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Land-surface initialisation improves 
seasonal climate prediction skill for 
maize yield forecast
Andrej Ceglar1, Andrea Toreti1, Chloe Prodhomme2, Matteo Zampieri1, Marco Turco   3 & 
Francisco J. Doblas-Reyes2,4

Seasonal crop yield forecasting represents an important source of information to maintain market 
stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, 
while it fosters the use of climate information favouring adaptation strategies. As climate variability and 
extremes have significant influence on agricultural production, the early prediction of severe weather 
events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal 
climate forecasts provide additional value for agricultural applications in several regions of the world. 
However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly 
due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), 
considering both drought and heat stress in summer, can predict maize yield in Europe and how land-
surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average 
nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how 
concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate 
forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting 
the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central 
Europe, France and Italy.

Advancing the understanding on how climate variability and extremes influence crop production provides the 
basis to develop an integrated seasonal crop yield forecasting system1–4. Seasonal climate forecasts represent an 
important tool to inform end-users with greater accuracy5–8 by also providing a quantification of uncertain-
ties, a key aspect in the decision-making process9,10. Even though additional value for agricultural applications 
in several regions of the world has been shown11, seasonal climate forecasts have been faced with numerous 
challenges to adequately respond to the end-users expectations in impact sectors such as agriculture. The low 
skill in variables such as precipitation in key regions like Europe and the lack of understanding of the inherent 
dependency between the forecast time for a skilful forecast and the spatial scale12 have limited the applicability of 
these long-term forecasts. The still challenging prediction of extreme events (such as the 2003 heat wave) in the 
extra-tropical regions13 has also contributed.

Nevertheless, new emerging findings show the potential for a better understanding of the spatio-temporal 
features of extremes, along with their precursors14–16. Although the skill of seasonal forecasts is generally limited 
in Europe, there are regions and seasons where significant skill appears as a result of processes like the ongoing 
climate change and/or soil processes, among others17. Rainy winter/spring seasons in southern Europe have been 
shown to inhibit hot summer days, whereas dry conditions are followed by either high or low frequency of hot 
days14. Soil moisture plays an important role, and land-surface initialisation can have a substantial impact on 
sub-seasonal to seasonal forecast quality in Europe16,18.

Here we explore the implications of land surface initialisation in seasonal climate prediction for maize crop 
yield forecasting in Europe. We further develop a combined stress index (CSI) based approach19 to integrate 
the impact of drought and heat stress, which are among the most important growth-limiting factors during the 
flowering and grain filling period20, on maize yield inter-annual variability. Therefore, we show how realistic land 
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surface initialisation of seasonal climate prediction16 can provide skill for predicting the CSI and consequently 
maize yield in Europe.

Results and Discussion
Several recent studies have shown that drought events are compounded with prolonged high temperatures21, 
two key stress factors affecting crop yield variability. The CSI19-based model, applied here to capture the impact 
of drought and heat stress events, shows good predictive performance (in terms of Q2, see Methods) in repro-
ducing the maize yield variations under observed climate conditions in most countries of central, western and 
south-eastern Europe (Table 1). Predictive performance ranges between 22% in Belgium and 79% in Germany, 
averaging to 53% over all countries where it is statistically significant. However, no significant relationship is 
identified in Portugal, Spain, Greece and Turkey (Fig. S1). In these countries, the impact of summer drought and 
heat stress on maize yields is limited due to the predominant irrigation22,23 stabilising national yield and reducing 
the inter-annual variability. In this group of countries, the decadal trend plays a dominant role when it comes to 
yield prediction4. The derived CSI model is also not significant in the Netherlands (Fig. S2). Indeed, heat stress 
does not seem to play an important role in triggering maize yield losses in the Netherlands24 moreover, capillary 
rise from shallow groundwater levels can alleviate drought stress impacts25.

In several countries of southern and central Europe, the CSI analysis reveals that heat stress has generally more 
pronounced influence on maize yield inter-annual variability than drought (Fig. S3). In Italy, maize yields exhibit 
the highest sensitivity to heat stress, while the drought stress sensitivity is substantially lower. Different drivers 
as well as their interaction need to be considered to understand this complex response, irrigation being among 
the most important. For instance, 40% of maize cropland in Italy is irrigated26, resulting in reduced sensitivity to 
drought. Irrigation decreases (up to a certain extent) also the impact of heat stress on maize growth by lowering 
the canopy temperature during daytime27. On the other side, higher night temperatures (often associated with 
heat waves) increase the rate of leaf senescence28. Maize yield is more sensitive to heat stress in many countries 
with low share of irrigated maize cropland, such as Germany, Romania, Hungary and Macedonia. In France, 
Slovakia, Austria and Bulgaria, the relative importance of drought is comparable to heat stress. As for France, this 
confirms previous findings3 reporting a relative increase of heat stress effects and decrease of rainfall importance 
due to irrigation and technological improvements in the last two decades. Contrarily, Slovenia and the Czech 
Republic exhibit higher sensitivity to drought stress.

Since 1990 in maize agricultural land, the CSI shows an increase in both the inter-annual variability and the 
intensity of the events (Fig. 1b). The same behaviour characterises both the heat stress and the drought stress 
events taken separately (Fig. 1c,d). Exceptionally negative CSI values can be observed in several years when coun-
tries experienced substantial negative yield anomalies: 1992, 1994, 2000, 2003 and 2007 (Fig. 1a,b). In line with 
increasing inter-annual variability, the CSI also shows higher positive anomalies after 1990, e.g. in 1997 and 2005. 
These two years are mainly characterised by the absence of heat and drought stress across Europe. There is not a 
clear tendency in the maize areas affected by drought, heat stress or both together (Fig. 1e). However, concurrent 
drought and heat stress events seem to be more relevant for the recent negative yield anomalies in 2000, 2003 and 
2007.

Country based CSI models, derived from the full observational time series of maize yields, are further used to 
assess the predictability of yield anomalies with seasonal forecast. Countries not having a significant CSI model 
are excluded from this analysis (Table 1). Initialisation with realistic land-surface for seasonal forecasts performed 
with EC-Earth2.316,29 in May and June leads to better seasonal prediction of warm extremes and heat waves, 
and therefore also to CSI forecasts better capturing the observed inter-annual variability of both CSI and maize 
yield anomalies (Fig. 2a,b). Climatological land-surface initialisation in the seasonal forecasts (CLIM05: May and 
CLIM06: June) generally fails to reproduce the relevant drought and heat stress patterns in summer. The realistic 
initialisation leads to a substantial performance improvement in France, Italy, central and south-eastern Europe, 
also in terms of crop yield anomaly prediction. In most of these countries, significant correlation for the CSI is 
found for the forecasts started in both May (INIT05) and June (INIT06). This is highly relevant as the beginning 
of May roughly coincides with the emergence or early vegetative stages of grain maize. Contrarily, no significant 
improvement is observed in Belgium, Germany and Poland (Fig. 2a,b). This seems to point to latitude dependent 
maize yield forecast skill improvement, most significantly below 50°N.

The impact of land-surface initialisation is spatially variable for the heat stress component of the CSI and 
country specific for the drought component. Overall, a more positive impact of soil initialisation can be observed 
for the heat stress events with respect to drought events (Fig. S4b). This holds also for Germany, where forecasted 

Country Q2 Country Q2 Country Q2

Portugal 0.05 Poland 0.52 Romania 0.68

Spain 0.02 The Czech 
Republic 0.58 Bulgaria 0.67

France 0.72 Slovakia 0.41 Macedonia 0.37

Belgium 0.22 Austria 0.39 Greece 0.04

Netherlands 0.04 Slovenia 0.59 Italy 0.47

Germany 0.79 Hungary 0.42 Turkey 0.04

Table 1.  Predictive performance (Q2) of country specific CSI models. Bold denotes statistically significant 
values.
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CSI is not significantly correlated with the observed counterpart in any of the forecasts; nevertheless, the forecast 
of the heat stress events shows skill in both INIT05 and INIT06 experiments. As for the drought component of 
the CSI, the realistic land-surface initialisation improves the skill, although with larger differences between the 
forecasts started in May and the ones in June (the latter generally exhibiting higher skill, Fig. S4a). This is related 
to the choice of the target season (June-July-August) for computing the CSI and the temporal proximity to the 
initial conditions30.

We further examine the impact of the land-surface initialisation on the prediction of low yield events (CSIlow), 
corresponding to the lower quartile of observed CSI (i.e. below the 25th percentile, computed from 30 years of CSI 
under observed climate conditions). For this purpose we use the reliability diagram, providing a visual assessment 
of probabilistic forecasts reliability (Fig. 3a,b). A perfectly reliable system should draw a line as close as possible to 
the main diagonal. Seasonal forecasts of CSIlow events driven by INIT05 and INIT06 exhibit reliability lines with 
associated uncertainty range within marginally useful limits for decision making31, as these forecasts carry a par-
tial positive relationship between the model forecast probability and the observed frequency of occurrence of the 
event. On the other hand, CLIM05 shows no relationship between the forecast probabilities and the frequencies of 
the observed events. CLIM06 forecasts slightly improve over CLIM05, although with poorer skill than the INIT06 
forecasts. The ROC diagram in Fig. 3c,d provides complementary information to the reliability diagram, since it 
is conditioned on observations (i.e. measures the ability of the forecasts to discriminate between two alternative 
outcomes). Clearly, INIT05 and INIT06 outperform CLIM05 and CLIM06, as also shown by the ROCSS values. It 
is worth noting that CSI seasonal forecasts driven by the climatological land-surface initialisation in June outper-
form a climatology-based forecast.

The skill estimates based on the past forecasting system performance may guide end-users on the expected 
performance of future forecasts. Therefore, we also compare the ability of the system to forecast two CSIlow 
events in 2003 and 2007. In order to provide a country-specific skill measure on how the forecasts correspond 

Figure 1.  Combined Stress Index and maize yield in Europe from 1981 to 2010. (a) Time series of standardised 
observed maize yield anomalies. In each year, the country based values are superimposed onto each other to 
form a stacked barplot; colours are associated with countries. Asterisks denote the first year of available maize 
yield records. The time series on graphs (b–e) are calculated for all countries during the entire period 1981–
2010. (b) CSI time series are derived from the E − OBS observational dataset. In each year, the CSI values are 
superimposed onto each other to form a stacked barplot; colours are associated with countries. (c) Time series 
of heat degree days (HDD) in country-specific maize crop growing areas. (d) Time series of standardised 
precipitation evapotranspiration index (SPEI) in country-specific maize crop growing areas. (e) Fraction of 
maize production areas in countries with significant CSI models (see Table 1), affected by drought only ( ⁎SPEIopt t,  
less than −1 and 

⁎
HDDJJA t

std
,
,  less than 1), heat wave only ( ⁎SPEIopt t,  higher than −1 and 

⁎
HDDJJA t

std
,
,  higher than 1) or 

combined effect of heat and drought ( ⁎SPEIopt t,  less than −1 and 
⁎

HDDJJA t
std

,
,  higher than 1).
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to the observed CSIlow events, the Equitable Threat Score (ETS) is calculated for CSIlow forecasts in each country. 
Figure 4a shows the derived ETS assuming that an event is correctly forecast each time at least 60% of ensemble 
members predict CSIlow (Fig. S5 provides similar graphs for other thresholds). In most of the cases the forecasts 
based on realistic land-surface initialisation outperform the ones based on climatological initialisation, confirm-
ing the aforementioned overall results. Additionally, INIT06 generally outperforms INIT05. However, it should be 
noted that also in the case of INIT06, the best ETS (identified in south-eastern Europe) still indicates rather mod-
erate forecast skill, as the CSIlow events are correctly predicted in approximately one third of the cases (regardless 
of the choice of the probability threshold defining the event).

In 2003, the observed yield anomalies are in the lower quartile range in all countries but Macedonia and 
Romania (Fig. 4b). INIT05 predicts an anomalous event already in May in all countries with probability higher 
than 50% (70% in western Europe and several central European countries). The forecast probability of low yield 
event increases using the forecast initialised in June in south-eastern Europe, however the event is not anymore 
predicted in France and Belgium. While drought and heat wave are correctly forecast in Romania (not shown), 
their magnitude is overestimated, leading to the CSI forecast in the lower quartile range. The role of soil moisture 
initialisation in 2003 has been extensively studied32 and it is also confirmed by these findings.

In 2007, south-eastern Europe experienced severe summer drought and heat wave events33, resulting in sub-
stantially negative maize yield anomalies (Fig. 1a). CLIM06 fails to predict yields being in the lower quartile range 
in south-eastern Europe, while the opposite signal is given by INIT06 (Fig. 4c). Indeed at the time of forecast 
initialisation in May and June, the soil moisture levels were depleted due to the persisting drought from the 
preceding winter in most of central and south-eastern Europe. This example clearly demonstrates the impor-
tance of realistic land-surface initialisation for agricultural forecasting in south-eastern Europe. These findings 
are supported by previous assessments of realistic versus climatological soil moisture initialisations, indicating 
that forecast systems better simulate the warmest summers over south-eastern Europe when these events follow 
pronounced dry initial anomalies18. Considering the rest of Europe, CLIM06 generally fails to predict yield anom-
alies, except in France where high yield anomaly is forecast. INIT06 correctly captures the high yield anomaly in 
France, but not in Poland. Moreover, low yield anomalies in Slovakia and Macedonia are not accurately forecast.

Conclusions
This study does not only provide a predictability assessment of both drought and heat stress events relevant 
for maize yields in Europe, but it also demonstrates how a proper land-surface initialisation in a seasonal cli-
mate forecast system can bring skill improvement in countries where a climatological land-surface initialisa-
tion fails. Given the still rather poor-to-moderate reliability of seasonal CSI forecasts, further efforts are clearly 
necessary to increase the skill of relevant agro-climatological predictors in Europe during summer. However, 
this study can serve as a baseline for future analyses including other experimental efforts to improve seasonal 
climate forecasts, such as increase in spatial resolution16. Additionally, other types of predictor variables, such as 

Figure 2.  Effects of land-surface initialisation in the seasonal climate forecast. (a) Pearson correlation 
between the CSI derived from E − OBS observational data and different seasonal forecast experiments 
using climatological (CLIM05 and CLIM06 for May and June runs, respectively) and realistic land-surface 
initialisation (INIT05 and INIT06 for May and June runs, respectively). The forecast CSI is calculated from 
initial condition ensemble average for each experiment. The significance of correlation is indicated by the size of 
symbols; larger size indicates significant correlations (p < 0.05), whereas smaller size indicates non-significant 
correlations. (b) same as (a) but correlation is calculated between the forecasted CSI and the observed 
standardised maize yield anomalies (Ystd,*).
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large-scale atmospheric patterns influencing crop yields4 and new skilful drought prediction methods, generated 
by combining dynamical seasonal forecasts with monitored data34, could be investigated to gain more seasonal 
predictability.

We would also like to emphasise that the maize sensitivity to heat and drought stress depends on factors such 
as agro-management practices and selection of varieties. Here, the CSI models are calibrated and validated on 
crop yield data between 1981 and 2010. By assuming stationarity in the identified relationship, such a model 
could be realistically used for, e.g., next year(s) forecasts. However, at longer time scales and under adoption of 
different adaptation strategies a new calibration would be required. More detailed spatial assessment is hindered 
by the use of national crop yield data; subnational data would be necessary to better capture the region-specific 
link between crop yield and climate variability and to perform a better seasonal forecast skill assessment.

Methods
The CSI19 integrates the standardised precipitation evapotranspiration index SPEI35 and the heat magnitude day 
index HMD19. The SPEI is a multi-temporal-scale index quantifying persistent anomalies in the soil water balance 

Figure 3.  Skill of the seasonal climate forecasting system. (a) Reliability diagrams for low yielding events 
(CSIlow, i.e. below the 25th percentile) for May and June runs, driven by seasonal climate forecasts with 
climatological and realistic land-surface initialisations. The coloured lines show the linear weighted regression 
with the associated 75% confidence level (shaded areas). The number of samples for each bin is shown in the 
lower right sharpness diagram. The reliability diagram has been calculated by grouping the seasonal CSIlow 
forecasts for all countries having significant predictive performance under observed climate conditions. 
The horizontal and vertical lines indicate the climatological frequency of the events in the observations and 
forecasts, respectively. The grey area defines a region where seasonal CSIlow forecasts contribute positively to the 
forecast skill with respect to the climatology (the area where the Brier Skill Score is greater than 043). The no skill 
line separates skilful regions from unskilful ones in the diagram. The deviation from the diagonal provides the 
conditional bias; the flatter the curve, the less resolution it has (i.e. lower ability of the system to produce reliable 
forecasts that differ from the naive probability). (b) ROC diagrams for low yielding events (i.e. below the 25th 
percentile) for May and June forecasts of CSI, driven by seasonal climate forecasts initiated by climatological and 
realistic land-surface initialisation. The shaded regions indicate the 75% confidence intervals calculated through 
1000 bootstrap replications. The hit rate and false alarm rate values consider a set of probability forecasts by 
stepping a decision threshold with 20% probability through the forecasts. Each ROC diagram displays as well 
the ROCSS values for both INIT and CLIM forecast experiments.
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over different time periods. The SPEI is able to capture the impact of drought on European agricultural produc-
tion36. To consider the influence of heat stress and heat-related sub-optimal conditions for grain maize, we take 
into account a modified version of the HMD index, named heat degree days (HDD), based on the active temper-
ature sum above a threshold temperature Tthr, here 30 °C:

∑= −
=

HDD max T T{ , 0}
(1)JJA

i

N

max ,i thr
1

where N represents the number of summer days (June, July, August), coinciding with the sensitive stages of 
flowering and grain filling. As Tthr is chosen conservatively (i.e. close to the optimum temperature for growth 
processes37), the HDD incorporates the impact of a wide temperature range above the Tthr on growth processes in 
maize, which are deteriorating with increasing temperatures.

Our analysis is based on maize yield anomalies Y* and anomalies of SPEI and HDD (hereafter SPEI* and 
HDD*), obtained by de-trending their long-term time series. National crop yield time series have been obtained 
from national statistical institutes in Europe26. The study period spans between 1981 and 2010; only time series 
with at least 20 years of data are included in this study (Fig. 1a), as a tradeoff between having long enough time 
series of crop yields for statistical analysis and largest possible number of countries included in the analysis. A 
decadal trend in crop yield time series is usually an effect of changes in agro-management practices, environ-
mental and socioeconomic factors and climate change. Therefore, polynomial method using linear and quadratic 
terms is applied on log(yield) to obtain the anomalies Y* 4. Having potentially removed in this way also part of the 
climate signal, we are compelled to apply the same procedure also to the HDD and SPEI time-series. In such a 
way, we can isolate the effects of climate anomalies and extremes on the year-to-year maize yield variability. The 
Mann-Kendall test has been used to identify the presence of a trend.

Then, the CSI is defined as a simple linear combination of HDD* and SPEI*:

ε ε= × + × + = +⁎⁎ ⁎
Y a SPEI b HDD CSI (2)t

std
opt t JJA t

std
t t t

,
, ,

,

where t indicates the year and the superscripts indicate whether variable is de-trended (*) and/or standardised 
(std). Y and HDD are de-trended and standardised, while SPEI is de-trended only as it is standardised by defini-
tion. Thus, the CSI is an estimate of the standardised maize yield anomalies. The regression coefficients a and b are 
obtained by maximising the predictive performance with a bilinear ridge regression on the observed yield anom-
alies Y* at the national level, thus accounting for the covariance of the two explanatory agro-climatic indicators. 
The resulting multiplicative coefficients combining 

⁎
HDDJJA

std ,  and ⁎SPEIopt into the CSI are country dependent 
(Fig. S3). The subscript opt indicates the additional level of model optimisation introduced at country level. 
Different time scales for computing the SPEI have been tested in equation 2, from one to three months (i.e. SPEI1, 
SPEI2 and SPEI3), for each of the summer months. The optimal temporal aggregation period is identified by 
maximising the explained variability between leave-one-out CSI predictions and observed yield anomalies4, thus 
maximising the predictive performance of CSI under observed climate conditions. In this way, the period (during 
summer) having maximum sensitivity to drought stress is identified. Clearly, this is country specific due to spatial 
differences in varieties, agro-management practices (e.g. irrigation) and other socioeconomic factors. The results 
of this optimisation are shown in Fig. S1.

⁎SPEIopt t,  and 
⁎

HDDJJA t
std

,
,  are derived at country level by using a grain maize crop mask38, i.e. estimating the spa-

tial average weighted by the area of harvested maize in each country. The CSI models are derived from observa-
tional meteorological data, needed for the calculation of both predictands. For this purpose, the gridded 
meteorological dataset E−OBS (version 14.0)39 is used.

Figure 4.  Seasonal forecasts for the 2003 and 2007 events. (a) Country-specific Equitable Threat Score (ETS) 
for each CSI forecast experiment. Low yielding event is defined each time at least 50% of initial condition 
ensemble members result in CSI belonging to the lower quartile range. Scores above 0 (equal to or below 0) 
indicate skill (no skill). (b) Forecast probabilities for low (CSI in the lower quartile range) and high (CSI in the 
upper quartile range) yielding events in 2003. The red and blue shading indicate the probability of CSI being 
very different from normal levels. The intensity of the colour indicates the probability of such an event occurring 
in summer, following the forecast initialisation. (c) Same as (b), but for 2007.
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To validate the empirical estimates of maize yields based on CSI, the predictive performance (as measured by 
the Q2) is calculated by performing a leave-one-out cross validation on the available country-specific crop yield 
time series:

= −
∑ −

∑ −
=

−

=

ˆ
Q

y y
y y

1
( )
( )

,
(3)

t
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t
t

t
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2 1
( ) 2
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2

where M represents the number of years, −ŷt
t( ) the yield predicted for year t without using yt (using Eq. 2 calibrated 

on the remaining M − 1 years), yt the observed yield anomaly in year t and ymean the long-term average.
The seasonal re-forecast experiment is conducted with the EC-Earth2.329. To assess the impact of a realistic 

land-surface initialisation on sub-seasonal and seasonal forecasts, two re-forecast experiments are performed: 
10-member initial condition ensemble of 4-month long forecast experiments over the period 1981–2010 starting 
each year the first of May and the first of June16. In the INIT experiment, the land-surface is initialised with soil 
moisture, temperature and snow data from ERA-Interim Land40. The initial condition ensemble is constructed 
by using atmospheric singular vectors and the five ocean analyses available from ORAS4. The CLIM experiment 
initialises the land-surface using the climatology of ERA-Interim Land for the corresponding starting date, this 
being the only difference between INIT and CLIM. With this set up, the impact of the land-surface initialisation 
can be isolated from all the other factors influencing the quality of seasonal climate forecast. Four different sea-
sonal CSI re-forecasts are obtained from INIT and CLIM with starting dates in May (INIT05 and CLIM05) and 
June (INIT06 and CLIM06).

A bias correction based on non-parametric quantile mapping is then applied41. Three meteorological variables 
are bias corrected to derive the CSI: monthly precipitation, average monthly temperature and maximum daily 
temperature in the period June-July-August.

Besides correlation coefficients we derive reliability diagrams, a common diagnostic tool for probabilistic fore-
casts showing for a specific event the correspondence of the predicted probabilities with the observed frequency 
of occurrence31. The events are here defined by the CSI dropping below the 25th percentile, calculated from the 
30-year time series (CSIlow). We also consider the ROC skill score (ROCSS), which is based on the area under the 
curve in the relative operating characteristics diagram (ROC). This diagram shows the hit rate (i.e. the relative 
number of times a forecast event actually occurred) against the false alarm rate (i.e. the relative number of times 
an event had been forecast but did not actually happen) for different potential decision thresholds. In order to 
have a large sample of probability forecasts, the reliability and ROC diagrams are computed by aggregating the 
country based forecasts, following the procedure recommended by the WMO42. Then, the probability forecasts 
are grouped into 5 bins and the observed occurrences/non-occurrences of CSIlow events are counted. Finally, the 
sum of counts is calculated using country specific maize cropland area weighting. The uncertainty of reliability 
slope and ROCSS is estimated by a bootstrap algorithm with replacement, randomly drawing from the set of fore-
cast and observation data pairs, repeating the procedure 1000 times. 75% confidence interval of the resampling 
distribution is then used to define an uncertainty range around best-guess reliability slope and ROCSS.

The Equitable Threat Score (ETS43) is used as country-specific skill measure on how the forecasts correspond 
to the observed CSIlow events. The ETS provides a way of summarising the ability of a deterministic prediction to 
forecast a dichotomous event correctly. The score 1 is assigned to a perfect forecast, while random forecasts get a 
value equal to 0. The ETS measures the fraction of observed and/or forecast events that are correctly predicted, 
adjusted for hits associated with random chance:

=
−

+ + −
ETS

j j
j k l j

,
(4)

r

r

where j represents the number of hits (events forecast to occur that did occur), k the number of false alarms 
(events forecast to occur that did not occur), l the number of misses (events forecast not to occur that did occur). 
The jr is the expected fraction of hits for a random forecast:

=
+ +

+ + +
.j j l j k

j k l m
( )( )

(5)r

where m is the number of correct negatives (events forecast not to occur that did not occur). Here, ETS is calcu-
lated for different probability thresholds, assuming that a CSIlow event is forecast each time at least 50% (60%, 70%, 
80%) of the ensemble members predict CSIlow (Fig. S5).

R-software has been used for data analysis and creating all graphs44.
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