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Abstract

In the framework of robotics, Reinforcement Learning (RL) deals with the learning
of a task by the robot itself. This work focuses on a recently developed method,
Policy Improvement with Path Integrals (PI2), for the case of a 4-finger-gripper
manipulator to perform the task of rotating a ball around a desired axis.

The scope of the thesis is to design an experiment, in which the algorithm re-
ceives feedback of robot performance. The algorithm has also been adapted to cope
with periodic movements parametrized as motor primitives. Furthermore, due to the
high dimensionality of the problem, certain assumptions have been made in order
to limit the state-space to a reliable subset of it. The obtained results illustrate the
good performance of the algorithm as the robot is able to perform the task focusing
on important aspects previously set by the user, both for simulation and also for the
real robot. The main bottleneck of the thesis has been the speed of both software and
hardware, as much time was required to perform long run experiments, specifically
in the implementation on the robot where manual supervision was needed.
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1
Introduction

1.1 Background

Robots have widely demonstrated their usefulness, as they are able to do many
tasks, more accurately, in less time and by using less resources in comparison with
humans. Since 1961, when the first robot was installed by Unimation, the number of
commercial robots has rapidly grown. Notwithstanding most part of the commercial
robots are aimed for the industry. Industrial robots operate in static/well-defined
environments, doing precise and repetitive tasks, being teleoperated by a human or
following a program. However, they are unable to cope with unexpected situations,
that is why human supervision is still necessary.

In recent years, robotics has expanded to a wide range of fields such as medicine,
agriculture, logistics, and many others. These new environments differ from the in-
dustrial ones in their unpredictability, along with in the necessity of interaction with
outside elements such as, humans or animals. Thus, there is an upcoming necessity
to endow robots with intelligent capabilities, which allow them to perceive the envi-
ronment and adapt to it. This concept is commonly known as Artificial Intelligence
(AI).

Nowadays, intelligent robots are entering the market with remarkable success.
Examples of these robot are, Roomba, a vacuum-cleaner robot developed by iRobot,
which can clean the floor of a house without an a priori knowledge of it, or Pepper
a social robot capable of detecting human emotions and interact while adapting
to the mood accordingly. These examples give an idea about the potential of the
combination between AI and Robotics.

In fact, AI and Robotics are considered top trending technologies by several
market experts as Forbes. Moreover, the International Federation of Robotics (IFR)
has forecasted an impressive upcoming growth in robot’s sales, both in industrial
and services robots as well as the creation of direct and indirect jobs.
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Chapter 1. Introduction

1.2 Problem formulation and motivation

The main motivation behind this thesis is twofold. First, as the previous section
has mentioned, AI and robotics are increasing sectors. Therefore, expanding my
knowledge in those fields will result tremendously beneficial professionally and
personally. Second, real robots are not easily available, so being able to work with
one is a great opportunity.

The main goal is to apply AI techniques, in this case reinforcement learning
techniques, to a robot. Thanks to this new capabilities the robot will be able to
learn, by trial and error, how to perform a task in an optimal manner.

The robot, shown in Figure 1.1, is a 4-finger-gripper manipulator, in which ev-
ery finger has 3 Degrees of Freedom (DoF). This thesis is addressing the task of
spinning a ball in a given direction without dropping it. For simplicity, the spin will
be performed around the z axis. This thesis is an extension of the proposed problem
in Ghazaei’s thesis [2], but for the case of 4 fingers instead of 3, and with continuous
trajectories.

The main problem is the modelling of the system. Separately, both ball and
robot, present an easy modelling, which is not the case for the combination of both.
An approach for modelling of the ball-finger system is detailed in [2], which ex-
plains several aspects to be taken into consideration. First, the definition of the con-
tact point, as the finger may touch the ball not only with the fingertip. Second, the
type of contact, as it can be a point or a surface contact. Moreover, the dynamics of
the systems, the finger motion when spinning the ball, may present different condi-
tions, such as sticking (ball and finger same velocities) or sliding, these behaviors
are highly dependent on the friction coefficient. Another aspect for consideration is
if the type of impact is elastic or non-elastic.

Thus, due to the complex modelling, a model-free approach seems a more prac-
tical idea than a model-based one, and furthermore, it could be applied to other
cases.

Figure 1.1: The 4-finger-gripper robot.
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1.2 Problem formulation and motivation

1.2.1 Resources and Tools
Different tools were used for the development of this thesis. The main ones are
shown in Figure 1.2. Matlab environment [41] allowed the implementation and ex-
perimentation with the learning algorithm. V-REP [36], which is a robot simula-
tion, offered useful insight about the performance of the algorithm and OpenCV
libraries [44] were enormously practical for the visual feedback.

1.2.2 Outline
The report is structured in the following manner. Chapter 2 describes the theoretical
framework in which the project is based, providing mathematical development of
the used methods and it also motivates the choice of the methods and provides some
insights about how the methods may have to be adapted to the problem.

Chapter 3 contains more information about the tools used in this thesis, includ-
ing the robot, the software and the camera.

The adopted methodology is explained in Chapter 4. This chapter describes how
the method described in Chapter 2 is applied to the problem and the experimental
set up. It also justifies any possible changes from the initially made assumptions.

Chapters 5 and 6 present the achieved results as well as their interpretation.
Finally Chapter 7 presents the conclusions of the overall project, and it suggests
directions for potential extensions of this project

(a) Matlab (b) V-REP

(c) OpenCV

Figure 1.2: Software Tools
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2
Theoretical Background

2.1 Dynamic Movement Primitives

In recent years, several studies as [30], [31] and [32], have observed that complex
movements in both vertebrates and invertebrates, are composed of elementary build-
ing blocks called motor primitives. Complex movements can be reconstructed by
applying transformations to these primivites and by combining them.

Dynamic movement primitives (DMPs) were presented in [3] as a mathematical
formalization of these primitives. DMPs present the dynamics of a second order
system modulated by a nonlinear term f called forcing term. The idea behind is
to use the third-order system as point attractor with convenient stability properties,
whereas the forcing term enables generation of complex movements. The system is
represented with the following equations:

ż = τ(αz(βz(g−y)−z) +f)
ẏ = τz

(2.1)

Where αz and βz are chosen in order to ensure that the spring-damper system be-
comes critically damped e.g., by choosing αz = 4βz , τ is a time constant of the
system, g represents the goal position and y, ẏ, ÿ are position, velocity and acceler-
ation respectively. The system (2.1) is called a transformation system.

There are two types of DMPs which are differentiated by the shape of the at-
tractor dynamics. These types are known as Discrete DMP, in which the system is
attracted to a point, and Periodic DMP in which the attractor is represented by a
limit cycle. Both types present different definitions of the forcing term, as well as,
different canonical systems. The canonical system models the generic behaviour of
the model equations [5], representing the evolution of the phase variable.

2.1.1 Discrete DMP
For the discrete case, the forcing term is described as follow:

f =
∑

N
i=1wiψi(x)∑
N
i=1ψi(x)

x(g−y0) (2.2)

12



2.1 Dynamic Movement Primitives

where y0 is the initial position of the system, wi is the weighting for a given basis
function

ψi(x) = exp
(
− 1

2σ2
i

(x− ci)2
)
, (2.3)

where ci and σi define the centre and the standard deviation of a gaussian. The
forcing term is dependent on x, the so called phase variable, whose dynamics are
represented by the following equation:

ẋ=−αxτx, (2.4)

where αx is a positive constant, the system converge to 0 at an exponential decay.
Therefore, the forcing term is a set of Gaussian functions that are activated as the

canonical system x converges to its target, their weighted summation is normalised,
and multiplied by x(g− y0), which is both a diminishing and spatial scaling term
respectively [39]. The diminishing term x ensures convergence of the forcing term
to 0 over time, as the canonical system does. The spatial scaling term allows to
preserve the shape of the trajectory for different goals as it scales the activation of
the basis functions to be relative to the target distance.

Another design aspect to take into account, is that the centres of the basis func-
tion should be equally distributed over time, but their activation is hold by the phase
variable. This is easily done by mapping the time and the phase variable.

Referring to Equation (2.1), τ denotes the duration of the movement and g rep-
resent the coordinates of the attractor point.

2.1.2 Periodic DMP
For the periodic case, the forcing term is:

f =
∑

N
i=1wiψi(φ)∑
N
i=1ψi(φ)

r, (2.5)

denoting r and φ the amplitude and phase variable respectively and

ψi(φ) = exp(hi cos(ci−φ)−1)), (2.6)

where hi and ci have the same meaning as in the discrete case. Notwithstanding, the
basis functions are Von Mises functions, which are periodic Gaussian-like functions.

The choice of the canonical system for learning limit cycle attractors is a phase
oscillator:

φ̇= 2πτ (2.7)

Note that τ refers now to the frequency of the system and g represent the anchor
point for the oscillation trajectory.

Amplitude, frequency and baseline of the signal can also be modulated to ac-
commodate any desired oscillation by varying τ , r and g as Figure 2.1 shows. Due
to linear behaviour presented by the canonical system, the appropriate centre’s lo-
cation can be directly equidistant in the interval

[
0,2π

]
.
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Chapter 2. Theoretical Background

Figure 2.1: Periodic DMP behaviour with modulated parameters with respect to the
reference one. Blue: Reference, red: double frecuency, yellow: double amplitud,
purple baseline increment of 4.

2.1.3 Learning DMPs
The shape of the trajectory is defined by the forcing term, which includes unknown
basis functions and weights. For the basis functions, the choice of their centres
was previously described and the standard deviation is typically set equal for all
functions. The number of basis function is selected by trial and error. The higher
number, the better fitting is expected, but the more unknown parameters to estimate.
Therefore, the designer should choose it accordingly to its purposes. The weight
vector w has the role of defining the spatial-temporal path by weighting the basis
function differently [19]. This weight vector, in contrast to the basis function, has
to be learnt and cannot be set in advance.

The system is constructed to be linear with respect to the parameter vector,
which allows applying a variety of learning algorithms to fit w. The goal is the
system to follow a desired trajectory in terms of position, velocity and acceleration
(ytarget(t), ẏtarget(t), ÿtarget(t)), where t∈ [1, . . . ,T ]. The learning is performed
in two phases: First, determining the high-level parameters (g, y0, τ , besides r for
periodic) and secondly learning the parameter vector w.

For the discrete-time case, τ is adjusted to the duration of the demonstration.
In practise, extracting τ from the demonstration may require some thresholding
in order to detect movement beginning and end. For instance, some studies as [5]
suggest to choose τ as 1.05 times the duration. For periodic cases, τ is adjusted to
the frequency of the periodic movement, r is an arbitrary value normally set to 1.

14



2.1 Dynamic Movement Primitives

The learning of the parameter vector is done by means of supervised learning.
In [40] the use of Locally Weighted Regression (LWR) was proposed due to its fast
one-shot and independent learning of the kernels.

The formulation of the problem starts by rearranging Equation (2.1) as

f = 1
τ2 ÿ−αz

(
βz(g−y)− 1

τ
ẏ
)
, (2.8)

and substituting trajectory values for the desired ones yields to

ftarget = 1
τ2 ÿtarget−αz

(
βz(g−ytarget)−

1
τ
ẏtarget

)
. (2.9)

Hence, a function approximation problem is obtained where the parameters of
f are to be adjusted such as f resembles as close as possible to ftarget. LWR will
minimize the cost function, defined as the locally weighted quadratic error,

Ji =
T∑
t=1

ψi(t)
(
ftarget(t)−wiε(t)

)2
, (2.10)

being ε(t) = x(t)(g− y0) or ε(t) = r for discrete and periodic cases, respectively.
This is weighted regression problem whose solutions is

wi = stΓiftarget
sTΓis

, (2.11)

where

s=

ε(1)
...

ε(T )

 , Γi =

ψi(1) · · · 0
...

. . .
...

0 · · · ψi(T )

 , ftarget =

ftarget(1)
...

ftarget(T )

 . (2.12)

The above formula corresponds to the batch regression, in which the regres-
sion is performed once all data is gathered. Other option is to perform a Locally
Weighted Projection Regression (LWPR), which minimizes the cost function in-
crementally as new data enters the system, the main difference between these two
approaches is the computational complexity, which is polynomially O(n2) for the
case of LWR and linear O(n2) for LWPR. For the case of this report the input data
is not big enough to present any problem, thus LWR is sufficient.

In order to perform a good fitting of the ftarget, certain amount of basis function
and points in the target trajectory are needed. Variations due to the number of points
or basis functions can be seen in Figure 2.2.
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Chapter 2. Theoretical Background

(a)

(b)

(c)

Figure 2.2: Fitting with different number of basis functions and points. Case (a) both
numbers are correct. Case (b) the number of points is too low. Case (c) the number
of basis function is too low.
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2.1 Dynamic Movement Primitives

2.1.4 Multiple Degrees of Freedom
All previous explanations were focused on the case of the case of one DMP for a
single DoF. However, robots normally have several degrees of freedom, thus the
idea of the dynamical system has to be extended to cope with multiple DoF.

There are mainly three strategies to deal with the multiple DoF problem. The
first approach consists on having independent transformation and canonical system
for each DMP. The second option is to add coupling terms between the canonical
systems, as in [13] where the coupling term maintains a lag between arms in a
drumming example. The third alternative is to set a common canonical system for
all the DoF as seen in Figure 2.3.

The main drawback of the first strategy is that there is no synchronization, as
there is no exchange of information between dynamical systems. The second strat-
egy also presents major problems such as the tuning of the coupling parameters,
which increases the complexity of the modelling. Having in mind that the selected
approach is periodic DMPs, and the aim of the project is to obtain a periodic trajec-
tory for the robot end effector without high-complex modelling, the third strategy
seems to be the correct alternative because of its simplicity and the temporal cou-
pling provided. Besides, this strategy was used in several studies as [7], [20], [11]
and [19] which perform similar tasks to the one addressed in this thesis.

Figure 2.3: System overview of a multi-DoF dynamical system. All DoF share a
common canonical system, while having their own transformation systems and forc-
ing terms. Source of image [5].
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Chapter 2. Theoretical Background

2.1.5 Discrete+Periodic for transient states
Periodic DMPs have been proven to be effective tools to learn periodic trajectories.
However, in reality all periodic motions start in a non periodic state. For exam-
ple, when a human starts walking, the first step is different from the other ones, as
it starts with zero velocity. In [11] the problem of a robot arm paddling the ball is
studied, identifying the initial state as the ball resting on the paddle. A start-up phase
in order to perform the task successfully was required, in which the robot needed
to induce more energy to the ball. This start-up phase consists of a combination be-
tween Discrete and periodic DMPs in which the Discrete DMP gradually converges
to the period parameter while its influence vanishes as the periodic movement is
achieved.

Both [12] and [15] proposed different mathematical formulation to address this
problem, by combining Discrete and Periodic DMPs. The main idea behind these
formulations is the same.The canonical system for the new DMP formulation is an
oscillator in the phase plane: φ̇= 2πτ

ṙ = η(µα− rα)rβ
φ(0) = φ0, r(0) = r0

(2.13)

where µ > 0 represents the radius of the limit cycle, η, α, β are constants,
τ > 0 denotes the angular velocity of φ and φ0 and r0 are the initial conditions. The
transformation system, as for previous cases, is a critically damped system, showed,
in Equation (2.1), being the forcing term depending of φ and r and defined as:

f(φ,r) =
∑

M
j=1ψj(φ,r)w̃j +

∑
N
i=1ϕi(ψ,r)wi∑

M
j=1ψj(φ,r) +

∑
N
i=1ϕi(ψ,r)

, (2.14)

where W := (w1, . . . ,wj , w̃1, . . . , w̃i) ∈RN+M contains the weights to be adjusted
and Ψ := (ϕ1, · · · ,ϕN ,ψ1, · · · ,ψM ) contains the basis functions, encoding ψ the
transient part of the motion and ϕ the periodic pattern. The basic idea is that f
depends on the position with respect to the limit cycle, parametrized with the vari-
ables φ and r, where φ denotes the phase of the motion while r corresponds to the
distance to the limit cycle.

In order for ψj to encode only the transient part without having impact on the
periodic pattern, the effect of ψj should vanish close to the limit cycle, thus there
exist a µ1 >µ such that ψj |R×(0,µ1) = 0. Alternatively, ϕi should dominate as close
to the limit cycle and has insignificant effect when being far from the limit cycle.
Hence, ϕi|R×(0,µ1) = 1 and there exists a µ2 such that ϕi|R×(µ2,∞) ≈ 0. Since the
movement should be smooth, both ψj and ϕi should overlap, by setting µ2 > µ1,
there exists a region r ∈ (µ1,µ2) where both basis functions are active. To achieve
this behaviour, the basis function should be defined as

ϕi = g(r)exp(li(cos(ci−φ)−1)), (2.15)

18



2.2 Reinforcement Learning

Figure 2.4: Behaviour of Periodic Dynamic Movement Primitives with different
initial conditions. The closer the initial conditions are to the limit cycle the less
impact the transient phase has.

ψj = a(r)exp
(
−hj

∥∥∥∥[r cosφ
r sinφ

]
− qj

∥∥∥∥
2

)
, (2.16)

where qJ ∈ R2 represents the centres of the basis functions on the phase plane

g(r) =


1, r ∈ (0,µ1)(

1−
(
r−µ1
µ2−µ1

)3
)3

, r ∈ (µ1,µ2)

0, r ∈ (µ2,∞)

, (2.17)

and

a(r) =


0, r ∈ (0,µ1)(

1−
(
µ2−r
µ2−µ1

)3
)3

, r ∈ (µ1,µ2)

1, r ∈ (µ2,∞)

. (2.18)

This formulation is applied in cases when the initial conditions highly differ
from the periodic states. Nonetheless, it may be the case when the initial conditions
are close to the attractor limit cycle, so the transient phase could be considered negli-
gible as it can be observed in Figure 2.4 and the ordinary periodic DMP formulation
is sufficient.

2.2 Reinforcement Learning

A commonly used methodology in robot learning is Reinforcement Learning. RL
enables a robot to autonomously discover an optimal behavior through trial and
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Chapter 2. Theoretical Background

error interaction with its environment [29]. Instead of detailing the solution of the
problem, as in Supervised Learning, feedback is provided in terms of a cost function
that measures the performance of the robot.

To illustrate RL methods and to facilitate the reader’s understanding, some con-
cepts and elements must be introduced. The state s provides an observation of the
current dynamics of the system, which normally is composed of dynamic variables
such as velocities or positions of internal and external element to the robot. The
actions a represents all possible acts that the robot can execute that may change the
system state, for example, motor or control commands. The policy function π maps
the current observations (states) of the system to the robot commands (actions) to be
taken. Last, the reward r is a value that represents the evaluation of taking a specific
action at a current state. Thus, the goal of an RL system is to find the optimal policy
π∗ which maximizes the accumulated future rewards.

There are two different elements in RL systems. First, the agent which generates
an action according to a policy function and previous states. Second the environment
which modifies its state when an action is received. In robot learning the agent is
identified as the robot or the control system. The agent-environment relationship
can be seen in Figure 2.5, and it is described as follows: first, the agent observes the
state st and receives a reward rt. According to these values and the policy function
followed at that instant, the agent generates an action at. Consequently, this action
causes a reaction in the environment, changing the state into a new one st+1 and
giving a new reward rt+1. The flow diagram of this interaction is showed in Figure
2.6.

Figure 2.5: Diagram of Agent-Environment interaction.

Figure 2.6: Performance sequence of states, action and rewards. Source [27].

20



2.2 Reinforcement Learning

2.2.1 Q-learning
Q-learning is a form of discrete-time model-free reinforcement learning technique.
Within the reinforcement learning domain, it belongs to value function methodolo-
gies, which find the optimal policy by first searching the optimal value function
and then deducing the optimal policy from it. A value function defines the sum of
expected reward r from a given initial condition by following a certain policy:

Vπ(st) =
∞∑
m=k

γm−tr(sm,am), 0< γ < 1. (2.19)

where γ is the discount factor that determines the importance of future rewards.
This value is bounded in order to avoid divergence.

Specifically, Q-learning works by learning an action-value function Qπ(s,a)
that gives the expected utility of taking a given action a in a given state s and fol-
lowing the policy π thereafter [27]. The action-value function is defined as follows:

Qi+1(st,at) =Qi(st,at) +η[r+γQi(st+1,π(st+1))−Qi(st,at)] (2.20)

where η ∈ [0,1] represents the learning rate, defined as the level of trust of new
information in comparison with the old one. Once the optimal function Q∗(s,a) is
obtained, the optimal policy π∗ can be extracted without specification of the envi-
ronment dynamics. Thus, the optimal policy is obtained by calculating:

π(s) = argmax
a
Q(s,a) (2.21)

A relevant characteristic of Q-learning is the off-policy learning capability. Dur-
ing the learning phase, any policy can be followed as long as all the state/action
pairs are regularly visited and updated. In the learning phase, a trade-off between
exploitation and exploration must be set, where a common method is ε-greedy, in
which a random action will be taken with probability ε instead of the optimal one.
The Q-learning pseudocode is summarized in Algorithm 1.

2.2.2 Path integral policy improvement
Reinforcement learning algorithms can be derived from different frameworks,
e.g., dynamic programming, optimal control, policy gradients or probabilistic ap-
proaches [6]. Path integral policy improvement (PI2) is a probabilistic reinforcement
learning method which arose from the combination of stochastic optimal control
theory and path integrals. The PI2 approach makes an appealing theoretical connec-
tion between value function approximations using HJB equations and direct policy
learning by approximating a path integral and was proposed in [1]. This section
provides an outline of the important characteristics and prerequisites for the PI2.
For further explanation, see the complete development of the algorithm described
in [1].
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Chapter 2. Theoretical Background

Algorithm 1: Q-algorithm [28]
Input :
Q0 Initial Q-Matrix
η learning rate
γ discount factor
ε exploration parameter

Output:
Q∗ Optimal Q-Matrix

while Q is not optimal do
• Get current state: st

• Choose action amax overall a, that maximize Q(st,a)

• Apply action at← amax with probability (1-ε) (exploitation),
or random action with probability ε (exploration)

• Observe reward rt+1 and new state st+1

• Update Qi+1(st,at) = Qi(st,at)+
η[r+γQi(st+1,π(st+1))−Qi(st,at)]

• Update st← st+1

end

Stochastic Optimal Control

The goal in the stochastic optimal control framework is to find the optimal con-
trol inputs of a stochastic system, which minimize a performance criterion. The
dynamics of the controlled system is assumed to be of the form:

ẋt = f(xt) +G(xt)(ut+ εt), (2.22)

where xt ∈Rn×1 denotes the state of the system,G(xt)∈Rn×p the control matrix,
f(xt) ∈ Rn×1 the passive dynamics, ut ∈ Rn×1 the control vector and εt ∈ Rp×1

white noise with zero mean and variance Σε. Many robotics systems can be mod-
elled by this type of dynamics.

For the finite horizon problem t ∈ [ti : tN ], the aim is to find the control inputs
uti:tN which minimize the value function:

V (xti) = Vti = min
uti:tN

Eτi

[
R(τi)

]
(2.23)

where Eτi [.] is the expectation over all trajectories τi and R represents the finite
cost function over a trajectory τi, with initial state xti at initial time ti and ending
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time tN , defined as:

R(τi) = φtN +
tN∫
ti

rtdt, (2.24)

where φtN = φ(xtN ) is the terminal cost at ending time and rt denotes the imme-
diate cost at time t, described as:

rt = r(ut,xt, t) = qt+ 1
2u

T
t Rut (2.25)

being qt = q(xt, t) an arbitrary state-dependent cost function and R a positive semi-
definitive weight matrix of the quadratic control cost.

Having this formulation of the problem, the stochastic HJB equation, provided
by [26], is expressed as follows:

−∂tVt = min
u

(
rt+ (∇xVt)TFt+ 1

2trace((∇xxVt)GtΣεGTt )
)
, (2.26)

where Ft = f(xt, t)+G(xt)ut,∇x and∇xx refers to the Jacobian and the Hessian,
respectively, of the value function with respect the state x, while ∂t is the partial
derivative with respect to time. Inserting Equation (2.25) into (2.26) allows to find
the minimun, after determining the gradient with respect to u and setting it to zero.
The resulting optimal controls are given by:

u(x∗ti) = u∗ti =−R−1GTti(∇xtiVti). (2.27)

Optimal controls can be inserted in (2.26), resulting in a second order partial differ-
ential equation for the time derivative of the value function:

−∂tVt = qt+ (∇xVt)T ft−
1
2(∇xVt)TGtR−1GTt (∇xVt)

+ 1
2trace((∇xxVt)GtΣεGTt ),

(2.28)

In order to find a solution to (2.28), a transformation of the value function can be
applied such as:

Vt =−λ logΨt, (2.29)

which together with the assumption

λR−1 = Σε, (2.30)

allows a simplification of the HJB equation into:
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−∂tΨt = −1
λ
qtΨt+fTt (∇xΨt) + 1

2trace((∇xxΨt)GtΣεGTt ) (2.31)

with the boundary condition Ψ = exp
(
− 1
λφtN

)
. Applying the Feynman-Kac theo-

rem, the solution for the exponentially transformed value function can be formulated
as:

Ψti = lim
dt→0

∫
P (τi|xi)exp

[
− 1
λ

(
φtn +

N−1∑
j=0

qtjdt

)]
dτi. (2.32)

Therefore, the stochastic optimal control problem has been transformed into an
approximation problem of a path integral, where the optimal control can be directly
derived as a form of an expectation:

uti =
∫
P (τi)u(τi)dτi. (2.33)

where

u(τi) =R−1GTti

(
GtiR

−1GTti

)−1(
Gtiεti − bti

)
, (2.34)

where bti is a complex term, whose derivation is explained in [1] and P (τi) repre-
sents the probability of the trajectory τi

P (τi) = exp− 1
λS(τi)∫

exp− 1
λS(τi) dt

, (2.35)

where S(τi) is the general cost of the path given by:

S(τi,k) =φtN ,k+
∑

N−1
j=i qtj ,k

+ 1
2
∑

N−1
j=i+1

(
θ+Mtj ,kεtj ,k

)T
R
(
θ+Mtj ,kεtj ,k

)
.

(2.36)

Thus, the optimal control is the expectation of the local controls when they
are associated with their probabilities [6]. The probability is inversely proportional
to the path cost, hence low-cost paths have a high associated probability, strongly
influencing the outcome.

Parameterized Policies

PI2 focuses on the direct policy learning, which means learning the policy pa-
rameter such as this policy becomes optimal. The stochastic policy is linearly pa-
rameterized as:

24



2.2 Reinforcement Learning

at = gTt (θ+ εt), (2.37)

where gt is a vector containing the basis functions, θ is the parameter vector and
εt is the exploration noise which its variance is set by the user as an exploration
parameter.

The action at can be interpreted as an input to the control system such as a
control command, a reference to the system to follow or a control gain.

For the case of this thesis, DMPs will be used as parameterized policies, where
the input to the control system is a reference trajectory created by the DMPs. The
usefulness of this parameterized policies has been proven in many studies as [1], [8],
[18] or [21]. Notwithstanding, these studies focused on the discrete DMP,whereas
this thesis proposed a formulation for the periodic case.

The dynamic system can be expressed in the form of the system (2.22):

1
τ

φ̇tẏt
żt

=

 2π
zt

αz(βz(g−yt)−zt)

+

 0
0
gTt

(θ+ ε) (2.38)

where

gt = r∑
N
i=1ψi(φ)

ψ1(φ)
...

ψN (φ)

 , (2.39)

and θ contains the weight vector of the DMPs.
As it can be seen, the system presents a controlled part whose state is zt and an

uncontrolled part with φ and y, thus PI2 is only applied to the controlled part. The
PI2 pseudocode is summarized in Algorithm 2.

Note that the parameter averaging takes into account several considerations,
every parameter update δθti is weighted by two terms, its activation kernel ψj,ti
(Equation (2.6)) and the number of time steps left in the trajectory. This weighted
average gives early points in the trajectory a higher importance as their parameters
affect a large time horizon.

Importance characteristics

In PI2, the exploration of the state-space is done by propagation of the DMPs
rather than sampling the whole space. For high dimensional spaces, it is not pos-
sible to sample the whole state space. Therefore, PI2 is able to perform in high
dimensional spaces, which is typically the case of robots.

To apply PI2, no discretization is needed, but instead it works in continuous
state-action spaces, becoming suitable to perform in robotics systems.

In contrast with others reinforcement learning methods, such as policy gradi-
ent, PI2 does not explicitly calculate the gradient, which is normally sensitive to
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Algorithm 2: PI2 algorithm [1]
Input :
rt = qt+θTt Rθt; immediate cost function
φtN ; terminal cost
at = gTt (θ+ εt); parametrised policy
Σεt ; variance of the zero-mean noise
θ0; initial parameters
K; number of roll-outs per update

Output:
θ; parameter vector

while trajectory cost R not converged do
Create K roll-outs of the system with same initial state x0 using
stochastic parameters θ+ εt

foreach k in K do

• Mtj ,k =
R−1gtj ,kg

T
tj ,k

gT
tj ,k

R−1gtj ,k

• S(τi,k) = φtN ,k+
∑N−1

j=i qtj ,k

+ 1
2
∑N−1

j=i+1

(
θ+Mtj ,kεtj ,k

)T
R
(
θ+Mtj ,kεtj ,k

)
• P (τi,k) = exp− 1

λ
S(τi,k)∑

K
k=1 exp− 1

λ
S(τi,k)

end
foreach i in Time steps N do

• δθti =
∑

K
k=1P (τi,k)Mti,kεti,k

end

[δθ]j =
∑

N−1
i=0 (N−i)ψj,ti [δθti ]j∑

N−1
i=0 (N−i)ψj,ti

Update θ← θ+ δθ
Create a noiseless roll-out to check the trajectory cost
with the new parameters
R= φtN +

∑N−1
j=i rti

end
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noise and large derivatives. Besides the performed calculations are relatively simple
making PI2 computationally robust.

As it can be seen in the development of the method, only the control transition
matrix of the model needs to be know. Furthermore, the designer can set the control
system’s structure so that the control transition matrix is known, entering a model-
free domain.

Additionally, PI2 has no tuning parameters except from the exploration noise ε,
which offers an advantage comparing with others reinforcement learning methods
where the designer has to tune many parameters to achieve a desired performance.
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3
Robot and Software

3.1 The robot

This section explains the robot itself, both hardware and software parts.
The robot was originally created by Dr.Yamada [34], and posteriorly redesigned

by the Department of Automatic Control at LTH. The robot, shown in Figure 3.1,
is composed of four independent fingers, each one with 3 degrees of freedom, be-
cause of 3 revolute joints. For modelling each finger of the robots, we consider the
following Denavit–Hartenberg parameters:

Table 3.1: DH parameters of the finger

Link ai αi di θi
1 L1 π/2 0 θ1
2 L2 0 0 θ2
3 L3 0 0 θ3

Where L1 = 38.5 mm and L2 = 47.5 mm. The value of L3 depends on the
dimensions of the end effector. In this case the end effector corresponds to a screw
coupled magnetically to the servo motor such L3 = 51.6 mm.

Figure 3.1: The robot.
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Table 3.2: Base transformation parameters

Finger xi (mm) yi (mm) ψi (◦)
1 46 46 45
2 -46 -46 -135
3 -46 46 135
4 46 -46 -45

Figure 3.2: Model of the robot in the robotics toolbox.

The base of the generic finger is described by the transformation consisting of a
translation along the z axis by h followed by a rotation of -90 degrees around the y
axis with respect the world frame, where h= 28.1 mm.

Every finger is located in a different position with a different orientation around
the z axis with respect the world frame. Hence, the base of each finger is specified
by a transformation that premultiply the previously described generic base.

Basei = transl(xi,yi,0)rotz(ψi)︸ ︷︷ ︸
specific

transl(0,0,h)roty(−90)︸ ︷︷ ︸
generic

. (3.1)

Table 3.2 shows the values of the specific transformation for each of the fingers.
This modelling of the robot is used in both, Matlab and V-REP. In Matlab, these
functions are supplied by the robotics toolbox [35] created by Peter Corke. This
Matlab toolbox allows modelling, study and simulation of robotics arms, for ex-
ample, kinematics and dynamics. Figure 3.2 displays the robot in this environment.
However, this library is very simple and its only purpose is to generate trajectories
and accomplish joint/Cartesian space transformations, and it is not used for simu-
lating interactions with the environment. Therefore, this function will be addressed
with V-REP.

The robot and the communication system were provided by the department of
Automatic control at LTH. The setup of the robot was not changed. The libraries for
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Figure 3.3: Scheme of connections between servo-motors and computer, Standard
for serial communication transmission of data are RS232 and RS485. All servos
and the power source are connected to a relay box, which also connects with the
processing unit, which is in charge of exchange of information between servos and
the control station (laptop). Source [47].

the communication were written in C, and they were composed of API functions
oriented to send control commands and receive the state of the servos. The servo’s
controllers were internally implemented, therefore no modifications were possible.
The control commands sent to the servo are reference position and movement dura-
tion, and therefore the control type is position control. The information feedbacked
from the robot includes motor current (which is directly proportional with torque),
position, speed, temperature, input voltage and input control time.

The hardware of the robot is composed of 12 servo motors RS301CR-H3, at-
tached together through some connecting elements, a power source TB-RV71EH
and a bus-powered USB device RSC-U485. The information about specifications
of the servos and connections is available at [47], the resolution of the servos is 0.1◦

and the resolution time for control is 10 ms. However the communication process
constrains the robot to a limited bandwidth, which is related to the serial port bau-
drate set to 115200 bps. A scheme for the servo connection is displayed in Figure
3.3, as well as the disposition of the servos is shown in Figure 3.4.

Figure 3.5 shows a diagram of a generic finger along with an image of the real
finger of the robot, where the reader can see the connecting elements referred above.

Although all calculations are performed by software, it might be insightful for
the reader to know the direct kinematics of each finger:

x=−L2 sin(θ2)−L3 sin(θ2 +θ3)
y = sin(θ1)(L1 +L2 cos(θ2) +L3 cos(θ2 +θ3))
z = h+ cos(θ1)(L1 +L2 cos(θ2) +L3 cos(θ2 +θ3))

. (3.2)
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3.1 The robot

Figure 3.4: Servo arrangement; outer servos represent the base’s servos of each
finger.

(a) (b) Real finger

Figure 3.5: Diagram of a generic finger (a) and real finger (b).

The kinematics of the finger can be considered atypical when comparing with usual
examples of 3 DoF robots, because of the absence of a joint around the global z
axis, which increases the complexity of the inverse kinematic problem, addressed
in the next chapter.

From the above kinematics the geometric Jacobian matrix can defined as fol-
lows:
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J(θ) =

 0 −L2c2−L3c23 −L3c23
c1(L1 +L2c2 +L3c23) s1(−L2s2−L3s23) s1(−L3s23)
−s1(L1 +L2c2 +L3c23) c1(−L2s2−L3s23) s1(−L3s23)

 (3.3)

where c1 = cosθ1 and c23 = cos(θ2 +θ3). The Jacobian matrix will be used to
obtain end effector forces from motor torques.

3.2 Simulation Software V-REP

Having a simulation environment is beneficial when working with real robots, as it
is used to create embedded applications for a robot without depending physically
on the actual machine, thus saving cost and time. There exists a wide range of
robot simulators, each of them aiming for different purposes. For this thesis, the
desirable characteristics are the ability to simulate with a certain degree of accuracy
the dynamics of a system, namely collision and reactions forces between ball and
finger, and also between fingers.

Some surveys such as [33], present a list of the most common robot simulators
along with their main characteristics and user satisfaction ratios. For this project, the
motivation to use V-REP was twofold, first it offers several physics engines that will
be discussed in this section, and secondly it offers several programming approaches
including remote API control with several languages. Both features provide a high
level of usability. According to [33], V-REP presents the highest user satisfaction
ratio.

The following subsections contain information about the characteristics of V-
REP, for simplicity only relevant characteristics will be mentioned. For further de-
tailed explanation have a look to the V-REP manual available in [36], from where
all this information comes.

3.2.1 Physics Engine
A physics engine is a computer software that provides simulation of certain physi-
cal systems, such as rigid body dynamics, soft body dynamics and fluid dynamics.
While their main applications are in the video game industry, they are also com-
monly used for engineering purposes.

V-REP’s dynamics module currently supports four different physics engines: the
Bullet physics library, the Open Dynamics (ODE), the Vortex Dynamics engine and
the Newton Dynamics engine [36]. The reason for this diversity in physics engine
support, is that physics simulation is a complex task, that can be achieved with
various degrees of precision, speed, or with support of diverse features.

Bullet and ODE feature collision detection and rigid body dynamics, but both
are considered primarily a game physics engine. Newton offers stability and speed,
features which convert it in an appropriate tool for real time physics engine. Vortex
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offers high fidelity physics simulation combined with realistic parameters. Vortex
seems to be the most accurate physic engine, but in the free version of V-REP a
license is required, and it can only run simulations for up to 20 seconds. Therefore,
in practice only three physics engines are available, where among them, we focus
on Newton and ODE.

3.2.2 Material properties
For each physics engine, V-REP presents several material properties such as fric-
tion, restitution, damping, compliance and many others. More information is avail-
able at [36]. A remarkable comment on this section, is that for ODE and Bullet, the
material parameters provided by the user, does not correspond to real parameters of
the material, which may trouble tuning. On the other hand, Newton only possesses
few parameters which are bounded, which allows easier choices from the users at
the cost of limited modelling. For these reasons, the choice of the dynamic engine
is done empirically and may vary depending on the purpose of the simulation.

3.2.3 Joint Control
V-REP includes different types of joint control, but for this thesis all joints present
the same type of control which is Torque/Force mode. V-REP presents a control
loop property in which the user is able to control the joint choosing among three
different control joints:

• Custom control: the joint will be controlled by its own script, allowing the
user to use any imaginable algorithm.

• PID control: the joint will be controlled in position via a PID controller that
will adjust the joint velocity in following way:

vi = Kpei+Ki
∑
ei4t+Kd(ei−ei−1)/4t
4t

Fi ≤ c
where vi represents velocity and ei position error. In V-REP this controls dif-
fers from the common PID. To clarify, the PID sets the velocity reference and
V-REP will try to reach it with an internal force control where the maximum
force is bounded to the value c.

• Spring-damper mode: the joint will act like a spring-damper system via a
force/torque modulation:

vi ≤ c
F =Kei+C(ei−ei−1)/4t

In this case, the velocity is the bounded parameter.

For the simulation of our system, PID control was chosen, as it was the type of
control which offers better performance.
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3.2.4 Communication with Matlab
V-REP offers a remote API allowing to control a simulation (or the simulator it-
self) from an external application or a remote hardware (e.g., real robot, remote
computer, etc.). The V-REP remote API is composed by approximately one hun-
dred specific functions and one generic function, which can be called from a C/C++
application, a Python script, a Java application, a Matlab/Octave program, an Urbi
script, or a Lua script. Still the remote specific functions do not entirely cover all
the specific functions of the simulation scripts in V-REP,and therefore it could be
the case where V-REP itself performs certain calculus and send the data to Matlab.

The idea is that Matlab will set the joint target periodically while the simulation
is running, and the control loop of V-REP will execute its commands. By default,
the remote API calls are asynchronous, which means that simulation may advance
without taking into account the progress of the API client. Thus, synchronous oper-
ational mode is used, in which the API client trigger each simulation step.

3.2.5 Designing dynamic simulations
V-REP allows several ways to model a system. Systems can be imported from CAD
files or be directly created in V-REP. V-REP advises several design consideration
when simulating a system in order to achieve better simulation performance. There-
fore, these guidelines were followed as close as possible.

First, the design of the robot: the robot was built from combinations of primitive
shapes (cuboids, cylinders, spheres), as primitives shapes are much more stable and
faster during simulations.

Second, the hierarchical structure follows the suggested convention. V-
REP classifies shapes according to two characteristics, non-static/static and
respondable/non-respondable. During dynamic simulation, static shapes maintain a
fix position with respect to their parents, whereas non-static shapes will be directly
influenced by gravity or other constraints. Respondable shapes influence each other
during dynamic collision, i.e., they produce mutual collision reaction. The model
base object is a static respondable shape, which represents the first servo of each
finger, whereas the rest of the shapes are modelled as non-static respondable shapes.
Furthermore, all non-static shapes are connected through dynamical enabled joints,
as it can be seen in Figure 3.6.

The robot was modelled using the actual dimensions. Nevertheless, these dimen-
sions were smaller than suggested (less than 3 cm), so a scaling term was applied
to the whole model. Masses as well as inertias were also accordingly scaled. This
aspect was important to obtain a stable and realistic simulation. The model can be
seen in Figure 3.7.

3.2.6 Simulation configuration
Simulations are run through a main script in V-REP, which is executed every sim-
ulation step. This main script is in charge of handling all the functionality of the
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Figure 3.6: Hierarchical structure of a finger. The bouncing ball indicates dynamic
enabled elements which the physics engine will take into account.

Figure 3.7: Model of the robot designed in V-REP.

simulator, as for example, running possible non-threaded child scripts associated to
some objects, send control commands and take some measurements. The default
and recommended value for the simulation step is 50 ms, but it can be customized.

The physics engine has a different time step, set by default to 5 ms. That means
that for every simulation step the physics engine runs 10 times and the measure
received from the simulation usually correspond to the last physics engine step. This
implies that if a precise control is required from an remote API, the simulation’s
and physics engine’s time steps should be equal. Unfortunately, it slows down the
simulation.
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This chapter describes the methodology adopted in order to setup the experiments
in an appropriate way, for both the simulation and the real robot.

4.1 Initial parameters

As mentioned in previous sections, PI2 relies heavily on the initial parameters, from
which it explores to find an optimal solution. Therefore, the choice of good initial
parameters is a matter of great importance for this work. One can believe that spin-
ning a ball optimally is easy, but this fact is far from reality. Human hands and robot
present different architectures, so optimal initial parameters are unknown a priori.
In previous studies, as pancake flipping, ball in a cup or ball paddling, the initial
conditions were taught by demonstration when a human operator guided the robot
through a good enough trajectory to complete its task. However, this approach is
not applicable to this work.

To address the problem, a discrete high-level planing was done in order to obtain
certain insight about the optimal finger coordination that maximises ball rotation
without letting it fall.

4.1.1 High-level planning
An abstract high-level model of the system is built, in which states and actions are
high level representations. This method is a modification of the one used in [2],
which addresses the problem for a 3-finger configuration.

Each finger performs an action independently. These actions correspond to stay-
ing still, closing or opening, and moving left or right. Writing the action of finger i
as ai, the actions are encoded as:

Given that there are 4 fingers, there are 34 = 81 possible sets of actions.
The proposed state of the fingers, are defined by their relative position with

respect to the ball. Denoting r0 the radius of the ball and φ0 the nominal position
of the finger and by using the polar coordinate from the centre of the ball, we can
describe:
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Table 4.1: Finger Actions.

ai Effect
0 Still
1 Open or Close
2 Left or Right

Left Open= {
(
(r,φ)|r > r0

)
∧
(
0< φ−φ0 < 15π/180

)
} (4.1)

Hence, each finger presents the following states denoted by si:

Table 4.2: Finger States

si Definition
0 Right Open
1 Right Close
2 Left Open
3 Left Close

As we have 4 fingers, the total number of total states is 44 = 256.
Once the states and the actions of the system are set, the next step is to create

the dynamics of the system, which in this case is non-linear:

s(t+ 1) = f(s(t),a(t)) (4.2)

where
ft = st2 XOR at2 (4.3)

and where the subscript 2 denotes the binary representation of the number. This
systems dynamics are possible thanks to the encoding of states and actions. Taking
a look at the actions, Close and Open action is encoded as 012, which combined
to a logic exclusive OR is able to change only the lower bit of the states, which
corresponds to the open or close states, same occurs with left or right action.

The reward function is defined taking into account the dynamics of the ball. It
is considered that the rotation is produced when all fingers in contact with the ball
perform a displacement in the same direction. If one finger remains still or moves
in the other direction, ball rotation is not considered. Furthermore, stability of the
ball must be assured. A stable grip is recognised when more than 2 fingers or the
two opposite fingers are in contact with the ball. Transition between states also
represents a stability issue. A stable transition means that at least the two opposite
fingers are closed in both s(t+ 1) and s(t) states.

The designed reward function encourages counter-clockwise (ccw) rotation of
the ball and discourages clockwise (cw) rotation. Furthermore, it punishes unneces-
sary movements and more heavily movements which yield to instability.
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r(s,a) =



1 ccw rotation
-1 cw rotation
-1 some closed fingers

still while others moving
-2 all closed fingers move

but in different directions
-10 unstable grip or transition

(4.4)

Given the definition of the actions, states and reward function, the Q-learning
algorithm is applied with the following parameters for the Equation (2.20):

γ = 0.9, η = 0.3, ε= 0.01 (4.5)

After computing several times the learning algorithm with approximately 3000000
iterations, two optimal sequences were reached. Figures 4.1 and 4.2 display those
sequences. Initial conditions are irrelevant, since our objective is to find a periodic
sequence. The following tables show the sequence of states and actions to be taken:

Table 4.3: State-transition sequence 1 for optimal spinning of the ball.

t st at st+1 rt+1
1 [3,1,3,1] [1,2,1,2] ⇒ [2,3,2,3] 1
2 [2,3,2,3] [2,0,2,0] ⇒ [0,3,0,3] 0
3 [0,3,0,3] [1,0,1,0] ⇒ [1,3,1,3] 0
4 [1,3,1,3] [2,1,2,1] ⇒ [3,2,3,2] 1
5 [3,2,3,2] [0,2,0,2] ⇒ [3,0,3,0] 0
6 [3,0,3,0] [0,1,0,1] ⇒ [3,1,3,1] 0

Table 4.4: State-transition sequence 2 for optimal spinning of the ball.

t st at st+1 rt+1
1 [2,1,3,1] [2,2,1,2] ⇒ [0,3,2,3] 1
2 [0,3,2,3] [1,0,2,0] ⇒ [1,3,0,3] 0
3 [1,3,0,3] [0,0,1,1] ⇒ [1,3,1,2] 0
4 [1,3,1,2] [2,1,2,2] ⇒ [3,2,3,0] 1
5 [3,2,3,0] [0,2,0,1] ⇒ [3,0,3,1] 0
6 [3,0,3,1] [1,1,0,0] ⇒ [2,1,3,1] 0
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Figure 4.1: Optimal sequence 1.

Figure 4.2: Optimal sequence 2.

In fact, these optimal sequences are not unique, as there can exist small varia-
tions. For example, in Sequence 1, when t= 2 it is possible to have either [2,3,2,3]
or [2,1,2,1], which only means a delay in the movements of finger 2 and 4, and does
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not affect the total reward of the cycle.
As it can be observed, both sequences present a duty cycle of 2/6, i.e., 2 rotations

in a sequence of 6 movements. Comparing both sequences, several conclusions can
be extracted. First, Optimal sequence 1 is symmetric for opposite fingers, and thus
the dimensionality of the problem can be reduced, presenting a major advantage to
the problem. The main difference is that Sequence 1 relies in two finger’s grip and
Sequence 2 in three finger’s grip. It could be the case that the stability conditions
of the ball for this experiment do not accurately match the real ones. For Sequence
number 2, the 3 finger’s grip might be unstable configuration as the sum of the
applied forces may not be zero. Hence, the project will focus on Sequence number
1.

4.1.2 Theoretical Approach: Inverse Kinematics
Once there is an overall understanding about the optimal trajectory, the next step is
to create a continuous trajectory. As the learning algorithm is going to be applied
in the joint space, there is a need to deduce a joint trajectory with enough points, in
which the DMPs are successfully initialized.

In order to transform from task space to joint space, the Inverse Kinematic (IK)
problem must be solved. For the configuration of the finger, solving the IK prob-
lem through the algebraic approach is too complex. Fortunately, the robotic tool-
box [35] provides two different methods to solve this problem. The typical one is
to use the function ikine. However, it only outputs one solution among the possible
ones. For this reason, the function ikine_sym was used, which provides a symbolic
solution from which all possible configurations can be deduced. This function uses
the Pieper’s approach [38], which theoretically it works only for robots whose con-
secutive axis intersect. Surprisingly, all provided solutions were checked with the
forward kinematics function, and were classified as valid as long as the tested points
were inside the workspace.

These trajectories were constructed in Matlab, and were used in the simulation,
as the results in the real world were unsatisfactory. The type of grip can be seen in
Figure 4.3a.

4.1.3 Empirical Approach
The previous approach was built upon a simplistic model of the robot, so it did not
consider its own shape. Using the real robot offers some awareness about a stable
grip of the ball. For example, a stable grip was achieved when the robot contacts the
ball, not with the fingertip, but with the finger surface as in Figure 4.3b.

Joining this knowledge with the obtained Sequence 1 from Section 4.1.1, a tra-
jectory was generated in which the robot managed to rotate the ball. However, this
trajectory was composed of a reduced number of points, which hindered the initial-
ization of the DMPs. By linear interpolation, the number of points were increased
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(a) Grip of the theoretical ap-
proach.

(b) Grip of the Empirical ap-
proach.

Figure 4.3: Ball grips.

to satisfied a good fitting by the DMPs. These initial conditions were applied to the
real robot.

4.2 Algorithm Parameters

Thanks to the assumption of symmetry, the dimensionality of the problem can be
reduced from 12 to 6 DoF. Therefore the number of DMPs was set to 6. The number
of basis function for each movement primitive was set to 15. To select an appropriate
number, two aspects must be taken into consideration. First, it has to be high enough
to offer an appropriate fitting for the chosen initial conditions and second, it should
be as low as possible to facilitate convergence. The DMPs will provide the reference
trajectory to the robot.

For the exploration noise ε there are different approaches. The first one is to
add noise only on the weight of the maximally activated basis function of the motor
primitive, and keep it constant until another function gets higher activation. The
other one is to add variable noise to all basis function. For this thesis, the first
approach was used as it improves the learning speed. To ensure convergence, the
variance of the exploration noise Σε is multiplied by a decay factor γ where

γ = max
(N − i
N

,γmin
)
, (4.6)

N represents the total number of updates, i is the actual update, and γmin is
an arbitrary value set to 0.2. This combines advantages of high and low degrees of
exploration, where in the first steps the algorithm presents quick convergence due
to high exploration, and benefits of good exploitation in the final steps.

As mentioned, PI2 was run in Matlab,and the code was an adaptation to cope
with periodic DMPs, of the code provided in [42].
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4.3 Simulation

V-REP showed bad behaviour in relation with contact surfaces, and therefore the
purpose of the simulation was shifted to prove the usefulness of PI2 for the opti-
mization of the rotation problem, instead of focusing on holding the ball.

The simulation helped to address the problem of reward shaping, the design of
a good reward function is ultimately important as it may quicken convergence to a
the optimal solution. Specifying a good reward in robotics requires a fair amount of
knowledge and may often be hard in practice.

In simulation the ball was attached to a spherical joint whose position in the
workspace was fixed see Figure 4.4. The grey cylinder is a non-responsible static
shape where the joint is attached, and does not present any dynamical behaviour, but
its function is merely visual. The spherical joint is passive, allowing free rotation
of the ball among the three axes. In order to have a realistic behaviour of the ball
rotation, the angular drag factor was increased. As consequence the ball only rotated
when it is in contact with the robot, when the robot was not touching the ball the
angular drag compensated the inertia momentum of the ball impeding rotation.

Figure 4.4: Simulation environment consisting in a fixed ball with free rotation axis
and the 4-finger-gripper robot.

4.3.1 PI2 in V-REP
This section explains how the PI2 algorithm was applied to the simulation environ-
ment.

The initialization of the DMP’s parameters and the implementation of the algo-
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rithm was performed in Matlab. The evaluation of the cost function was done by
Matlab and V-REP, actuation was in a synchronous mode. Matlab acted as a client
sending the action command to the V-REP model (server). V-REP executed this
control commands and sent back some information about the state of the system.
Matlab, with the new information, evaluates the cost function at this time instant.
Matlab was also in control of start and ending of the simulation process.

The state of the system, such as angular velocities and interaction forces were
provided by V-REP, thus their correctness depended on the physics engines. To
obtain these parameters, the simulation time step was reduced to 15 ms, and the
control command was sent every 3 simulation time steps. This was done in order to
rely upon more than one value provided by the physics engine, so for every control
command, the angular velocities and forces were retrieved by averaging the received
data. The diagram of the process is represented in Figure 4.5. However, this method
presented a drawback as it slowed down the simulation.

Figure 4.5: Synchronous communication between V-REP and Matlab; Three simu-
lation steps are run for every control command to improve measurements. V-REP
will always follow the last control command sent, in case no control command is
received.
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Figure 4.6: View of the workspace from camera.

4.4 Real Robot

The experimental setup for the real robot is more complicated in comparison with
the simulation. The process of obtaining information about the system is more dif-
ficult and the development of the experiment might present a stochastic behaviour.
This section explains how these problems are resolved.

4.4.1 Visual Feedback
In the real implementation, the states of the ball can not be obtained in a simple
way as with V-REP. Therefore, a camera is needed to detect ball translations and
rotations. The camera is located offering a top view of the workspace as in Figure
4.6. In order to fix the camera in a desired position, an aluminium structure was
built, showed in Figure 4.7.

The camera should record a sequence of images, while the robot is performing,
and from this sequence, the reward values have to be extracted. Hence, several com-
puter vision techniques should be applied to extract the relevant information. This
subsection explains how this process is executed. The algorithm was implemented
in C++, using the OpenCV library [44]. OpenCV is an open source library aimed at
real-time computer vision.

Due to the fact, that many variables composing the reward function come from
the state of the ball, the first step is to segment the ball from the image. As the
camera is fixed, one can consider that the only external element in the workspace is
the ball. It is an important consideration because as it can be seen in Figure 4.8, the
workspace is not composed of a wide range of colours. Hence, as the testing ball is
green, the main feature for the segmentation is colour.

The ball surface is chromatically uniform, except from small inscriptions, and
thus some landmarks need to be attached to it, in order to be able to estimate ball
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Figure 4.7: Aluminium structure, whose function is to fix the camera with a desir-
able view and to facilite the user to obtain similar initial conditions of the ball.

Figure 4.8: View of the workspace without the ball. The lack of green colour makes
the color detection feasible.
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Table 4.5: HSV limits for detection

HighH LowH HighS LowS HighV LowV
Green 75 38 233 53 233 60
Light-Blue 130 75 255 62 255 70

(a) Green colour seg-
mentation

(b) Light blue colour
segmentation

(c) Bitwise OR to seg-
ment the ball

Figure 4.9: Binarized images from camera.

rotations. Again, having in mind the effectiveness of the colour segmentation, some
light-blue stickers are glued to the ball. Light-blue is the color that offers a good
contrast with the workspace facilitating its detection, as can be seen in Figure 4.6.
This segmentation is accomplished by following different steps: Firstly, the acquired
image is converted into HSV color space, The HSV space is widely used in color
segmentation as its offers a differentiation between colour and intensity. Secondly,
the image is binarized using the inRange function. If all the HSV values of the
pixel are within a certain interval previously selected, the pixel will be converted to
255, otherwise the value will be converted to 0. Afterwards, some morphological
operations, such as opening and closing, are performed to eliminate noise.

These previous steps are done both for green and blue light color, Table 4.5
shows the bounding parameters for this detection. At this point, the two resulting
images are representations of the green and light-blue objects within the workspace,
Figures 4.9a and 4.9b . The ball is extracted from a bitwise-OR between both im-
ages, see Figure 4.9c.

It is possible to extract the properties from the objects by applying a contour
detection to the binarized images. In order to make a robust detection, a minimun
area threshold is applied to all objects, eliminating small objects that could have
possibly survived the morphological operations.

In the case of the ball, once the contour is extracted, centre position and radius
are acquired by means of the minEnclosingCircle function. This function provides
the centre and the radius of the mininum enclosing circle of a set of points, which
for this case form the contour of the ball. This function is highly useful as it per-
fectly matches the shape of the object to detect, even when some parts are hidden,
see Figure 4.10. The same procedure is also applied to the landmark detection,
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Figure 4.10: Ball detection with obstacles.

Figure 4.11: Detected ball and landmarks.

but instead of minEnclosingCircle function, fitEllipse function is used, as the only
property of interest is the centre. The results are displayed in Figure 4.11. Only the
landmarks whose centre are inside the ball are taken into account, this is done in
order to eliminate possible errors.

From this process, the centre and radius of the ball are collected, which are
directly related to the cost function. Moreover, the study of the evolution of posi-
tion of the landmark is related with the angular velocities. Unfortunately, this study
might be hindered as a consequence of disapearence and entrance of new landmarks
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during experimentation.
The tracking of the landmarks is performed by comparing distance between

landmarks at consecutive frames. The assumption that the landmark at time t, comes
from the nearest landmark at time t−1 is valid when ∆t is small enough. Landmark
coordinates are referenced to the centre of the ball, thus the landmark positions are
only affected by ball rotations. The z coordinate is deduced thank to the known
shape of the object, by applying the formula:

φ= arccos x
2
t+y2

t
rbt

zt = rbtsin(φ)
(4.7)

where rbt is the detected ball radius at time instant t. Then, from the tracking of
the landmarks, the angular velocity of the ball can be estimated. Considering the
equation of the rotation of a point:

r(t) =R(t)r0, (4.8)

where R(t) is the rotation matrix and r0 the vector of the initial point. The time
derivative of this equation, explained in [45], is:

ṙ(t) = S(ω)R(t)r0, (4.9)

where S(ω) is a skew-symmetric matrix. Developing (4.9) in the following manner:

ṙ(t) = S(ω)r(t) = ω× r(t) =−r(t)×ω =−S(r(t))ω. (4.10)

We arrive to an equation where the unknown variable is ω. As ṙ(t) corresponds
to the linear velocity of the landmark, which can be easily calculated, and S(r(t))
is a skew-symmetric matrix of its position defined as:

S =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (4.11)

Since there are as many Equations (4.10) as visible landmarks, we deal with a
linear least squares systems of the form:

ṙ1x(t)
ṙ1y(t)
ṙ1z(t)

...
ṙNx(t)
ṙNy(t)
ṙNz(t)


=−



0 −r1z r1y
r1z 0 −r1x
−r1y r1x 0

...
...

...
0 −rNz rNy
rNz 0 −rNx
−rNy rNx 0


ωxωy
ωz

 . (4.12)
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In order to solve this system within the C++ script, the library Eigen [46] was
used. This library provides templates for linear algebra: matrix and vector opera-
tions, numerical solvers and related algorithms.

4.4.2 Combined Feedback Servo-Visual
Excessive normal forces may damage the servo motors and consume more power,
so for the real robot it is a significant aspect to be considered.

As mentioned, from the servo motors, position and torque can be extracted.
Knowing them and the relation between torque and force,

τ = J(θ)TF, (4.13)

the force applied by the fingertip can be derived, by computing the inverse of the
transpose Jacobian. However, for robustness purposes, instead of the inverse, the
pseudo-inverse is used, Equation (4.14). The reason is that there could exist cer-
tain configurations in which the Jacobian matrix is not invertible, and consequently
generates a singularity.

F =
(
J(θ)T

)†
τ (4.14)

The data received from the robot does not present a high accuracy. In fact, the
values of the torques and angles have an offset. Therefore, the program has a start-
up phase in which it reads these offsets in order to subtract them during the whole
data acquisition process.

The force calculated in Equation (4.14) is referenced to the base of each finger.
As a result, all forces must be converted to global coordinates by applying the spe-
cific transformations detailed in Subsection 3.1. In order to determine the normal
force exerted to the ball, the normal vector to the ball needs to be know. To define
the normal vector, it has to be assumed that the contact point with the ball would be
the fingertip. As explained previously in the real case the contact point is unknown,
but we could estimate it, as it would be near the fingertip.

The visual feedback provides us with the position of the centre of the ball.
Nonetheless, its coordinates are in pixels and with respect to the camera frame.
A calibration of the camera should be done in order to transform to global coor-
dinates. The camera calibration is performed in a separate script. This script will
provide some parameters to transform pixel coordinates to global coordinates.

For a correct calibration, the camera should be facing down in a perpendicular
way and be located above the centre of the robot, which is the world’s origin. First,
the user selects the 4 corners of the base of the robot, whose dimensions are known,
and as a result the script will calculate the origin’s coordinates in pixels and the ra-
tios millimetre-pixel in x and y directions. These 4 parameters define the calibration
for the plane x-y.

The calibration of the z axis is done by using the radius of the ball. The radius
is directly proportional to its height, but the mapping function is unknown. The user
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Figure 4.12: Calibration process: The user clicks in the four corners of the robot’s
base (blue dots) and the origin is computed (black dot).

(a) Low-case calibration. (b) High-case calibration.

Figure 4.13: Height calibration.

should input two measures of the height as the camera detect the ball, corresponding
to when the ball is on the floor or held by the robot. The script will retrieve 4 param-
eters in order to perform a linear interpolation. During experimentation the height
is not expected to vary much, unless the ball drops. Therefore the linear interpo-
lation will compute an acceptable estimation. Table 4.6 summarises the calibration
parameters.

The global coordinates of the ball in millimetres are determined as follows:

x= (xp− cx)rx
y = (yp− cy)ry
z = h1 + (r− r1)h2−h1

r2−r1

. (4.15)
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Table 4.6: Calibration parameters.

Parameter Meaning
cx origin coordinate x in pixels
cy origin coordinate y in pixels
rx ratio mm/pixel in axis x
ry ratio mm/pixel in axis y
h2 big height
h1 small height
r2 big radius
r1 small radius

where xp, yp and r are the ball centre in pixels and the radius.
The global position of the fingertip is determined by applying direct kinematics

and the transformation described in Section 3.1. With ball and fingertip positions
the normal vector ~ni is deduced, and the normal force of each finger is computed as
follows:

~fni =
~fi · ~ni
‖ni‖2

~ni. (4.16)

4.4.3 Program Structure
The program is structured similarly to the simulation. From Matlab the DMPs are
initialized, PI2 parameters and cost function parameters are set, and parameters up-
dates are performed.

As mentioned earlier, the library files for controlling the robot were written in
C and OpenCV works in C++. However, this can be specified to the compiler, so
that C libraries can also be used in a C++ program. This is very advantageous as
only one program is needed. The C++ program is in charge of reading the reference
trajectory, and executing it. Meanwhile it takes data from the camera and the robot,
after executing the trajectory it sends them to Matlab.

The communication between Matlab and C++ is done in a simple way, by writ-
ing and reading .txt files. This naive way of communication presents some advan-
tages, for instance, there is no need of parallel execution of them, which serves to
prevent overheating of the robot.

An operator must be present to direct the process. The operator has the role to
inform Matlab, when the execution of the trajectory has finished, to set the ball in
the same initial conditions for every roll-out, and inform the C++ program when it
can start to execute the trajectory. Figure 4.14 displays a scheme of the method.

4.4.4 Repeatability of Initial Conditions
In the real environment the initial conditions are not exactly the same as in simula-
tion. Repeatability of initial condition is important, as it affects the performance of
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Figure 4.14: Scheme of the training program. The files icons represent .txt files in
which the data is stored. All the process needs manual control and supervison from
the user.

PI2. For instance, if the ball is located in a different position before starting every
roll-out the cost function may be different for equal trajectories, which is undesir-
able for the purpose of learning.

To reduce this problem, some elements have been added to the experiment to
ensure minimun variations of initial conditions. The ball is inserted to the environ-
ment with an aluminium bar and the direction of the aluminium bar’s insertion is
constrained by some mechanical elements. Moreover, some reference points were
marked in both the bar and image,so as to the user ensures overlapping of both
points before sending the grasping command to the ball. Figure 4.15 shows the ini-
tial condition set-up.

(a) The blue dots should overlap
to ensure repeatability.

(b) Robot grasps the ball, and the
user can take the bar away.

Figure 4.15: Initial condition setting.
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5
Experiments and Results

5.1 Simulation

For the simulation experiments the cost function is defined as:

rt = a1ω
2
x+a2ω

2
y +a3fr +a4

4∑
i=1

fni , (5.1)

which penalizes rotation around x and y axes as only pure rotation around z is de-
sired. The term fr denotes the sum of all the forces applied to the ball. The idea
behind is that we want to maintain the ball in the same position and therefore, the
sum of the interaction forces should be zero. fni represents the normal force applied
by each finger. This term avoids penetrations and excessive forces, as it could be the
case that the grasping is stable (fr = 0), but the robot is applying high forces com-
pressing the ball, which may damage the robot. Both fr and fni are only considered
when their absolute value surpass a certain threshold, Γr and Γn respectively. The
cost function is normalised according to the number of cycles performed by the
DMPs. For rewarding counterclockwise rotation around the z axis, two approaches
were considered. First, the addition of a terminal cost inversely proportional to the
angle rotated by the ball:

φt = a5
(
θmax−θN

)
, (5.2)

where θmax is a reference angle big enough to not be reached, it has the form
θmax = 2,5n, being n the number of total cycles performed by the DMPs and θN
is the total rotated angle of the ball, calculated by a reference point attached to the
ball. And second, adding in Equation (5.1) the term −a5ωz . This term will reduce
the cost function by favoring high angular velocities around the z axis. For both
cases, the weight a5 should be high, if the user wants to prioritise this term over the
others.

This section presents the result obtained from simulation using various parame-
ters, a1, a2, a3, a4, a5, Γr, Γn used in Equation (5.1) and various number of updates
and noise variance Σε of the PI2. Every update is composed of 10 roll-outs, reusing
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the best 5 for the next update. The duration of all experiments is of 4τ . This dura-
tion was selected in order to give more importance to the periodic part, while also
having realistic simulation time. Long simulation runs present the disadvantage of
becoming slower. For instance, in an experiment with 80 updates, the first roll-outs
were computed in less than 10 seconds, which was not the case for the last roll-outs
as they took almost 1 minute.

Test I: Terminal Cost
In the first scenario, the method for rewarding counterclockwise rotation is to

add a terminal cost such as in Equation (5.2). This test aims to perform a reduction
of all terms in the cost function, and their weights have thus been chosen accord-
ingly, in order to have similar importance. Table 5.1 shows the parameters used for
the simulation.

Table 5.1: Parameters used in Test I.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε Updates
Value 5 0.01 10 1000 10 20 80

The results can be seen in the following figures:

Figure 5.1: Test I: Total cost evolution (upper). Evolution of the total rotated angle,
this term is associated with the terminal cost (lower).
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Figure 5.2: Test I:Initial and final reference trajectories of the fingertips. The left
one correspond to finger 1 and the right one correspond to finger 3. As the behavior
of the fingers is symmetrical, finger 2 and finger 4 have same local reference tra-
jectories as finger 1 and finger 3. Black triangles inform about the direction of the
movement.

Figure 5.3: Test I: Cost of angular velocities.
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Figure 5.4: Test I: Forces evolution. The data corresponds to the total sum of the
forces of all fingers at every time instant. Applied forces (upper), perpendicular
forces to the ball (lower).

Figure 5.5: Test I: Joints reference trajectory: Blue initial trajectory, Red final tra-
jectory. These plots show the two first periods. The first period is the transient part
whereas all the forthcoming periods have very similar shapes.
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Figure 5.4 presents the cost evolution and it can be seen that the cost is decreased
nearly to a third of the initial value during the whole of the experiment. In the last
updates the decrease is soften but still remains. The best update is number 76 out of
80.

The end effector trajectories, Figure 5.2, extend the contact with the ball while
avoiding penetration. This is reflected in the contact forces, displayed at Figure
5.1, whose absolute value is successfully decreased. This test has performed well,
reducing the total cost as well as the cost of the different terms, while increasing
rotation.
Test II: Angular Term

In this case, there is no terminal cost to boost counterclockwise rotation but
a term is added to the immediate cost function to maximize angular velocity as
explained above. As the previous test, this test presents a balance between all term
of the cost function. Table 5.2 summarizes the parameters of the experiment.

Table 5.2: Parameters used in Test II.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε Updates
Value 10 0.01 10 1000 10 10 80

Figure 5.6: Test II: Total cost evolution (upper). Evolution of the total rotated angle
(lower).
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Figure 5.7: Test II: Initial and final fingertip reference trajectories. The black trian-
gles represents the direction.

Figure 5.8: Test II: Cost of angular velocities. The ratios (final/initial) for x, y, and
z are 1.17, 1.27 and 1.76 respectively.
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Figure 5.9: Test II: Total forces per update.

Figure 5.10: Test II: Joint reference trajectories. Blue initial trajectory, red final
trajectory.
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The cost evolution is presented in Figure 5.6. In this case the cost decreased
during the first steps and later it fluctuates, being the best update at 46 out of 80.
However the total rotated angle is a little higher than in the previous case.

The end effector trajectories and joint trajectories, Figures 5.7 and 5.10, present
similar characteristics as in the previous example. The same happens with forces,
see in Figure 5.9. The performance is satisfactory as costs are reduced.

Test III: High Cost Forces
In this test the weight of the penetration forces is increased, and therefore this

test study the ability to spin the ball applying minimun forces, thus resulting trajec-
tories are expected not to penetrate the ball. Terminal cost is the selected approach
to deal with z rotation. The chosen parameters are:

Table 5.3: Parameters used in Test III.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε Updates
Value 10 10 100 2000 15 10 80

Figure 5.11: Test III: Total cost evolution (upper). Evolution of the total rotated
angle (lower).
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Figure 5.12: Test III: Initial and final fingertip reference trajectories.

Figure 5.13: Test III: Cost of angular velocities.
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Figure 5.14: Test III: Total forces per update.

Figure 5.15: Test III: Joint reference trajectories. Blue initial trajectory, red final
trajectory.

62



5.1 Simulation

The total rotation angle is 7.4 rad as its maximum value, which is somehow
smaller than in previous cases, see Figure 5.11. The cost is decreased during nearly
all the experiment, the best update is number 76 out of 80.

As foreseen, the robot slightly penetrates the ball, as can be seen in Figure 5.12,
and the forces are remarkably reduced, Figure 5.14. The joint trajectories are quite
similar with the initial conditions during contact with the ball.

Test IV: High Variance
In this test the variance of the exploration noise is increased, and the weight

of the penetration forces is slightly decreased, The main hypothesis is that the re-
sulting trajectory will highly differ compare to the initial conditions, and due to
the high variance and lower importance of forces, penetration will occur. Parame-
ters are shown in Table 5.4. Particularly, for this experiment the parameter γ :min,
previously mentioned in Equation 4.6, is set to 0.4 instead of 0.2 as in other cases.

Table 5.4: Parameters used in Test IV.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε Updates
Value 20 0.05 1 2000 20 40 100

Figure 5.16: Test IV: Total cost evolution (upper). Evolution of the total rotated
angle (lower).
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Figure 5.17: Test IV: Fingertip reference trajectories. The small loops in the contact
part are produced due to the high variance.

Figure 5.18: Test IV: Cost of the angular velocities.
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Figure 5.19: Test IV: Total forces per update.

Figure 5.20: Test IV: Joint reference trajectories. Blue initial trajectory, red final
trajectory.
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The cost and total rotation are plotted in Figure 5.16. In this case the best cost is
at update number 96 out of 100, but that does not mean that the cost is gradually de-
creasing, and in the last steps it is maintained almost constant. However, the rotated
angle is close to 10, which is the highest results as it almost reaches to the reference
angle set in Equation (5.2).

The end effector trajectories and the joint trajectories, plotted in Figures 5.17
and 5.20, present a significant differences from the initial conditions, with unnec-
essary deviation which does not make much sense. This is due to the high variance
throughout all the experiment. As anticipated, the resultant forces are far from being
reduced.
Test V: Focus on Velocities

In this test the cost is focused on the angular velocities, minimizing ωx and ωy
and maximizing ωz , due to that the total rotated angle of the ball is expected to be
higher than in previous cases. Table 5.5 displays the used parameters.

Table 5.5: Parameters used in Test V.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε
Value 100 0.01 1 20000 10 15

Figure 5.21: Test V: Total cost evolution (upper). Evolution of the total rotated angle
(lower)
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Figure 5.22: Test V: Fingertip reference trajectories.

Figure 5.23: Test V: Cost of the angular velocities. The ratios (final/initial) for x, y,
and z are 1.43, 1.33 and 2.3 respectively.
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Figure 5.24: Test V: Total forces per update.

Figure 5.25: Test V: Joint reference trajectories. Blue initial trajectory, red final
trajectory.
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In this case, the cost is reduced only in the first steps, and thereafter it presents
little variations but does not decrease. In fact, the best cost is achieved in the update
number 54 out of 80. Thus the exploitation does not perform well. The maximum
terminal cost achieved is 9 radians which is higher than in the balance cases.

As expected, the forces showed in Figure 5.24, do not decrease as their con-
tribution to the total cost is practically negligible. Consequently, the trajectories of
Figure 5.22 pierce the ball.

5.2 Real Robot

This section addresses the results obtained from the real robot. Experimentation on
the real robot was limited by certain aspects such as time and hardware. Unlike
simulation, this experiment requires the supervision of a user and the time required
by each trajectory is higher. Continuous usage of the motors may cause overheating
of them, thus certain short breaks between roll-outs were sometimes needed to avoid
damage on the motors. These limitations affected the collection of data, so for the
tests of this section, the number of updates and roll-outs were much lower than in
simulation.

The duration of each experiment is 4τ as in the simulation. This duration cor-
responds to Matlab, where the reference trajectories are computed. Obviously, the
robot takes much more time performing these trajectories. An average time of a
roll-out performance is close to 35 seconds.

The cost function for the real robot presents some modifications with respect
the one used in simulation, described by Equation (5.1). It is defined as follows:

rt =a1
[
(cx− c0x)2 + (cy− c0y)2]+a2r̃b+a3

(
ω2
x+ω2

y

)
+a4

4∑
i=1

f̃ni −a5ωz +a6d
(5.3)

where

r̃b =
{

1 rb > Γr
0 Otherwise , f̃ni =

{
fni fni > Γn

0 Otherwise , d=
{

0 Data received
1 Otherwise

(5.4)
denoting rb as the radius of the ball, fi as the module of the normal force applied

to the ball by finger i, cx and cy as the positions of the centre of the ball and c0x
and c0y the positions in the initial conditions.

The first term penalizes ball translations, the second term refers to height of
the ball. As previously explained there is a direct proportional relation between the
captured radius of the camera and the ball’s height, and this term is a binary term
which punishes the ball going down a threshold (i.e., dropping out). Third term
discourages rotation around the x and y axes.
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The forth term refers to the normal forces of each finger, where a threshold is
applied due to the need of a minimun force in order to perform a stable grasping.
The fifth term rewards counterclockwise rotation around the z axis. This term is in
charge of maximizing the angular velocity. For the real robot, we can not compute
the total rotated angle as in simulation, but it can be estimated by integrating the
angular velocity. However, as maximizing ωz will have a similar effect, this calcu-
lation is avoided.

For robustness purposes, the last term is added, which heavily penalizes the lack
of data at instant t, being a6 always a high value, for instance 100000. This is for
the case of the ball falling and rolling out of the workspace.
Test I Real

For this test the parameters are chosen to have a balance importance, empha-
sising the rotation of the ball, see Table 5.6. Noise variance is much higher than in
simulation because of the reference units. In simulation the input reference was in
radians, whereas in real experiment it is in decimals of degrees. The number of total
updates is set to 16, evaluating 5 roll-outs and re-using the best one of the previous
updates.

Table 5.6: Parameters for Test I of the real robot.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε
Value 2 100 5 1000 80 5000

The results are presented by means of the following figures:

Figure 5.26: Test I Real: Cost evolution.
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Figure 5.27: Test I Real: Evolution of the normal forces cost applied by each finger
during learning.

Figure 5.28: Test I Real: Evolution of the angular velocities cost.
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Figure 5.29: Test I Real: Ball displacement with the initial trajectory (left) and with
the final trajectory (right). Blue represents the transient behavior and red represents
the periodic behavior.

Figure 5.30: Test I Real: Trajectories of the end effector of the robot in the Z plane.
(Blue): initial trajectory, (red): learnt trajectory. Black arrows indicate the flow of
the movement.
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Figure 5.31: Test I Real: Angular velocities of the ball, in the final trajectory.

Figure 5.32: Test I Real: Joint reference trajectories: (Blue) initial trajectory, (red)
final trajectory. Vertical axes represents decimals of degree and horizontal axes time
in seconds.
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Observing Figure 5.26, it can be seen that the cost is reduced, which could
happen by several reasons. Figure 5.27 also displays a decrease in the cost of the
forces, which is related with the total cost reduction. However the cost of the angular
velocities hardly changes as Figure 5.28 shows. The displacement of the centre
showed in Figure 5.29 seems to have a stable cyclic behavior as in the final case the
centre trajectories seem to rotate around a point. Therefore the main cost reduction
is due to the reduction of the force term.

Figure 5.31 displays the angular velocities received by the camera. It can be seen
that the robot has 8 revolutions, which correspond to each pair of fingers in each cy-
cle. It is also remarkable that before the first spin takes place, the angular velocities
experimented a sudden change, due to the transient behaviour of the system.
Test II Real

In this test, the parameters are similar to the previous one, and just the weight of
the angular velocities is changed. The number of total updates is set to 20, evaluating
6 roll-outs and re-using the best one of the previous updates.

Table 5.7: Parameters for Test II of the real robot.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε
Value 2 1000 5 1000 80 5000

Table 5.7 presents the used parameters. In this case, all the angular velocities
have the same weights. The values of ωx and ωy are usually lower than one, but as
they are squared in third term of the cost function, see Equation (5.3), they have less
impact than ωz . The results are presented by means of the following figures:

Figure 5.33: Test II Real: Cost evolution.
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Figure 5.34: Test II Real: Evolution of the normal forces cost applied by each finger
during learning.

Figure 5.35: Test II Real: Evolution of the angular velocities cost.
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Figure 5.36: Test II Real: Ball displacement with the initial trajectory (left) and with
the final trajectory (right). Blue represents the transient behavior and red represents
the periodic behavior.

Figure 5.37: Test II Real: Trajectories of the end effector of the robot in the Z plane.
(blue): initial trajectory, (red): learnt trajectory. Black arrows indicate the flow of the
movement.
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Figure 5.38: Test II Real: Angular velocities of the ball in the final trajectory.

Figure 5.39: Test II Real: Joint reference trajectories: (Blue) initial trajectory, (red)
final trajectory. Vertical axes represents decimals of degrees and horizontal axes
time in seconds.
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The results obtained in this test are analogous with those of the previous exper-
iments. Thus, the change on the weight of undesirable angular velocities, does not
play a determinant role on the experiment.

Test III Real
As previous tests show little increase in rotational velocities, but force reduction

was accomplish. The purpose of this test is to maintain the ball in the same place,
namely to increse the cost of ball displacement. The number of total updates is set
to 20, evaluating 6 roll-outs and re-using the best one of the previous updates. The
selected parameters are presented in Table 5.8:

Table 5.8: Parameters for Test III of the real robot.

Parameter a1|a2 a3 a4 a5 Γr|Γn Σε
Value 10 100 1 100 80 5000

The results are presented by means of the following figures:

Figure 5.40: Test III Real: Cost evolution.
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Figure 5.41: Test III Real: Evolution of the normal forces cost applied by each
finger during learning.

Figure 5.42: Test III Real: Evolution of the angular velocities cost.
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Figure 5.43: Test III Real: Ball displacement with the initial trajectory (left) and
with the final trajectory (right). Blue represents the transient behavior and red rep-
resents the periodic behavior.

Figure 5.44: Test III Real: Trajectories of the end effector of the robot in the Z
plane.According to previous comments (blue): initial trajectory, (red): learnt trajec-
tory. Black arrows indicate the flow of the movement.
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Figure 5.45: Test III Real: Angular velocities of the ball, with the final trajectory.

Figure 5.46: Test III Real: Joint reference trajectories: (Blue) initial trajectory, (red)
final trajectory. Vertical axes represents decimals of degrees and horizontal axes
time in seconds.
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The cost of the centre is reduced as can be seen in Figure 5.43 in comparison
with the initial trajectories. The same observation can be made in comparison with
the other experiments where the importance of centre displacement was low. Figure
5.41 presents the evolution of the forces, and it can be seen that for 3 out of 4
fingers the cost is reduced. Still the total forces cost presents a small decrement,
whereas angular velocities cost appears to remain constant, Figure 5.42. The test
thus confirms the expected influences of the design parameters.
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Discussion

6.1 Simulation results

In all cases, PI2 successfully reduces the cost of the path, by either increasing the
rotation of the ball or reducing other cost terms. Tests I, III and IV include the
terminal cost term, and the evolution of the cost functions are smoother and present
less fluctuations than Tests II and V, which present the term inside the cost function.
This can be seen comparing Figures 5.4, 5.11, 5.16 with 5.6 and 5.21. However, this
difference may have its origin on the reliability of measurements, as the total rotated
angle is more robust than the angular velocities in the simulation case. Generally,
the cost of the angular velocities is not reduced, which can be due to the correctness
of the measures or to some dependence with ωz .

These tests show the importance of the reward design, as the main hypothesis of
Tests III, IV and V were validated. Thus the designer can tune the parameters of the
cost function to achieve a desired behaviour. The resulting trajectories are different
for all experiments, which is due to the high dimensionality of the problem, as PI2

explores the space differently arriving to many suboptimal solutions.
The first updates of the algorithm may present an increase of the cost, due to

the lack of information at the beginning of the experiment. However this effect is
stimulated by the choice of a high exploration parameter, as it happens in Test III. In
all experiments, the cost function and the rotation angle display a decrease of vari-
ation after half of the total updates are done. This is not only due to the decrease of
exploration noise at late updates, but for the convergence to a suboptimal solution.
It must be said that all results present some fluctuations after convergence, accen-
tuated for Tests II and V. Hence it can be concluded that the continued updating
causes parameter fluctuation around the suboptimal ones.

From Tests III and IV, some insight about the behaviour of the system can be
extracted. In order to spin the ball, the finger used the friction force which is pro-
portional to the normal force. Thus, the learning deals with a trade-off between in-
creasing speed (high normal forces) and motor safety (low normal forces). PI2 has
proven to be able to optimize this trade-off, but the correct choice of the parameters
depends on the user. These tests prove this statement, as in Test III, the weight of
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the forces is the highest one, and it presents the lowest rotation, and contrary in Test
IV, the relevance of the forces were the lowest, and it presents the highest rotation,
increasing nearly 20% in comparison with other tests and being able to arrive to the
reference angle.

Intuitively, one can think that in order to maximize ball rotation, the part of
the trajectory in contact with the ball should be enlarged. This thought is correct
for Figures 5.2, 5.7 and 5.17. In Figure 5.12, the right trajectory shortened from
one side but became larger from the other while the left trajectory enlarges on both
sides. Thus the extension of the contact surface may enhance ball rotation. Notwith-
standing this extension may be constrained by the robot itself, since the fingers may
collide with each other.

Another important aspect is the direction of the trajectory when contact occurs.
For the initial trajectory the change of sign of the tangential velocity with respect
to the ball is produced near the contact surface with the ball. As the trajectories
represent a point of the end effector, but not necessarily the contact point with the
ball, changing this sign close to the ball may happen after contact, consequently
there exists an instant where two fingers are stopping or counter spinning the ball.
However, the resulted trajectory performs this change in a further place from the
ball, avoiding this undesirable behaviour as showed in Figures 6.1a and 6.1b.

Figures 5.5, 5.10, 5.15, 5.20 and 5.25 display initial and final joint trajectories.
It can be seen that final trajectories keep similarities with the initial ones, as they
evolved from them. For Test IV, the large exploration parameters induce bigger
differences among trajectories. In the case of joints 3 and 6, it can be seen that
for all cases, the reference trajectory during contact does not differ, but it clearly
does when no contact happens. This may be due to the fact that the cost function
at these instants is dependent of the contact finger, and therefore the non-contact
finger does not play an important role for this time interval. These images can help
to understand the importance of initial conditions for the PI2 algorithm.

6.2 Real Robot

The real system presents certain stochasticity, as for the same control commands
the path cost might slightly vary. Anyway, it does not present big problems as PI2

is able to cope with stochastic systems.
As shown in Figures 5.26, 5.33 and 5.40, the cost is also decreased in the same

way as in the simulation case. However the increase in the angular velocities in-
crease is slight in comparation with simulation results, Figures 5.28, 5.35 and 5.42.
This is because the initial conditions lead to an angular velocity close to the limit,
as the movement of the fingers is already expanded almost until there is a collision
between themselves.

Thus, the cost reduction is done by minimizing forces, undesirable angular ve-
locities and displacements. In the initial conditions the fingers strongly grasp the
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subfigure

(6.1a) The circles represent the uncertainty region where the contact point
is. The centres of the coloured circles correspond to the change of tan-
gential sign. Blue: initial trajectory, red: final trajectory. This image corre-
sponds to test 2. It can be seen that in the initial case the uncertainty region
is in contact with the ball, which is not the case for the final trajectory.

(6.1b) The red arrows represents the velocity of the end effector in the
tangential direction of the ball. The red dot means zero tangential velocity
and it occurs when velocity sign at that direction changes.
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Figure 6.2: Contact with the ball, in the periodic phase of the movement. Notice that
the finger makes contact with the ball at two points; at the end effector and at the
body of the servo, which makes the grip more stable.

ball, which was done to ensure stability. During training, the ball happens to fall in
a few roll-outs after several updates, which is because the finger forces were below
the threshold limit not adding cost, but the force was not enough to hold the ball.

In the case of the real robot the transient behaviour was significant. Figures 5.29,
5.36 and 5.43 show the centre displacement differentiating between transient and
periodic behaviour, being the higher displacement at the transient part. In Figures
5.31, 5.38 and 5.45, the angular velocities on the noiseless roll-outs can be seen. All
of them present similar shape, and it can be observed that in the first period there
exist some peaks in ωx and ωy caused by the transient part, in which the ball rotates
and translates when it is first held by only two fingers until a position in which this
holding is more stable. That happens because the finger used two contact points as
shown in Figure 6.2.

The final trajectories, illustrated in Figures 5.30, 5.37 and 5.44, show how the
robot has adapted to the ball, penetrating less and shifting to a new position where
the grasp quality is better. The ball cannot be displayed as in the simulations because
its position changes during execution.
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Conclusions

This thesis has shown the usefulness of the PI2 algorithm for a periodic case, as
in all experiments the cost function has been decreased, and nearly all results fulfil
the expectations. Even though experiments require a lot of time, the algorithm itself
showed fast convergence.

PI2 explores the state-space and updates the parameters minimizing the cost,
thus arriving to trajectories with lower the cost. However, the convergence and
the quality of the final result are highly dependent on the initial conditions. Pro-
viding good initial conditions will not only improve the results but also speed up
convergence. Moreover there are some tricks to improve the convergence, such as
reusing the elite roll-outs from previous updates or changing the exploration param-
eter along updates.

The design of the cost function is very flexible, as long as its terms are functions
of the state of the system or of the control commands.

As conclusion, PI2 presents good results and an easy design.

7.1 Future Improvements

This master thesis could have been extended in several aspects if not for the time
constrains. A number of suggestions for improvements are listed here:

• The PI2 algorithm can be modified in order to automatically adapt the explo-
ration parameter, by using Covariance Matrix adaptation as described in [17].

• The communication between Matlab and the robot can be modified to facili-
tate user’s supervision. For instance, a ROS node could be used which could
interconnect both platforms and send starting signals between them. How-
ever, a supervisor would still have to position the ball at the initial point.

• Yet another alternative could be to implement the PI2 algorithm in the em-
bedded system using auto generated C code from Matlab. All the code could
be embedded in a C++ program and run in ROS.
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• Camera calibration can be been improved by compensating ofr lens imperfec-
tions. There are certain algorithms within the OpenCV library that can per-
form this task. Although this usually require predefined images like a chess-
board to do it.

• A control term can be added to the DMP transformation equation. This con-
trol term could feedback online information about the robot, such as forces,
enabling the robot to work in close-loop mode. The function would be to set
a reference or new behavior of the system, for example to try to maintain the
ball at a desired height or to react to external disturbances.
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