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Abstract 12 

A finite element method for the solution of the up-to-second-order wave diffraction-radiation 13 

problem in the time-domain is proposed. The solver has been verified against available analytical 14 

solutions, and validated against experimental data available for the HiPRWind semisubmersible platform 15 

(designed for floating wind turbines). To perform the validation, the wave diffraction-radiation solver is 16 

coupled to a body dynamics and mooring solvers in the time-domain. The HiPRWind movements and 17 

mooring forces have been compared for a large number of test cases, including decay tests, 18 

monochromatic waves, bichromatic and irregular waves. Good agreement has been found for both, body 19 

movements and mooring forces. 20 

1. Introduction 21 

There is a growing focus of the industry on Floating Offshore Wind Turbines (FOWT) due to their 22 

ability to access the enormous wind resources available over deep water. Despite the existence of real 23 

scale prototypes already operating, such as the Hywind in Norway [1] or the Windfloat in Portugal [2], the 24 

industry still faces design and operation challenges which require the development of new modeling tools 25 

to be overcome. In this work, we propose a model to analyze the up-to-second-order response of floating 26 

structures, which is validated with experimental tests conducted for the HiPRWind semisubmersible 27 

FOWT model. A review on floating offshore wind technology can be found in [3,4,5].  28 

The hydrodynamics of the semisubmersible concept for FOWTs has received some attention in the 29 

recent literature. For instance, [6] and [7] focused on slow-drift and mean-drift forces of semisubmersible 30 

platforms, a comparison of a semisubmersible against a SPAR concept can be found in [8,9,10], and 31 

http://www.upct.es/


simulations in the Time-Domain (TD) considering different models for the hydrodynamic loads were 1 

carried out in [11]. 2 

One of the main concerns regarding semisubmersible platforms is the slow-drift forces. These 3 

forces are usually in the range of the surge natural period of the semisubmersible platform with catenary 4 

mooring lines, leading to large displacements when excited near the resonance frequency. And although 5 

the wave frequencies are usually larger than the natural frequencies, second-order effects contain low 6 

frequencies components that might excite slow-drift in the system platform-mooring. This might lead to 7 

large excursions. 8 

Second-order forces might increase the surge response of semisubmersible platforms, even 9 

becoming larger that the first-order response. And although Newman’s approximation -which only 10 

depends on the first-order solution- could be used for estimating the slow-drift forces, it might not be 11 

precise enough as shown in [7]. Hence, second-order effect must be taken into account to accurately 12 

compute slow-drift motions, and design the mooring system accordingly. 13 

The impact of the slow-drift forces on the design of the mooring systems and the difficulties to 14 

estimate the corresponding forces is yet a problem that requires substantial research.  Let’s remind that 15 

the mooring system must restrain the floater excursions within predefined limits.  16 

The design of the mooring system is based on loads induced by the excursions. These can be 17 

predicted on an extensive set of TD simulations comprising different environmental conditions 18 

(combinations of waves, current, and wind conditions). This set aims at representing the metocean 19 

statistics of the specific location. In these simulations, wave loads are usually taken into account using 20 

Frequency-Domain (FD) results as inputs (added masses, potential damping, excitation forces, or impulse 21 

response functions). And these inputs are obtained from a radiation-diffraction code.  22 

Quadratic transfer functions (QTFs) obtained by frequency domain solvers are usually used as 23 

inputs for second-order time-domain simulations. But these QTFs depend on linear first-order response 24 

amplitude operators (RAOs). Hence, in case where the mooring lines are not linear (like the catenary lines 25 

used for semisubmersible platforms), these have to be linearized so that RAOs can be obtained. Therefore, 26 

QTFs obtained in the frequency-domain do not contain information about the nonlinear behavior of the 27 

mooring. A direct diffraction-radiation TD solver, like the one to be presented in this work, accounts for 28 

this sort of nonlinearities in a natural way. 29 



Apart from the importance of second-order effects on the dynamic response of floating structures, 1 

recent works have emphasized the importance of the second-order effects on the surge response of 2 

FOWT. Coulling et al. [12] concluded that particular attention must be paid to motion and load responses 3 

of the platforms associated with the second-order difference-frequency forces of environmental wave 4 

loads, since the exclusion of the second-order dynamic analysis leads to a reduction of the platform mean 5 

excursions. Other works [13,14] have recently assessed the effects of second-order hydrodynamics on 6 

semisubmersible FOWT which usually are neglected in the dynamic behaviour of FOWT. These forces lead 7 

to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the moored 8 

structure. And Luptom and Langley state in [6] that slow-drift forces might be less important for FOWT 9 

than for larger and better known floating structures such as those used in the oil industry. Anyhow, 10 

accurate estimation of these forces is mandatory to assess its impact. 11 

More recently, Lopez-Pavon et al. [7] and Simos et al. [15] focused on the estimation and 12 

verification of the second-order wave induced forces on the HiPRWind semisubmersible platform. This 13 

work concludes with the following statements:  14 

1. Accurate calculation of the second-order forces may be difficult to guarantee and it is not unusual 15 

that different numerical codes (based on different approximations for these forces) may render 16 

somewhat divergent results. 17 

2. The experimental verification of the slow-drift effects is quite difficult. Accurate measurement of 18 

the low-frequency forces is hard to obtain and indirect verifications based on the resonant 19 

motions of the floating body depend on other factors such as the viscous damping of the small-20 

scale model, the geometrical characteristics of the mooring system, etc. 21 

In this work, a Finite Element Method (FEM) that solves the up-to-second-order wave diffraction-22 

radiation problem in the time-domain is proposed. In this TD model, non-linear forces such as those arising 23 

from the mooring lines can be introduced straightforward into the dynamics of the floater with no need 24 

of linearization. First, the mathematical and numerical models for the wave diffraction-radiation problem 25 

are presented. Then a verification of the model is carried out comparing to second-order analytical 26 

solutions available. Afterwards, a model of the HiPRWind platform is calibrated using decay tests and then 27 

analyzed in monochromatic, bichromatic and irregular waves to validate the proposed numerical 28 

approach. Finally some conclusions are made regarding the model presented and the results obtained. 29 

 30 



2. Up-to-second-order diffraction-radiation governing equations 1 

The potential flow governing equations for the up-to-second-order wave problem are obtained by 2 

applying Taylor expansion on the boundary surfaces of a time-independent domain. This approach allows 3 

to approximate the free surface on 𝑧𝑧 = ξ and the mean wetted surface S𝐵𝐵 of a floating body at time t. 4 

Then, a perturbed solution based on the Stokes expansion procedure is applied to the velocity potential, 5 

the free surface elevation, and the floater motion. Retaining terms up to second order, the resulting 6 

equations are: 7 

𝛥𝛥𝜙𝜙1+2 = 0 𝑖𝑖𝑖𝑖 Ω, (1) 

𝜕𝜕𝜂𝜂1+2

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜙𝜙1+2

𝜕𝜕𝜕𝜕
= −𝑆𝑆1 𝑖𝑖𝑖𝑖 𝑧𝑧 = 0, (2) 

𝜕𝜕𝜙𝜙1+2

𝜕𝜕𝜕𝜕
+
𝑃𝑃𝑓𝑓𝑓𝑓
𝜌𝜌

+ 𝑔𝑔𝜂𝜂1+2 = −𝑅𝑅1 𝑖𝑖𝑖𝑖 𝑧𝑧 = 0, (3) 

𝑣𝑣𝜙𝜙1+2 ⋅ 𝑛𝑛𝑝𝑝0 + 𝑣𝑣𝜙𝜙1 ⋅ 𝑛𝑛𝑝𝑝1 = −�𝑣𝑣𝑝𝑝1+𝑣𝑣𝜓𝜓1 � ⋅ 𝑛𝑛𝑝𝑝1  

                                          −�𝑣𝑣𝑝𝑝1+2+𝑣𝑣𝜓𝜓1+2 + 𝑟𝑟𝑝𝑝1 ⋅ �𝛻𝛻𝑣𝑣𝜙𝜙1 + 𝛻𝛻𝑣𝑣𝜓𝜓1 �� ⋅ 𝑛𝑛𝑝𝑝0  
𝑜𝑜𝑜𝑜 𝑃𝑃 ∈ 𝑆𝑆𝐵𝐵0, (4) 

𝑅𝑅1 = 𝜂𝜂1
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜙𝜙1

𝜕𝜕𝜕𝜕
� + ζ1

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜙𝜙1

𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜓𝜓1

𝜕𝜕𝜕𝜕
� +

1
2
∇𝜙𝜙1 ⋅ ∇𝜙𝜙1 + ∇𝜓𝜓1 ⋅ ∇𝜙𝜙1, (5) 
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𝜕𝜕𝜕𝜕
, (6) 

where superscripts 1 and 1 + 2 denote the components at the first-order and up-to-second-order 8 

solution (first order plus second order), respectively, 𝜓𝜓1+2 is the up-to-second-order incident wave 9 

velocity potential, ζ1+2 is the up-to-second-order incident free surface elevation, 𝜙𝜙1+2 and 𝜂𝜂1+2 are the 10 

up-to-second-order diffraction-radiation wave velocity potential and free surface elevation, respectively, 11 

𝑃𝑃𝑓𝑓𝑓𝑓 is the free surface pressure, 𝑆𝑆𝐵𝐵0 is the mean wetted body surface, 𝑣𝑣𝑝𝑝𝑖𝑖  is the local velocity induced at 12 

point P by the body i-th order movements, 𝑣𝑣𝜙𝜙𝑖𝑖  is the i-th order fluid velocity induced by the diffracted-13 

radiated waves, 𝑣𝑣𝜓𝜓𝑖𝑖  is the i-th order fluid velocity induced by the incident waves, 𝑛𝑛𝑝𝑝𝑖𝑖  is the normal vector 14 

to the body surface 𝑆𝑆𝐵𝐵𝑖𝑖  at point P. The fluid pressure at a point P on the body surface is given by: 15 



𝑃𝑃𝑝𝑝1+2 = 𝑃𝑃𝑝𝑝ℎ0 + 𝑃𝑃𝑝𝑝ℎ1+2+𝑃𝑃𝑝𝑝𝑝𝑝1+2 + 𝑃𝑃𝑝𝑝𝑝𝑝1+2,  (7) 

where 𝑃𝑃𝑝𝑝ℎ𝑖𝑖 , 𝑃𝑃𝑝𝑝𝑝𝑝𝑖𝑖 , and 𝑃𝑃𝑝𝑝𝑝𝑝𝑖𝑖  stand for the i-th order hydrostatic, incident wave induced, and diffracted-1 

radiated waves induced pressures, respectively. Each pressure component is further decomposed as: 2 

𝑃𝑃𝑝𝑝ℎ0 = −𝜌𝜌𝜌𝜌𝑧𝑧𝑝𝑝, 

𝑃𝑃𝑝𝑝ℎ1+2 = −𝜌𝜌𝜌𝜌𝑟𝑟𝑝𝑝𝑝𝑝1+2, 

 𝑃𝑃𝑝𝑝𝜙𝜙1+2 = −𝜌𝜌 𝜕𝜕𝜙𝜙1+2

𝜕𝜕𝜕𝜕
− 𝜌𝜌 1

2
∇𝜙𝜙1 ⋅ ∇𝜙𝜙1 − 𝜌𝜌∇𝜓𝜓1 ⋅ ∇𝜙𝜙1 − 𝜌𝜌𝑟𝑟𝑝𝑝1 ⋅ ∇ �

𝜕𝜕𝜙𝜙1

𝜕𝜕𝜕𝜕
�, 

 (8) 

where 𝑟𝑟𝑝𝑝𝑖𝑖 represents the displacement of point P induced by the ith order body movement (see Figure 1). 3 

Further details on obtaining the governing equations can be found in Servan-Camas and Garcia-Espinosa 4 

[16], and Servan-Camas [17]. 5 

The body dynamics of the floating body are governed by the equation of motion: 6 

𝐌𝐌�  𝐗𝐗𝑡𝑡𝑡𝑡 + 𝐊𝐊�  𝐗𝐗 = 𝐅𝐅   (9) 

where 𝐌𝐌�  is the mass matrix of the body, 𝐊𝐊�  is the hydrostatic restoring matrix (approximates the integral 7 

of the hydrostatic pressure), 𝐅𝐅 is the vector of the hydrodynamic forces induced by dynamic pressures 8 

plus any other external forces, and 𝐗𝐗 represent the movements of the six degrees of freedom of the body. 9 

Loads acting on the body are obtained by direct pressure integration on the body surface underneath the 10 

mean water level, except for the hydrostatic forces, which are obtained via the corresponding hydrostatic 11 

restoring matrices. Also, the second-order loads (𝑭𝑭𝑤𝑤𝑤𝑤2  and 𝑴𝑴𝑤𝑤𝑤𝑤
2 ) due to the change of the wetted surface 12 

induced by the first order solution are accounted for: 13 

𝑭𝑭𝑤𝑤𝑤𝑤2 = −
1
2
𝜌𝜌𝜌𝜌� �ξ1 − 𝑟𝑟𝑝𝑝𝑝𝑝1 �

2 𝒏𝒏𝑝𝑝0

�1 − 𝑛𝑛𝑝𝑝𝑝𝑝0
2Γ𝑤𝑤𝑤𝑤

0
𝑑𝑑𝑑𝑑, 

(10) 

𝑴𝑴𝑤𝑤𝑤𝑤
2 = −

1
2
𝜌𝜌𝜌𝜌� �𝜉𝜉1 − 𝑟𝑟𝑝𝑝𝑝𝑝1 �

2 𝑮𝑮0𝑷𝑷0����������⃗ ×
𝒏𝒏𝑝𝑝0

�1 − 𝑛𝑛𝑝𝑝𝑝𝑝0
2𝛤𝛤𝑤𝑤𝑤𝑤

0
𝑑𝑑𝑑𝑑. 

where 𝑮𝑮0𝑷𝑷0����������⃗  is the vector from the center of gravity of the floater G to any point P on the wet surface. 14 

 15 



3. Numerical model 1 

3.1 Finite element formulation 2 

This section presents the formulation based on the Finite Element Method (FEM) to solve the 3 

system of equations governing the wave diffraction-radiation problem. This formulation has been 4 

developed to be used in conjunction with unstructured meshes in order to enhance geometry flexibility 5 

and speed up the initial modelling time. 6 

Let 𝑄𝑄ℎ∗  be the finite element space to interpolate functions, constructed in the usual manner. From 7 

this space, it can be constructed the subspace 𝑄𝑄ℎ,𝜙𝜙
∗ , that incorporates the Dirichlet conditions for the 8 

potential 𝜙𝜙. The space of test functions, denoted by 𝑄𝑄ℎ, is constructed as 𝑄𝑄ℎ,𝜙𝜙, but with functions 9 

vanishing on the Dirichlet boundary. The weak form of the problem can be written as follows: 10 

Find [𝜙𝜙ℎ] ∈ 𝑄𝑄ℎ,𝜙𝜙
∗ , by solving the discrete variational problem: 11 

� ∇𝜐𝜐ℎ · ∇𝜙𝜙ℎ dΩ
Ω

= � 𝜐𝜐ℎ · 𝜙𝜙�𝑛𝑛𝐵𝐵 dΓ
ΓB

+ � 𝜐𝜐ℎ · 𝜙𝜙�𝑛𝑛𝑅𝑅 dΓ
ΓR

 

+ � 𝜐𝜐ℎ · 𝜙𝜙�𝑛𝑛
𝑍𝑍0dΓ +

ΓZ0

� 𝜐𝜐ℎ · 𝜙𝜙�𝑛𝑛
𝑍𝑍−𝐻𝐻dΓ    

ΓZ−H

 ∀𝜐𝜐ℎ ∈ 𝑄𝑄ℎ , 

(11) 

where 𝜙𝜙�𝑛𝑛𝐵𝐵, 𝜙𝜙�𝑛𝑛𝑅𝑅, 𝜙𝜙�𝑛𝑛
𝑍𝑍0  and 𝜙𝜙�𝑛𝑛

𝑍𝑍−𝐻𝐻  are the potential normal gradients corresponding to the Neumann 12 

boundary conditions on bodies, radiation boundary, free surface and bottom surface of the domain, 13 

respectively. At this point, it is useful to introduce the associated matrix form of Eq.(11): 14 

𝐋̿𝐋𝛟𝛟 = 𝐛𝐛𝐵𝐵 + 𝐛𝐛𝑅𝑅 + 𝐛𝐛𝑍𝑍0 + 𝐛𝐛𝑍𝑍−𝐻𝐻 , (12) 

where 𝐋̿𝐋 is the standard Laplacian matrix, and 𝐛𝐛𝐵𝐵, 𝐛𝐛𝑅𝑅, and 𝐛𝐛𝑍𝑍0 , and 𝐛𝐛𝑍𝑍−𝐻𝐻  are the vectors resulting of 15 

integrating the corresponding boundary condition terms. Regarding the seabed boundary for the 16 

refracted and radiated potential, it is imposed naturally in the formulation by taking 𝐛𝐛𝑍𝑍−𝐻𝐻 = 0. 17 

3.2 Free surface boundary conditions 18 

Combining the kinematic (Eq. (2)) and dynamic (Eq. (3)) free surface boundary conditions, the free 19 

surface condition up to second order reads: 20 



𝜕𝜕2𝜙𝜙
𝜕𝜕𝑡𝑡2

+ 𝑔𝑔
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃𝑓𝑓𝑓𝑓
𝜌𝜌
� + {𝑄𝑄1} = 0. (13) 

where superscripts 1+2 have been omitted (and will be from this point on), and 𝑄𝑄1 are the source terms 1 

from the first-order solution. This condition is implemented as a Neumann boundary condition that fulfils 2 

the flux boundary integral: 3 

𝐛𝐛𝑍𝑍0 = 𝐌𝐌�ΓZ0𝜙𝜙�𝑛𝑛
𝑍𝑍0, (14) 

where 𝐌𝐌�ΓZ0   is the corresponding boundary mass. The terms 𝑅𝑅1 and 𝑆𝑆1 are given by Eqs. (5) and (6) 4 

respectively, then:  5 

𝑄𝑄1 = 𝜕𝜕𝑡𝑡𝑅𝑅1 − 𝑆𝑆1, (15) 

Eq. (13) is discretized in time using the following numerical scheme: 6 

𝜙𝜙𝑛𝑛+1 − 2𝜙𝜙𝑛𝑛 + 𝜙𝜙𝑛𝑛−1

∆𝑡𝑡2
= −𝑔𝑔𝜙𝜙𝑧𝑧𝑛𝑛 −

1
12

𝑔𝑔(𝜙𝜙𝑧𝑧𝑛𝑛+1 + 10𝜙𝜙𝑧𝑧𝑛𝑛 + 𝜙𝜙𝑧𝑧𝑛𝑛−1) −
𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛+1 − 𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛−1

𝜌𝜌2∆𝑡𝑡
 

                                           − �
1

12
((𝑄𝑄1)𝑛𝑛+1 + 10(𝑄𝑄1)𝑛𝑛 + (𝑄𝑄1)𝑛𝑛−1)�, 

(16) 

where for the specific case where 𝑃𝑃𝑓𝑓𝑓𝑓 = 0, the above scheme becomes a fourth order compact Padé 7 

scheme. Once the velocity potential is solved at the new time step, the free surface elevation is computed 8 

using the following fourth-order in time numerical scheme: 9 

𝜂𝜂𝑛𝑛+1 = −
1

𝑔𝑔∆𝑡𝑡 
�

25
12

𝜙𝜙𝑛𝑛+1 − 4𝜙𝜙𝑛𝑛 + 3𝜙𝜙𝑛𝑛−1 −
4
3
𝜙𝜙𝑛𝑛−2 +

1
4
𝜙𝜙𝑛𝑛−3� −

𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛+1

𝜌𝜌𝜌𝜌
{−(𝑆𝑆1)𝑛𝑛+1}. (17) 

3.3 Radiation condition and wave absorption 10 

Waves represented by 𝜙𝜙 are born at the bodies and propagate in all directions away from them. 11 

These waves have to either be dissipated or to be let go out of the domain so they will not bounce back 12 

to interact with the bodies. Then a Sommerfeld radiation condition at the edge of the computational 13 

domain is introduced: 14 

𝜕𝜕𝑡𝑡𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐 · 𝑛𝑛𝑅𝑅 = 0 𝑖𝑖𝑖𝑖 𝛤𝛤𝑅𝑅 , (18) 



where 𝛤𝛤𝑅𝑅  is the surface limiting the domain in the horizontal directions, 𝑛𝑛𝑅𝑅 is the normal vector of 𝛤𝛤𝑅𝑅  1 

pointing outwards the domain, and 𝑐𝑐 is a prescribed wave phase velocity. This radiation condition will let 2 

waves moving at velocity 𝑐𝑐 to escape out of the domain. The numerical scheme used to implement the 3 

radiation condition is 4 

(𝜙𝜙𝒏𝒏𝑅𝑅)𝑛𝑛+1 =  −
𝜙𝜙𝑛𝑛−1 − 𝜙𝜙𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐
 𝑖𝑖𝑖𝑖 𝛤𝛤𝑅𝑅 . (19) 

The prescribed phase velocity 𝑐𝑐 will be set for radiating those waves with the smallest frequency 5 

(largest wavelengths) considered in each specific case under study. Typical value of 𝑐𝑐 is the phase velocity 6 

of the longer incident wave. However, waves with higher frequencies (smaller phase velocities) will not 7 

leave the domain through ΓR, so that they will be reflected. Hence, wave absorption is introduced into the 8 

dynamic free surface boundary condition by varying the pressure such that: 9 

𝑃𝑃𝑓𝑓𝑓𝑓(𝒙𝒙, 𝑡𝑡) = 𝜅𝜅(𝒙𝒙)𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. (20)  

Eq. (20) increases pressure when the free surface is moving upwards, while decreases the pressure 10 

when the free surface is moving downwards. Then energy is transferred from the waves to the 11 

atmosphere and waves are damped. However, the coefficient 𝜅𝜅(𝒙𝒙) will be set to zero in the analysis area 12 

(near the bodies), so that damping will have no effect on the solution of the wave-body interaction 13 

problem. Further details can be found in Servan-Camas and Garcia-Espinosa[16] and Servan-Camas [17]. 14 

4. Mooring models 15 

Two different computational models have been implemented in the seakeeping solver to simulate the 16 

mooring lines. The first one is an elastic catenary solver, and the second one is a non-linear FEM dynamic 17 

cable solver. In the following sections, a brief description of the mathematical model is given. Details on 18 

the numerical implementation of the mooring solver, the body dynamics solver, and their coupling can be 19 

found in [17,18,19,20]. 20 

4.1 Elastic Catenary model 21 

The elastic catenary formulation is based on the model proposed in [21]. Each mooring line is analysed 22 

in a local coordinate system located at the anchor. The local z-axis is oriented vertical and the local x-axis 23 

is oriented horizontally from the anchor to the instantaneous position of the fairlead. When a portion of 24 



the mooring line rests on the seabed, the equations for the horizontal and vertical distances between the 1 

anchor and a given point on the line, 𝑥𝑥(𝑠𝑠) and 𝑧𝑧(𝑠𝑠), can be written as,  2 

𝑥𝑥(𝑠𝑠) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑠𝑠 for   0 ≤ 𝑠𝑠 ≤ 𝐿𝐿𝐵𝐵 −

𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

,

𝑠𝑠 +
𝐶𝐶𝐵𝐵𝜔𝜔
2𝐸𝐸𝐸𝐸 �𝑠𝑠

2 − 2 �𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

� 𝑠𝑠 + �𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

�max��𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

� , 0�� for 𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

≤ 𝑠𝑠 ≤ 𝐿𝐿𝐵𝐵 ,

𝐿𝐿𝐵𝐵 +
𝐻𝐻𝐹𝐹
𝜔𝜔 ln �

𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵)
𝐻𝐻𝐹𝐹

+ �1 + �
𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵)

𝐻𝐻𝐹𝐹
�
2

 � +
𝐻𝐻𝐹𝐹𝐿𝐿
𝐸𝐸𝐸𝐸

+
𝐶𝐶𝐵𝐵𝜔𝜔
2𝐸𝐸𝐸𝐸 �−𝐿𝐿𝐵𝐵

2 + �𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

�max��𝐿𝐿𝐵𝐵 −
𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

� , 0��

for                 𝐿𝐿𝐵𝐵 ≤ 𝑠𝑠 ≤ 𝐿𝐿,

 (21) 

𝑧𝑧(𝑠𝑠) =

⎩
⎪
⎨

⎪
⎧ 0 for   0 ≤ 𝑠𝑠 ≤ 𝐿𝐿𝐵𝐵 −

𝐻𝐻𝐹𝐹
𝐶𝐶𝐵𝐵𝜔𝜔

,

𝐻𝐻𝐹𝐹
𝜔𝜔
�1 + �

𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵)
𝐻𝐻𝐹𝐹

�
2

 +
𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵)2

2𝐸𝐸𝐸𝐸
for                 𝐿𝐿𝐵𝐵 ≤ 𝑠𝑠 ≤ 𝐿𝐿,

 (22) 

being 𝑠𝑠 the catenary arc length, 𝐻𝐻𝐹𝐹  the horizontal component of the effective tension, 𝐶𝐶𝐵𝐵 static friction 3 

coefficient, 𝜔𝜔 catenary weight per unit length in water, E the Young modulus, A the cross section area and 4 

𝐿𝐿𝐵𝐵 portion of the length of cable resting at the seabed.  5 

The equation for the effective tension in the line at any point of the line 𝑇𝑇(𝑠𝑠) is written as follows: 6 

𝑇𝑇(𝑠𝑠) = �
max(𝐻𝐻𝐹𝐹 + 𝐶𝐶𝐵𝐵𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵), 0)

�𝐻𝐻𝐹𝐹2 + (𝜔𝜔(𝑠𝑠 − 𝐿𝐿𝐵𝐵)2)   for   𝐿𝐿𝐵𝐵 ≤ 𝑠𝑠 ≤ 𝐿𝐿
. (23) 

The above formulation leads to a computation of the total load on the system from the contribution 7 

of all mooring lines. The restoring load is found by first transforming each fairlead tension from its local 8 

coordinate system to the global frame, and then summing up the tensions from all lines. 9 

4.2 Dynamic cable model 10 

The dynamic equations for a mooring cable with length L with negligible bending and torsional 11 

stiffness can be formulated as [18]: 12 

(𝜌𝜌𝑤𝑤𝐶𝐶𝑚𝑚𝐴𝐴0 + 𝜌𝜌0)
𝜕𝜕2𝑟𝑟𝑙𝑙
𝜕𝜕𝑡𝑡2

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐸𝐸𝐴𝐴0 +

𝑒𝑒
𝑒𝑒 + 1

𝜕𝜕𝑟𝑟𝑙𝑙
𝜕𝜕𝜕𝜕
� + f(𝑡𝑡)(1 + 𝑒𝑒),  (24) 

where 𝜌𝜌𝑤𝑤 is the water density, 𝐶𝐶𝑚𝑚 is the added mass coefficient, 𝜌𝜌0 is the mass per unit length of the 13 

unstretched cable, 𝑟𝑟𝑙𝑙  is the position vector, 𝐸𝐸 is the Young's modulus, 𝐴𝐴0 is the cross-sectional area of the 14 



cable, 𝑒𝑒 is the strain, f(𝑡𝑡) are the external loads applied on the cable including the self-weight, hydrostatic 1 

loads, drag forces and seabed interaction, and 𝑙𝑙 is the length along the unstretched cable. 2 

The boundary conditions of the mooring cable are given by 3 

𝜕𝜕2𝑟𝑟𝑙𝑙
𝜕𝜕𝑡𝑡2

= 0, at 𝑙𝑙 = 0, (𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), (25) 

𝜕𝜕2𝑟𝑟𝑙𝑙
𝜕𝜕𝑡𝑡2

= 𝑟𝑟𝑏̈𝑏 , at 𝑙𝑙 = 𝐿𝐿, (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), (26) 

where 𝑟𝑟𝑏̈𝑏 is the second derivative of the position vector at the fairlead connection point. 4 

The above non-linear equation is solved using the standard Finite Element Method. Details about the 5 

mathematical and numerical dynamic model are provided in Gutierrez-Romero et al. [18]. 6 

 7 

5. Numerical model verification 8 

5.1 Verification case 1: mean drift forces on a hemisphere 9 

5.1.1 Problem description 10 

This case consists of estimating the mean drift forces on a hemisphere. In this work, mean drift forces 11 

are obtained by time averaging the time series of the corresponding second-order force. The analytical 12 

solution for the fix hemisphere was obtained by Fernandes and Levy [22], and for the freely floating 13 

hemisphere was obtained by Kudou [23] and reported by Pinkster [24]. In this section, the numerical 14 

results are compared against the analytical solution. The hemisphere particulars are given in Table 1. Both 15 

fixed and free floating cases were analyzed. Figure 2 (left) shows the mesh used for the calculations. It can 16 

be observed that mesh refinement is required in the area of the waterline in order to obtain accurate 17 

results of mean drift forces. Figure 2 (right) shows a snapshot of the wave elevation around the 18 

hemisphere in one of the cases run. Finally, Figure 3 (up) compares the analytical results against the 19 

numerical results in the case of the fixed hemisphere, while Figure 3 (down) compares the results in the 20 

free floating case. A good agreement is observed for the whole range of waves analyzed. 21 

 22 

Table 1: hemisphere particulars. 23 

Depth Infinite 
Mass Displacement 



Radius 1m 
CG (0,0,0) 

Number of tetrahedrons 274283 
Number of triangles 22082 

5.2 Verification case 2: diffraction of second-order monochromatic waves 1 

by semisubmerged horizontal rectangular cylinder 2 

5.2.1 Problem description 3 

This test case deals with the solution to the diffraction problem for second-order monochromatic 4 

surface waves by a semisubmerged horizontal cylinder of rectangular cross section. The boundary-value 5 

problem is solved and the results are compared against the analytical solution obtained by the method of 6 

matched Eigen function expansions presented in [25]. Horizontal and vertical forces and the moment 7 

about the heel of the prismatic cylinder are analyzed for different monochromatic waves. A sketch of the 8 

problem under analysis is shown in Figure 4. Relevant geometry parameters are: depth (h = 1 m), half 9 

beam (b = 1 m), and draught (d = 0.2 m). 10 

The situation considered for analysis is the diffraction of waves by a fixed horizontal cylinder of 11 

rectangular cross section. The analysis is undertaken with the following assumptions: the fluid is inviscid 12 

and incompressible, the sea bottom and the cylinder are impervious, and the excitation is provided by 13 

normally incident plane waves of small amplitude and frequency. Several cases are run for different wave 14 

periods (T = 0.897, 1.003, 1.070, 1.160, 1.445, 2.299, 4.170, and 6.370 seconds), and the simulation time 15 

is about 30 seconds, with an initialization time of 10 seconds. All degrees of freedom are restrained so 16 

that the body is completely fixed. Hence, only wave diffraction occurs but not radiation. 17 

5.2.2 Mesh generation 18 

Mesh properties for the present analysis are summarized in Table 2. Figure 5 shows an isometric 19 

view of the mesh used for the present analysis at the region close to the surface of the body. 20 

Table 2: Verification case 2: mesh particulars. 21 

Minimum element size 0.01 
Maximum element size 0.1 

Number of elements 121687 
Number of nodes 22940 



5.2.3 Verification of results 1 

Figure 6 shows the amplitude of the second-order horizontal force(𝐹𝐹𝑥𝑥), vertical force (𝐹𝐹𝑧𝑧) forces, 2 

and moment about y axis, 𝑀𝑀𝑦𝑦, for both the analytical results reported in [25] and the numerical results 3 

obtained in this work. The second-order components of the forces and moments (double frequency 4 

component) are normalized with 𝜌𝜌𝜌𝜌ℎ𝐴𝐴2, where 𝜌𝜌 is the density of the fluid, 𝑔𝑔 the gravity, 𝐴𝐴2 the square 5 

of the wave amplitude, and ℎ the water depth. Results are plotted against the dimensionless wave number 6 

(𝑘𝑘ℎ). As it can be observed, a good agreement is obtained for the analyzed range of wave numbers. 7 

5.3 Verification case 3: diffraction of second-order bichromatic waves by 8 

bottom mounted circular cylinder 9 

5.3.1 Problem description 10 

This test case deals with the diffraction of a bottom mounted vertical cylinder under 11 

monochromatic waves with water depth ℎ = 4 m, radius of the cylinder 𝑅𝑅 = 1 m (see [26]). 12 

5.3.2 Convergence analysis 13 

A convergence analysis has been carried out to assess the convergence of the present numerical 14 

approach to the mathematical model. Table 3 provides the unstructured mesh particulars for each case 15 

tested. Table 4 provides the dimensionless force along the wave direction. In particular, the dimensionless 16 

force for the sum-frequency is analyzed. The wave frequencies chosen for this analysis are 𝜔𝜔1𝑅𝑅/𝑔𝑔 = 1.4 17 

and  𝜔𝜔2𝑅𝑅/𝑔𝑔 = 2.0. Time step is calculated such that 𝑔𝑔𝑔𝑔𝑡𝑡2/ℎ = 0.34, being ℎ the characteristic element 18 

size at the floating line. The results in table 3 shows that the convergence rate is approximately second 19 

order, although care must be taken since convergence tests on unstructured meshes contains 20 

uncertainties due to the irregularity on the shape of the elements. 21 

Table 3: Convergence test: mesh particulars. 22 

 Characteristic element size [m]  
Number of elements Number of nodes 

 Floating line  
ℎ 

Body and free surface Volume ∆𝑡𝑡 [s] 

Mesh 1 0.1 0.2 0.4 0.0587 727221 125926 
Mesh 2 0.071 0.1414 0.2828 0.0494 983719 169908 
Mesh 3 0.05 0.1 0.2 0.0415 1683943 289527 
Mesh 4 0.035 0.0707 0.1414 0.0349 3475047 594852 
Mesh 5 0.025 0.05 0.1 0.0294 8203778 1399855 

 23 



Table 4: Convergence analysis: values of the sum-frequency dimensionless force for 𝜔𝜔1𝑅𝑅/𝑔𝑔 = 1.4 and 1 
𝜔𝜔2𝑅𝑅/𝑔𝑔 = 2.0. 2 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 
ℎ 0.1 0.071 0.05 0.035 0.025 

F𝑥𝑥∗  2.498 2.348 2.229 2.159 2.141 

Relative Error - 0.150 0.119 0.070 0.018 

 3 

5.3.3 Verification of results 4 

Table 5 shows a comparison for the non-dimensional amplitude for the sum-frequency and 5 

difference-frequency forces along the wave direction. Mesh 4 has been used to carry out all cases 6 

presented. Comparing to the results obtained by other authors, it can be observed that the results 7 

obtained in this work are within the range of the ones reported by the others. 8 

Table 5: Comparison of non-dimensional amplitude of the sum-frequency and difference-frequency forces along 9 
the wave direction. 10 

 

𝜔𝜔1𝑅𝑅
𝑔𝑔

= 1.0 𝜔𝜔2𝑅𝑅
𝑔𝑔

= 1.6 𝜔𝜔1𝑅𝑅
𝑔𝑔

= 1.2 𝜔𝜔2𝑅𝑅
𝑔𝑔

= 1.8 𝜔𝜔1𝑅𝑅
𝑔𝑔

= 1.4 𝜔𝜔2𝑅𝑅
𝑔𝑔

= 2.0 

sum-freq diff-freq sum-freq diff-freq sum-freq diff-freq 

Shao and Faltinsen [27] 1.868 0.861 2.190 0.788 2.088 0.759 

Kim and Yue [28] 1.853 0.856 2.182 0.788 2.094 0.765 

Eatock Taylor and Huang [26] 1.883 0.849 2.294 0.769 2.114 0.777 

Moubayed and Williams [29] 1.783 0.840 2.091 0.761 1.998 0.734 

Present work 1.815 0.852 2.248 0.765 2.159 0.740 

 11 

6. Validation against the HiPRWind model 12 

6.1 Case description 13 

The floating platform geometry considered in this paper has been provided by the HiPRWind FP7 14 

project (EU 7th RTD FP under grant agreement no. 256812) [30] and is composed by three buoyant 15 

columns connected by bracings. Model tests were carried out at Ecole Centrale Nantes’ facilities. A model 16 

built in stainless steel with scale 𝜆𝜆 = 1/19.8 was used in the tests (see Figure 7). The experiments were 17 

devised by Simos et al. [15] in order to use the measured motions to validate an alternative method to 18 



estimate, in the frequency domain, the second order response of the floater. Results related to mooring 1 

loads are however presented herein for the first time. 2 

  Figure 8 shows an overview of the HiPRWind CAD model generated. Table 6 provides the platform 3 

particulars in full scale, as well as the water depth considered for this study. 4 

Table 6: HiPRWind platform main particulars (full scale). 5 

Depth 100 m 
Operation design draft 15.5 m 

Distance between column centers 35 m 
Column diameter 7 m 

Heave plates diameter 20 m 
Displacement 2332 T 

XG 0 m 
YG 0 m 
ZG -4.46 m 

Radius of gyration (pitch) 22.38 m 
 6 

Figure 9 shows a view of the mesh used for this case study. This mesh consists of tetrahedral 643603 7 

elements and 119350 nodes. The cylindrical domain has a radius of 500 meters, a height of 100 m water 8 

depth, and the absorption area starts at 50 meters from the center of the platform.  9 

6.2 Model calibration 10 

In order to predict seakeeping in real conditions with a potential flow solver, viscous effects are to be 11 

incorporated via external forces. These external forces are simplified formulas accounting for the overall 12 

viscous effects acting on the platform. In this work, the viscous effects have been included in the 13 

computational solver by means of linear and quadratic models. This model has been calibrated using the 14 

experimental information of the extinction tests for surge, heave and pitch motions.  15 

Figure 10 shows the layout of the experimental set-up for these tests. Three elastic lines were used 16 

to keep the position of the model during the extinction experiments. These lines have a small linear weight 17 

distribution so the catenary effect is negligible. The location of the end points for each line is given in 18 

Table 7. A pretension of 550 kN were applied to each line. 19 

 20 

Table 7: Mooring lines end points and stiffness coefficients. 21 

 (𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊, 𝒛𝒛𝒊𝒊) (𝒙𝒙𝒇𝒇,𝒚𝒚𝒇𝒇, 𝒛𝒛𝒇𝒇) 𝑲𝑲(KN/m) 
Line 1 (−323.75, 0, 10) (−23.73, 0, 10) 20.8 
Line 2 (207.7,250.4,10) (11.87, 20.55, 10) 20.8 
Line 3 (207.7,−250.4,10) (11.87,−20.55, 10) 20.8 

 22 



The linear stiffness matrix corresponding to the mooring system is: 1 

 2 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢
⎡3.65 × 104 0 0 0 3.65 × 104 0

0 2.35 × 104 0 −2.35 × 105 0 1.26 × 105
0 0 0 0 0 0
0 −2.35 × 105 0 1.96 × 107 0 −1.26 × 106

3.65 × 105 0 0 0 2.51 × 107 0
0 1.26 × 105 0 3.09 × 105 0 3.94 × 107 ⎦

⎥
⎥
⎥
⎥
⎤

. 3 

 4 

The viscous damping forces have been divided into two groups. The first group corresponds to the 5 

bracings of the structure. The corresponding forces are applied in the center of gravity of the platform. 6 

The second group corresponds to the heave plates and columns, and calibration forces are applied in the 7 

center of the heave plates assuming a dominant effect of these over the cylinders. Table 8 provides a 8 

summary of the coefficients of the damping terms obtained in the calibration phase. A similar calibration 9 

process for the BEM frequency domain solver WADAM [31] has also been performed by an independent 10 

engineer, resulting in quite similar calibration values. 11 

 12 

Table 8: Model calibration: added mass, linear damping and quadratic damping coefficients. 13 

  FEM WADAM/SIMO 

Applied at CG 

Surge linear damping: 𝐁𝐁𝟏𝟏𝟏𝟏[KN/(m/s)] 75  70 

Heave added mass: 𝐀𝐀𝟑𝟑𝟑𝟑 [t] 1200  1000 

Heave linear damping: 𝐁𝐁𝟑𝟑𝟑𝟑[KN/(m/s)] 110  110 

Applied at the center of each  

heave plate base 

Heave linear damping: 𝐁𝐁𝟑𝟑𝟑𝟑[KN/(m/s)] 76 50 

Heave quadratic damping: 𝐁𝐁𝟑𝟑𝟑𝟑𝟐𝟐 [KN/(m/s)2] 805 600 

 14 

Figure 11 shows experimental versus numerical results after calibration for the surge, heave, and pitch 15 

decay tests. Good agreement has been reached for the three degrees of freedom. The natural periods 16 

obtained by the FEM solver are given in Table 9. Natural periods obtained by the BEM model and 17 

experiments are within the round off error of 1 second. 18 

 19 

Table 9: Natural periods obtained from decay test with linear restoring. 20 

Surge Heave Pitch 

70 s 19 s 26 s 

 21 



6.3 Catenary mooring 1 

Three catenary lines were used as mooring lines for the rest of the experiments. The location of the 2 

end points for each line is given in Table 10. Table 11 provides the mooring line particulars. 3 

 4 

Table 10: Mooring lines end points. 5 

 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 
(x,y,z) 

Anchor point 
(x,y,z) 

Line 1 (-325.73, 0.0, -80.0) (-23.7318, 0, 10.0027) 
Line 2 (206.79, -247.99, -80.0) (15.24, -18.17, 10.0027) 
Line 3 (206.79, 247.99, -80.0) (15.21, 18.17, 10.0027) 

 6 
 7 

Table 11: Mooring lines particulars. 8 

Length 330 m 

Section 1.108E × 10−2m2 

Young modulus 5.720 × 1010 Pa 

Linear weight in water 1453 N/m 

 9 

6.4 Validation test 1: monochromatic waves 10 

In this section, Response Amplitude Operators (RAOs) of the computational model presented in this 11 

work are compared against those obtained in the experiments. It has to be said that the experimental 12 

data shows a change in the platform response along the experiment. In other words, the results of the 13 

spectral analysis depend on the time interval used. If the period of time used for calculating the RAOs is 14 

chosen towards the end of the experiment, an increase of the response in the low frequencies is observed 15 

which has raised the concern on whether longer waves are suitable to be analyzed. 16 

Experimental RAOs were obtained for full scale wave heights of 𝐻𝐻 = 2 m and 𝐻𝐻 = 5 m, including the 17 

elastic lines used for the calibration. The experimental RAO was obtained using a time interval of ten wave 18 

cycles, starting at 500 seconds, and using a FFT to filter low frequency components induced by the model 19 

basin. The numerical Rao was obtained using a time interval of ten wave cycles, starting at 100 seconds, 20 

and using 50 seconds of initialization. Figure 12 compares the RAOs in surge, heave, and pitch, 21 

respectively, against the numerical results obtained by the FEM and WADAM/SIMO solvers. While fair 22 

agreement is found for the lower periods, the agreement is not so good for the longer ones. This might 23 



be caused by the fact that the distance of the wave generator to the platform is 15.10 meters, while the 1 

wavelength range goes from 2.84 m to 26.34 m. Then, longer wave might not have time to fully develop. 2 

6.5 Validation test 2: bichromatic waves 3 

A number of tests were carried out with bichromatic waves in order to analyze the second-order 4 

response of the platform. The incident wave periods range between 5.5 and 21 seconds. The wave 5 

frequency difference ranges from 0.0128 Hz to 0.0167 Hz. The latter frequency is close, on purpose, to 6 

the surge resonant frequency since the focus of the analysis will be on the surge response to the slow 7 

drift. 8 

Table 12 provides the experimental test matrix, including incident wave height (𝐻𝐻), frequency 𝑓𝑓, as 9 

well as the frequency difference and sum. All these cases have been simulated in the time-domain using 10 

the FEM model proposed in this work for the diffraction-radiation problem. The different cases have been 11 

analyzed using the quasi-static elastic catenary and the non-linear FEM dynamic cable models. Once the 12 

simulations were carried out, the time series have been transformed via Fast Fourier Transform (FFT) to 13 

the frequency domain in order to make easier the comparison of the results with the experimental data. 14 

No filtering has been made neither to the experimental data, nor to the numerical. 15 

 When analyzing the wave elevation of the experiments, it was found that the wave energy spectrum 16 

was not as pure bichromatic as expected, showing energy spread around the frequency pair under 17 

analysis. Hence in order to better reproduce the experiment, instead of using a pure bichromatic wave, a 18 

set of waves reproducing the free surface elevation of the experiment was used. 19 

Figure 13 compares the spectrum of the surge movement obtained in the experiments against the 20 

obtained numerically using the FEM solver. Overall, in the range of the incident wave frequencies, the 21 

numerical results approximate quite well the experimental ones. However, in the low frequency range, 22 

larger differences are appreciated in some cases. Considering the difficulty of even matching the RAOs in 23 

the monochromatic wave tests before mentioned, the agreement in the bichromatic wave test is 24 

acceptable. 25 

When comparing the quasi-static catenary model against the dynamic cable model, it is observed that 26 

both models provide quite similar results, although the catenary model predicts larger movements.  This 27 

might be due to the lack of energy dissipation of the catenary model itself, while in the dynamic cable 28 

model Morison forces in the mooring lines are taken into account, leading to energy dissipation. 29 

Table 13 provides data regarding the CPU time required for simulating the bichromatic wave tests. On 30 

average, the ratio of CPU time to real time is in the order of 32.  31 



 1 

Table 12: Bichromatic test matrix. 2 

Case 
Incident wave 1 Incident wave 2 Freq. difference Freq. Sum 

𝐇𝐇𝟏𝟏 [m] 𝐟𝐟𝟏𝟏 [Hz] 𝐇𝐇𝟐𝟐 [m] 𝐟𝐟𝟐𝟐 [Hz] 𝐟𝐟𝟐𝟐 − 𝐟𝐟𝟏𝟏 
[Hz] 𝐓𝐓𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 [s] 𝐟𝐟𝟏𝟏 + 𝐟𝐟𝟐𝟐 

[Hz] 𝐓𝐓𝐬𝐬𝐬𝐬𝐬𝐬 [s] 

1 5.63 0.0582 4.32 0.0735 0.0153 65.4 0.1318 7.59 
2 5.27 0.0667 3.54 0.0813 0.0146 68.3 0.1480 6.76 
3 2.80 0.1053 1.62 0.1220 0.0167 59.9 0.2272 4.40 
4 2.13 0.1205 1.27 0.1351 0.0147 68.2 0.2556 3.91 
5 1.88 0.1300 1.14 0.1429 0.0128 78.0 0.2729 3.66 
6 1.50 0.1449 0.92 0.1587 0.0138 72.4 0.3037 3.29 
7 1.67 0.1370 1.02 0.1515 0.0145 68.8 0.2885 3.47 
8 1.35 0.1515 0.84 0.1667 0.0152 66.0 0.3182 3.14 
9 1.22 0.1613 0.77 0.1754 0.0141 70.7 0.3367 2.97 

10 1.11 0.1667 0.70 0.1818 0.0152 66.0 0.3485 2.87 
11 2.83 0.0909 2.10 0.1053 0.0144 69.7 0.1962 5.10 
12 3.37 0.0833 2.44 0.0997 0.0163 61.2 0.1830 5.46 
13 4.59 0.0714 3.16 0.0850 0.0135 73.8 0.1564 6.39 
14 5.64 0.0526 5.16 0.0672 0.0145 68.9 0.1198 8.35 
15 2.82 0.0526 5.16 0.0672 0.0145 68.9 0.1198 8.35 
16 3.44 0.0476 6.03 0.0625 0.0149 67.2 0.1101 9.08 

 3 

 4 
Table 13: CPU time for bichromatic wave tests 5 

Case 

Catenary mooring Cable mooring 

Simulation 
Time [s] 

CPU Time 
[s] 

Ratio 
[s/s] 

Simulation 
Time [s] 

CPU Time 
[s] 

Ratio 
[s/s] 

1 775.02 36227.18 46.74 1200.03 72016.11 60.01 

2 1115.14 23947.44 21.47 1115.14 19757.59 17.72 

3 1279.19 28688.95 22.43 1279.19 32642.45 25.52 

4 1615.12 36035.17 22.31 1615.12 41652.91 25.79 

5 1046.01 25104.81 24.00 1046.01 27602.47 26.39 

6 935.09 29797.70 31.87 935.09 24044.09 25.71 

7 982.07 25378.13 25.84 982.07 25797.82 26.27 

8 896.05 30768.33 34.34 896.05 30533.34 34.08 

9 854.08 30032.72 35.16 854.08 23306.34 27.29 

10 830.08 31300.66 37.71 830.08 38213.82 46.04 

11 710.02 53935.90 75.96 710.02 37674.61 53.06 

12 1613.07 46106.76 28.58 1613.07 39654.95 24.58 

13 1813.12 28062.74 15.48 1813.12 24148.93 13.32 

14 1052.09 26884.85 25.55 1052.09 25070.24 23.83 

15 1052.09 41201.61 39.16 1052.09 37945.54 36.07 

16 836.06 29020.15 34.71 836.06 23880.50 28.56 



Mean value   32.58   30.89 

 1 

6.6 Validation test 3: irregular waves 2 

Two tests in irregular waves are used to validate the capability of the present FEM solver to predict 3 

the seakeeping of the HiPRWind, as well as the behavior of the mooring. The simulation time was 784.7 4 

seconds, and the time interval used for the analysis the range between 500 s and 784.7 s. No filtering at 5 

all was used along the analysis process, neither to the experimental data, nor to the numerical results. 6 

Table 14 provides the particulars of the target wave spectrums. The model discretization used in this test 7 

is the same as for the bichromatic tests, but only the cable model is used to simulate the mooring lines. 8 

First of all, the incident wave field was determined by means of a FFT analysis of the incident wave 9 

elevation reported by the experiments within the analysis time interval. Figure 14 compares the resulting 10 

second order numerical incident wave elevation against the experimental one, finding a good agreement 11 

between them.  12 

Figure 15 compares the second-order numerical and experimental surge response within the analysis 13 

time interval. A fair agreement is found, although some deviation in the low frequency can be observed. 14 

Figure 16 compares the second-order numerical and experimental heave response within the analysis 15 

time interval. Again a fair agreement is found, although the numerical solution shows larger amplitudes 16 

in the higher frequencies. Figure 17 compares the second-order numerical and experimental pitch 17 

response within the analysis time interval. Just like in surge, a fair agreement is found, although some 18 

deviation in the low frequency can be observed. Regarding the phase agreement, all movements show a 19 

good phase agreement between the numerical and experimental results. 20 

Figure 18 and 19 provide a spectral analysis of the loads induced by the mooring lines on the platform. 21 

The numerical results obtained follow well the trend of the experiments, although the amplitude at some 22 

frequencies do not match the experimental ones.  23 

 24 

Table 14: Irregular wave test matrix. 25 

Case 𝑯𝑯𝒔𝒔 [𝒎𝒎] 𝑻𝑻𝒑𝒑 [s] 

Irregular 1 2.50 16 
Irregular 2 4.00 13 

 26 



Conclusions 1 

A FEM model for the second-order wave diffraction-radiation problem in the time-domain has been 2 

developed. The model has been verified against analytical solutions, comparing mean drift loads for a 3 

floating hemisphere, second-order forces for a semi-submerged horizontal rectangular cylinder, and 4 

second order forces induced on a bottom mounted cylinder. In all cases, the numerical results obtained 5 

are in good agreement with the analytical ones. 6 

Furthermore, the computational solver has been validated against experiments carried out at the 7 

ECN Nantes’ facilities for the HiPRWind model. In a first stage, the model viscous damping was calibrated 8 

to reproduce decay tests for surge, heave, and pitch. A good match between the experiments and the 9 

calibrated model was obtained. Then, RAOs were compared using the monochromatic wave tests, finding 10 

that the numerical results follow well the experiments for shorter waves, but no for longer waves, 11 

probably due to the distance of the platform to the wave maker. Then, surge response of the HiPRWind 12 

subject to bichromatic waves were performed and compared to the experiments. Taking into account the 13 

experimental uncertainties associated to measuring second-order quantities, it has been found that the 14 

computed movements of the platform are in fair agreement with the experimental data. Finally, a 15 

validation in irregular waves under two different condition was carried out. Again, the up to second-order 16 

movements amplitudes predicted numerically were compared with the experiments, showing a good 17 

phase agreement, and a fair agreement in amplitude.  18 

Regarding the modeling of the mooring lines, the obtained results in bichromatic waves agree well 19 

with the experimental trends. They also indicate that both, the quasi-static catenary model and the 20 

nonlinear FEM dynamic cable, provide quite similar results. In irregular waves, the loads induced by the 21 

dynamic cable on the structure show a similar pattern than the experimental results. They show a quite 22 

fair agreement in the order of magnitude of the loads obtained, and a similar trend across frequencies. 23 

In conclusion, the second-order time-domain FEM model presented in this work, along with the 24 

mooring models used, have good alternative capabilities to solve the second-order seakeeping of floating 25 

platforms. 26 
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Figure 1: First and second-order rigid body movement. 12 
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Figure 2: Hemisphere: mesh refinement close up (left) and wave contours (right). 2 
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Figure 3: Mean drift forces on Hemisphere. 3 
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Figure 4: Horizontal semi-submerged cylinder: problem layout. 2 
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Figure 5: Generated mesh: Top view (up) and front view (down). 2 

  3 



 1 

Figure 6: Second-order wave forces on a rectangular cylinder: analytical versus numerical. 2 
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 3 
Figure 7: HiPRWind platform model used. 4 
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Figure 8: HiPRWind computational model overview. 1 
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Figure 9: FEM model mesh. 2 
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Figure 10: Model basin setup including elastic mooring. 2 
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Figure 11: Comparison between experimental and numerical decay tests. 4 
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Figure 12: Comparison of RAOs obtained from experiments and numerical simulations. 5 
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(a): Case 1 2 
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(b): Case 2 4 
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(c): Case 3 6 
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(d): Case 4 2 
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(e): Case 5 4 
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(f): Case 6 6 
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(g): Case 7 2 
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(h): Case 8 4 
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(i): Case 9 6 
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(j): Case 10 2 
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(k): Case 11 4 
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(l): Case 12 6 
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(m): Case 13 2 
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(n): Case 14 4 
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(o): Case 15 6 
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(p): Case 16 2 

Figure 13 (a)-(p): Comparison between the experimental, catenary and cable model for surge response to 3 
bichromatic waves. 4 
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Figure 14: Comparison between experimental and second order numerical incident wave elevation for the time 3 
range analyzed. Up: Irregular 1; down: Irregular 2. 4 
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Figure 15: Comparison between experimental and second order numerical surge movements for the time range 3 
analyzed. Up: Irregular 1; down: Irregular 2. 4 
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Figure 16: Comparison between experimental and second order numerical heave movements for the time range 3 
analyzed. Up: Irregular 1; down: Irregular 2. 4 
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Figure 17: Comparison between experimental and second order numerical pitch movements for the time range 3 
analyzed. Up: Irregular 1; down: Irregular 2. 4 
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Figure 18: Comparison between experimental and second order numerical line 1 loads in the frequency domain. 3 
Up: Irregular 1; down: Irregular 2. 4 
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Figure 19: Comparison between experimental and second order numerical line 1 loads in the frequency domain. 3 
Up: Irregular 1; down: Irregular 2. 4 
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