
1

ReD: A Policy Based on Reuse Detection for

Demanding Block Selection in Last-Level Caches
Javier Díaz†, Pablo Ibáñez†, Teresa Monreal*, Víctor Viñals†, José M. Llabería*

Aragón Institute of Engineering Research (I3A), University of Zaragoza, and Hipeac †

Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya and Hipeac*

Abstract—In this paper, we propose a new block selection

policy for Last-Level Caches (LLCs) that decides, based on Reuse

Detection, whether a block coming from main memory is inserted, or

not, in the LLC. The proposed policy, called ReD, is demanding in

the sense that blocks bypass the LLC unless their expected reuse

behavior matches specific requirements, related either to their

recent reuse history or to the behavior of associated instructions.

Generally, blocks are only stored in the LLC the second time they

are requested in a limited time window. Secondarily, some blocks

enter the LLC on the first request if their associated requesting

instruction has shown to request highly-reused blocks in the past.

ReD includes two table structures that allow tracking, measuring

and correlating reuse for specific block addresses and requesting

program counters within a constrained storage budget. It can be

implemented on top of any other base replacement algorithm. Other

parts of the base replacement policy, such as promotion or victim

selection, can remain unchanged, enabling our policy to work along

with many state-of-the-art replacement algorithms.

I. INTRODUCTION

The insertion policy of a replacement algorithm
determines the position of incoming blocks in the replacement
list. For example, the Least Recently Used (LRU) replacement
algorithm gives incoming blocks the highest priority to stay,
inserting them into the MRU position. Several studies show
the inefficiency of this policy for Last-Level Caches (LLCs)
and propose inserting new blocks either with an intermediate
priority [4], or with the lowest priority within their cache set
[6, 7]. Alternatively, some incoming blocks could be selected
to not be stored (be bypassed) in the LLC, if their computed
priority is lower than the minimum in the set [3, 5].
Throughout this paper, we use the expression “block selection
policy” to refer to the part of the insertion policy that decides
whether a new block has to be stored in the LLC.

The starting point for our proposed policy is the
observation that most cache blocks are not requested again
from the LLC after they are stored. Our policy also relies on
the reuse locality property of the LLC access stream, which
states that lines accessed at least twice tend to be reused many
times in the near future and, moreover, recently reused lines
are more useful than those reused earlier [1]. Therefore, in our
policy, blocks requested for the first time are by default not
stored in the LLC. They are only stored when a following
request is detected, that is, when they are reused. As our
policy is based on reuse detection, we have called it the Reuse
Detector (ReD).

With this default policy, blocks with reuse are going to
experience two LLC misses. To avoid the second miss, we
propose to exploit the correlation between the reuse pattern of
the blocks and the instructions that request them for the first
time. A similar correlation has been pointed out and exploited
in a previous study [8]. In our policy, we focus on the
instructions that request blocks with a high reuse probability.
LLC misses coming from such instructions will always trigger
LLC block storage, avoiding the second miss.

ReD can supersede the block selection policy previously
used by any other replacement algorithm, leaving the rest of
the components unchanged. In the policy we have submitted
for the 2nd Cache Replacement Championship (CRC-2),
SRRIP is used as the base replacement algorithm [4].

The structure of this paper is as follows. Section II
describes how ReD works. Section III gives implementation
details and storage costs. Section IV shows results, and
Section V summarizes our contributions.

II. RED BLOCK SELECTION POLICY

The goal of our ReD policy is to store in the LLC only
blocks that have demonstrated reuse. To achieve this, we
primarily track block addresses for requests that miss in the
LLC. Secondarily, we track the program counters (PCs) that
request those blocks. In order to avoid interference among
cores, and assure a fair distribution of resources, both tracking
mechanisms are private for each core.

Our primary reuse detector is the Address Reuse Table
(ART). It stores addresses of requests that have recently
missed in the LLC, to check whether they are requested again.
A request that misses both in the LLC and the ART is marked
as a candidate for bypass in the LLC, and its address is stored
in the ART. We call this an initial request. A request that
misses in the LLC but hits in the ART is stored in the LLC,
because the ART hit is a true indication of reuse. We call this
a first-reuse request. Subsequent requests are expected to hit in
the LLC.

Using only the previous mechanism, a block with reuse
would experience two LLC misses, because both the initial
and the first-reuse request would miss in the LLC. To avoid
the second miss, we include a secondary mechanism that aims
to predict the reuse pattern of blocks at their initial request.
For this mechanism, we assume that the reuse of a block is
correlated with the instruction that performs the initial request,
the trigger instruction. We record the reuse behavior of blocks

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/148622579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

brought in by initial requests in a table indexed by the PC of
the trigger instruction, to be able to compute the reuse
probability of a new block from the values recorded by its
trigger instruction. We call this table the Program Counter -
Reuse Table (PCRT). The PCRT stores two counters per
entry, namely #reused and #notreused. To manage these
counters, some sampled sets of the ART are expanded to keep
the PC of the trigger instruction together with its block
address.

When a first-reuse request hits in the ART, the retrieved
trigger PC is used to increment the corresponding #reused
counter in the PCRT, and the ART entry is invalidated. When
a valid (and therefore not reused) block is evicted from the
ART, the associated trigger PC is used to increment the
corresponding #notreused counter. The reuse probability of
the trigger instruction can be calculated as the quotient
#reused/(#reused + #notreused). More details are given in
Section III-B.

Requests that have been marked as candidates for bypass
by the ART are checked against the PCRT. If the trigger
instruction is found to have a high probability of reuse, the
bypass mark is ignored and the block is inserted into the LLC,

to avoid the miss in the expected first-reuse L2 request.

To help visualize the whole mechanism, Figure 1 shows a
schematic view of the ART and the PCRT, and their state after
three requests.

III. IMPLEMENTATION DETAILS

A. Address Reuse Table (ART)

The ART is organized as a set-associative buffer with 16
ways and 512 sets. We use a FIFO replacement policy that
requires 4 bits per set. In order to reduce the hardware cost,
the ART uses partial address tags (PAt) and is organized in
sectors. An entry or sector tracks four consecutive blocks, and
hence, four valid bits per entry are required to distinguish
between them; see Figure 2(a). The partial tag size is 11 bits, a
value that shows a good tradeoff between size and
performance in our experiments.

We use a sample of 1/4 of the ART sets to gather
information for the PCRT. In each entry of those ART sets,
we include the PCs of the trigger instructions of the four
blocks in the sector. We only store the 8 bits required to index
the PCRT; see Figure 2(b).

B. Program Counter - Reuse Table (PCRT)

The PCRT is tagless and has 256 entries, a value that
shows a good tradeoff between size and performance in our
experiments. A tagless design with this relatively low number
of entries is sufficient for ReD because it is used only as a
secondary mechanism. For example, if two aliased PCs show
markedly different behaviors, one with high reuse and the
other with low reuse, and the PCRT categorizes their reuse
probability as low, not all initial requests would be sent to the
LLC, but the ART would still act correctly on first-reuse
requests.

The PCRT is indexed with 8 bits of the trigger PC, bits 2-
9. Each PCRT entry has two 10-bit counters (#reused and
#notreused); see Figure 2(c). When a counter reaches its
maximum, both counters of the entry are divided by two.

Fig. 1. State of ReD internal tables after two initial requests ①②, and a first-reuse request ③. It is assumed that the ART set shown uses PC sampling.

Fig. 2. Entry of the Address Reuse Table without (a) and with (b) PC

sampling, respectively. Entry of the Program Counter - Reuse Table (c).

3

The minimum reuse probability that forces all initial
requests to be sent to the LLC is set to 1/4. This value has
been set experimentally, and corresponds to a
#notreused/#reused ratio of 3.

C. Increasing the effectiveness of the ART

The PCRT also allows the identification of initial requests
that it is not worth keeping in the ART. We use the
information stored in the PCRT to reduce the insertion rate of
addresses in the ART in the following two specific cases:

• Addresses coming from a trigger instruction with a
very low reuse probability (less than 1/64).

• Addresses coming from a trigger instruction with a
high reuse probability (more than 1/4). Since ReD
already stores all blocks requested by this category of
instructions in the LLC, it is not worth keeping all their
initial requests in the ART.

Reducing the insertion rate of these addresses makes it
possible to keep other (more useful) ones for longer,
increasing the effectiveness of the ART.

The reduced insertion rate is set to 1 in 8 times. It is not
advisable to reduce it to 0 because ReD needs to insert some
addresses and their associated PCs in the ART for tracking
changes over time in the behavior of trigger instructions. It is
also important to address thrashing in the ART: the reduced
insertion rate enables the ART to store at least a portion of the
thrashing working set.

D. Other details

The base replacement policy used for the CRC-2 submission
and considered in the results section of this paper is 2-bit
SRRIP. On insertion, it is applied only if ReD decides not to
bypass a block.

Prefetch requests are handled like demand requests. Write-
back requests are ignored by ReD and SRRIP. If they miss,
they are always allocated in the LLC, but with minimum
priority. The simulation infrastructure does not allow
bypassing them.

E. Storage costs

Table I summarizes the storage costs per core of ReD
(ART and PCRT), plus the costs of SRRIP.

IV. RESULTS

We have simulated our policy using the ChampSim
simulator of the CRC-2. We have considered the four
configurations defined: single core without prefetching (c1),
single core with data prefetching (c2), four-core without
prefetching (c3) and four-core with data prefetching (c4).

For single-core configurations, we have used 45 traces
from different parts of the execution of the 29 applications of
the SPEC CPU 2006 benchmark suite. For multi-core
configurations, we have created 80 mixes using these 45
traces.

TABLE I. RED HARDWARE COST, PER CORE

ART

Parameters 512 sets, 16 ways, 4 blocks/sector

bits / entry 11 tag, 4 valid

bits / set 4 (FIFO replacement)

Cost
512 * (16 * 15 + 4) = 124928 bits = 15616

bytes

ART

sampled

sets

Parameters 128 sets, 16 ways, 4 blocks/sector

bits / entry 4 * 8 bits PC

Cost 128 * 16 * 32 = 65536 bits = 8192 bytes

PCRT

Parameters 256 entries

bits / entry 2 * 10

Cost 256 * 20 = 5120 bits = 640 bytes

SRRIP

Parameters 2048 sets, 16 ways

bits / entry 2

Cost 2048 * 16 * 2 = 65536 bits = 8192 bytes

Total cost: 15616 + 8192 + 640 + 8192 = 32640 bytes (31.875 KB)

Figure 3 shows results achieved with our proposed policy,
and additionally for SRRIP as a reference. For the single-core
configurations (c1 and c2), we plot speedup over LRU, while
for multi-core configurations, we plot average speedup, over
all instances of the trace in all mixes, relative to the
performance with LRU. We only show results for traces that
achieve more than a 2% speedup when increasing LLC
capacity from 2M to 8M with the LRU replacement algorithm,
in a single-core configuration. The geometric mean of
speedups over all selected traces is 4.4% using configuration
c1, 2.4% using c2, 5.6% using c3 and 3.6% using c4.

Over the non-plotted traces, 26 in total, the geometric
mean of speedups is 0.1% in c1, 0.2% in c2, 1.5% in c3 and
1.4% in c4. The average bypass rate of the plotted executions,
using configuration c1 is 32.8%, with a maximum of 82.1% in
429.mcf.

V. CONTRIBUTIONS

The main contributions of our work are:

- We focus only on the block selection policy (that is,
the decision of whether or not to bypass the cache), as
we believe it is the key component of the LLC
replacement policy. ReD can be combined with any
other LLC replacement policy, either by adding it as a
block selection policy or by substituting for the one
used in the base policy.

- We design a block selection policy that combines, in a
synergistic way, two different approaches to
computing the reuse likelihood of a block that misses
the LLC: a) the detection of a recent-past use of the
block as an indicator of future reuse, and b) the past
reuse behavior of blocks requested by the instruction
that requests the block.

- We design a separate block reuse detector that
remembers addresses that have recently missed in the
LLC. In other policies that have been proposed, the
LLC cache is used to perform a similar task [2].

4

- We also include a PC-indexed store that tracks the
reuse of blocks requested by each instruction, and is
able to predict reuse behavior in some cases. A similar
table has been used in a previous study [8], but we use
it in a different way. First, we train it with the reuse
observed in the address detector instead of the LLC,
and second, in ReD, it is a secondary mechanism that
only acts in specific cases: to avoid the miss of the
first-reuse request and to reduce the number of
insertions into the address detector.

- Both mechanisms are implemented in private per-core
tables, to ensure a fair distribution of resources and to
avoid potential thrashing caused by a single thread.

ACKNOWLEDGMENTS

This work was supported in part by grants TIN2013-
46957-C2-1-P, TIN2016-76635-C2-1-R (AEI/FEDER, UE),
TIN2015-65316-P, Consolider NoE TIN2014-52608-REDC
(Spanish Gov.), and gaZ: T48 research group (Aragón Gov.
and European ESF).

REFERENCES

[1] J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llabería. 2013. Exploiting
reuse locality on inclusive shared last-level caches. ACM Trans. Archit.
Code Optim., 9(4):38. 1-19.

[2] J. Albericio, P. Ibáñez, V. Viñals and J.M. Llabería. 2013. The reuse
cache: downsizing the shared last-level cache. In Proc. of the 46th Int.
Symp. on Microarchitecture. 310-321.

[3] Gao and C. Wilkerson. 2010. A dueling segmented LRU replacement
algorithm with adaptive bypassing. In Proc. of the 1st JILP Workshop
on Computer Architecture Competitions.

[4] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. 2010. High
performance cache replacement using re-reference interval prediction
(RRIP). In Proc. of 37th Int. Symp. on Computer architecture. 60-71.

[5] S. M. Khan, Y. Tian, and D. A. Jimenez. 2010. Sampling Dead Block
Prediction for Last-Level Caches. In Proc. of the 43rd Int. Symp. on
Microarchitecture. 175-186.

[6] P. Michaud. 2010. The 3P and 4P cache replacement policies. In Proc.
of the 1st JILP Workshop on Computer Architecture Competitions.

[7] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and J. Emer. 2007.
Adaptive Insertion Policies for High-Performance Caching. In Proc. of
the 34th Int. Symp. on Computer Architecture. 381–391.

[8] C. Wu, A. Jaleel, W.Hasenplaugh, M. Martonosi, S. C. Steely, Jr., J.
Emer. 2011. SHiP: signature-based hit predictor for high performance
caching. In Proc. of 44th Int. Symp. on Microarchitecture. 430-441.

Fig. 3. Performance results: Speedup vs LRU for ReD and SRRIP. Results for all Spec2006 benchmarks that show more than a 2% improvement in IPC

between a 2MB and a 8MB LRU-managed LLC. From top to bottom: c1) single core without prefetching, c2) single core with data prefetching, c3) four-

core without prefetching, and c4) four-core with data prefetching.

0.96

1

1.04

1.08

1.12

1.16
S

p
ee

d
u

p
 v

s
L

R
U

ReD-c1

SRRIP-c1

0.96

1

1.04

1.08

1.12

1.16

S
p

ee
d

u
p

 v
s

L
R

U ReD-c2

SRRIP-c2

0.96

1

1.04

1.08

1.12

1.16

S
p

ee
d

u
p

 v
s

L
R

U ReD-c3

SRRIP-c3

0.96

1

1.04

1.08

1.12

1.16

4
0

0
.p

er
lb

en
ch

-1

4
0

1
.b

zi
p
2

-1

4
0

1
.b

zi
p
2

-3

4
0

1
.b

zi
p
2

-4

4
0

1
.b

zi
p
2

-5

4
0

1
.b

zi
p
2

-6

4
0

3
.g

cc
-4

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

5
.g

ro
m

a
cs

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
5

0
.s

o
p
le

x
-1

4
5

6
.h

m
m

er
-1

4
5

9
.G

em
sF

D
T

D

4
6

4
.h

2
6

4
re

f-
1

4
7

0
.l

b
m

4
7

3
.a

st
ar

-1

4
7

3
.a

st
ar

-2

G
E

O
M

E
A

N

S
p

ee
d

u
p

 v
s

L
R

U ReD-c4

SRRIP-c4

1.22

1.27

