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The demand for performing data analysis is steadily rising. As a consequence, people of different profiles (i.e., non-
experienced users) have started to analyze their data. However, this is challenging for them. A key step that poses difficulties
and determines the success of the analysis is data mining (model/algorithm selection problem). Meta-learning is a technique
used for assisting non-expert users in this step. The effectiveness of meta-learning is, however, largely dependent on the
description/characterization of datasets (i.e., meta-features used for meta-learning). There is a need for improving the
effectiveness of meta-learning by identifying and designing more predictive meta-features. In this work, we use a method
from exploratory factor analysis to study the predictive power of different meta-features collected in OpenML, which is
a collaborative machine learning platform that is designed to store and organize meta-data about datasets, data mining
algorithms, models and their evaluations. We first use the method to extract latent features, which are abstract concepts
that group together meta-features with common characteristics. Then, we study and visualize the relationship of the latent
features with three different performance measures of four classification algorithms on hundreds of datasets available in
OpenML, and we select the latent features with the highest predictive power. Finally, we use the selected latent features to
perform meta-learning and we show that our method improves the meta-learning process. Furthermore, we design an easy
to use application for retrieving different meta-data from OpenML as the biggest source of data in this domain.

Keywords: feature extraction, feature selection, meta-learning.

1. Introduction

Recently, more and more non-experts have been using
data mining tools to perform data analysis. These
users require off-the-shelf solutions that will assist them
throughout the process. The process itself, also known
as knowledge discovery, consists of several steps, such
as data selection, data pre-processing, data mining, and
evaluation or interpretation (Fayyad et al., 1996); see
Fig. 1.

The key step of the whole process is data mining. Yet
the staggeringly large number of alternative algorithms
that can be used makes this step challenging. Thus,
non-experienced users become overwhelmed and require
support (e.g., need to be recommended what data
mining algorithm to use). Various techniques have
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emerged (Serban et al., 2013) to provide that. Among
them, one that has been the focus of research for long is
meta-learning (Brazdil et al., 2008; Bilalli et al., 2017;
Lemke et al., 2015).

As we will show next, in short, meta-learning is a
process that seeks to predict/find the performance of an
algorithm on a given dataset. The ability of predicting
the performance of different data mining algorithms
allows one to rank the algorithms and therefore provide
user support in data mining. However, the success of
meta-learning depends on many factors. One of the most
important factors is the set of meta-features used for
meta-learning. Recall that there are two main ingredients
in meta-learning: (i) the dataset characteristics or the
meta-features plus the performance measure of algorithms
on datasets or the meta response—these together define
the meta-data, and (ii) the meta-learner. Yet, the primary
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Fig. 1. Data analysis/knowledge discovery.

source of determining the success of meta-learning are the
chosen meta-features (dataset characteristics).

In this paper, we provide a method for first
extracting latent features, which basically group together
meta-features with “common characteristics”. Given the
latent features, next we study their correlation to the
performance measure that needs to be predicted. The
reason to study the correlation at the latent feature level,
rather than the meta-feature level, is that, first, there is
no complete list of meta-features, so any analysis would
lack completeness, and, second, even if there was such
a list, the list would be so large that a sound analysis
would not be feasible. Another possibility would be
to study the relationship between a coarser group of
meta-features and the different performance measures,
and make generalizations out of that. For instance, Reif
et al. (2014) study the relationship of the groups of
meta-features (e.g., statistical meta-features) with some
performance measures. We believe this kind of analysis
hides the diversely significant relationships of different
subsets of meta-features within the same coarse group
(i.e., statistical meta-features). That is to say, some
statistical features within the same group may have more
significant relationships with the performance measure
rather than some others in the same group. The analysis at
this level overlooks this, and hence the generalizations that
all statistical features behave similarly may be incorrect.
That is why in this study we settle on a middle ground,
where we neither study individual meta-features nor
groups of such coarse granularity. We conduct the study
at the latent feature level.

There have been many studies with regard to the
use (what kinds of meta-data to be used) (Castiello
et al., 2005) and selection (which are the most
relevant) (Kalousis and Hilario, 2001) of meta-features or
meta-data (Bilalli et al., 2016) in general. However, these
studies have been performed independently and in specific
domains. As a matter of fact, the amount of datasets
and meta-data studied has been relatively small. With
the appearance of OpenML (Vanschoren et al., 2014),
however, the idea of collecting and generating meta-data
and experiments has broadened. OpenML engages
the whole machine learning community in the idea of
collecting experiments, datasets and meta-data. As a
matter of fact, the amount of available data and meta-data
has naturally increased and is steadily increasing day by
day. That is why our analysis is performed on data-sets

and meta-data provided by OpenML as the biggest source
of data for meta-learning. Specifically, as a first approach,
our focus of analysis is classification problems.

Contributions. The main contributions of this paper can
be summarized as follows:

• We use a traditional method of feature extraction
and selection for a novel purpose of studying the
predictive power of meta-features in a meta-learning
scenario.

• We hand-craft the latent features behind the
OpenML meta-features, then we study and visualize
their predictive power for predicting different
performance measures of different classification
algorithms. As a novelty and in contrast to other
works, we perform our analysis by splitting the
datasets according to the meta-features that can be
retrieved from them.

• We evaluate the effectiveness of the method for
feature extraction and selection by performing
meta-learning on top of OpenML data, and we show
the obtained benefits.

• We develop a user-friendly tool that can be used
(e.g., by data analysts) to generate meta-datasets
(employed for meta-learning) out of OpenML.

The rest of the paper is organized as follows. In
Section 2, an overview of meta-learning is given. The
method for studying and visualizing the predictive power
of meta-features is formally defined and explained in
Section 3. In Section 4, we give an overview of OpenML
and, more importantly, we report on results obtained
after performing our method on top of OpenML. The
related work is discussed in Section 5. Finally, Section 6
summarizes our work and outlines some future research.

2. Meta-learning

Most of the data analysis performed remains hidden and
not reused. The vast amount of experience gathered
from this analysis is not well exploited. The idea behind
meta-learning is to exploit the knowledge gained out of

Establish
meta-learning
space m

et
a

da
ta

se
t

Predict
Perform
learning m

et
a

m
od

el

Metadata Meta-learner

ra
nk

in
gs

New dataset

Fig. 2. Meta-learning process.
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On the predictive power of meta-features in OpenML 699

this experience. More precisely, meta-learning is the
process of learning the relationships between datasets
and data mining algorithms. Once different data-mining
algorithms have been applied on different datasets, the
idea is to use that knowledge when data mining algorithms
need to be applied on new datasets. As depicted in Fig. 2,
meta-learning consists of three steps.

First, a metalearning space is established
using meta-data consisting of dataset characteristics
(meta-features) and a performance measure
(meta-response) for data mining algorithms on those
particular datasets. Then, there comes the meta-learning
phase. Here, a predictive meta-model is generated
out of the meta-dataset constructed in the first phase.
Finally, in the third step, when a new dataset comes,
its characteristics are extracted and the predictive
meta-model is used to predict the performance of a
particular algorithm, for which the meta-model was built,
on that dataset.

This technique can be used to rank different
algorithms depending on their predicted performance on
a new dataset. Hence, it can be employed to recommend
data mining algorithms in the data mining step of the
analysis.

The two main concepts of meta-learning are the
meta-data and the meta-learner. In the following, we
briefly discuss these two concepts.

2.1. Meta-data. Meta-data are the necessary
information required to establish the meta-dataset.
In our definition, they consist of (i) meta-features
and (ii) a performance measure of the algorithm
considered—meta-response. In statistics, the former are
called predictors and the latter is called response.

Meta-features characterize a dataset, and initially the
two following classes of measures have been proposed:

• General: include general information related to
the dataset at hand. To a certain extent they
are conceived to measure the complexity of the
underlying problem. Some of them are the number
of instances, the number of attributes, dataset
dimensionality, the ratio of missing values, etc.

• Statistical and information-theoretic: describe
attribute statistics and class distributions of a dataset
sample. They include various summary statistics per
attribute like mean, standard deviation, class entropy,
etc.

Since the problem to be solved is usually a prediction
problem, and a variable (or more) is defined to be the
response, further meta-features measuring the association
between the predictors and the response have been used.
These measures are grouped into the Landmarking and
Model-Based class (Pfahringer et al., 2000; Peng et al.,
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Fig. 3. Meta-feature extraction cost. Only the Landmarking and
Model-Based class is represented through single mea-
sures. The rest of the classes are represented as the total
execution times of their participating measures (see Ta-
ble 2).

2002). This class is related to measures asserted with
simple machine learning algorithms, the so-called land-
markers, and their derivatives based on the learned
models. They include error rates and pairwise 1−p values
obtained by landmarkers such as 1NN, DecisionStump or
NaiveBayes. Yet, when performed on bigger datasets,
these simple machine learning algorithms may yield
significant computational cost.

In order to assess the computational behaviour of
the Landmarking and Model-Based class of measures, we
performed an empirical analysis with 720 datasets. In
addition to Landmarking and Model-Based, we calculated
the performance of the other classes, too, and we show the
comparison in terms of execution times in Fig. 3. Observe
that only the Landmarking and Model-Based class is
represented with individual measures such as NaiveBayes
and DecisionStump. The other classes are represented
as totals of their participating measures. For instance,
the execution time of the Statistical class is calculated as
the total execution time required to retrieve 24 individual
measures like Mean Standard Deviation, Mean Skewness,
Mean Kurtosis, etc. (see Table 2).

For the sake of presentation, instead of showing the
scatter plot of the values of all the measures for each
dataset, we show the fitted line (regression line) for each
measure or class of measures. In addition, the grey
areas around the lines denote the 95% interval of the
prediction. One can immediately observe the steepness
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Table 1. Classification algorithm performance measures.
Measure Formula

Accuracy
TP+TN

TP+FP+FN+TN

Precision
TP

TP+FP

Recall
TP

TP+FN

AUC
1

2

( TP
TP+FN

+
TN

TN+FP

)

TN: true negatives, TP: true positives,
FN: false negatives, FP: false positives.

of the slopes, and the wideness of the intervals around
the lines representing Landmarking and Model-Based
measures. The former indicates that with an increase in
the dataset size, retrieving these measures becomes way
more costly compared to the rest. The latter indicates that
there is a high variability in the execution times for Land-
marking and Model-Based measures. This means that,
even if the size of a dataset is small, it can still be costly
to retrieve these measures. This can happen for instance if
the dataset contains a high number of features and a small
number of instances. Hence, because of the way they
are computed and their computational overhead, we do
not consider Landmarking and Model-Based measures as
classical dataset characteristics and they do not participate
as meta-features in our experiments.

Performance measures (meta-response) are different
outputs that can be obtained after the evaluation of
data mining algorithms. Since we are dealing with
classification problems, and so the algorithms we consider
are of classification type, the performance is usually
measured in terms of predictive accuracy, precision, re-
call or the area under the ROC curve (AUC). In Table 1,
formulas for calculating these measures are given. More
precisely, classification algorithms are usually evaluated
using 10-fold cross-validation (Kohavi, 1995).

2.2. Meta-learner. After having generated a
meta-dataset with all the necessary meta-data, the
goal is to build a predictive meta-model that will be
able to predict the performance of an algorithm on a
new dataset. Formally, the problem can be defined
as follows. Given algorithm A and a limited number
of training data D = (x1, y1) . . . (xn, yn), the goal
is to find a meta learner with good generalization
performance. It is estimated by splitting D into disjoint
training and validation sets D

(i)
train and D

(i)
valid. Note that

x ∈ x1, x2, . . . , xn are the dataset characteristics and
y1 is a measure of the performance of algorithm A run
on that particular dataset. Hence, x and y altogether

Latent features

Partial correlation graph,
ranking of latent features

Partial correlations

Alg. performanceLatent features +

PCA + Orthogonal rotation

Meta features

1. Feature Extraction

2. Feature Selection

Fig. 4. Two stages of the method.

are the extracted meta-data. Various meta-learners
have been used, such as k-nearest neighbours, decision
trees and support vector machines, etc. (Bensusan and
Giraud-Carrier, 2000a; Giraud-Carrier, 2005).

3. Predictive power of meta-features:
Feature extraction and feature selection

As mentioned above, different and numerous
meta-features can be used to define the meta-dataset
for meta-learning. The list of meta-features may become
very big, due to the meta-meta effect, referred to as
meta2 (Reif et al., 2012). For instance, when a statistical
characteristic needs to be taken over the continuous
attributes of a given dataset, usually the mean of that
statistic over the continuous attributes is taken. Let us say,
if a general value for skewness is in question, commonly
the mean skewness of all the continuous attributes is
considered. However, this does not always need to be the
case. One may opt for another statistic, different from
the mean, for instance, the skewness of the skewness of
continuous attributes, or even another, the kurtosis of
the skewness of continuous attributes. As a result, the
plethora of statistics that can be computed on top of
other statistics may lead to an explosion of the number of
meta-features that can be considered in a meta-learning
process.

Therefore, the problem of choosing the most relevant
and “minimal” (less computational overhead), set of
meta-features is still present. Consequently, the chosen
meta-features play a key role in determining the success
of meta-learning.

In this section, we discuss the method that we use
to study the relevance of the meta-features for predicting
the performance measures of data mining algorithms.
Our method consists of two steps, which are depicted in
Figure 4.
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In the first step, we perform a principal component
analysis (PCA) and subsequently an orthogonal rotation
on the complete set of meta-features that may be
available. Even though this is a standard method in
exploratory factor analysis, and has been used on different
occasions (Morchid et al., 2014), this is the first time
that it is applied at the meta-feature level. Hence, the
input required by this step is a meta-dataset consisting
of dataset characteristics (meta-features). PCA followed
by an orthogonal rotation allows us to extract the la-
tent features and furthermore eliminate the redundant
meta-features. Latent features are the abstract features
that can be automatically extracted, yet they need to be
manually interpreted. The automatic part of the process
groups the meta-features with “common characteristics”
into latent features. These common characteristics are the
abstract concepts that need to be manually interpreted in
order to define/describe the latent features.

After extracting the latent features we are able to
perform the second step. The latent features are used
as input for the second step; however, in addition, for
all the datasets we compute a performance measure (e.g.,
predictive accuracy)—a response feature of an algorithm
(i.e., the one we want to study). Hence, the input of the
second step is a meta-dataset, but this time comprised of
latent features of datasets and a performance measure of
an algorithm run on the respective datasets.

In the second step, we perform a partial correlation
analysis and generate a partial correlation graph that
visualizes the relationship between latent features and the
response. This allows us to select the latent features that
are most relevant for predicting the response. Hence, at
the end of the whole process we obtain a subset of latent
features—expressed through meta-features—that can be
next used for meta-learning. In the following, we briefly
and formally introduce the two steps.

3.1. Principal component analysis. PCA (Hotelling,
1933) is the predominant linear dimensionality reduction
technique, and it has been widely applied to datasets in all
scientific domains, from social sciences and economics,
through to biology and chemistry. In words, PCA
seeks to reduce the dimension of a large number of
directly observable features into a smaller set of indirectly
observable ones—latent features. More precisely, the
goals (Morchid et al., 2014) of PCA are the following:

• extract the most important information from the
dataset,

• compress the size of the dataset by keeping only this
important information,

• explain and simplify the description of the dataset,

• analyze the structure of observations (instances) and
variables.

In order to achieve these goals, PCA computes
new features, which are called principal components.
These are obtained as linear combinations of the original
features. The first principle component is required to
have the largest possible variance to “explain” the largest
part of the variance of the dataset (i.e., meta-dataset).
Then, the rest of the components are computed under
the following constraints: (i) each component needs
to be orthogonal to the previous one and (ii) each
component needs to have the largest possible variance.
The values of these new features are called factor scores
and are geometrically interpreted as the projections of
the instances onto the principal components. These are
obtained from singular value decomposition (SVD) of the
dataset X , with

X = PΔQT , (1)

where P is an m × l matrix of left singular vectors, Q
is an n × l matrix of right singular vectors and Δ is the
diagonal matrix of singular values. Here l is the rank of
the matrixX (l ≤ min{m,n}). Them×l matrix of factor
scores denoted by F is obtained as F = PΔ and can be
interpreted as a projection matrix, because multiplying X
by Q gives the values of the projections of the observation
on the principal components using Eqn. (1):

XQ = PΔQTQ = PΔ = F. (2)

Note that, in Eqn. (2), matrix F is generated using
a standardized dataset (in our case a meta-dataset) while
matrix X with dim(X) = (m,n), where m is the
number of instances and n is the the number of features.
PCA allows finding a subspace of size p, where the
features are grouped depending on their projections onto
the factor space. The feature groups actually form latent
features/factors. A set of p factors p ≤ n is then selected.
Each factor represents a certain part of the total variance
of the dataset.

3.2. Orthogonal rotation. To facilitate interpretation,
after having determined the number of components, the
analysis usually involves a rotation of the components
retained. Two types of rotations are mainly used: or-
thogonal (the new axes are required to be orthogonal to
each other) and oblique (the new axes are not required to
be orthogonal). Note that the part of variance explained
by the total subspace after rotation is the same as before
the rotation. In this paper, orthogonal rotation or,
more precisely, the VARIMAX (Kaiser, 1958) method is
chosen to perform a transformation of the original data.
VARIMAX assumes that a simple solution means that
each component has a small number of large loadings and
a large number of zero loadings. Formally, it searches
for a linear combination of the original factors such that
the variance of the squared loadings is maximized, which
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702 B. Bilalli et al.

amounts to maximizing

v =
∑

(q2j,l − q̄2l )
2,

with q2j,l being the squared loading of the j-th variable of
the matrix Q on the component l and q̄2l being the mean of
the squared loadings. This rotation is performed using the
diagonal matrix of singular values and the eigenvectors
associated with the correlation matrix of X .

After the rotation, the set of factors (latent features)
are more interpretable, and they, of course, are defined
by their respective meta-features—the ones that are most
correlated with them.

3.3. Partial correlation graphs. The first step
produces a subset of candidate latent features for
meta-learning. However, it does not provide a relevance
measure of the latent features with respect to the response.
In consequence, it does not necessarily retain only the
latent features that are most relevant for predicting the
response. These most relevant latent features with respect
to the response out of the ones provided by the first
step are derived here, in the second step. That is
why, in this step, an additional feature (i.e., response)
is attached to the derived set of latent features. The
additional feature can be any of the performance measures
of the algorithms evaluated over the datasets—instances
of the meta-dataset. Given that, graphical models (i.e.,
partial correlation graphs) that represent the relationships
between features can be generated.1 The emphasis, of
course, is on the relationships of the latent features and the
response feature, rather than on the relationships between
latent features. The latent features that have a very
significant relationship with the response are the most
relevant ones for predicting the response. Hence, we
believe that retaining only the subset of latent features
with very significant relationships with the response is
sufficient for performing meta-learning. Furthermore, the
set of relevant latent features may be different for different
algorithms considered in a meta-learning framework.
More formally, let x,y ∈ R and z be a random vector.
The partial correlation between x and y, given z, is a
measure of association between x and y after removing
the effect of z. Specifically, ρ(x,y|z) is the correlation
between εx and εy, where

εx = x−
∏

z

x, εy = y −
∏

z

y.

Here,
∏

z x is the projection of x onto the linear space
spanned by z. That is,

∏
z x = zβ, where β minimizes

E[x− zβ]2. In other words,
∏

z x is the linear regression
of x on z. A similar argument applies to

∏
z y.

1Taking the partial correlations on latent features allows us to over-
come the practical problem of the redundancy that may exist between
the meta-features, since latent features are “orthogonal.”

4. Experimental study on the predictive
power of OpenML meta-features

In this section, we first give a brief description of
OpenML. Then we discuss the meta-data it stores and
the application we built to retrieve these meta-data in
order to generate meta-datasets for meta-learning. After
that, we describe the experimental setup which consists of
applying the method for feature extraction and selection
on OpenML meta-data, and we discuss the obtained
results. Finally, we asses the performance of our method
by meta-learning on 720 datasets, and we show the results
obtained.

4.1. OpenML. It is an open science platform
developed with the aim of allowing researchers to share
their datasets, implementations and experiments (i.e.,
machine learning and data mining) so that they can easily
be found and reused by others. It offers a web API through
which new resources and results can be submitted, and has
been integrated in a number of popular machine learning
and data mining platforms, such as Weka, RapidMiner,
KNIME, and data mining packages in R. They allow easy
and automatic submission of new results.

4.1.1. Meta-data in OpenML. As previously
mentioned, in our definition, meta-data consist of
meta-features or, more precisely, dataset characteristics
and a response feature or performance measures
of different algorithms on datasets. In OpenML,
for each uploaded dataset, 61 dataset characteristics
(meta-features) are calculated. They are listed in Table 2.
We classify each dataset characteristic into one of the
following categories:

• continuous: if the dataset characteristic can be
calculated only on datasets that contain continuous
attributes,

• categorical: if the dataset characteristic can be
calculated only on datasets that contain categorical
attributes,

• generic: if the dataset characteristic can be calculated
on any dataset.

Classifying meta-features into these three groups
is very important, since, for instance, a continuous
meta-feature cannot be calculated on datasets with only
categorical attributes and vice versa, a categorical feature
cannot be calculated on datasets with only continuous
attributes. Hence, an analysis of meta-features should take
this into account. To the best of our knowledge, however,
no prior study considers grouping datasets according
to the meta-features that can be extracted from them.
Reif et al. (2014) recommend converting the continu-
ous attributes into categorical (e.g., by discretization)
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Table 2. Dataset characteristics in OpenML.
No Name Type Class

1 Number of Numeric Attributes Continuous General

2 Percentage of Numeric Attributes Continuous General

3..6 Min[Means|Std|Kurtosis|Skewness] of Numeric Attributes Continuous Statistical

7..10 Mean[Means|Std|Kurtosis|Skewness] of Numeric Attributes Continuous Statistical

11..14 Max[Means|Std|Kurtosis|Skewness] of Numeric Attributes Continuous Statistical

15..17 Quartile [1|2|3] of Means of Numeric Attributes Continuous Statistical

18..20 Quartile [1|2|3] of Std of Numeric Attributes Continuous Statistical

21..23 Quartile [1|2|3] of Kurtosis of Numeric Attributes Continuous Statistical

24..26 Quartile [1|2|3] of Skewness of Numeric Attributes Continuous Statistical

27 Number of Categorical Attributes Categorical General

28 Number of Binary Attributes Categorical General

29 Percentage of Categorical Attributes Categorical General

30 Percentage of Binary Attributes Categorical General

31..33 [Min|Mean|Max] Attribute Entropy Categorical Information-Theoretic

34..36 Quartile [1|2|3] Attribute Entropy Categorical Information-Theoretic

37..39 [Min|Mean|Max] Mutual Information Categorical Information-Theoretic

40..42 Quartile [1|2|3] Mutual Information Categorical Information-Theoretic

43 Equivalent Number of Attributes Categorical Information-Theoretic

44 Noise to Signal Ratio Categorical Information-Theoretic

45..48 [Min|Mean|Max|Std] Attribute Distinct Values Categorical Statistical

49 Number of Instances Generic General

50 Number of Attributes Generic General

51 Dimensionality Generic General

52,53 [Number|Percentage] of Missing Values Generic General

54,55 [Number|Percentage] of Instances with Missing Values Generic General

56 Number of Classes Generic General

57 Class Entropy Generic Information-Theoretic

58,59 [Minority|Majority] Class Size Generic General

60,61 [Minority|Majority] Class Percentage Generic General

in order to be able to extract meta-features of categor-
ical type in purely continuous datasets, otherwise the
categorical features need to be replaced with missing
values. However, applying such kinds of excessive
transformations introduces noise. Thus, in our study
(see Section 4.2.3), we group datasets based on their
characteristics, and we perform our analysis on these
groups separately. That is, the meta-features extracted and
considered in accordance with the types are of attributes a
dataset contains.

Regarding the performance measures of algorithms
on datasets, all the performance measures defined in
Table 1 are stored in OpenML for different classification
algorithms. Hence, one can use the meta-data provided
by OpenML in order to define meta-datasets for
meta-learning.

4.1.2. Meta-data retrieval from OpenML. In order
to create meta-datasets for meta-learning out of OpenML,
one needs to have a good knowledge of the schema of
the OpenML repository—the database consists of around
40 tables. This may pose challenges, especially to data
analysts with a statistics background. In order to facilitate
this process, we first developed a simple application,
available for researchers2, that is capable of generating
a meta-dataset for any chosen data mining algorithm. A
screenshot of the application is given in Fig. 5. After
generating some meta-datasets we were able to continue
with our studies, which is going to be explained next.

4.2. Experimental setup. In the following, we discuss
our experimental setup which consists in applying the

2https://github.com/bbilalli/
MetadataFromOpenML.
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Fig. 5. Application for meta-data retrieval from OpenML.

method shown in Fig. 4 to meta-data retrieved from
OpenML.

4.2.1. Retrieved meta-data. As previously
mentioned, since our focus is on classification problems,
we retrieved meta-data with regard to classification
problems only. Hence, we retrieved meta-data for 720
datasets (classification problems)—very big datasets
with respect to size in terms of features (n > 1000) or
instances (m > 1000000) were not considered. The
dataset characteristics (meta-features) and performance
measures (meta-response) retrieved are listed in Tables 2
and 1, respectively. For the sake of experiments,
the classification algorithms that we consider include
Decision Tree, Naive Bayes, JRip and Nearest Neighbor.

4.2.2. PCA and orthogonal rotation for OpenML.
As described in Eqn. (2), matrix F is generated using a
standardized dataset matrix X with dim(X) = (m,n),
where m is the number of observations (m = 720) and
n is the number of meta-features (n = 61). A set of p
factors (latent features) is then selected (p = 14). Each
factor represents a certain part of the total variance of the
meta-dataset. Several methods are used to estimate the
correct number of factors to represent the data variance
and the feature correlation. One that is commonly used

is to retain all the factors that cumulatively represent
a fair amount of the total variance (e.g., 80%). The
number of factors needed to explain 80% of the total
variance in this case is 14. These selected factors
altogether represent 80.69% of the total variance. After
determining the number of factors, in order to facilitate the
interpretation and more clearly define the latent features,
we perform a rotation (VARIMAX) of the retained factors
(components). VARIMAX assumes that each factor has
a small number of large loadings, and a large number of
zero loadings.

Table 3 presents the most interesting factor loadings
(i.e., with a threshold of ±0.7) from matrix F for
meta-features in the subspace represented by p first factors
(p = 14). Factors are orthogonal and describe the
correlation between the features in the original space
representation. In the first column of Table 3, we show
the hand-crafted latent concepts that stand behind each
of the factors. They explain the meta-features shown
in the second column. Finally, in the third column,
factor loadings for the respective meta-features are shown.
Factor loadings (correlations of meta-features with the
latent factors), can range from −1 to 1. Loadings close
to −1 or 1 indicate that the factor strongly affects the
meta-feature. Loadings close to zero indicate that the
factor has a weak effect on the meta-feature.
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Table 3. Latent features obtained from PCA and VARIMAX.
Latent feature Meta-feature Corr.

Information of Categorical
Attributes

MeanAttributeEntropy 0.853
MinAttributeEntropy 0.925
Q1AttributeEntropy 0.920
Q2AttributeEntropy 0.878

Shape of Numeric
Attributes

MeanKurtosisOfNumericAtts 0.933
MeanSkewnessOfNumericAtts 0.874
MinKurtosisOfNumericAtts 0.927
Q1KurtosisOfNumericAtts 0.971
Q1SkewnessOfNumericAtts 0.755
Q2KurtosisOfNumericAtts 0.962
Q2SkewnessOfNumericAtts 0.944
Q3KurtosisOfNumericAtts 0.969
Q3SkewnessOfNumericAtts 0.927

Variability of Numeric
Attributes

MeanMeansOfNumericAtts 0.987
MeanStdDevOfNumericAtts -0.994
MinMeansOfNumericAtts 0.999
MaxStdDevOfNumericAtts -0.999

Min. Variability of Num.
Attributes

MinStdDevOfNumericAtts 0.821
Q1MeansOfNumericAtts 0.719
Qe1StdDevOfNumericAtts 0.887

Modality of Categorical
Attributes

MaxNominalAttDistinctValues 0.899
MeanNominalAttDistinctValues 0.874
StdvNominalAttDistinctValues 0.942

Number of Instances
NumberOfInstances 0.978
MajorityClassSize 0.935
MinorityClassSize 0.843

Missing Values

#OfInstancesWithMissVals 0.816
#OfMissingValues 0.866
%OfInstancesWithMissVals 0.830
%OfMissingValues 0.701

Dimensionality
NumberOfNumericFeatures -0.955
NumberOfFeatures -0.956
Dimensionality -0.770

Information of the
Response

ClassEntropy -0.953
NumberOfClasses -0.773
MajorityClassPercentage 0.770

Number of Cat. Atts.
NumberOfSymbolicFeatures 0.964
NumberOfBinaryFeatures 0.966

Q3 Level of Num. Atts.
Q3MeansOfNumericAtts 0.974
Q3StdDevOfNumericAtts 0.977

Shape of the Extreme Num.
Attributes

MinSkewnessOfNumericAtts 0.719
MaxKurtosisOfNumericAtts -0.845
MaxSkewnessOfNumericAtts -0.794

Mutual Information

MeanMutualInformation -0.942
MinMutualInformation -0.781
MaxMutualInformation -0.864
Q1MutualInformation -0.803
Q2MutualInformation -0.895
Q3MutualInformation -0.904

Noise to Signal
EquivalentNumberOfAtts 0.976
NoiseToSignalRatio 0.975
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4.2.3. Partial correlation analysis for OpenML
meta-data. Having defined the latent features, it is
time to rank them according to their relevance for
predicting the performance of a given algorithm. In
order to physically represent an abstract latent feature
we use its corresponding meta-features. That is, a latent
feature is physically represented as the average of the
meta-features it explains (see Table 3). Taking the
average of meta-features to define the latent concepts,
and not their actual weights obtained in the specific
instances of the datasets analyzed, gives a more robust
measure of the latent feature, independent of the actual
data, which can be easily generalized to future datasets
by omitting non-existing meta-features or including new
ones, provided that they are related with the actual
concepts present in the latent features. We join the
obtained latent features with the performance measures
(i.e., accuracy, precision, recall and AUC) of the
algorithms we consider for the corresponding datasets.
Now, for each performance measure of every algorithm
considered, partial correlation graphs can be generated in
order to find the latent features that are more relevant for
predicting the respective performance measures.

However, as previously mentioned, datasets retrieved
from OpenML contain the same types of attributes, and
hence no available meta-features can be calculated for all
of them. Thus, we split the datasets into three sets:

• combined: consists of datasets that contain
both continuous and categorical attributes (226
datasets)—all meta-features can be calculated (see
Table 2);

• continuous: consists of datasets that do not
contain categorical attributes (418 datasets)—only
meta-features of continuous and generic type can be
calculated (see Table 2);

• categorical: consists of datasets that do not contain
numeric attributes (76 datasets)—only meta-features
of categorical and generic type can be calculated (see
Table 2).

As a consequence, partial correlation graphs are generated
for all the performance measures of all the algorithms
for every split of datasets separately. A study performed
this way, distinguishing the groups of datasets, allows
one to build a more customized meta-learning system. In
addition, our hypothesis is that the datasets, the algorithms
and, depending on the performance measures used, the
relevance/importance of meta-features differ.

4.3. Experimental results. In this section, we
first discuss the results obtained after applying the
method for feature extraction and selection to four
classification algorithms and three different performance

measures. Next, we use the extracted/selected features
for performing meta-learning and we show the obtained
results.

4.3.1. Results on decision trees. In Fig. 6, the
partial correlation graphs for decision trees are shown.
Figure 6(a) shows the results with respect to Accuracy,
6(b) with respect to Precision and 6(c) with respect to
AUC. Note that the graph for Recall is omitted since
values identical with Accuracy are obtained (see weighted
recall in Weka3).

In Fig. 6, shaded nodes represent the different types
of meta- and latent features. The white nodes stand
for the response features (performance measures). The
presence of an edge from a latent feature node to a
performance measure node indicates that there exists a
significant correlation between the respective features.
The correlation is considered to be significant, if the
p-value of the correlation is pval ≤ 0.01. The thickness of
the edge represents the level of significance. Furthermore,
dashed edges represent negative correlation and full edges
stand for positive correlation. Finally, the different shades
in the edges are used to denote the set of datasets where
the significant correlation appears.

The nodes connected with short straight edges to the
latent feature nodes represent the meta-features that define
the respective latent features.

In Fig. 6(a), as can be observed, the latent feature that
is most relevant for predicting accuracy is the information
of the response, and it is attached with three edges. Thus,
it is important in all the dataset splits we have considered.
Furthermore, the edges are thick —the correlations are
very significant, and the edges are full—the correlations
are positive. This means that the higher the information
of the response on a given dataset, the higher accuracy
of decision tree applied of the on that dataset. The
same effect can be observed for Precision (Fig. 6(b)),
although the edges appear slightly thinner. Hence, for
predicting Accuracy or Precision of decision trees, the in-
formation of the response is very important. The second
most important latent feature which interestingly enough
appears relevant for predicting all the measures is mu-
tual information. However, the correlation appears very
significant only in the Combined split and is positive.
Another common feature for all the three measures is also
noise to signal. It is negatively correlated and appears
significant in the Combined split, meaning that the higher
it is, the lower will be any of the measures considered.

The rest of the latent features appear less significant
and are separately relevant for the given measures.

3http://weka.sourceforge.net/doc.stable/weka/
classifiers/Evaluation.html.
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Table 4. Most relevant latent features.

4.3.2. Results on Naive Bayes, JRip and Nearest
Neighbor. Taking into consideration the fact that all the
algorithms we consider behave similarly (up to a certain
degree) and given that for more algorithms, the graphs
may not be very easy to follow, for the rest of algorithms
we show the results in a concise table, namely, Table 4.
For the sake of comparison we also add the results of
decision tree.

We show the results in terms of dataset splits,

performance measures, algorithms and latent features.
Note that we omit the latent features that do not appear
to be significant in any of the algorithms. Thus, the
presence of a value for a latent feature denotes that a
significant relationship exists between the latent feature
and the corresponding performance measure for a given
algorithm and dataset split. Furthermore, the value itself
is the p-value of the correlation, which in the graphs
was represented through the thickness of the edges. One
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(a)

(b)

(c)

Fig. 6. Partial correlation graphs for decision trees: predictive
accuracy (a), precision (b), AUC (c).

more thing to consider is the fact that the latent features
highlighted in gray are negatively correlated, for all the
rows in the table.

While reading the table, one can immediately
observe some patterns. The first is that, independently
of the split of datasets and independently of algorithms,
Accuracy and Precision behave similarly. AUC, instead,
depends on the split.

Other visible patterns are that mutual information is
the measure that appears relevant for all the algorithms
and for all the measures in the Combined split. On
the other hand, information of response appears relevant
in all the splits for all the algorithms for Accuracy and
Precision. Furthermore, shape of extreme numerical at-
tributes, dimensionality and minimum variability of nu-
meric attributes appear significant in the Continuous split.
This is due to the fact that these latent features are defined
only for continuous meta-features. On the other hand,
noise to signal, information of categorical attributes and
mutual information appear relevant in the Categorical
split. This is so because they are defined only for cat-
egorical features. Finally, an interesting fact about the
Categorical split is that, for the AUC measure, in Decision
Tree and JRip, no latent features appear relevant and
for the rest of the algorithms only one latent feature
appears to be such. In addition to this, observing the
significance of the correlations of the AUC measure in
all the splits, we can realize that they are usually less
significant compared to the other measures. The former
and the latter, altogether, indicate that AUC may be more
difficult to predict, in comparison to the other measures.

4.3.3. Results on meta-learning. The method for
studying the predictive power of meta-features allows us
to define latent features and then, by measuring their
relevance for predicting a performance measure, it helps
select the most relevant ones. Therefore, at the end, only
a subset of features is retained. In terms of meta-learning,
using a subset of features instead of the complete set (i.e.,
61) has many benefits. First, it saves computational effort
when meta-features need to be retrieved. Secondly, fewer
features means less computational time when building
models (i.e., meta-models). Finally, since the retained
features are latent features, the models built on top of
them are more interpretable. Yet, in order to enjoy
these benefits, the models built with the selected features
need to perform well. That is, they need to be as
good as, or even better than, the models built using
all the meta-features. In order to check the latter, we
trained a regression model (i.e., meta-model) on top of
720 datasets using Random Forest as a meta-learner.
We evaluated the performance of the regression model
using leave-one-out cross-validation. For measuring the
performance of the meta-learner we used the root mean
squared error (RMSE), which is often employed as a
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Table 5. RMSE values of the predicted measures for all the
splits.

Split Measure Alg.

RMSE
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A
ll
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Combined

Accuracy

DT 0.097 0.123
NB 0.109 0.129
JRip 0.095 0.121

kNN 0.115 0.140

Precision

DT 0.109 0.130
NB 0.099 0.125
JRip 0.108 0.129

kNN 0.115 0.138

AUC

DT 0.125 0.125
NB 0.098 0.104
JRip 0.120 0.124

kNN 0.109 0.119

Continuous

Accuracy

DT 0.091 0.102
NB 0.108 0.122
JRip 0.090 0.103

kNN 0.118 0.130

Precision

DT 0.100 0.108
NB 0.099 0.114
JRip 0.094 0.102

kNN 0.112 0.123

AUC

DT 0.106 0.107
NB 0.103 0.106
JRip 0.110 0.118

kNN 0.123 0.127

Categorical

Accuracy

DT 0.138 0.136
NB 0.119 0.128
JRip 0.132 0.131

kNN 0.151 0.144

Precision

DT 0.153 0.148
NB 0.126 0.126
JRip 0.150 0.145

kNN 0.155 0.149

AUC

DT 0.168 0.160
NB 0.115 0.123
JRip 0.164 0.156
kNN 0.181 0.165

The bold numbers indicate the best results per row.

measure of precision and can also serve as a confidence
indicator for the predictions.

In Table 5, the column Feature extraction/selection
shows the RMSE values of the trained regression models
for the sets of features suggested (the union of the
relevant latent features per split is taken) and the column
All features shows the RMSE values for the complete

Table 6. RMSE values for the Categorical split.

Split Measure Alg.

RMSE
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A
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Categorical

Accuracy
DT 0.138 0.131 0.136
JRip 0.132 0.126 0.131

kNN 0.151 0.139 0.144

Precision
DT 0.153 0.147 0.148
JRip 0.150 0.141 0.145

kNN 0.155 0.142 0.149

AUC
DT 0.168 0.154 0.160
JRip 0.164 0.149 0.156

kNN 0.181 0.165 0.165

The bold numbers indicate the best results per row.

set of meta-features. Furthermore, the results are
classified in terms of splits of the datasets, measures
and classification algorithms used. It can be observed
that meta-learning with the feature extraction/selection
method applied performs better than when all the features
are used. The only exceptions are in the Categorical split.
We believe this is due to that fact that latent features that
appear relevant in the Categorical split are less significant
compared with the ones in the rest of the splits—they are
of the order of 10−4 (see Table 4). This furthermore is due
to the fact that the Categorical split consists of only 76
datasets—significance values are affected by the sample
size.

Note that we can think of significance as a measure of
confidence. That is, the more significant the correlation,
the more confident you can be about the predictive power
of the feature under consideration. Hence, since the
correlations in the Categorical split are less significant,
we cannot be confident that the selected features are
exactly the ones with more predictive power. In order to
remedy this problem, we repeated the evaluation for the
problematic cases of the Categorical split, although, this
time using all the extracted latent features. The results are
shown in the column Feature extraction in Table 6; we
keep the previous results, too, for the sake of comparison.
It can be observed that using all the extracted latent
features the results improve, and they even become better
than when using all the meta-features. This indicates
that the extracted latent features are more robust than the
original meta-features. It also suggest that when faced
with small sample sizes (i.e., small number of datasets),
we can opt for using only the first step of the method
depicted in Fig. 4 (i.e., only Feature extraction).
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5. Related work

Meta-feature definition. Most of the focus with
regard to the meta-data in meta-learning has been on
defining various dataset characteristics that can be used in
meta-learning. The first attempt to characterize datasets
was done by Rendell et al. (1987). Yet the description of
a dataset in terms of its information/statistical measures
for the first time appears within the framework of the
STATLOG project (Michie et al., 1994). Fifteen dataset
characteristics were used. This set of characteristics was
later employed in various studies for solving the algorithm
selection problem (Brazdil et al., 1994; Todorovski and
Dzeroski, 1999). Sohn (1999) notices that some of
the characteristics are highly correlated, and she omits
the redundant ones in her study. Castiello et al.
(2005) provide formulas for different data characteristics
(meta-features) and theoretically discuss their relevance.
However, their assumptions are based on intuition and
theoretical knowledge. As a consequence, the conclusions
are more generic.

An alternative approach to characterize datasets
called landmarking has been proposed by Pfahringer
et al. (2000) as well as Bensusan and Giraud-Carrier
(2000b). An intuitive idea behind landmarking is
that the performance of a simple learner, called a
landmarker, can be used to predict the performance
of given candidate algorithms. Landmarking measures
have been evaluated and have shown to perform well in
many works (Fürnkranz and Petrak, 2001; Bensusan and
Kalousis, 2001; Pfahringer et al., 2000; Reif et al., 2014).
The usefulness of these measures comes with a price
though, which is the computational cost. Yet, none of the
studies, apart from that by Bensusan and Kalousis (2001),
properly acknowledge this fact. This is mainly because
the studies are performed on a small number of datasets
and on the ones of small sizes. For instance, Reif et al.
(2014) perform studies on top of 54 datasets. Another
group of measures, quite related to landmarking, includes
model-based measures. The idea is to create a model
from the data and use its properties as feature values.
The model used in this context is typically a decision
tree (Peng et al., 2002; Bensusan et al., 2000). These
measures have been evaluated by Peng et al. (2002) and
Reif et al. (2014). However, similarly to landmarking,
they induce computational overhead when computed on
datasets of bigger sizes.

Meta-feature selection. The first attempt at meta-feature
selection appeared in the meta-learning framework of
zooming-ranking (Todorovski et al., 2000). In this
study, some experiments are shown where a classical
feature selection method is applied to select relevant
features. Kalousis and Hilario (2001) study the
meta-feature selection problem, too. However, their
method is constrained to finding relevant features for

pairs of algorithms. This is because their definition of
meta-learning is based on detecting the best classification
algorithm in a context of pairs of algorithms. In the
work of Reif et al. (2014), an empirical evaluation of
different categories of meta-features in the context of
their suitability for predicting classification accuracies
for a number of standard classifiers can be found. In
addition, an automatic feature selection method is applied
to the complete set of meta-features used. However, no
finer details of the feature selection method are given.
Furthermore, the number of datasets used is very small.

6. Conclusions and future work

In this work, we used a method to tackle the problem
of meta-feature extraction and selection. It relies on a
rigorous mathematical framework and is beneficial for
improving the success of meta-learning tasks. It consists
in first extracting latent features out of meta-features, and
then, by studying and visualizing the relationships of the
latent features with the response (i.e., the performance
measures of algorithms), it allows selecting the most
relevant or informative latent features.

After applying the method to data retrieved
from OpenML, we were able to observe that (i) no
latent features are similarly relevant for predicting
the performance of different classification algorithms,
and vice versa—for predicting different performance
measures for the same classification algorithms, (ii) no
latent features are similarly relevant when meta-learning
space consists of datasets with specific types of
attributes—splitting the datasets in accordance to the
meta-features that can be extracted from them was a
novelty compared with previous works, and it played a
decisive role in our analysis. For example, the latent
features relevant in a set of datasets with only continuous
attributes are not the same as the latent features relevant in
a set of datasets with only categorical attributes, (iii) the
method for meta-feature extraction/selection improves the
meta-learning process.

Having observed this, we claim that meta-feature
extraction/selection is a necessary pre-processing step for
meta-learning. Moreover, we agree that the meta-learning
space needs to be specifically customized taking into
consideration the available datasets, algorithms and
performance measures that need to be predicted in a
meta-learning framework.

Our main future work consists in incorporating
the method of meta-feature extraction/selection into the
meta-learning framework we have been developing. This
will allow us to extend the application of our method
to other classification algorithms. Furthermore, we plan
to expand our studies by also considering regression
problems, which outnumber the classification problems in
OpenML.
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