Other 

parts of the base replacement policy, such as promotion or victim 

selection, can remain unchanged, enabling our policy to work along 

with many state-of-the-art replacement algorithms. 

I. INTRODUCTION 

The insertion policy of a replacement algorithm 
determines the position of incoming blocks in the replacement 
list. For example, the Least Recently Used (LRU) replacement 
algorithm gives incoming blocks the highest priority to stay, 
inserting them into the MRU position. Several studies show 
the inefficiency of this policy for Last-Level Caches (LLCs) 
and propose inserting new blocks either with an intermediate 
priority [4], or with the lowest priority within their cache set 
[6, 7]. Alternatively, some incoming blocks could be selected 
to not be stored (be bypassed) in the LLC, if their computed 
priority is lower than the minimum in the set [3, 5]. 
Throughout this paper, we use the expression “block selection 
policy” to refer to the part of the insertion policy that decides 
whether a new block has to be stored in the LLC. 

The starting point for our proposed policy is the 
observation that most cache blocks are not requested again 
from the LLC after they are stored. Our policy also relies on 
the reuse locality property of the LLC access stream, which 
states that lines accessed at least twice tend to be reused many 
times in the near future and, moreover, recently reused lines 
are more useful than those reused earlier [1]. Therefore, in our 
policy, blocks requested for the first time are by default not 
stored in the LLC. They are only stored when a following 
request is detected, that is, when they are reused. As our 
policy is based on reuse detection, we have called it the Reuse 
Detector (ReD). 

With this default policy, blocks with reuse are going to 
experience two LLC misses. To avoid the second miss, we 
propose to exploit the correlation between the reuse pattern of 
the blocks and the instructions that request them for the first 
time. A similar correlation has been pointed out and exploited 
in a previous study [8]. In our policy, we focus on the 
instructions that request blocks with a high reuse probability. 
LLC misses coming from such instructions will always trigger 
LLC block storage, avoiding the second miss. 

ReD can supersede the block selection policy previously 
used by any other replacement algorithm, leaving the rest of 
the components unchanged. In the policy we have submitted 
for the 2nd Cache Replacement Championship (CRC-2), 
SRRIP is used as the base replacement algorithm [4]. 

The structure of this paper is as follows. Section II 
describes how ReD works. Section III gives implementation 
details and storage costs. Section IV shows results, and 
Section V summarizes our contributions. 

II. RED BLOCK SELECTION POLICY 

The goal of our ReD policy is to store in the LLC only 
blocks that have demonstrated reuse. To achieve this, we 
primarily track block addresses for requests that miss in the 
LLC. Secondarily, we track the program counters (PCs) that 
request those blocks. In order to avoid interference among 
cores, and assure a fair distribution of resources, both tracking 
mechanisms are private for each core. 

Our primary reuse detector is the Address Reuse Table 
(ART). It stores addresses of requests that have recently 
missed in the LLC, to check whether they are requested again. 
A request that misses both in the LLC and the ART is marked 
as a candidate for bypass in the LLC, and its address is stored 
in the ART. We call this an initial request. A request that 
misses in the LLC but hits in the ART is stored in the LLC, 
because the ART hit is a true indication of reuse. We call this 
a first-reuse request. Subsequent requests are expected to hit in 
the LLC.  

Using only the previous mechanism, a block with reuse 
would experience two LLC misses, because both the initial 
and the first-reuse request would miss in the LLC. To avoid 
the second miss, we include a secondary mechanism that aims 
to predict the reuse pattern of blocks at their initial request. 
For this mechanism, we assume that the reuse of a block is 
correlated with the instruction that performs the initial request, 
the trigger instruction. We record the reuse behavior of blocks 
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brought in by initial requests in a table indexed by the PC of 
the trigger instruction, to be able to compute the reuse 
probability of a new block from the values recorded by its 
trigger instruction. We call this table the Program Counter - 
Reuse Table (PCRT). The PCRT stores two counters per 
entry, namely #reused and #notreused. To manage these 
counters, some sampled sets of the ART are expanded to keep 
the PC of the trigger instruction together with its block 
address. 

When a first-reuse request hits in the ART, the retrieved 
trigger PC is used to increment the corresponding #reused 
counter in the PCRT, and the ART entry is invalidated. When 
a valid (and therefore not reused) block is evicted from the 
ART, the associated trigger PC is used to increment the 
corresponding #notreused counter. The reuse probability of 
the trigger instruction can be calculated as the quotient 
#reused/(#reused + #notreused). More details are given in 
Section III-B. 

Requests that have been marked as candidates for bypass 
by the ART are checked against the PCRT. If the trigger 
instruction is found to have a high probability of reuse, the 
bypass mark is ignored and the block is inserted into the LLC, 

to avoid the miss in the expected first-reuse L2 request. 

To help visualize the whole mechanism, Figure 1 shows a 
schematic view of the ART and the PCRT, and their state after 
three requests. 

III. IMPLEMENTATION DETAILS 

A. Address Reuse Table (ART) 

The ART is organized as a set-associative buffer with 16 
ways and 512 sets. We use a FIFO replacement policy that 
requires 4 bits per set. In order to reduce the hardware cost, 
the ART uses partial address tags (PAt) and is organized in 
sectors. An entry or sector tracks four consecutive blocks, and 
hence, four valid bits per entry are required to distinguish 
between them; see Figure 2(a). The partial tag size is 11 bits, a 
value that shows a good tradeoff between size and 
performance in our experiments.  

We use a sample of 1/4 of the ART sets to gather 
information for the PCRT. In each entry of those ART sets, 
we include the PCs of the trigger instructions of the four 
blocks in the sector. We only store the 8 bits required to index 
the PCRT; see Figure 2(b).  

B. Program Counter - Reuse Table (PCRT) 

The PCRT is tagless and has 256 entries, a value that 
shows a good tradeoff between size and performance in our 
experiments. A tagless design with this relatively low number 
of entries is sufficient for ReD because it is used only as a 
secondary mechanism. For example, if two aliased PCs show 
markedly different behaviors, one with high reuse and the 
other with low reuse, and the PCRT categorizes their reuse 
probability as low, not all initial requests would be sent to the 
LLC, but the ART would still act correctly on first-reuse 
requests. 

The PCRT is indexed with 8 bits of the trigger PC, bits 2-
9. Each PCRT entry has two 10-bit counters (#reused and 
#notreused); see Figure 2(c). When a counter reaches its 
maximum, both counters of the entry are divided by two. 

 

Fig. 1. State of ReD internal tables after two initial requests ①②, and a first-reuse request ③. It is assumed that the ART set shown uses PC sampling. 

 

Fig. 2. Entry of the Address Reuse Table without (a) and with (b) PC 

sampling, respectively. Entry of the Program Counter - Reuse Table (c). 
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The minimum reuse probability that forces all initial 
requests to be sent to the LLC is set to 1/4. This value has 
been set experimentally, and corresponds to a 
#notreused/#reused ratio of 3. 

C. Increasing the effectiveness of the ART 

The PCRT also allows the identification of initial requests 
that it is not worth keeping in the ART. We use the 
information stored in the PCRT to reduce the insertion rate of 
addresses in the ART in the following two specific cases: 

• Addresses coming from a trigger instruction with a 
very low reuse probability (less than 1/64).  

• Addresses coming from a trigger instruction with a 
high reuse probability (more than 1/4). Since ReD 
already stores all blocks requested by this category of 
instructions in the LLC, it is not worth keeping all their 
initial requests in the ART. 

Reducing the insertion rate of these addresses makes it 
possible to keep other (more useful) ones for longer, 
increasing the effectiveness of the ART.  

The reduced insertion rate is set to 1 in 8 times. It is not 
advisable to reduce it to 0 because ReD needs to insert some 
addresses and their associated PCs in the ART for tracking 
changes over time in the behavior of trigger instructions. It is 
also important to address thrashing in the ART: the reduced 
insertion rate enables the ART to store at least a portion of the 
thrashing working set. 

D. Other details 

The base replacement policy used for the CRC-2 submission 
and considered in the results section of this paper is 2-bit 
SRRIP. On insertion, it is applied only if ReD decides not to 
bypass a block.  

Prefetch requests are handled like demand requests. Write-
back requests are ignored by ReD and SRRIP. If they miss, 
they are always allocated in the LLC, but with minimum 
priority. The simulation infrastructure does not allow 
bypassing them.  

E. Storage costs 

Table I summarizes the storage costs per core of ReD 
(ART and PCRT), plus the costs of SRRIP.  

IV. RESULTS 

We have simulated our policy using the ChampSim 
simulator of the CRC-2. We have considered the four 
configurations defined: single core without prefetching (c1), 
single core with data prefetching (c2), four-core without 
prefetching (c3) and four-core with data prefetching (c4).  

For single-core configurations, we have used 45 traces 
from different parts of the execution of the 29 applications of 
the SPEC CPU 2006 benchmark suite. For multi-core 
configurations, we have created 80 mixes using these 45 
traces.  

TABLE I.  RED HARDWARE COST, PER CORE 

ART 

Parameters 512 sets, 16 ways, 4 blocks/sector 

# bits / entry 11 tag, 4 valid  

# bits / set  4 (FIFO replacement) 

Cost 
512 * (16 * 15 + 4) = 124928 bits = 15616 

bytes 

ART 

sampled 

sets 

Parameters 128 sets, 16 ways, 4 blocks/sector 

# bits / entry 4 * 8 bits PC 

Cost 128 * 16 * 32 = 65536 bits = 8192 bytes 

PCRT 

Parameters 256 entries 

# bits / entry 2 * 10  

Cost 256 * 20 = 5120 bits = 640 bytes 

SRRIP 

Parameters 2048 sets, 16 ways 

# bits / entry 2 

Cost 2048 * 16 * 2 = 65536 bits = 8192 bytes 

Total cost:  15616 + 8192 + 640 + 8192 = 32640 bytes (31.875 KB) 

 

Figure 3 shows results achieved with our proposed policy, 
and additionally for SRRIP as a reference. For the single-core 
configurations (c1 and c2), we plot speedup over LRU, while 
for multi-core configurations, we plot average speedup, over 
all instances of the trace in all mixes, relative to the 
performance with LRU. We only show results for traces that 
achieve more than a 2% speedup when increasing LLC 
capacity from 2M to 8M with the LRU replacement algorithm, 
in a single-core configuration. The geometric mean of 
speedups over all selected traces is 4.4% using configuration 
c1, 2.4% using c2, 5.6% using c3 and 3.6% using c4. 

Over the non-plotted traces, 26 in total, the geometric 
mean of speedups is 0.1% in c1, 0.2% in c2, 1.5% in c3 and 
1.4% in c4. The average bypass rate of the plotted executions, 
using configuration c1 is 32.8%, with a maximum of 82.1% in 
429.mcf. 

V. CONTRIBUTIONS 

The main contributions of our work are: 

- We focus only on the block selection policy (that is, 
the decision of whether or not to bypass the cache), as 
we believe it is the key component of the LLC 
replacement policy. ReD can be combined with any 
other LLC replacement policy, either by adding it as a 
block selection policy or by substituting for the one 
used in the base policy.  

- We design a block selection policy that combines, in a 
synergistic way, two different approaches to 
computing the reuse likelihood of a block that misses 
the LLC: a) the detection of a recent-past use of the 
block as an indicator of future reuse, and b) the past 
reuse behavior of blocks requested by the instruction 
that requests the block. 

- We design a separate block reuse detector that 
remembers addresses that have recently missed in the 
LLC. In other policies that have been proposed, the 
LLC cache is used to perform a similar task [2]. 
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- We also include a PC-indexed store that tracks the 
reuse of blocks requested by each instruction, and is 
able to predict reuse behavior in some cases. A similar 
table has been used in a previous study [8], but we use 
it in a different way. First, we train it with the reuse 
observed in the address detector instead of the LLC, 
and second, in ReD, it is a secondary mechanism that 
only acts in specific cases: to avoid the miss of the 
first-reuse request and to reduce the number of 
insertions into the address detector. 

- Both mechanisms are implemented in private per-core 
tables, to ensure a fair distribution of resources and to 
avoid potential thrashing caused by a single thread.  
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Fig. 3. Performance results: Speedup vs LRU for ReD and SRRIP. Results for all Spec2006 benchmarks that show more than a 2% improvement in IPC 

between a 2MB and a 8MB LRU-managed LLC. From top to bottom:  c1) single core without prefetching, c2) single core with data prefetching, c3) four-

core without prefetching, and c4) four-core with data prefetching. 

0.96

1

1.04

1.08

1.12

1.16
S

p
ee

d
u

p
 v

s 
L

R
U

ReD-c1

SRRIP-c1

0.96

1

1.04

1.08

1.12

1.16

S
p

ee
d

u
p

 v
s 

L
R

U ReD-c2

SRRIP-c2

0.96

1

1.04

1.08

1.12

1.16

S
p

ee
d

u
p

 v
s 

L
R

U ReD-c3

SRRIP-c3

0.96

1

1.04

1.08

1.12

1.16

4
0

0
.p

er
lb

en
ch

-1

4
0

1
.b

zi
p
2

-1

4
0

1
.b

zi
p
2

-3

4
0

1
.b

zi
p
2

-4

4
0

1
.b

zi
p
2

-5

4
0

1
.b

zi
p
2

-6

4
0

3
.g

cc
-4

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

5
.g

ro
m

a
cs

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
5

0
.s

o
p
le

x
-1

4
5

6
.h

m
m

er
-1

4
5

9
.G

em
sF

D
T

D

4
6

4
.h

2
6

4
re

f-
1

4
7

0
.l

b
m

4
7

3
.a

st
ar

-1

4
7

3
.a

st
ar

-2

G
E

O
M

E
A

N

S
p

ee
d

u
p

 v
s 

L
R

U ReD-c4

SRRIP-c4

1.22 

1.27 


