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Abstract. On-Line Analytical Processing (OLAP) is a data analysis ap-
proach to support decision-making. On top of that, Exploratory OLAP
is a novel initiative for the convergence of OLAP and the Semantic Web
(SW) that enables the use of OLAP techniques on SW data. Moreover,
OLAP approaches exploit different metadata artifacts (e.g., queries) to
assist users with the analysis. However, modeling and sharing of most of
these artifacts are typically overlooked. Thus, in this paper we focus on
the query metadata artifact in the Exploratory OLAP context and pro-
pose an RDF-based vocabulary for its representation, sharing, and reuse
on the SW. As OLAP is based on the underlying multidimensional (MD)
data model we denote such queries as MD queries and define SM4MQ: A
Semantic Model for Multidimensional Queries. Furthermore, we propose
a method to automate the exploitation of queries by means of SPARQL.
We apply the method to a use case of transforming queries from SM/MQ
to a vector representation. For the use case, we developed the prototype
and performed an evaluation that shows how our approach can signifi-
cantly ease and support user assistance such as query recommendation.
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1 Introduction

On-Line Analytical Processing (OLAP) is a well-established approach for data
analysis to support decision-making [T4]. Due to its wide acceptance and suc-
cessful use by non-technical users, novel tendencies endorse broadening of its
use from solutions working with in-house data sources to analysis considering
external and non-controlled data. A vision of such settings is presented as Ex-
ploratory OLAP [I] promoting the convergence of OLAP and the Semantic Web
(SW). The SW provides a technology stack for publishing and sharing of data
with their semantics and many public institutions, such as Eurostat, already use
it to make their data publicly available. The Resource Description Framework
(RDF) [7] is the backbone of the SW representing data as directed triples that
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form a graph where each triple has its semantics defined. Querying of RDF data
is supported by SPARQL [I7], the standard query language for RDF.

To facilitate data analysis, OLAP systems typically exploit different meta-
data artifacts (e.g., queries) to assist the user with analysis. However, although
extensively used, little attention is devoted to these metadata artifacts [23]. This
originates from traditional settings where very few (meta)data are open and/or
shared. Thus, [23] proposes the Analytical Metadata (AM) framework, which
defines AM artifacts such as schema and queries that are used for user assis-
tance in settings such as Exploratory OLAP. In this context, analysis should be
collaborative and therefore these metadata artifacts need to be open and shared.
Thus, SW technologies are good candidates to model and capture these artifacts.

A first step for (meta)data sharing among different systems is to agree about
(meta)data representation, i.e., modeling. As RDF uses a triple representation
that is generic, the structure of specific (meta)data models is defined via RDF
vocabularies providing semantics to interpret the (meta)data. Thus, the AM ar-
tifacts are modeled in [22] proposing SM4AM: a semantic metamodel for AM.
Due to the heterogeneity of systems, the metamodel abstraction level is used to
capture the common semantics and organization of AM. Then, metadata models
of specific systems are defined at the model level instantiating one or more AM
artifacts. For instance, the schema artifact for Exploratory OLAP can be repre-
sented using the QB4OLAP vocabulary to conform data to a multidimensional
(MD) data model for OLAP on the SW [24]. QB4OLAP further enables running
of MD queries to perform OLAP on the SW [25]. However, the representation
of these queries to support their sharing, reuse, and more extensive exploitation
on the SW is yet missing. Thus, in the present paper we propose a model for
MD queries and explain how it supports sharing, reuse, and can also be used
to facilitate metadata processing, e.g., for user assistance exploitations such as
query recommendations. In particular, the contributions of this paper are:

— We propose SM/MQ@: A Semantic Model for MD Queries formalized as
an RDF-based vocabulary of typical OLAP operations (see [21]). The model
captures the semantics of common OLAP operations at the conceptual level and
supports their sharing and reuse via the SW.

— We define a method to automate the exploitation of SM/M@ queries by
means of SPARQL. The method is exemplified on a use case to transform a
query from SM/MQ@ to a vector representation. The use case shows an exam-
ple of generating vectors (forming a matrix) as analysis-ready data structures
that can be used by existing recommender systems [2] and approaches to query
recommendations (e.g., [@]).

— We developed a prototype and used a set of MD queries to evaluate our ap-
proach for the chosen use case. The evaluation shows that SM/M@ significantly
eases and supports the automation of query exploitation by means of SPARQL.

The paper is organized as follows. The next section explains the preliminar-
ies of our approach. Then, Section [3] proposes the MD query model. Section
presents the proposed method and the related use case. Section [p| discusses the
use case evaluation results. Finally, Section [6] discusses the related work and
Section [7] concludes the paper.



2 Background

In this section, we introduce the necessary preliminaries and a running example
used throughout the paper. First, we explain the MD model and the most pop-
ular OLAP operations. Then, we discuss the use of SW and QB4OLAP for MD
models. The formalization of QB4OLAP concepts and OLAP operations can be
found in [I0] and in the present paper we provide the necessary intuition for
understanding the proposed query model. The running example is incrementally
introduced in each of the subsections.

2.1 Multidimensional Model and OLAP Operations

The MD model organizes data in terms of facts, i.e., data being analyzed, and
dimensions, i.e., analytical perspectives [14]. Dimensions consist of levels repre-
senting different data granularities that are hierarchically organized into dimen-
sion hierarchies. Levels can have attributes that further describe them. Facts
contain measures that are typically numerical values being analyzed. Data con-
forming to an MD schema are referred to as a data cube that is being navigated
(e.g., data granularity is changed) via OLAP operations. For instance, Figure
illustrates an MD schema created for the European Union asylum applicants
data set available in a Linked Data version of the Eurostat datafl In the data
set, the number of asylum applications as a measure, can be analyzed according
to the age, sex, type of application (Asyl_app), destination country (Geo), coun-
try of origin (Citizenship), and month of application (RefPeriod) levels of related
dimensions. Moreover, the data can be aggregated from months to quarters and
likewise to years, from country of origin to continent, and from destination coun-
try to continent or government type as additional levels in related dimensions.
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Fig. 1. Asylum Data set Schema (in Fig.2. Asylum Data set QB4OLAP
DFM Notation [12]) Schema Representation

To navigate a data cube, OLAP operations are used and different OLAP
algebras have been proposed [I8]. In the present paper, we consider the set of
OLAP operations used in [10] and [9] that are defined at the conceptual level as
discussed in [8]. The considered OLAP operations are described in the following.

3 http://eurostat.linked-statistics.org/
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The ROLL-UP operation aggregates data from a finer granularity level to a
coarser granularity level in a dimension hierarchy of a data cube. For instance,
in case of the schema in Figure [1| data can be aggregated from the month level
to the year level for the RefPeriod dimension. Similarly, the DRILL-DOWN
operation as its inverse disaggregates data from a coarser granularity level to a
finer granularity level in a dimension hierarchy of a data cube. Furthermore, the
DICFE operation takes a data cube and applies a boolean condition expressed
over a level (attribute) and/or measure value over it. For instance, for the schema
in Figure [1] a user may be interested in number of asylum applications only for
the years 2009 and 2010. Finally, the SLICFE operation removes a dimension or
a measure from a data cube. For instance, a user may not be interested in the
age of the applicants and thus remove the related dimensions.

2.2 The Semantic Web Technologies

As mentioned in the introduction, the SW technologies provide means for flexible
(meta)data representation and sharing. RDF, which is the SW backbone, repre-
sents data in terms of directed subject - predicate - object triples that comprise
an RDF graph where subjects and objects are nodes and predicates are edges.
Subject and predicate are represented with IRIs, i.e., unique resource identifiers
on the SW, while objects can either be IRIs or literal values. Furthermore, RDF
supports representation of the data semantics via the rdf:type property. In the
context of sharing, the Linked Data initiative [13] strongly motivates interlinking
of RDF data on the SW to support identification of related / similar / same con-
cepts. Finally, the RDF data can be queried with SPARQL [17], the standardized
query language for RDF, which supports their systematic exploration.

To support the publishing of MD data and their OLAP analysis directly on
the SW, two RDF vocabularies were proposed, namely the RDF Data Cube (QB)
and QB4OLAP vocabularies. As the former vocabulary was primarily designed
for statistical data sets, the latter one was proposed to extend QB with necessary
concepts to fully support OLAP. A detailed discussion on this is presented in
[24] where it is also explained how existing QB data sets can be enriched with
the QB4OLAP semantics. Thus, in the present paper we consider QB4OLAP
for the representation of the MD data on the SW and Figure [2] illustrates how
the MD schema from Figure [1| can be represented with QB4OLAP. Note that
for simplicity reasons we represent only the finest granularity levels.

Once a data cube is published using QB4OLAP, the OLAP operations from
the previous subsection can be performed. However, a metadata model for repre-
senting these queries is yet missing. Such a model can be created by instantiating
the SM4AM metamodel (see [22] and [21] for the initial and extended SM4AM
versions, respectively). The metamodel represents the query AM artifact with
several meta classes that we explain next. First, the sm4am:UAList element is a
complex element that combines atomic elements that include data exploration
actions (i.e., sm4am:DataExplorationAction with its sm4am:ManipulationAction
subclass). Thus, the metamodel elements can be instantiated as an MD query
that combines OLAP operations and we present the details in the next section.



3 A Semantic Model for Multidimensional Queries

In this section, we define SM4M@ as an RDF-based vocabulary to represent
the introduced OLAP operations. The model is created by instantiating the
related SM4AM metamodel elements. It is built around the QB4OLAP model
for representing an MD schema and explained with examples related to the
running example schema.
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Fig. 3. A Semantic Model for Multidimensional Queries

3.1 MD Query Model

Figure [3] illustrates the complete SM/M@ query model. Furthermore, the figure
also shows how SM/MQ relates to the SM4AM metamodel concepts and reuses
concepts from the QB, QB4OLAP, and RDFS vocabularies. The central concept
of the model is sm4mq:Query representing a query. A query can be related to
a simply ordered set of OLAP operations (i.e., subclasses of sm4mq:Operation)
via subproperties of sm4mq:hasOperation. OLAP operations are organized in a
simply ordered set as each of them directly relates to the query and they are
mutually ordered, e.g., the order of ROLL-UP and DRILL-DOWN operations
is relevant to determine the final granularity of the data cube. Each operation
relates to a data cube schema (i.e., gb:DataStructureDefinition) via sm4mq:over-
Cube and to a data set (i.e., gb:DataSet) to which data belong to via sm4mq:-
forDataSet. This way, operations belonging to a single query can operate over
different schemata and data sets (inspired by the federated queries mechanism
in SPARQL). In the next subsections, we explain each of the OLAP operations.



Note that we follow the formalization given in [J] and we also enrich the model
with additional information needed to facilitate sharing.

3.2 ROLL-UP and DRILL-DOWN Operations

Following the definition in [9], ROLL-UP (i.e., sm4mq:RollUp) is represented
with a data cube schema (i.e., gb:DataStructureDefinition), a dimension (i.e.,
gb:DimensionProperty), and a level to roll-up to (i.e., gb4o:LevelProperty). In
addition to these concepts, SM4MQ@ also represents the level from which the
roll-up is performed, its order in the query, and the dimension hierarchy (i.e.,
gb4o:Hierarchy) used. The related properties are illustrated in Figure 3| In gen-
eral, the roll-up from and hierarchy concepts can be inferred from a sequence of
OLAP operations, however their explicit representations makes the ROLL-UP
operation model self-contained such that it can be easily shared. The SM4MQ
representation of the ROLL-UP example from Section [2] of aggregating data
from the month to the year level over the running example schema is illustrated
in Figure [ The example shows the ROLL-UP instance and also includes the
related SM4M@ concepts (depicted in gray).
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Fig. 4. ROLL-UP Instance Example

Following the definition in [9], DRILL-DOWN (i.e., sm4mq:DrillDown) is rep-
resented with a data cube schema (i.e., gb:DataStructureDefinition), a dimension
(i.e., gb:DimensionProperty), and a level to drill-down to (i.e., qbdo:LevelPro-
perty). In addition to these concepts, SM4MQ@ also represents the level from
which the drill-down is performed, its order in the query, and the dimension hier-
archy (i.e., gb4o:Hierarchy) used for the same reasons as in the case of ROLL-UP.
An example of DRILL-DOWN is analogous to the ROLL-UP one and we omit
it for space reasons.

3.3 DICE Operation

Following the definition in [9], DICE (i.e., sm4mq:Dice) is represented with a
data cube schema (i.e., gb:DataStructureDefinition) and a boolean condition (i.e.,
sm4mq:Predicate) over a dimension (i.e., gb:DimensionProperty) or a measure
(i.e., gb4o:MeasureProperty). We represent these two cases separately for the
atomicity of operations that also facilitates sharing. Thus, in SM4M@ we create



two subclasses for DICE, sm4mq:DimDice as DICE applied over a dimension
and sm4mq:MeasDice as DICE applied over a measure. The former one relates
to a dimension, hierarchy, level, and optionally level attribute, while the latter
relates to a measure. For both cases we define the order and consider a set of
relational predicates that includes equals to (i.e., sm4mq:Equal), not equals to
(i.e., sm4mq:NotEqual), greater than (i.e., sm4mq:Greater), greater than or equal
(i.e., sm4mq:GreaterEq), less than (i.e., sm4mq:Less), and less than or equal (i.e.,
sm4dmq:LessEq). Each specific relational operator is an instance of the sm4mq:-
Predicate class (similarly to the case of aggregate functions in QB4OLAP), and
it is related to rdfs:Literal used for the representation of the concrete values. The
SM4M@ representation of the DICE example from Section [2] where a user is
interested in number of asylum applications only for the years 2009 and 2010 for
the running example schema is illustrated in Figure [5] The example shows the
DICE instance and includes the related SM4M@ concepts (depicted in gray).
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Fig. 5. DICE Instance Example

3.4 SLICE Operation

Following the definition in [9], SLICE (i.e., sm4mgq:Slice) is represented with a
data cube schema (i.e., gb:DataStructureDefinition) and a dimension (i.e., gb:-
DimensionProperty) or a measure (i.e., gb4o:MeasureProperty). Again, we repre-
sent these two cases separately for the atomicity of operations that also facilitates
sharing. Thus, in SM/MQ we create two subclasses for SLICE, sm4mq:DimSlice
as SLICE applied over a dimension and sm4mgq:MeasSlice as SLICE applied over
a measure. For both cases we also define the order. The SM4MQ representation
of the SLICE example from Section [2] where a user is not interested in the age of
the applicants and thus removes the related dimensions for the running example
schema (see Figure [I]) is illustrated in Figure @ The example shows the SLICE
instance and also includes the related SM/M@ concepts (depicted in gray).
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Fig. 6. SLICE Instance Example



4 Exploiting SM4MQ

In this section, we discuss the benefits of having a semantic model for MD
queries. First, we discuss why modeling and capturing of the MD query semantics
is essential for their exploitation. We then propose a method on how SM4MQ
semantics can serve to automate the exploitation of SM4MQ queries by means
of SPARQL. We also present a use case that shows how can the method be used
to define the query transformations from SM/M(@ to a vector representation.

4.1 Modeling and Semantics

We first explain the challenges behind the current state of the art to represent
queries and explain how SM/M@ overcomes them. MD queries in existing ap-
proaches are typically stored in query logs [23]. From logs, queries are parsed
to extract semantics needed for further processing. The parsing is dependent on
the particular technology used (e.g., SQL) where different patterns need to be
applied to identify OLAP operations introduced in Section [2} Once identified,
the OLAP operations are represented with internal data structures and any pro-
cessing of the queries is directly dependent on these internals. In the context of
Exploratory OLAP [I] and next generation BI systems [23], this situation leads
to several challenges:

1. Repetitive model designing of MD queries — Instead of considering query
metadata as a first-class citizen and conforming them to a dedicated model,
repetitive efforts are invested into designing ad-hoc query representations for
each system.

2. Repetitive adjustments for exploitation — The use of hard-coded and ad-
hoc query models hinders the use of existing algorithms for their exploitation.
As the internals on query representation are typically not available, existing
algorithms need to be adjusted to each system-specific query model.

3. Burdensome query sharing — Overlooking of query modeling obstructs
query reuse among different systems. This becomes especially relevant, consid-
ering Exploratory OLAP and public data sets on the SW where not only data but
also queries can be shared among the users. Moreover, once modeled, queries can
be made publicly available so that users can exploit them for different purposes.

4. The need for IT people support — Working with internal query represen-
tation requires technical skills that are not characteristic of OLAP end-users.
Thus, preparing these queries (e.g., extracting the relevant semantics) requires
the support of IT people. In the OLAP context, the data preparation by means of
a correct ETL process may take up to 80% of the entire DW project as reported
by Gartner[20]; illustrating the enormous efforts even from trained professionals.

The SM4M@ model for MD queries captures the MD semantics at the con-
ceptual abstraction level using the SW technologies. Thus, it overcomes the
previous challenges in the following way:

1. SM/MQ is a model of MD queries covering the OLAP operations specified
in Section 2] that are commonly accepted and used in OLAP systems. Further-



more, the use of RDF makes it flexible to be extended with additional opera-
tions. Moreover, it can be linked with other RDF-based models using Linked
Data principles (see Section .

2. Being an RDF-based model, SM4 M@ provides a common semantics which
exploitation algorithms can query in a standardized way via SPARQL.

3. The conforming of queries to SM/M@ directly supports their sharing via
Linked Data principles, i.e., publishing on the SW in the RDF format. This way,
different systems can make their queries available and reusable.

4. The semantics of MD queries captured at the conceptual abstraction
level is understandable even for non-technical OLAP end-users [10/24]. It can
automatically be transformed into different data structures (e.g., vectors) via
SPARQL and thereby benefit from algorithms working over the related struc-
tures (e.g., computing cosine similarity between vectors).

Once MD queries are represented with SM/M(@, we can use off-the-shelf tools
(i.e., triple stores) to store and query them in a standardized way via SPARQL.

4.2 Automating SM4MQ Exploitation

Instead of extracting and parsing queries like in typical settings, SM4MQ sup-
ports automation of query exploitations as their RDF representation can be
directly retrieved via SPARQL. Using this benefit, we propose a method that
automates the transformation of queries from SM/M(@ to other query represen-
tations. We also provide a use case where we exemplify our claims by trans-
forming SM/M@ queries into analytical vectors that can be used to perform
advanced analysis such as query comparison and undertake recommendations.
Vector-based representations have been typically used to compute similarities
(e.g., the cosine similarity) that have been widely used in recommender systems
[2]. Hence, several of the state of the art query recommendation approaches such
as [6] use vectors to represent queries and compute similarities (see [3]). Next,
we explain the method (sub)tasks and exemplify each task on our use case.
Task 1. Choosing the analytical structure is the initial task where the
target data structure needs to be chosen. The analytical structure then directly
determines the following tasks that define its analytical features and populate the
analytical structure. An analytical feature is a set of one or more model elements
(i.e., nodes or edges) representing a model characteristic, e.g., an operation used
in a query, that is relevant for the desired analysis such as comparison of queries.
Use Case. We focus on a vector representation as an analytical structure.
Task 2. Defining analytical features identifies the elements of a given
model (e.g., SM/MQ) that should be considered as analytical features. As an
analytical feature can involve one or more model elements, it can either be
atomic, i.e., consisting of one model element, or composite including two or
more model elements. We next explain the two subtasks of Task 2.
Task 2.1. Selecting model element(s) to form analytical features is
the task where one or more model elements are selected to form an atomic or
composite feature, respectively. It is performed for each analytical feature. Here,



a single or several connected elements of the model are selected to be considered
as an atomic or a composite feature, respectively.

Use Case. Analytical features will be a part of the vector representation,
i.e., they will be represented with vector elements. As the whole vector will
represent a query, sm4mgq:Query is not an analytical feature. Instead, the ana-
lytical features to be defined are different OLAP operations, i.e., the subclasses
of sm4mq:Operation, with their successor nodes (e.g., schema elements such as
level). Thus, each OLAP operation is a composite analytical feature. Consider-
ing that all the queries are run over the same data cube, the data set and schema
elements are omitted, as well as the operation order.

Task 2.2. Defining the level of detail for each analytical feature
relates to the model elements forming analytical features. For each analytical
feature, the level of detail needs to be defined for each of the model elements
forming that feature. There are two possible levels of detail. One is the basic
level of detail, meaning that the model element in an analytical feature should
be considered without its instances. The other option is the comprehensive level
of detail where a model element in an analytical feature should be considered
together with its instances.

Use Case. In a vector representation, this means that a model element with
the base level of detail takes a single vector element, e.g., if an operation is used
or not. Accordingly, in case of a model element with the comprehensive level of
detail, there is a vector element for each instance of the model element, e.g., one
vector element for each possible dimension that can be used in an operation.
This way, a vector length is defined by vector elements needed for the model
elements in each analytical feature.

As an example, we next define the level of detail in case of the ROLL-UP
operation as an analytical feature. Here, there should be a vector element indi-
cating if there is any ROLL-UP in the query (i.e., the basic level of detail) and
for each dimension used in one or more ROLL-UPs there should be a sequence of
vector elements (due to the comprehensive level of detail) including: an element
identifying the dimension, an element for each dimension hierarchy, an element
for each possible from-level, and an element for each possible to-level. Note that
the aggregate function used in ROLL-UP is defined by the data structure defi-
nition and thus the same for all queries. For example, Table [T] illustrates a part
of the vector instance for the running example schema related to the ROLL-UP
operation from Figure 4l The non-zero values shown from the first vector ele-
ment at the left specify that it is a ROLL-UP operation, over the dimension D1
and hierarchy H1, from the RefPeriod level to the Year level.

Table 1. A Roll-up Piece of Vector Instance
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Task 3. Populating the analytical structure focuses on taking a query
instance in SM4M@ and populating the chosen analysis-ready data structures.
This task depends on the analytical feature definition from the previous task
and can be automated with SPARQL query templates. It consists of the two
subtasks that we explain in the sequel.

Use Case. This task refers to the population of all vector elements.

Task 3.1. Retrieving model instances is the task where template SPARQL
queries are defined to automatically retrieve the model element instances related
to the analytical features. There are two types of templates. The first type re-
trieves all instances of the model elements that are nodes and belong to one or
more analytical features. The related SPARQL query is shown in Query [} Note
that variables between two ’?’ are parameters that should be replaced with the
related IRIs, e.g., node IRIs in the previous case. This way, all instances of model
elements related to either atomic or composite analytical features are retrieved.

Query 1 Retrieve Model Element  Query 2 Retrieve Roll-Ups
Instances 1 SELECT DISTINCT ?r ?d ?h 2froml ?tol
1 SELECT DISTINCT 24 2 WHERE {
3 ?2q? rdf:type sm4mq:Query ;
WHERE { 1 sm4mq:hasRollUp ?r
i 2 : 2 2 : oo
? rdf:type ?nodeIRI? . } or rdf:type smimq:RollUp ;
6 sm4mq:ruDimension ?d ;
7 sm4mq: ruHierarchy ?h ;
8 sm4mq : TuFrom 2fromL ;
9 sm4mq:ruTo 2?tol . }

The other template type retrieves the instances of graph patterns that include
both nodes and edges related to composite analytical features. This way, all
model instances that are used in composite analytical features are retrieved.
For instance, Query [2| retrieves the model elements related to ROLL-UP (as a
composite analytical feature) of a particular query, where the 7q? parameter is
the query IRI.

Use Case. Benefiting from the SM4M@ model, this task can be automated
with Algorithm [I] The algorithm takes a metadata graph containing the SM4MQ
queries and QB4OLAP schema for a data set and returns the matrix populated
with vectors of all the queries. For simplicity of explanation we consider that the
graph contains metadata for a single data set. In lines [2[ and |3] the algorithm
first retrieves queries and schema triples and this can be automatically performed
with SPARQL queries based on the SM/MQ@ and QB4OLAP semantics. Then,
line [4] initializes the matrix, i.e., defines the number of columns, based on the
schema (see above for the vector instance structure). The rest of the algorithm
belongs to the following task and is explained in the sequel.

Task 3.2. Computing values for each analytical feature is the final
task that takes the model instances previously retrieved and processes them
according to the defined analytical features to populated the chosen analytical
structure. This processing can be simple and generate values 1 or 0 to show if
a model element instance has been used or not in an analytical feature, or be a
customized function.

Use Case. To populate vector elements, we apply a simple computation and
consider that the values of vector elements are 1 or 0 (meaning either the pres-



ence or absence of that element). Using this logic, lines [5| to [13| of Algorithm
populate the matrix as follows. For each query, a vector is created again based
on the schema (see line [6]), populated according to the OLAP operations used in
the query (see lines t, and added to the matrix (see line . The nested
functions in lines [7] to run SPARQL queries and return specific OLAP op-
erations for an MD query. An example of a SPARQL query for g.getRollUps()
used in line [7] is illustrated in Query 2} Finally, line [[4] returns the resulting
matrix. Thus, benefiting from the SM/M@ query modeling and semantics, the
population of the matrix can be completely automated using Algorithm [I| The
populated matrix can be used for computing similarities (e.g., cosine similar-
ity) between vectors and other exploitations. In the next section, we present a
prototype for our use case and discuss on practical benefits of our approach.

Algorithm 1: Populate the matrix of queries

Input: graph; // metadata graph with queries and schema
Output: matriz; // matrix representing queries

1 begin

2 queries = graph.getQueries();

3 schema = graph.getSchema();

4 matriz.init(schema);

5 foreach q € queries do

6 vector.init(schema);

7 vector.addRollUps(q.get RollUps());

8 vector.addDrill Downs(q.get Drill Downs());

9 vector.addDimDices(q.getDimDices());

10 vector.addMeasDices(q.get MeasDices());

11 vector.addDimSlices(q.get DimSlices());

12 vector.addMeasSlices(q.getMeasSlices());

13 matriz.addVector(vector);

14 return matriz;

5 Use Case Evaluation

To evaluate our approach for the specified use case, we implemented a prototype
and used a set of 15 MD queries related to the running example data set (see [21]
for more details). The prototype includes the MD querying module (MDM) for
the query generation and the to-Vector Transformation and Comparison module
(VTC). MDM provides a GUI that enables a user to generate MD queries. It
automatically generates SM4M@ query metadata as well as OLAP queries in
Cube Query Language (CQL) [10] used by QB4OLAP explorerﬂ for querying
of QB4OLAP data cubes. The SM/M( queries are stored in the SPARQL end-
point. Then, VTC retrieves the (SM/MQ) query and (QB4OLAP) schema meta-
data, transforms queries into vectors using Algorithm [} and compares queries
using the cosine similarity. Assuming the existence of a single data set and its
metadata on the endpoint, VTC takes the endpoint address as a parameter
and based on the SM4M@ and QB40OLAP semantics automatically retrieves the
needed metadata. For space reasons, more implementation and evaluation de-
tails can be found in the technical report (see [2I]) and next we focus on the key
evaluation aspects.

* https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/queries



One evaluation aspect of our approach for the selected use case is the size of
the vector space, i.e., number of vector elements. As discussed in [2], for content-
based recommender systems the pre-processing phase includes the definition of
vector features. In the case of the running example data set, the vector defined by
VTC is of size 180 and follows the structure (i.e., elements ordering) as defined
in Section [l Thus, without SM/MQ and VTC, this task needs to be performed
manually entailing the tedious analysis of CQL algebra and exploration of data
set schema. Once having the vector structure, the other evaluation aspect con-
siders the population of the vector structures. Benefiting from SM4M@Q, VTC
automatically generates SPARQL queries to populate the vector for each query.
Without SM/M@ and VTC, this task entails creation of a parser for CQL queries
that populates the manually defined vector structures.

Finally, we show the degree of automation achieved in this process with the
number of automatically triggered SPARQL queries by VTC. First, for the run-
ning example data set, VI'C automatically triggered 32 SPARQL queries to
retrieve its schema. The number of SPARQL queries in this context depends on
the schema structure, e.g., how many dimensions or hierarchies exist. Further-
more, in the context of queries, we used a set of 15 SM4MQ@ queries and VTC
automatically triggered 91 SPARQL queries related to SM4M@ queries includ-
ing one SPARQL query to retrieve all IRIs of SM4M@ queries and 6 SPARQL
queries for each SM/M@ query (one for each OLAP operation in SM4MQ). The
execution of all the SPARQL queries took 2 seconds in average. Otherwise, if
a user runs each SPARQL query manually using prepared templates and takes
only 2 seconds/query in average, it would take 246 sec. Thus, in this case VTC
enables speed up of at least 100 times just for this task. Finally, VT'C calculated
similarity between the queries and the results indeed reflected similarities from
OLAP and business perspectives. Thus, we confirmed that our approach also
significantly eases the exploitation of MD queries represented with SM/M@Q.

6 Related Work

Typically, traditional approaches consider MD queries in terms of OLAP alge-
bras, i.e., formalization of possible actions over a data cube. A thorough overview
of such approaches is given in [I8] where authors argue that an OLAP algebra
needs to be closed (i.e., each operation produces a data cube), minimal (i.e.,
no operation can be expressed in terms of other operations), and complete (i.e.,
covering all the relevant operation). Thus, the algebras mainly focus on the
correctness and satisfiability of queries in terms of underlying MD schemata.
Furthermore, considering [I8] as a backbone state of the art, the authors of [16]
propose an approach for representing MD queries at the conceptual abstraction
level by defining them as OCL constraints over UML schema representing data
cube. Such a solution is a step towards interoperability of different platform spe-
cific models. However, the focus still remains on the validity of queries. On the
other hand, our approach focuses on representing queries as metadata to support
their sharing and reuse by means of SW technologies. As discussed in Section
SM4MQ is based on the OLAP algebra proposed in [§] and [9].



Furthermore, different OLAP query recommendation approaches typically
store queries in logs and focus on their processing. According to a comprehensive
overview found in [3], query in this context are represented with their syntactic
(SQL) representation, resulting data, as vectors of features, sets of query frag-
ments, or as graphs. The vector representation is used in several approaches,
as for example in [6]. Moreover, some other approaches like [5] again use alge-
braic query representation. However, query representations are typically system
specific that again hinders their sharing and reuse.

The modeling and representing of queries on the SW is just in its infancy.
Just recently, in [I9] the authors proposed an RDF-based model for representing
SPARQL queries. They have used their model to represent a portion of queries
over DBpedia and other public SPARQL endpoints with the following suggested
use cases: generation of benchmarks, query feature analysis, query cashing, us-
ability analysis, and meta-querying. Another interesting use case that can be
added to the previous ones is the user assistance (e.g., query recommendations).
Moreover, [I5] and [II] propose vocabularies to represent SPARQL and SQL
queries in RDF, respectively. Thus, there is a movement towards opening not
only data but also metadata such as queries so that they could be explored with
SPARQL. However, although needed for the context of Exploratory OLAP [,
an MD query model is still missing. By now, most of the efforts have been de-
voted to the schema modeling with vocabularies such as QB4OLAP (see [24]).
Thus, the present paper proposes an RDF-based model to support sharing and
reuse of MD queries on the SW that as well facilitates their exploitation.

7 Conclusion and Future Work

We have proposed SM/MQ, a Semantic Model for Multidimensional Queries.
Using RDF and MD semantics, SM4MQ is a step towards Exploratory OLAP
and sharing and reuse of MD queries on the SW. We also proposed a method to
automate the transformation of the SM4MQ queries into other analysis-ready
representations via SPARQL. The method is exemplified with the use case of
transforming SM4 M@ into a vector representation. To evaluate our approach, we
have developed a prototype implementing the method for the vector use case.
The evaluation showed that SM/M() supports automation of transformation
tasks that would otherwise require significant manual efforts (e.g., at least 100
times more just for SPARQL queries). In our future work, we plan to work on the
exploitation side of the queries, e.g., develop richer transformations to support
advanced user support techniques such as [4]. We also plan to apply our method
to other use cases and support analytical feature definition via high-level GUIs.
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