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Resum

Paraules clau: Cadena de Markov, Metropolis, Kn, disseny combinatori, coloració pròpia, po-
tencial, entropia.

MSC2000: 60J10.

Aquesta Tesi tracta cadenes de Markov discretes i les seves aplicacions en la generació de dissenys
combinatoris. Una conjectura sobre la generació de coloracions pròpies d’arestes del graf complet
Kn, per a n parell, és abordada. Una coloració pròpia de les arestes, o simplement una coloració
pròpia, és una coloració de les arestes tal que dues arestes adjacents no tenen el mateix color.
Les coloracions pròpies d’arestes estan caracteritzades per minimitzar el potencial i maximitzar
l’entropia. Implementem un algorisme al programari R per a generar coloracions pròpies començant
per qualsevol coloració de Kn, identificant les coloracions com a estats en una cadena de Markov, on
les probabilitats de transició es defineixen de manera que el potencial decreix o, alternativament,
l’entropia creix. La conjectura afirma que l’algorisme convergeix en temps polinomial. Donem
proves originals de la conjectura en K4 i K6, i proporcionem nous resultats i idees que podrien
utilitzar-se per a una prova de la conjectura en el cas general Kn.



 



Abstract

Keywords: Markov chain, Metropolis, Kn, combinatorial design, proper coloring, potential, en-
tropy.

MSC2000: 60J10.

This Thesis deals with discrete Markov chains and their applications in the generation of combi-
natorial designs. A conjecture on the generation of proper edge colorings of the complete graph
Kn, for n even, is tackled. A proper edge coloring, or simply a proper coloring, is an edge coloring
such that no two adjacent edges have the same color. Proper edge colorings are characterized by
minimizing the potential and maximizing the entropy. We implement an algorithm in the software
R to generate proper colorings from any arbitrary coloring of Kn, by identifying the colorings as
nodes in a Markov chain, where transition probabilities are defined so that the potential decreases
or, alternatively, the entropy increases. The conjecture states that the algorithm converges in
polynomial time. We give original proofs of the conjecture in K4 and K6, and we provide new
results and ideas that could be used to prove the conjecture in the general case Kn.



 



Notation

Z+: Positive integers: 1,2, . . .

R: Real numbers

∀: For all

a∣b: a divides b

n ≡ kmodm: The integer division between n and m has remainder k

a ∧ b: min{a, b}

⌊a⌋: Integer part of the real number a

⌈a⌉: Ceiling of the real number a

gcd: Greatest common divisor

A ∪B: Union of the sets A and B

A ⊍B: Disjoint union of the sets A and B

A ∩B: Intersection of the sets A and B

A/B: Set A minus the elements of the set B

Ac: Complementary of the set A

A ⊆ B: Set A is contained in set B

A ×B: Cartesian product of A and B

∣A∣: Cardinality of the set A, its number of elements

∈: Belongs to

∉: Does not belong to

[n]: Set {1, . . . , n}, n ∈ Z+

1A: Characteristic function on the set A

∣x∣: Absolute value of the real number x

Ω: Sample space

X ∼ µ: The random variable X follows the distribution µ

P: Probability measure

E: Expectation operator

ω: Generic element of Ω, an arbitrary outcome in our probability space

∥µ − ν∥TV: Total variation distance between the probability measures µ and ν

X : Generic state space of our Markov chains

P : Generic transition matrix

π: Generic stationary or invariant distribution of P

M(i, j): Entry (i, j) of the matrix M

Mn(i, j): Entry (i, j) of the matrix Mn

MT : Transpose of the matrix M



M−1: Inverse of the matrix M

G: Generic graph

V , V (G): Set of vertices of the graph G

E, E(G): Set of edges of the graph G

X ′(G): Chromatic index of the graph G

X (G): Chromatic number of the graph G

Kn: Complete graph with n vertices

AG: Adjacency matrix of the graph G

d(x): Degree of a vertex x (number of its neighbors)

C: Generic proper coloring of the edges of a graph

aν,µ(C): In the coloring C, number of edges incident to vertex ν of color µ

φ: Potential function

H: Entropy function

cC(µ): Number of µ-colored edges in the coloring C
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Chapter 1

Introduction

One of the most important topics in Probability Theory is Markov chains. An introduction
to this area is taught in the compulsory subject Probability and Stochastic Processes of
the Master of Statistics and Operations Research. This Thesis was thought to increase my
knowledge on this topic, which belongs to the foundations of Statistics. As a mathemati-
cian, I am primarily interested in the theory behind the applied Statistics that I learned in
the Master. Our idea was to apply the theory of Markov chains to a recent open problem.

A Markov chain in discrete time is a sequence of random variables such that at each
time, there is dependence only at the previous time. This is a generalization of the usual
i.i.d. (independent and identically distributed) hypothesis for samples. There are two
fundamental theorems in discrete Markov chains: the convergence theorem, which states,
under some hypotheses, that the limiting behavior of the Markov chain corresponds to its
stationary distribution; and the ergodic theorem, which states that the sample mean of
the Markov chain tends to the expectation of its stationary distribution (generalization of
the Law of Large Numbers) [5, 16]. In this Thesis, Chapter 2 deals with the convergence
theorem. Several proofs of this theorem are provided: using the total variation distance
of two distributions, using the coupling of a pair of distributions and finally in the set-
ting of graphs by using spectral techniques. Each proof provides a specific insight into
the convergence of Markov chains. In the application we discuss in Chapter 4, we still
use another approach which is suitable to analyze convergence in the so-called absorbing
Markov chains, and the necessary material is presented in that chapter. For the material
in Chapter 2 on convergence theorems and rapid mixing, we relied on the recent mono-
graph by Levin and Peres [12], the standard textbook by Norris [16] and the survey on
random walks in graphs by Lovász [13].

Markov chains have a great number of applications in different branches, some of them
taught in subjects of the Master, such as bioinformatics, survival time analysis, epidemiol-
ogy, modeling, etc. Markov chains are applied in computer science as well, with one of the
most celebrated algorithms being the Metropolis algorithm. Invented by physicists in the
middle of the 20th century, it turned out to be the key tool in the computational devel-
opment of Bayesian statistics at the end of the 20th century [11, Chapter 6]. Algorithms
related to Markov chains are studied in Chapter 3.

One of the most notable applications of Markov chains appears in the random generation of
combinatorial objects. The seminal paper of Jerrum and Sinclair [19] and the monography
by A. Sinclair which followed it [20] provided the theoretical ground for systematic use
of Markov chains in random generation of combinatorial objects. The general idea is to
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2 1. INTRODUCTION

perform a random walk through a class of objects and deliver the object reached after a
reasonable number of steps. A wealth of applications have followed with applications in
statistics, biology, physics and various areas of mathematics.

Among the applications in statistics we find the problem of generating combinatorial
designs. These are combinatorial structures which were introduced by Fisher in the early
40’s in the context of experimental designs. The goal is to design statistical tests covering
a range of varieties and a range of conditions in order to achieve a good balance in its
distribution. The handbook by Colbourn and Dinitz [4] gives a panoramic view of the
state of the art on the topic and its many applications in statistics and computer science.

One important class of combinatorial designs can be expressed in terms of the so-called
Latin squares, square n × n matrices with pairwise distinct entries in each row and each
column using n symbols. By themselves, Latin squares have been the object of extensive
study and their applications in Statistics are wide, see for instance the monograph by Dénes
and Keedwell [10]. The tight structure of Latin squares has posed a problem related to
random generation. One of the first attempts was proposed by McKay and Wormald [14]
and was followed by a Markov chain approach by Jacobson and Mattews [9] in the context
of random generation of contingency tables. One of the problems related to the random
generation of Latin squares is that its total number is only known asymptotically and only
few exact values are known for small values of n.

In 2017 Dotan and Linial [7] suggested a new simpler approach to the random generation
of symmetric Latin squares by using a Metropolis algorithm. The authors suggest several
variations of the algorithms and describe some statistical behavior for small values of n.
They manage to prove the convergence of one of these variations which involves a more
intricate procedure, but they conjecture [7, Conjecture 1] that the simplest approach does
converge in polynomial time (a detailed statement of the conjecture is given in Chapter
4). The study of this conjecture is one of the main purposes of this work. The problem
is stated in the language of one-factorizations of complete graphs, a topic with extensive
literature in the area of combinatorial designs (see e.g. the monograph by Wallis [21] on
the topic): the goal is to generate a proper edge coloring of the complete graph Kn of even
order n with n − 1 colors (see Chapter 4 for precise definitions).

Taking as main reference the paper by Dotan and Linial [7], we develop an algorithm in
the statistical software R to obtain a proper coloring from any arbitrary coloring of Kn

with n − 1 colors, being based on the potential and the entropy of colorings. Numerical
experiments on the generation of proper edge colorings have been performed for over
30 years, but no mathematical proof has been achieved to justify the numerical results.
One of the main goals of Chapter 4 is to tackle one of the conjectures arisen from the
numerical experiments: Conjecture 1 from [7]. According to our numerical simulations,
we restate the conjecture: the algorithm to generate proper colorings always converges for
any order n in polynomial time. New proofs for K4 and K6 are obtained in our work,
both computational and analytical, and we give ideas on how to tackle the conjecture in
Kn. The theory of Markov Chains is essential to face the problem.

In the last chapter, conclusions on the original results obtained in this Thesis are drawn
and further conjectures on Graph coloring are proposed.



Chapter 2

Markov chains. A convergence theorem

This chapter is concerned with Markov chains and a very important convergence theorem.
In the first section, we will present basic theory about Markov chains, the necessary to
understand the statement of the convergence theorem. Roughly speaking, under some
conditions, the distribution of the Markov chain tends to behave as a stationary distribu-
tion as time increases. After this, in the second, third and fourth sections of this chapter,
we will show three different proofs of this convergence theorem: in the second section,
using the total variation distance between distributions; in the third section, making use
of the coupling of a pair of distributions; and in the fourth section, using spectral theory
to prove the convergence theorem in the particular case of a connected graph. In the fifth
section of this chapter, we will see examples of applications of the convergence theorem.
In the sixth and last section, we will study the so-called mixing times, which are related
to how fast the distribution of the Markov chain tends to the stationary distribution.

1. Markov Chains

Let {Xn}n≥0 be a sequence of random variables in a common probability space with
probability measure P, that take values in a finite or countable set X . This set X is called
the state space, whereas the subscript n is called the time.

Definition 2.1. We say that the sequence {Xn}n≥0 is a Markov chain if

P(Xn = j∣X0 = i0, . . . ,Xn−2 = in−2,Xn−1 = i) = P(Xn = j∣Xn−1 = i).

We say that the Markov chain is homogeneous if P(Xn = j∣Xn−1 = i) = P (i, j) (i.e. the
probability does not depend on the time n).

We say that P = (P (i, j))i,j∈X is the transition matrix.

Our Markov chains will always be homogeneous and we will refer to the Markov chain just
by specifying the transition matrix P .

Notice that the definition of Markov chain is equivalent to the following fact: Let Fn =

σ(X0, . . . ,Xn) be the σ-algebra generated by X0, . . . ,Xn, n ≥ 0. Then, P(Xn = j∣Fn−1) =

P(Xn = j∣Xn−1).

The intuitive idea of a Markov chain is that the future conditioned to the past and the
present only depends on the present.

3



4 2. MARKOV CHAINS. A CONVERGENCE THEOREM

Let λi = P(X0 = i), i ∈ X , and λ = (λi)i∈X be a row vector. By the Total Probability
Theorem and the Markov condition,

P(X0 = i0, . . . ,Xn−1 = in−1,Xn = in) = P (in−1, in)P(X0 = i0, . . . ,Xn−1 = in−1)

= . . . = P (in−1, in)P (in−2, in−1)⋯P (i0, i1)λi0 .

Then,

P(X0 = i0,Xn = in) = ∑
i1,...,in−1∈X

P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1,Xn = in)

= ∑
i1,...,in−1∈X

λi0P (i0, i1)⋯P (in−1, in).

From this, we can compute the law and the conditional probability of a Markov chain in
terms of the transition matrix P :

P(Xn = in∣X0 = i0) =
P(Xn = in,X0 = i0)

P(X0 = i0)

= ∑
i1,...,in−1∈X

P (i0, i1)⋯P (in−1, in) = P
n
(i0, in),

P(Xn = i) = ∑
i0,i1,...,in−1∈X

P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1,Xn = i)

= ∑
i0,i1,...,in−1∈X

λi0P (i0, i1)⋯P (in−1, i) = (λPn)(i).

Notice also that P(Xn+m = j∣Xn = i) = P(Xm = j∣X0 = i). Indeed,

P(Xn+m = j,Xn = i)

P(Xn = i)
=
∑in+1,...,in+m−1∈X P (i, in+1)P (in+1, in+2)⋯P (in+m−1, j)P(Xn = i)

P(Xn = i)

=
P(Xm = j,X0 = i)

P(X0 = i)
.

An important and easy result is Kolmogorov’s equation:

Pn+m(i, j) = ∑
k∈X

Pn(i, k)Pm(k, j).

Definition 2.2. We say that the state i connects with the state j if the Markov chain can
reach j starting at i. Mathematically, P(Xn = j∣X0 = i) > 0 for some n.

We say that i communicates with j if i connects with j and j connects with i. This defines
an equivalence relation in the state space X .

We say that the state i is an absorbing state if P (i, i) = 1 (equivalently, if i is connected
with j, then j = i). A finite Markov chain is said to be absorbing if there exists at least
one absorbing state.

We say that P is irreducible if there is only one equivalence class in X (every state can be
reached from any other state in one or more steps).

Definition 2.3. A state i is aperiodic if gcd{n ≥ 0 ∶ Pn(i, i) > 0} = 1.

We say that P is aperiodic if every state is aperiodic.

Proposition 2.1. Aperiodicity is a class property.
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Proof. Consider i ∈ X and denote

τ(i) = {n ≥ 0 ∶ Pn(i, i) > 0}.

Suppose that i communicates with j, j ∈ X . We show that gcd{τ(i)} = gcd{τ(j)}. Assume
that i ≠ j, otherwise this equality is obvious. Since i connects with j and j connects with
i, P r(i, j) > 0 and P l(j, i) > 0 for certain r, l ≥ 1. Let m = r + l, then m ∈ τ(i) ∩ τ(j) since

Pm(i, i) = ∑
k∈X

P r(i, k)P l(k, i) ≥ P r(i, j)P l(j, i) > 0.

We can see that if n ∈ τ(i), then n +m ∈ τ(j). Indeed,

Pn+m(j, j) = ∑
k,s∈X

P l(j, k)Pn(k, s)P r(s, j) ≥ P l(j, i)Pn(i, i)P r(i, j) > 0.

Denote di = gcd{τ(i)}. We use the notation ∣ for divisibility. Since dj ∣l ∀l ∈ τ(j) and
n +m ∈ τ(j) ∀n ∈ τ(i), we have that dj ∣n +m ∀n ∈ τ(i). As dj ∣m too (because m ∈ τ(j)),
we have that dj ∣n ∀n ∈ τ(i), thus dj ∣di. By symmetry di∣dj , and with this we conclude
that di = dj , as we wanted to show. ⊓⊔

Proposition 2.2. A state i is aperiodic if and only if there exists ni ≥ 1 such that Pn(i, i) >
0 for all n ≥ ni.

Proof. We prove both implications:

[←] It is clear, because the only common factor of n and n+ 1 is 1 (for example if ni = 10,
then P 10(i, i) > 0 and P 11(i, i) > 0, therefore 10,11 ∈ {n ≥ 0 ∶ Pn(i, i) > 0}. Since
gcd{10,11} = 1, we have gcd{n ≥ 0 ∶ Pn(i, i) > 0} = 1, which is the definition of i aperiodic).

[→] Notice that if S ⊆ Z+ with gcd{S} = gS , then there exists F ⊆ S finite satisfying
gcd{F} = gS . Indeed, the sequence {gcd{S ∩ [1, n]}}n≥1 is bounded below by gS (each
term is ≥ gS , in fact gS divides each term) and is monotonically decreasing (when you add
more terms to a set, the gcd is less or equal). If there is an n0 from which the sequence
is constant, let d = gcd{S ∩ [1, n]} for all n ≥ n0. Given s ∈ S, then s ≤ n for some n ≥ n0,
therefore d∣s. Hence, d∣gS and therefore d = gS , so F = S ∩ [1, n0]. If the sequence is never
constant, there is a subsequence {gcd{S ∩ [1, nk]}}k≥1 strictly decreasing, but this is a
contradiction because the (integer) sequence is bounded below by gS .

Denote the finite set F by {f1, . . . , fm}. By Bézout’s Lemma, we know that there exist
α1, . . . , αm ∈ Z such that

gS = α1f1 + . . . + αmfm.

Schur Lemma says that there exists m0 such that for all k ≥m0, kgS is a linear combination
of f1, . . . fm with non-negative integers. This is an elementary number theory statement
that is proved in Lemma 1.30 in [12].

In our case, take S = {n ≥ 0 ∶ Pn(i, i) > 0} and gS = 1. Notice that S is closed for
the sum: if n,m ∈ S, then n +m ∈ S, because by Kolmogorov’s equation Pn+m(i, i) =

∑k P
n(i, k)Pm(k, i) ≥ Pn(i, i)Pm(i, i) > 0. By what we proved, there exists a finite set

F ⊆ S such that gcd{F} = gS = 1. There exists ni such that, for all n ≥ ni, the number
n = ngS is a linear combination of F with non-negative integers, which belongs to S
because S is closed under the sum. Hence, n ∈ S for all n ≥ ni, as wanted. ⊓⊔

Proposition 2.3. If P is irreducible and aperiodic, then there exists N ≥ 1 such that Pn

has all entries positive for all n ≥ N .
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Proof. Since P is aperiodic, by Proposition 2.2, for all i ∈ X there exists a number ni
such that Pn(i, i) > 0 for every n ≥ ni. Let N = max{ni ∶ i ∈ X}. Then Pn(i, i) > 0 for all
n ≥ N and i ∈ X .

Take two distinct states i and j. As P is irreducible, i is connected with j, therefore there
exists a number nij such that Pnij(i, j) > 0. Let N0 = max{nij ∶ i, j ∈ X distinct} +N .

Given two arbitrary states i and j and n ≥ N0,

Pn(i, j) = (Pn−nijPnij)(i, j) = ∑
k∈X

Pn−nij(i, k)Pnij(k, j) ≥ Pn−nij(i, i)Pnij(i, j) > 0

(notice that, since n − nij ≥ N0 − nij ≥ N , we have Pn−nij(i, i) > 0). ⊓⊔

Definition 2.4. We say that the row vector π = {π(i)}i∈X is an invariant or a station-
ary distribution for the transition matrix P if it satisfies that π = πP , that is, π(j) =

∑i∈X π(i)P (i, j).

The name invariant or stationary comes from the fact that if P (X0 = i) = π(i) for all i ∈ X ,
then P(X0 = j) = ∑i∈X P(X0 = i)P (i, j) = ∑i∈X P(X1 = j,X0 = i) = P(X1 = j), so all the Xn

share the same distribution given by π.

Proposition 2.4. If π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ X , then π is a stationary
distribution.

Proof. We have

π(j) = ∑
i∈X

π(j)P (j, i) = ∑
i∈X

π(i)P (i, j),

which is the definition of stationary distribution. ⊓⊔

Proposition 2.5. If X is finite, then P has a stationary distribution.

Proof. Notice that 1 is an eigenvalue of P , since each row of P sums 1. Therefore, 1
is an eigenvalue of P T . Since the spectral radius r of a matrix is less or equal than any
multiplicative norm, r ≤ ∥P T ∥1 = 1 (recall that ∥ ⋅ ∥1 is the maximum of the sums of each
column)[2], therefore 1 is the greatest eigenvalue in absolute value of P T . Since P T has
all entries non-negative, by Perron-Frobenius Theorem (see page 670 in [15]) there exists
an eigenvector u = (ui)i of 1 with non-negative entries. We have P Tu = u, so uTP = u.
Let π = (1/∑i ui)u. Then πP = π, π has all entries non-negative and with sum 1, so π is
a stationary distribution for P . ⊓⊔

Proposition 2.6. If X is finite and P is irreducible, then P has a stationary distribution
with all entries positive.

Proof. The proof is as Proposition 2.5, but since in this case P is irreducible, for all i, j
there exists m ≥ 0 such that (P T )m(i, j) > 0. A version of Perron-Frobenius Theorem (see
page 673 in [15]) guarantees that the eigenvector u has positive entries, therefore π has
positive entries. ⊓⊔

Theorem 2.1. Let P be an irreducible and aperiodic Markov chain with stationary distri-
bution π. Then

Pn(i, j)
n→∞
Ð→ π(j),

for all i, j ∈ X .
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In the following three sections, we will prove this theorem in three different ways. However,
we will restrict to the case of a finite state space. The reason for this is that, for all our
proofs to work, we have to deal necessarily with a finite state space, and moreover, in
terms of applications, we will just work with finite Markov chains.

Concerning notation, we will denote our finite state space by X , and the states will be
denoted by the last letters of the alphabet: x, y, etc.

2. Convergence of Markov Chains. Total Variation distance

Denote by X our state space. Notice that, for each x ∈ X , Pn(x, ⋅) is a probability
measure on X , as well as the stationary distribution π. Thus, to prove Theorem 2.1, we
have to study the distance between two probability distributions on X . This motivates
the following definition.

Definition 2.5. The total variation distance between two probability distributions µ and
ν on X is defined as:

∥µ − ν∥TV = max
A⊆X

∣µ(A) − ν(A)∣.

Notice that the total variation distance is indeed a distance: it is greater or equal than
zero, being zero if and only if µ = ν, it is symmetric and it satisfies the triangular inequality
because the modulus satisfies it in R.

The total variation distance measures the maximum difference between two probabilities
assigned by µ and ν in X . Although this is an intuitive definition, it is difficult to check
in practice, since one has to consider every possible event contained in X . The following
proposition allows us to have a more useful formula for the total variation distance in
terms of computations.

Proposition 2.7. The total variation distance can be expressed as follows:

∥µ − ν∥TV =
1

2
∑
x∈X

∣µ(x) − ν(x)∣.

Proof. Let B = {x ∈ X ∶ µ(x) ≥ ν(x)}. Fix any event A ⊆ X .

If x ∈ A ∩Bc, then µ(x) − µ(x) < 0. Summing for all x ∈ A ∩Bc, we arrive at µ(A ∩Bc) −

ν(A ∩Bc) ≤ 0 (it is not strictly less than zero because it could happen that A ∩Bc = ∅).
Therefore,

µ(A)− ν(A) = µ(A∩B)− ν(A∩B)+µ(A∩Bc
)− ν(A∩Bc

) ≤ µ(A∩B)− ν(A∩B). (2.1)

Similarly, if x ∈ B ∩ Ac, then µ(x) − ν(x) ≥ 0. Summing for all x ∈ B ∩ Ac, we obtain
µ(B ∩Ac) − ν(B ∩Ac) ≥ 0. This implies that

µ(B)− ν(B) = µ(B ∩A)− ν(B ∩A)+µ(B ∩Ac)− ν(B ∩Ac) ≤ µ(B ∩A)− ν(B ∩A). (2.2)

Combining inequalities (2.1) and (2.2),

µ(A) − ν(A) ≤ µ(A ∩B) − ν(A ∩B) ≤ µ(B) − ν(B).

As A is an arbitrary event, taking maximums on A gives ∥µ − ν∥TV ≤ µ(B) − ν(B). But
that maximum is achieved at the event B, thus we have equality:

∥µ − ν∥TV = µ(B) − ν(B). (2.3)



8 2. MARKOV CHAINS. A CONVERGENCE THEOREM

Since µ(B) − ν(B) = 1 − µ(Bc) − 1 + ν(Bc) = ν(Bc) − µ(Bc),

∥µ − ν∥TV =
1

2
[µ(B) − ν(B) + ν(Bc

) − µ(Bc
)]

=
1

2
[∑
x∈B

(µ(x) − ν(x)) + ∑
x∈Bc

(ν(x) − µ(x))]

=
1

2
∑
x∈X

∣µ(x) − ν(x)∣.

⊓⊔

Corollary 2.1. The total variation distance can be expressed as

∥µ − ν∥TV = ∑
x∈X

µ(x)≥ν(x)

(µ(x) − ν(x)).

Proof. In the proof of Proposition 2.7 above, we defined B = {x ∈ X ∶ µ(x) ≥ ν(x)} and
we showed in (2.3) that

∥µ − ν∥TV = µ(B) − ν(B).

With this the proof is completed. ⊓⊔

Example 2.1. Let µ and ν be two probability measures on {1,2,3} with µ(1) = 3/4,
µ(2) = 1/8 and µ(3) = 1/8, ν(1) = 1/3, ν(2) = 1/3 and ν(3) = 1/3. Then

∥µ − ν∥TV =
1

2
(∣

3

4
−

1

3
∣ + ∣

1

8
−

1

3
∣ + ∣

1

8
−

1

3
∣) =

5

12
.

Without this Proposition 2.7 and trying to apply directly the definition of total variation
distance, we would have to take every possible subset A ⊆ {1,2,3} and compute ∣µ(A) −

ν(A)∣. The number of computations required to achieve this is exponential in the size
n of X (2n computations), whereas Proposition 2.7 and Corollary 2.1 require only n
computations.

We are ready to prove Theorem 2.1, even a stronger result.

Theorem 2.2. Let P be an irreducible and aperiodic transition matrix, with stationary
distribution π. Then there exist α ∈ (0,1) and C > 0 such that

max
x∈X

∥Pn(x, ⋅) − π∥TV ≤ Cαn.

Proof. Since P is irreducible and aperiodic, by Proposition 2.3 there exists r ≥ 1 such
that P r has strictly positive entries. Let Π be the matrix such that each row is the
vector π (stationary distribution). Since P r(x, y) > 0, ∀x, y ∈ X , there exists m such that
P r(x, y) ≥ m > 0 ∀x, y ∈ X . We choose 0 < δ < m

maxy∈X {π(y)} , so that P r(x, y) ≥ δπ(y),

∀x, y ∈ X . Let θ = 1 − δ and consider the matrix Q defined by the following equation:

P r = (1 − θ)Π + θQ. (2.4)

Notice that P r(i, j) = P(Xr = j∣X0 = i), then ∑j∈X P r(i, j) = 1. Since by (2.4)

P r(i, j) = (1 − θ)Π(i, j)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
π(j)

+θQ(i, j),
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applying ∑j∈X at both sides of the last equality and taking into account that ∑j∈X π(j) = 1,
we get

1 = (1 − θ) + θ ∑
j∈X

Q(i, j).

Then ∑j∈X Q(i, j) = 1, that is, Q is stochastic.

By induction on k ≥ 1 we show that

P rk = (1 − θk)Π + θkQk. (2.5)

The first case, k = 1, is true by definition of Q (2.4). Assume that the equation (2.5) is
true for k = n and we prove that it holds for k = n + 1.

P r(n+1)
= P rnP r =

´¸¶
induction

[(1 − θn)Π + θnQn]P r,

then

P r(n+1)
= (1 − θn)ΠP r + θnQnP r.

Applying (2.4) to the right-hand side of the sum of the last expression,

P r(n+1)
= (1 − θn)ΠP r + θnQn[(1 − θ)Π + θQ]

= (1 − θn)ΠP r + θnQn(1 − θ)Π + θn+1Qn+1.

Since π is the stationary distribution of P , one has ΠP r = Π. Moreover, since Q is
stochastic we know that Qn is stochastic, so QnΠ = Π. Hence,

P r(n+1)
= (1 − θn)Π + θn(1 − θ)Π + θn+1Qn+1

= π(1 − θn + θn − θn+1
) + θn+1Qn+1

= π(1 − θn+1
) + θn+1Qn+1,

and (2.5) is true. Multiplying at both sides of (2.5) by P j one has,

P rk+j = (1 − θk)ΠP j + θkQkP j = (1 − θk)Π + θkQkP j .

Finally, we have that

P rk+j −Π = −θkΠ + θkQkP j = θk(−Π +QkP j).

By Proposition 2.7,

∥P rk+j(x0, ⋅) − π∥TV =
1

2
∑
x∈X

∣P rk+j(x0, x) − π(x)
´¸¶

Π(x0,x)

∣

=
1

2
θk ∑

x∈X
∣ −Π(x0, x) + (QkP j)(x0, x)∣

≤
1

2
θk( ∑

x∈X
Π(x0, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+ ∑
x∈X

(QkP j)(x0, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

) = θk,

where the last inequality comes from applying the triangular inequality, and

∑
x∈X

(QkP j)(x0, x) = 1
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holds because the product of stochastic matrices is stochastic1. Let n ≥ 1. Define kn and
jn such that n = rkn + jn, where kn = ⌊nr ⌋ (i.e. knr ≤ n < (kn + 1)r) and jn = n − rkn. Then

∥Pn(x0, ⋅) − π∥TV = ∥P rkn+jn(x0, ⋅) − π∥TV ≤ θkn ≤ θ
n
r = (θ

1
r )
n.

To end up, consider C = 1 and α = θ
1
r and we have the theorem proved.

⊓⊔

From this theorem, Theorem 2.1 follows. Indeed,

0 = lim
n→∞max

x∈X
∥Pn(x, ⋅) − π∥TV = lim

n→∞max
x∈X

1

2
∑
y∈X

∣Pn(x, y) − π(y)∣,

whence limn→∞ Pn(x, y) = π(y), for all x, y ∈ X .

3. Convergence of Markov Chains. Coupling.

There is a very close relation between probability distributions and random variables: ev-
ery random variable has a probability distribution, and for every probability distribution
there exist a probability space and a random variable with the law specified by the proba-
bility distribution. This makes us think on expressing the total variation distance between
two probability distributions as some sort of distance between two random variables. This
fact motivates the definition of coupling.

Definition 2.6. A coupling of µ and ν is a pair of random variables (X,Y ) defined on
the same probability space such that the distribution of X is µ and the distribution of Y
is ν. That is, in a finite probability space with probability measure P, a coupling (X,Y )

satisfies P(X = x) = µ(x) and P(Y = y) = ν(y).

Notice that, for any pair of distributions µ and ν, a coupling (X,Y ) always exists, since
we can always find a probability space and two independent random variables X and Y
such that the law of X is µ and the law of Y is ν (by Kolmogorov’s Extension Theorem,
see [17, Theorem 2.4]). In fact, this is a stronger result than the definition of coupling,
since a coupling does not require the pair of random variables to be independent.

Example 2.2. Let µ and ν be two probability measures on {0,1} such that µ(0) = ν(0) =
1/2 and µ(1) = ν(1) = 1/2. Essentially, µ, ν ∼ Ber(1/2). We can find a probability space
and two independent random variables X and Y such that X,Y ∼ Ber(1/2). Then the
pair (X,Y ) is a coupling of µ and ν. Notice that (X,X) is also a coupling of µ and ν.

Concerning notation when we use couplings, we will use the notation P for the probability
measure of the probability space that arises when defining the coupling. We will not
specify the connection between the couplings and the corresponding probability space or
measure, it should be understood by the context.

The following proposition gives the total variation distance between two probability dis-
tributions in terms of their couplings.

1Let A and B be two stochastic matrices and consider 1 a vector of ones. By definition of stochastic
matrix, we have that A1 = 1 and B1 = 1. Hence (AB)1 = A1 = 1.
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Proposition 2.8. Let µ and ν be two probability distributions in a finite probability space.
Then

∥µ − ν∥TV = min{P(X ≠ Y ) ∶ (X,Y ) coupling}.

The coupling for which that minimum is attained is called optimal coupling.

Proof. Consider any coupling (X,Y ) of µ and ν and any event A ⊂ X . Notice that

P(X ∈ A,Y ∉ A) + P(Y ∈ A) ≥ P(X ∈ A,Y ∉ A) + P(X ∈ A,Y ∈ A)

=
´¸¶

disjoint

P({X ∈ A,Y ∉ A} ∪ {X ∈ A,Y ∈ A}) = P(X ∈ A),

where the first inequality is because {X ∈ A,Y ∈ A} ⊂ {Y ∈ A}. Hence, we have that

P(X ∈ A) ≤ P(X ∈ A,Y ∉ A) + P(Y ∈ A).

Taking this into account,

µ(A) − ν(A) = P(X ∈ A) − P(Y ∈ A) ≤ P(X ∈ A,Y ∉ A)

≤ P(X ≠ Y ).

Taking the infimum in last expression, one has:

µ(A) − ν(A) ≤ inf{P(X ≠ Y ) ∶ (X,Y ) is a coupling of µ and ν},

and taking the supremum on A we get:

∥µ − ν∥TV ≤ inf{P(X ≠ Y ) ∶ (X,Y ) is a coupling of µ and ν}.

Now we construct a coupling (X,Y ) such that ∥µ − ν∥TV = P(X ≠ Y ). Let

p = ∑
x∈X

µ(x) ∧ ν(x),

where ∧ denotes the minimum. We decompose ∑x∈X µ(x) ∧ ν(x) into two parts:

∑
x∈X

µ(x) ∧ ν(x) = ∑
x∈X

µ(x)≤ν(x)

µ(x) + ∑
x∈X

µ(x)>ν(x)

ν(x).

Add and subtract

∑
x∈X

µ(x)>ν(x)

µ(x)

to the right-hand side of this last expression, to derive

∑
x∈X

µ(x) ∧ ν(x) = 1 − ∑
x∈X

µ(x)>ν(x)

(µ(x) − ν(x)).

By Corollary 2.1, we have that

p = ∑
x∈X

µ(x) ∧ ν(x) = 1 − ∥µ − ν∥TV.

Toss a coin with probability of heads equal p.
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● If it comes up a head, we choose a value of Z according to

γ1(x) =
µ(x) ∧ ν(x)

p

(this is obviously a probability taking into account the definition of p) and set X =

Y = Z.
● If it comes up a tail, we choose a value of X according to the distribution

γ2(x) =

⎧⎪⎪
⎨
⎪⎪⎩

µ(x)−ν(x)
∥µ−ν∥TV

if µ(x) > ν(x),

0 otherwise,

and independently, we choose a value of Y according to the distribution

γ3(x) =

⎧⎪⎪
⎨
⎪⎪⎩

ν(x)−µ(x)
∥µ−ν∥TV

if ν(x) > µ(x),

0 otherwise.

Let us see that X has distribution µ and Y has distribution ν. Notice that, since p =

1 − ∥µ − ν∥TV,

pγ1 + (1 − p)γ2 = µ

and

pγ1 + (1 − p)γ3 = ν.

Indeed, let us see that pγ1 + (1 − p)γ2 = µ (the case pγ1 + (1 − p)γ3 = ν is analogous):

● suppose that µ(x) > ν(x), then

pγ1 + (1 − p)γ2 = p
µ(x) ∧ ν(x)

p
+ ∥µ − ν∥TV

µ(x) − ν(x)

∥µ − ν∥TV
= µ(x);

● suppose that µ(x) ≤ ν(x), then

pγ1 + (1 − p)γ2 = p
µ(x)

p
+ ∥µ − ν∥TV ⋅ 0 = µ(x).

Call H the event of getting a head and T the event of getting a tail. According to this
notation and the last two equations,

P(X = x) = P(X = x∣H)P(H) + P(X = x∣T )P(T ).

● If we obtain a head, we choose X according to γ1, then P(X = x∣H) = γ1(x) and
P(H) = p,

● If we obtain a tail, we choose X according to γ2, then P(X = x∣T ) = γ2(x) and
P(T ) = 1 − p.

Thus, P(X = x) = pγ1(x) + (1 − p)γ2(x) = µ(x), and with this we conclude that X ∼ µ
(analogously, we deduce that Y ∼ ν). Therefore, (X,Y ) is a coupling. Notice that if the
coin comes up tails, X ≠ Y , since then

support(X) ⊆ {x ∶ µ(x) > ν(x)},

support(Y ) ⊆ {x ∶ ν(x) > µ(x)},

so support(X) and support(Y ) are disjoint. Moreover, from this last result we have that
X = Y if and only if the coin comes up heads. Then,

P(X ≠ Y ) = P(T ) = 1 − p = 1 − (1 − ∥µ − ν∥TV) = ∥µ − ν∥TV.

⊓⊔
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Coupling will allow us to prove Theorem 2.1 in an easy way. Define

d(n) = max
x∈X

∥Pn(x, ⋅) − π∥TV, d̄(n) = max
x,y∈X

∥Pn(x, ⋅) − Pn(y, ⋅)∥TV.

In the following proposition, we establish the relation between d(n) and d̄(n).

Proposition 2.9. It holds
d(n) ≤ d̄(n) ≤ 2d(n).

Proof. The inequality d̄(n) ≤ 2d(n) is clear by the triangular inequality.

Let us prove the other inequality, d(n) ≤ d̄(n). By definition of π, π = πP . Componentwise,
this means that π(x) = ∑y∈X π(y)Pn(y, x). This gives the probability of any event A ⊆ X

under the probability π:

π(A) = ∑
x∈A

π(x) = ∑
y∈X

π(y)(∑
x∈A

Pn(y, x)) = ∑
y∈X

π(y)Pn(y,A).

Then,

∣Pn(x,A) − π(A)∣ =

RRRRRRRRRRR

∑
y∈X

π(y)(Pn(x,A) − Pn(y,A))

RRRRRRRRRRR

≤ ∑
y∈X

π(y)∣Pn(x,A) − Pn(y,A)∣

≤ ∑
y∈X

π(y)∥Pn(x, ⋅) − Pn(y, ⋅)∥TV

≤ max
y∈X

∥Pn(x, ⋅) − Pn(y, ⋅)∥TV ∑
y∈X

π(y)

= max
y∈X

∥Pn(x, ⋅) − Pn(y, ⋅)∥TV.

Taking supremum on A,

∥Pn(x, ⋅) − π∥TV ≤ max
y∈X

∥Pn(x, ⋅) − Pn(y, ⋅)∥TV.

Finally, taking maximum on x ∈ X , we arrive at the desired inequality d(t) ≤ d̄(t). ⊓⊔

From this proposition, we realize that to prove Theorem 2.2 it suffices to bound d̄(n) ≤
Cαn, for certain C > 0 and α ∈ (0,1). Thus, we need to study more deeply the function
d̄(n). The key result is that d̄(n) is a multiplicative function. This fact is proved in the
following proposition, using as a tool the concept of coupling.

Proposition 2.10. It holds
d̄(n +m) ≤ d̄(n)d̄(m).

Proof. For fixed x, y ∈ X , consider the probability measures Pn(x, ⋅) and Pn(y, ⋅). Let
(Xn, Yn) be an optimal coupling for Pn(x, ⋅) and Pn(y, ⋅):

∥Pn(x, ⋅) − Pn(y, ⋅)∥TV = P(Xn ≠ Yn).

By Kolmogorov’s equation,

Pn+m(x,w) = ∑
z∈X

Pn(x, z)Pm(z,w) = ∑
z∈X

P(Xn = z)P
m
(z,w) = E[Pm(Xn,w)].

Analogously,

Pn+m(y,w) = ∑
z∈X

Pn(y, z)Pm(z,w) = ∑
z∈X

P(Yn = z)Pm(z,w) = E[Pm(Yn,w)].
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Then

Pn+m(x,A) − Pn+m(y,A) = E[Pm(Xn,A) − Pm(Yn,A)],

for every event A ⊆ X .

For a given outcome ω in our probability space, if Xn(ω) ≠ Yn(ω), then

∣Pm(Xn(ω),A) − Pm(Yn(ω),A)∣ ≤ ∥Pm(Xn(ω), ⋅) − P
m
(Yn(ω), ⋅)∥TV ≤ d̄(m).

This implies that,

∣Pm(Xn,A) − Pm(Yn,A)∣ ≤ d̄(m)1{Xn≠Yn}.

By the monotonicity of the expectation,

∣Pn+m(x,A) − Pn+m(y,A)∣ = E[∣Pm(Xn,A) − Pm(Yn,A)∣] ≤ E[d̄(m)1{Xn≠Yn}]

= d̄(m)P(Xn ≠ Yn) = d̄(m)∥Pn(x, ⋅) − Pn(y, ⋅)∥TV

≤ d̄(m)d̄(n).

Taking the maximum on A ⊆ X ,

∥Pn+m(x, ⋅) − Pn+m(y, ⋅)∥TV ≤ d̄(m)d̄(n).

Finally, taking the maximum on x, y ∈ X the inequality d̄(n +m) ≤ d̄(m)d̄(n) follows. ⊓⊔

We are in position of proving again Theorem 2.2.

Theorem 2.3. Let P be an irreducible and aperiodic transition matrix, with stationary
distribution π. Then there exist α ∈ (0,1) and C > 0 such that

max
x∈X

∥Pn(x, ⋅) − π∥TV ≤ Cαn.

Proof. Since P is irreducible and aperiodic, there exists n ≥ 1 such that Pn has all entries
greater than zero. Then, for all x, y ∈ X and A ⫋ X , we have that Pn(x,A) ∈ (0,1) and
Pn(y,A) ∈ (0,1), so ∣Pn(x,A)−Pn(y,A)∣ < 1 (this last inequality also holds when A = X ).
Taking maximum on A ⊆ X , we get ∥Pn(x, ⋅) − Pn(y, ⋅)∥TV < 1. Finally, taking maximum
on x, y ∈ X , β ∶= d̄(n) < 1.

Using the multiplicative property of d̄, we obtain that for any m ≥ 1

d̄(n +m) ≤ d̄(n)d̄(m) ≤ βd̄(m),

d̄(n + 2m) ≤ d̄(n +m)d̄(m) ≤ β2d̄(m),

. . .

d̄(n + km) ≤ βkd̄(m) ≤ 2βk

(the 2 comes from the fact that ∣Pm(x,A) − Pm(y,A)∣ ≤ 2 by the triangular inequality).

Fix m ≥ 1. Write m = m0 + k0n, where k0 = ⌊m/n⌋ is the unique integer satisfying
k0n ≤m < (k0 + 1)n and m0 =m − k0n. Then,

d(m) ≤ d̄(m) = d̄(m0 + k0n) ≤ 2βk0 ≤ 2βm/n = Cαm,

where C = 2 and α = β1/n < 1. ⊓⊔
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4. Convergence of Markov Chains in graphs. Spectral tools.

Let G = (V,E) be a connected graph, with ∣V ∣ = n vertices and ∣E∣ = m edges. We are
going to define a Markov chain on G in the following manner: if we are at a vertex x ∈ V
with degree d(x), we move to a neighbor of x with probability 1/d(x). In this way, the
state space is X = V and the transition probability matrix is defined as

P (x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

1/d(x), xy ∈ E,

0, xy ∉ E.

Notice the relation between the transition matrix and the adjacency matrix AG of G:
P = DAG, where D is a diagonal matrix such that D(x,x) = 1/d(x). Recall that the
adjacency matrix AG is an n×n matrix such that AG(x, y) = 1 if xy ∈ E and AG(x, y) = 0
otherwise.

The stationary distribution π of P is the following:

π(x) =
d(x)

2m
. (4.1)

This can be checked in two different ways. First, directly with the definition π = πP .
Second, realizing that π(x)P (x, y) = π(y)P (y, x), which implies that π is stationary.

Our goal will be to prove Theorem 2.1 for this particular Markov chain. We will use spec-
tral tools in the proof, which means to take advantage of the eigenvalues of the transition
matrix P .

First, we need to check if the hypotheses of Theorem 2.1 hold, that is, if P is irreducible
and aperiodic. The irreducibility of P follows from the connectivity of G, since for any pair
of states there is a path in G between them. The aperiodicity requires more work to be
done, since not every connected graph gives the aperiodicity of the transition matrix. In
fact, we have a characterization of aperiodicity by means of the concept of bipartite graph.
A graph G is said to be bipartite if there is a partition of the set of vertices V = V1 ∪ V2

such that every edge connects a vertex in V1 to one in V2, that is, E ⊆ V1 × V2.

Fig. 1. Example of a bipartite graph, with V1 = {1,3,4,6} and V2 = {2,5,7}.

Theorem 2.4. The graph G is non-bipartite if and only if the Markov chain is aperiodic.

Proof. We prove both implications:

[←] If G is bipartite, you can come back to the same vertex only in an even number of
steps. Therefore gcd{n ≥ 0 ∶ Pn(x,x) > 0} is even, for every vertex x. Hence, the Markov
chain is not aperiodic.
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[→] As any edge “leaves and comes back”, we have P 2k(x,x) > 0 for all k ≥ 0 and every
vertex x. Thus, to prove the aperiodicity, it is enough to ckeck that you can come back to
a vertex x in an odd number of steps. Suppose by contradiction that you can come back to
x only in an even number of steps. Given a vertex y, let D(y) be the length of the shortest
path from x to y (this path does exist because our graph G is connected). Paint y red if
D(y) is even, and blue if D(y) is odd. Let V1 = {y ∶ y is red} and V2 = {y ∶ y is blue}.
Trivially, x ∈ V1 (because D(x) = 0 even). Suppose that there is an edge between two blue
vertices y1 and y2. Then you can come back to x in an odd number of steps (odd path
from x to y1, union edge from y1 to y2, union odd path from y2 to x), which is not possible
by assumption. Suppose similarly that there is an edge between two red vertices y1 and
y2. None of the two vertices is x, since a red vertex cannot be adjacent to x. Hence, there
is an odd cycle starting and ending at x (even path from x to y1, union edge from y1 to
y2, union even path from y2 to x), which again is not possible.

Thus, V1 and V2 bipartite G, but G is not bipartite by assumption. Thus, it is possible to
come back to x in an odd number of steps. ⊓⊔

Now we are able to prove Theorem 2.1.

Theorem 2.5. If G is connected and non-bipartite (that is, P is irreducible and aperiodic),
then

lim
n→∞P

n
(x, y) = π(y),

for all x, y ∈ X = V .

Proof. Denote the vertices of G by V = {1, . . . , n}. We want to use spectral tools to prove
this result. The problem is that P is not symmetric (unless G is regular). However, we will
use the fact that P = DA, where D is a diagonal matrix with entries D(i, i) = 1/d(i) and

A = AG is the adjacency matrix of G. Consider the matrix N =D1/2AD1/2 =D−1/2PD1/2.
Since A is symmetric, N is symmetric, so we can take advantage of the spectrum of N .
Let {v1, . . . , vn} be an orthonormal basis of (column) eigenvectors of N associated to the
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. We can write N = ∑

n
k=1 λkvkv

T
k . Notice that the vector w

defined as w(i) =
√
d(i) is an eigenvector of N with eigenvalue 1. Indeed,

(Nw)(i) =
n

∑
j=1

N(i, j)w(j) =
n

∑
j=1

1
√
d(i)

A(i, j)
1

√
d(j)

√
d(j) =

1
√
d(i)

n

∑
j=1

A(i, j)

=
1

√
d(i)

d(i) =
√
d(i) = w(i).

Then the normalized vector v = w/
√

2∣E∣ is a unit eigenvector of N with eigenvalue 1, so
we can assume that v belongs to the set {v1, . . . , vn}.

Since the entries of N are non-negative, Perron-Frobenius Theorem (see e.g. [15, page
670]) asserts that the greatest eigenvalue of N in modulus, λ1, is non-negative, and more-
over an eigenvector (we can assume v1) with non-negative entries can be chosen. As v
has positive entries, λ1 = 1 and v1 = v (otherwise v ⋅ v1 > 0, which is not possible by
orthogonality).

Now, this version of Perron-Frobenius Theorem does not ensure λ2 < λ1, because we only
know that the entries of N are non-negative, and not strictly positive. To solve this
problem, we will use another version of Perron-Frobenius Theorem (see [15, page 673]) for
the so-called irreducible matrix. Motivated by the definition for Markov chains, a square
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non-negative matrix M is said to be irreducible if for any entry (i, j) there exists a power
r such that M r(i, j) > 0. Perron-Frobenius Theorem says that, for an irreducible matrix
M , the greatest eigenvalue is simple. In our case, given an entry (i, j), we know that there
is a power r such that P r(i, j) > 0 (because the graph G is connected), therefore

N r
(i, j) = (D−1/2PD1/2

)
r
(i, j) =

√
d(i)P r(i, j)

1
√
d(j)

> 0.

Therefore N is irreducible in the sense of this last general definition, and by Perron-
Frobenius Theorem λ1 is simple, that is, 1 = λ1 > λ2 ≥ . . . ≥ λn.

From the non-bipartite condition of G, we prove directly that λn > −1. Suppose by
contradiction that λn = −1. From Nvn = λnvn, multiplying to the left by vTn we obtain
λn = v

T
nNvn. Applying modulus,

1 = ∣λn∣ =
RRRRRRRRRRR

∑
i,j

vn(i)N(i, j)vn(j)
RRRRRRRRRRR

≤∑
i,j

N(i, j)∣vn(i)∣∣vn(j)∣ = y
TNy ≤ λ1y

T y = λ1 = 1,

where y(i) ∶= ∣vn(i)∣. Then yTNy = λ1y
T y. This implies y = v1. Also,

RRRRRRRRRRR

∑
i,j

vn(i)N(i, j)vn(j)
RRRRRRRRRRR

=∑
i,j

N(i, j)∣vn(i)∣∣vn(j)∣.

This is equivalent to the fact that N(i, j)vn(i)vn(j) has constant sign for all i, j. In fact,
since ∑i,jN(i, j)vn(i)vn(j) = vTnNvn = λn = −1, we obtain N(i, j)vn(i)vn(j) ≤ 0 for all
i, j. Let V1 = {i ∶ vn(i) > 0} and V2 = {i ∶ vn(i) < 0}. We have V1 ∪ V2 = V , because we saw
that ∣vn(i)∣ = v1(i) > 0 for all i. On the other hand, if there were two vertices k, l ∈ V1 or

k, l ∈ V2 joined with an edge, N(k, l) = (D1/2AD1/2)(k, l) = (1/
√
d(k))A(k, l)(1/

√
d(l)) >

0, therefore N(i, j)vn(i)vn(j) > 0, which is not possible. Then V1 and V2 bipartite G, and
this is a contradiction. Hence, λn > −1, as wanted.

In conclusion, 1 = λ1 > λ2 ≥ . . . ≥ λn > −1. From this, we compute limn→∞ Pn(i, j). We
have

Pn =D1/2NnD−1/2
=

n

∑
k=1

λnkD
1/2vkvTkD

−1/2
= Q +

n

∑
k=2

λnkD
1/2vkvTkD

−1/2.

We compute Pn(i, j) as a sum of

Q(i, j) = λn1(D
1/2v1v

T
1 D

−1/2
)(i, j) = λn1(1/

√
d(i))v1(i)v1(j)

√
d(j)

= (1/
√
d(i))

√
d(i)

√
d(j)

√
d(j)/(2∣E∣) = π(j)

and

(
n

∑
k=2

λnkD
1/2vkvTkD

−1/2
)(i, j) =

n

∑
k=2

λnk(D
1/2vkvTkD

−1/2
)(i, j) =

n

∑
k=2

λnk

¿
Á
ÁÀd(j)

d(i)
vk(i)vk(j).

Since ∣λk∣ < 1 for k = 2, . . . , n, we conclude that limn→∞ P (i, j) = π(j). ⊓⊔

5. Examples

In this section we will show applications of the convergence theorem. The main result of
interest is that we are able to compute the asymptotic distribution of the Markov chain.
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Example 2.3. Consider the points 1, 2, 3 and 4 in the real line. Let Xn be a Markov
chain that goes to the right with probability 2/3 and moves to the left with probability
1/3, but with the condition that if it tries to go the left of 1 or to the right of 4 it remains
at the same place.

According to this information the Markov chain is

1 2 3 42/3 2/3 2/3

1/31/31/3

1/3 2/3

We have that X = {1,2,3,4} and the transition matrix that models this situation is

P =

⎛
⎜
⎜
⎜
⎝

1/3 2/3 0 0
1/3 0 2/3 0
0 1/3 0 2/3
0 0 1/3 2/3

⎞
⎟
⎟
⎟
⎠

.

The chain is irreducible since we can reach any state from any other state. To check
the aperiodicity, since it is a class property, it is enough to check it for a single state,
say 1. When we are at state 1, in the next step we can return to 1 with probability
1/3, so gcd{n ≥ 0 ∶ Pn(1,1) > 0} = 1 since P (1,1) = 1/3 > 0. By the convergence
theorem, limn→∞ Pn(i, j) = π(j), where π is the stationary distribution of P . To compute
π = (π(1), π(2), π(3), π(4)), we have to solve the linear system π = πP , which is

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π(1) = 1
3π(1) +

1
3π(2)

π(2) = 2
3π(1) +

1
3π(3)

π(3) = 2
3π(2) +

1
3π(4)

π(4) = 2
3π(3) +

2
3π(4)

.

Solving this system and taking into account that π(1) + π(2) + π(3) + π(4) = 1, we get
π = (1/15,2/15,4/15,8/15). Then

lim
n→∞(P(Xn = 1),P(Xn = 2),P(Xn = 3),P(Xn = 4))

= lim
n→∞(P(X0 = 1),P(X0 = 2),P(X0 = 3),P(X0 = 4))Pn

= (P(X0 = 1),P(X0 = 2),P(X0 = 3),P(X0 = 4))

⎛
⎜
⎜
⎜
⎝

π
π
π
π

⎞
⎟
⎟
⎟
⎠

= π = (1/15,2/15,4/15,8/15)

Example 2.4. Let Nn be the number of heads observed in the first n tosses of a fair coin
and let Xn ≡ Nn mod 5.

Then the Markov chain is the following
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0 1 2 3 41/2 1/2 1/2 1/2

1/2

1/2 1/2 1/2 1/2 1/2

We have that Xn is a Markov chain with state space X = {0,1,2,3,4}. Since we have
a fair coin, the probability of having heads is 1/2, then we have a transition probability
matrix of the form

P =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1/2 1/2 0 0 0
0 1/2 1/2 0 0
0 0 1/2 1/2 0
0 0 0 1/2 1/2

1/2 0 0 0 1/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Notice that P is irreducible, since we can go from one state to any other state, and it
is aperiodic, since gcd{n ≥ 0 ∶ Pn(0,0) > 0} = 1 because P (0,0) = 1/2 > 0. By the
convergence theorem, limn→∞ Pn(i, j) = π(j). Since each column of P sums 1, we can
take π = (1/5,1/5,1/5,1/5,1/5) (a transition matrix with this property is called doubly
stochastic). Thus we have that limn→∞ P(Xn = k) = 1/5, for k = 0,1,2,3,4.

6. Mixing time

In the previous sections we saw that the distribution of the Markov chain tends to be close
(in the total variation distance) to the stationary distribution as time increases. The idea
now is to study how rapid this convergence is, in the sense of the total variation distance.
Recall that

d(n) = max
x∈X

∥Pn(x, ⋅) − π∥TV

is bounded by Cαn for certain C > 0 and α ∈ (0,1) whenever P is irreducible and aperiodic.
In general, we do not know C nor α.

To study the speed of the convergence, define

tmix(ε) = min{n ∶ d(n) ≤ ε}.

This term is called the mixing time, and it refers to the time needed by the Markov chain to
behave as the stationary distribution. The goal in this section is to obtain a lower-bound
for tmix(ε) under some conditions.

Let Xn be an irreducible and aperiodic Markov chain, and let P be its transition matrix
with uniform stationary distribution π. Define

X
x
n = {y ∶ Pn(x, y) > 0}

and
∆ = max

x∈X
∣X

x
1 ∣.

By induction, ∣X xn ∣ ≤ ∆n. Indeed, for n = 1 this is true by definition of ∆. Suppose that this
holds for n − 1, that is, ∣X xn−1∣ ≤ ∆n−1, and we prove it for n. By Kolmogorov’s equation,
Pn(x, y) = ∑z∈X Pn−1(x, z)P (z, y). Then, Pn(x, y) > 0 if and only if there exists z ∈ X
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such that Pn−1(x, z) > 0 and P (z, y) > 0. Thus, y ∈ X xn if and only if there exists z ∈ X xn−1

such that y ∈ X z1 , so
X
x
n = ⋃

z∈Xxn−1
X
z
1 .

Taking cardinalities,

∣X
x
n ∣ ≤ ∑

z∈Xxn−1
∣X

z
1 ∣ ≤ ∆∣X

x
n−1∣ ≤ ∆∆n−1

= ∆n.

Then we can lower-bound ∥Pn(x, ⋅) − π∥TV:

∥Pn(x, ⋅) − π∥TV ≥ Pn(x,X xn ) − π(X
x
n ) = 1 −

∣X xn ∣

∣X ∣
≥ 1 −

∆n

∣X ∣
.

If

n <
log((1 − ε)∣X ∣)

log(∆)
,

we have ∆n < (1 − ε)∣X ∣, so ∥Pn(x, ⋅) − π∥TV > ε. Thus,

tmix(ε) ≥
log((1 − ε)∣X ∣)

log(∆)
. (6.1)

Theorem 2.6. Let P be the transition matrix of an irreducible and aperiodic Markov chain
with finite state space X . Let ∆ = maxx∈X ∣{y ∈ X ∶ P (x, y) > 0}∣. Then

tmix(ε) ≥
log((1 − ε)∣X ∣)

log(∆)
.

This result can be applied in Section 4, in the case where the graph G = (V,E) is d-regular,
that is, every vertex of G has degree d. In such a case, the stationary distribution is given
by

π(x) =
d

2∣E∣

for all x ∈ X (see (4.1)), so π is uniform on X . By (6.1),

tmix(ε) ≥
log((1 − ε)∣V ∣)

log d
.

Theorem 2.7. Let G = (V,E) be a d-regular graph. Consider the Markov chain that moves
from a vertex x to an adjacent vertex y with probability 1/d. Then

tmix(ε) ≥
log((1 − ε)∣V ∣)

log d
.



Chapter 3

Generation of Markov chains

In this chapter we will study examples of Markov chain Monte Carlo (MCMC) algorithms.
MCMC methods are a type of algorithms to sample from a given probability distribution,
based on constructing a Markov chain with stationary distribution the given probability
distribution. By the convergence Theorem 2.1, as time passes this Markov chain will move
approximately as the given probability distribution. It is clear that, as more steps, better
quality of the approximation. The difficult problem is to find out how many steps are
needed to converge to the stationary distribution so that the error is small. A good chain
will have to be rapid mixing, meaning that tmix will have to be small.

In what follows, we will present two examples of MCMC algorithms: Metropolis and
Glauber algorithms.

1. Metropolis algorithm

In the Metropolis algorithm, instead of starting with a transition matrix P and obtaining
a stationary (or invariant) distribution π, we start with a certain distribution π and the
goal is to arrive at a transition matrix P whose stationary distribution is π.

Let π be a distribution of X with all its components positive and let ψ be a symmetric
transition matrix. We analyze how to modify ψ in such a way that it becomes a transition
matrix P with stationary distribution π.

Given x ∈ X , the row ψ(x, ⋅) is a probability measure indicating the chances of moving
from x ∈ X to any other state in X . Thus, given y ∈ X , ψ(x, y) gives the probability of
moving from x to y. Imagine that with probability a(x, y) this movement is accepted,
otherwise, with probability 1−a(x, y), the movement is not accepted and we remain at x.
Obviously, this implies a new behavior of the Markov chain described by a new transition
matrix P whose entries are:

P (x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

ψ(x, y)a(x, y), y ≠ x,

1 −∑z≠xψ(x, z)a(x, z), y = x.

We want to choose the acceptance probability a(x, y) in such a way that P has as stationary
distribution π. By Proposition 2.4, if π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ X , then π
is an invariant distribution for P . Assume that we have π(x)P (x, y) = π(y)P (y, x) for all
x, y ∈ X . This means that π(x)ψ(x, y)a(x, y) = π(y)ψ(y, x)a(y, x). If ψ(x, y) = ψ(y, x) ≠

21
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0, then we can cancel out ψ so that π(x)a(x, y) = π(y)a(y, x). Define

a(x, y) = min{
π(y)

π(x)
,1} .

This acceptance probability satisfies π(x)a(x, y) = π(y)a(y, x) for all x, y ∈ X . Indeed, if
π(y)/π(x) ≤ 1, that is, π(y) ≠ π(x), a(x, y) = π(y)/π(x), then we have that π(x)a(x, y) =
π(x)π(y)/π(x) = π(y). On the other hand, since a(x, y) = π(y)/π(x), a(y, x) = 1 because
1 ≤ π(x)/π(y), then π(y)a(y, x) = π(y).

Thus, the transition matrix P with entries

P (x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

ψ(x, y)min{
π(y)
π(x) ,1} , y ≠ x,

1 −∑z≠xψ(x, z)min{
π(z)
π(x) ,1} , y = x,

(1.1)

has as stationary distribution π. A Markov chain having transition matrix P is called
Metropolis chain.

The Metropolis chain can also be defined in the general case, when the initial transition
matrix ψ need not be symmetric. The above computations can be adapted to obtain a
transition matrix P having π as a stationary distribution. Indeed, the only step that
changes is the simplification of ψ(x, y) and ψ(y, x), since now ψ is not necessarily sym-
metric. Then, defining

a(x, y) = min{
π(y)ψ(y, x)

π(x)ψ(x, y)
,1} ,

we deduce that the transition matrix P with entries

P (x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

ψ(x, y)min{
π(y)ψ(y,x)
π(x)ψ(x,y) ,1} , y ≠ x,

1 −∑z≠xψ(x, z)min{
π(z)ψ(z,x)
π(x)ψ(x,z) ,1} , y = x,

has as stationary distribution π.

Example 3.1. Imagine that we have a finite vector and we move among its components.
Suppose that, when some time is passed we want to stop in the maximum (in number) of
this components and remain there as the time increases, that is, we want that the Markov
chain whose states are the positions of the components of the vector has a specific stationary
distribution. We will use a Metropolis algorithm to see how the path is and to realize that
we pass more times at the greatest values. Let us see this by means of a numeric example.
Consider the following vector f = (8,2,3,1,9) and let us represent it as a 2-regular graph,
that is,

8

29

1 3

Notice that the state space is X = {1,2,3,4,5} (vector of the positions). Suppose that
once we are in a vertex we have the same probability of visiting its neighbors, that is 1/2.
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According to this the transition matrix of this Markov chain is

ψ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1/2 0 0 1/2
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2

1/2 0 0 1/2 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

We want that, when time passes, the Markov chain remains at the position of the maximum
of the vector f . We modify the transition matrix ψ via the Metropolis algorithm to achieve
such a Markov chain. Consider the probability distribution

π(x) =
λf(x)

∑z∈X λf(z)
,

for a fixed λ > 1. This probability distribution favors the positions x ∈ X such that f(x) is
bigger. We construct a Markov chain with transition matrix given by (1.1) and has π as
a stationary distribution:

P (x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

ψ(x, y)min{λf(y)−f(x),1} , y ≠ x,

1 −∑z≠xψ(x, z)min{λf(z)−f(x),1} , y = x.

Now we use the following R function to apply the Metropolis algorithm. The inputs of the
function are: a vector (in our case f), λ (fixed number), the number of steps we want to
walk around the 2-regular graph and the state in which we want to start with. The output
will be the position of the vector at which we stay in each step.

find_maximum_vector <- function(f,lambda,steps,first_state) {

n <- length(f)

psi <- matrix(rep(0, len = n^2), nrow = n) # initialize psi with zeros

psi[1,2] <- 0.5; psi[1,n] <- 0.5; # first row of psi

psi[n,1] <- 0.5; psi[n,n-1] <- 0.5; # last row of psi

for(i in 2:(n-1)) {

psi[i,i-1] <- 0.5

psi[i,i+1] <- 0.5

} # we have constructed psi

P <- matrix(rep(0, len = n^2), nrow = n) # initialize P

for(i in 1:n) {

for(j in 1:n) {

if(i != j)

P[i,j] <- psi[i,j] * min(1, lambda^(f[j]-f[i]))

}

P[i,i] <- 1 - sum(P[i,])

}

visited_states <- numeric(steps)

visited_states[1] <- first_state

for(k in 2:steps) {

visited_states[k] <- sample(1:n,size=1,replace=FALSE,prob=P[visited_states[k-1],])

}

return(visited_states)

}



24 3. GENERATION OF MARKOV CHAINS

Finally, let us see an example of an implementation:

find_maximum_vector(f,5,1000,3)

[1] 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 5 5 5 5 5 5 5 5

5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

[77] 1 5 5 5 1 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 5 5 5 5

[153] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 1 1 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 1 5 5 5 5 5

[229] 1 5 5 5 5 5 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 1 5 5 1 5 5 1 1 5 1 5 5 5 5 5 5 5

[305] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 1 5 1 5 1 5 5 5 5 5 5 5 5 5 1 5 5 5

[381] 5 5 5 5 5 5 5 1 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 1

5 5 5 5 5 1 5 1 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5

[457] 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 1 1 1 5 5 5

5 5 5 5 5 1 1 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 1 5

[533] 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 1 1 1

1 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 1 1 1 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5

[609] 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5

1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5

[685] 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 1 5 1 1 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

[761] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 1 5 5 5 5 1 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5

[837] 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 1 5 1 5 5 5 5 5 5 5 5 5 1 5

5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 1 5

[913] 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 5 5 1 1 5 5 5 1 1 1 1 1 1

5 5 5 5 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

[989] 5 5 5 5 5 5 1 5 5 5 5 5

Notice that the position 5, which is a 9, is repeated several times, which shows us that
greater numbers have more probability to be reached.

2. Glauber algorithm

Let us motivate this algorithm with an example, whose scenario will be the same as in
Chapter 4. Let G = (V,E) be a graph. A proper q-coloring is a coloring of the edges E
with q colors such that two incident edges to the same vertex have different color. Let X
be the finite space of q-colorings of G. The idea is to choose proper colorings from X in a
uniform way. Thus, given a distribution π uniform in X , we want to construct a Markov
chain on the state space X such that its stationary distribution is π. For a large number
of steps, the transitions of this Markov chain will follow the uniform distribution π, by
Theorem 2.1.

A proper q-coloring can be denoted by x ∈ {1, . . . , q}E or by x ∶ E → {1, . . . , q}. For a given
coloring x and a given edge e, call a color j ∈ {1, . . . , q} allowable at e if j is different from
the colors of all edges incident to e. In notation, j ∉ {x(f) ∶ f not incident to e}.

Construct a Markov chain on the set of q-proper colorings X via the following algorithm.
Given a proper q-coloring x ∈ X , generate a new coloring by:

● selecting an edge e in E at random;
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● selecting a color j allowable at e in a uniform way (i.e. at random from the allowable
colors at e);

● changing the color of e to j.

Let us analyze the transition matrix of this Markov chain. If x and y are two proper
colorings that differ in more than one edge, then P (x, y) = P (y, x) = 0. Otherwise, if x
and y agree everywhere except at an edge e, the probability of moving from x to y is

P (x, y) =
1

∣E∣∣Ae(x)∣
,

where Ae(x) is the set of allowable colors at e in x. Notice that P (x, y) = P (y, x), since
Ae(x) = Ae(y) whenever the colorings x and y agree everywhere except at the edge e.
Thus, the transition matrix P is symmetric, therefore the uniform distribution π on X is
a stationary distribution of P . Note that, if the number of edges compared to the number
of colors is small, then the chain given by P is irreducible and aperiodic. Indeed, from
any proper q-coloring we can reach any other proper q-coloring by changing the colors
of the edges one by one, which implies irreducibility; regarding aperiodicity, we can re-
peat the same proper q-coloring in a next step, because the color of an edge e is allowable.

This algorithm described can be implemented in R. From a proper q-coloring, the algorithm
generates another proper q-coloring by changing the color of an arbitrary edge:

generation_proper_coloring <- function(A,q) {

# Input: q = number of colors;

# A = q-proper coloring in the graph, where entry (x,y) is 0 if there is no edge

# joining x and y; entry is c in {1,...,q} if there is an edge xy of color c.

# Output: a proper q-coloring.

# Goal: to generate q-proper colorings from the one given.

n <- dim(A)[1] # dimension of the square matrix

while(TRUE) {

edge <- sample(1:n,size=2,replace=FALSE,prob=rep(1/n,n)) # we choose a non diagonal

# entry

if(A[edge[1],edge[2]] != 0) # we check that there is an edge between the elements of

# the entry

break

}

admissible_colors <- setdiff(1:q,c(A[edge[1],],A[,edge[2]])) # admissible colors

card <- length(admissible_colors) # cardinal (number of admissible colors)

A[edge[1],edge[2]] <- sample(admissible_colors,size=1,replace=FALSE,prob=rep(1/card,card))

# we change the color of the edge among the admissible colors

A[edge[2],edge[1]] <- A[edge[1],edge[2]] # recall A is symmetric

return(A)

}

Let us see an example of execution of this algorithm considering q = 7.

Example 3.2. Consider the following graph:
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1 2 3

4

5

We denote by 1 color red, by 2 color blue; by 3 color orange; by 4 color green; by 5 color
yellow; by 6 color pink and by 7 color purple. Notice that this graph picture is an

example of a proper coloring using colors 1, 2, 4 and 5.

Now we find another proper coloring of the graph by using the last R function:

> # matrix of the colorings of the graph

> (A <- cbind(c(0,1,0,0,0),c(1,0,2,0,0),c(0,2,0,1,4),c(0,0,1,0,5),c(0,0,4,5,0)))

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 0

[2,] 1 0 2 0 0

[3,] 0 2 0 1 4

[4,] 0 0 1 0 5

[5,] 0 0 4 5 0

> q <- 7 # number of colors

> # with these two inputs we find another proper coloring.

> generation_proper_coloring(A,q) # call the function

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 0

[2,] 1 0 3 0 0

[3,] 0 3 0 1 4

[4,] 0 0 1 0 5

[5,] 0 0 4 5 0

Notice that in this example we obtain another proper coloring by changing the color of edge
(3,2).

Let us extend these ideas in a general setting. Let S be a finite set (for example, a set
{1, . . . , q} of colors). Consider a state space X ⊆ SE . A state x ∈ X can be viewed as a
map x ∶ E → S (for instance, a proper coloring).

Let π be a positive probability distribution on X . The goal is to find a Markov chain
on X with stationary distribution π. For x ∈ X and e ∈ E, let X (x, e) = {y ∈ X ∶ y(f) =
x(f), ∀ f ≠ e} (for example, if x is a proper coloring, X (x, e) is the set of q-proper colorings
that agree with x except possibly at e). Define the following probability:

πx,e(y) = π(y∣X (x, e)) =
π({y} ∩X (x, e))

π(X (x, e))
=

⎧⎪⎪
⎨
⎪⎪⎩

π(y)
π(X (x,e)) , y ∈ X (x, e),

0, y ∉ X (x, e).

The algorithm proceeds as follows. Given x ∈ X , generate a new state in x by:

● selecting a random edge e;
● selecting y in X (x, e) with probability πx,e(y).
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This procedure generates a Markov chain. Let us compute its transition matrix P . Given
two states x, y ∈ X , if y ∉ ∪e∈EX (x, e) (for instance, if x and y are two proper colorings
differing in more than one edge), then P (x, y) = P (y, x) = 0. Otherwise, if y ∈ X (x, e) for
certain e ∈ E (for example, if x and y are two proper colorings that agree except at most
at e),

P (x, y) =
πx,e(y)

∣E∣
=

π(y)

∣E∣π(X (x, e))
.

Notice that π(x)P (x, y) = π(y)P (y, x), because X (x, e) = X (y, e) whenever y ∈ X (x, e).
This implies that π is a stationary distribution of P . Note also that P is irreducible and
aperiodic: aperiodicity follows from the fact that, starting at x, one can select x ∈ X (x, e)
in a next step.





Chapter 4

An application of Markov chains in com-
binatorial design theory: proper colorings
of the complete graph Kn

This chapter is devoted to a conjecture on the random generation of proper edge colorings
of the complete graph Kn. The complete graph Kn is defined as the graph with n vertices
such that all vertices are joined with an edge. Taking as main reference the paper by
Dotan and Linial [7], we introduce the setting and state the conjecture.

In [7] the authors describe a random procedure to generate a proper edge coloring of the
complete graph Kn with even n by using n−1 colors. We describe this procedure together
with new results which extend the ones in [7]. We also have written an implementation
of the resulting algorithm in R code. The implementation is new and differs slightly from
the one proposed in [7] by modeling more efficiently the same Markov chain. This is done
in Section 1.

Numerical experiments on the generation of proper edge colorings have been performed
for over 30 years, but no mathematical proof has been achieved to justify the numerical
results. One of the main goals of this chapter is to tackle one of the conjectures arisen
from the numerical experiments: Conjecture 1 from [7]. Roughly speaking, it says that the
algorithm converges asymptotically in polynomial time. Our numerical experiments with
the algorithm written in R makes us to believe that the algorithm must always converge,
and not just asymptotically, in polynomial time. Thus, our aim will be to tackle the
proof of the convergence of the algorithm, so that part of Conjecture 1 will be solved. We
obtain new results and an original solution to the conjecture for K4 and K6, via both a
computational (in R) and an analytic proof (Section 2 and Section 3). We give new ideas
on how to tackle the conjecture for the general case Kn (Section 4).

The theory of Markov chains will be used for the proofs. The convergence Theorem (2.1)
is not enough to deal with this problem, as the Markov chain generated by the colorings
is not irreducible. We will show that the proper edge colorings, which are the target of
the algorithm, are absorbing states, and we will describe the necessary theory to analyze
the convergence of the chain, which will extend the one described in Chapter 3.

The algorithm in R is thought in the spirit of Metropolis algorithm (see Chapter 3), in
the sense that one moves from a coloring (state of the Markov chain) to another coloring
(another state of the Markov chain) if the new coloring is “closer” to a proper coloring,
which is, to some extent, an acceptance probability.

29
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1. Description of the problem and new results

We start this section with the definition of proper coloring and the known result that,
for n even, the complete graph Kn can be properly colored with just n − 1 colors. These
definitions and Proposition 4.1 are taken from [3].

Definition 4.1. A proper edge coloring, or simply a proper coloring in this work, of a
graph G is an edge coloring such that no two incident edges have the same color. That is,
if e, e′ ∈ E(G) with e ∩ e′ ≠ ∅, then e and e′ have different colors.

Fig. 1. Examples of proper colorings. To the left, a general graph G with
a proper coloring done with colors blue, red and green; to the right, the
complete graph K4, G′, with a proper coloring of 3 colors: blue, red and
green.

Proper colorings of complete graphs can be viewed as symmetric Latin squares. A Latin
square is a square n × n matrix with entries from a set of n symbols such that the entries
in each row and in each column are pairwise distinct (see Figure 2 for an example). From
a proper edge coloring of the complete graph Kn, n even, with colors {1,2, . . . , n − 1}, we
can obtain a symmetric Latin square of order n by placing the color of edge {i, j} at the
(i, j) entry of a square n × n matrix, and by placing the symbol n on its main diagonal
(see Figure 3 for an illustration).

Fig. 2. Example of a Latin square.

Definition 4.2. The chromatic index of a graph G, denoted by X ′(G), is the minimum
number of colors required by a proper coloring of G.

Remark 4.1. The notation with the prime symbol in X ′(G) is used to distinguish the
chromatic index and the chromatic number, X (G). The chromatic number X (G) is defined
as the minimum number of colors required to construct a proper vertex coloring of G.
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Fig. 3. Example of proper coloring with its associated Latin square. The
complete graph is K4, with colors red = 1, blue = 2 and green = 3.

Proposition 4.1. The chromatic index of the complete graph Kn, X ′(Kn), is n−1, when
n is even. 1

Proof. Let C be a proper coloring of Kn. We prove that the number of colors used in
C is greater than or equal to n − 1. For all vertex v ∈ V (Kn), its degree is d(v) = n − 1.
Thus, since all edges incident to v must have distinct colors in C, necessarily the number
of colors in C is ≥ n− 1. This gives X ′(Kn) ≥ n− 1. In fact, this is a particular case of the
inequality X ′(G) ≥ ∆(G), where ∆(G) is defined as the maximum degree in V (G).

We prove X ′(Kn) ≤ n − 1. By Vizing’s Theorem (see e.g. Beşeri [3, Theorem 44]),
X ′(G) ≤ ∆(G) + 1, so we already know that X ′(Kn) ≤ (n − 1) + 1 = n. To prove the
stronger inequality X ′(Kn) ≤ n − 1, we must search for a specific example. Here is where
we use the fact that n is even. Label the vertices of Kn as 0,1, . . . , n − 1. Draw a circle
with center at 0 and put the remaining n−1 vertices on the circle, where vertex 1 is above
0. Let α1, . . . , αn−1 be n − 1 colors. We proceed as follows: paint the vertical edge {0,1}
and all the horizontal edges {2, n − 1},{3, n − 2}, . . . ,{n/2, n/2 + 1} with color α1. Rotate
the circle counterclockwise so that 2 is located above 0. Paint the vertical edge {0,2}
and all the horizontal edges {3,1},{4, n − 1}, . . . ,{n/2 + 1, n/2 + 2} with color α2. Rotate
the circle counterclockwise so that 3 is placed above 0. Paint the vertical edge {0,3} and
all the horizontal edges {4,2},{5,1}, . . . ,{n/2 + 2, n/2 + 3} with color α3. Continue this
procedure until n − 1 is located above 0. An outline of the procedure is shown in Figure
4. Notice that we have performed n− 1 steps. In each step i, the edges painted with color
αi are disjoint, therefore we have exhibited a proper coloring of Kn. Since we have used
n − 1 colors, we deduce X ′(Kn) ≤ n − 1. Thus, X ′(Kn) = n − 1, as wanted. ⊓⊔

Now we are in position of describing the problem stated in [7]. We are going to work with
(edge) colorings of the complete graph Kn, being n even, of n − 1 colors. The colorings
are viewed as vertices or nodes in a Markov chain, where transition probabilities will be
described according to an acceptance probability that will depend on the nearness of the
coloring to a proper coloring.

If we fix a coloring C of Kn with n − 1 colors, we will call aν,µ(C) the total number of
incident edges to the vertex ν with color µ. Taking the convention that ν ∈ [n] = {1, . . . , n}

1When n is odd, X ′(Kn) = n, but we do not prove this fact because we are interested in the even case.
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Fig. 4. Schema of the procedure used in the proof of Proposition 4.1.
Picture taken from [3].

and µ ∈ [n − 1], we define the potential of a vertex ν of Kn as

φ(ν) =
n−1

∑
µ=1

aν,µ(C)
2.

The potential of the coloring C is defined as

φ(C) =
n

∑
ν=1

φ(ν) =
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)
2.

The potential φ(ν) measures the number of incident edges to ν colored different, and
penalizes raising to the square the fact of having edges incident to ν with the same color.
The potential φ(C) is defined as the sum of the potential of the vertices, so that we are
measuring to some extent the distance to a proper coloring. Intuitively, a proper coloring
has the least possible potential (see Lemma 4.2).

In our Markov chain, where colorings are placed as vertices, two colorings are connected if
C and C ′ differ by the color of a single edge. This will be referred as C ′ being a recoloring
of C.

Definition 4.3. Given a coloring C, we say that C ′ is a recoloring of C if C and C ′
differ by the color of a single edge.

Our Markov chain can move from C to a recoloring C ′ of it if and only if φ(C ′) ≤ φ(C).
That is, the acceptance probability a(C,C ′) is 1/∣Nφ(C)∣ if φ(C ′) ≤ φ(C), and 0 otherwise
(see the analogy with Chapter 3). Here,

Nφ(C) ∶= {C ′
∶ C ′ is a recoloring of C and φ(C ′

) ≤ φ(C)}

and ∣Nφ(C)∣ is the number of neighbors of C with less or equal potential. The idea is that
we move on if and only if we do not move away from a proper coloring. The fact that we
move even when the potential is equal gives more “flexibility” to our chain, so that we will
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not stop moving when arriving at a “local minimum”. These concepts will be explained
later on.

The above described algorithm is the first one described in Dotan and Linial [7] and,
after some experimental analysis, leads them to formulate the following conjecture. In
[7], Gn stands for the graph with nodes being the colorings and edges joining recolorings.
The term “mild random walk” means that we may move from C to a recoloring C ′ if
φ(C ′) ≤ φ(C). They speak about “strict random walk” when we may move from C to a
recoloring C ′ if φ(C ′) < φ(C).

Conjecture 4.1. [7, Conjecture 1] The mild random walk on Gn started from a uniformly
random starting point asymptotically almost surely reaches a one-factorization in O(n4)

steps.

The conjecture has two parts, the first one concerning the convergence with high prob-
ability and the second one about the speed of convergence. Being unable to tackle the
conjecture, the authors suggest an alternative procedure which changes colors of edges
incident to two vertices for which they manage to show convergence and rapid mixing.
However each step of this modified Markov chain requires a time polynomial in n. They
also leave open the problem to find a true Metropolis algorithm, by replacing the value 0
in the above acceptance probability by some small ε > 0, in order to obtain rapid mixing
to a uniform distribution on proper edge colorings.

As we have mentioned in the introduction, our main goal is to concentrate on Conjecture
4.2, as we believe that the resulting Markov chain does converge to proper colorings, not
just with high probability, and that the running time is O(np) with 2 < p < 3. The precise
statement is formulated in Conjecture 4.2 below after giving some preliminary notation
and results.

Now we study some results concerning the potential function.

Lemma 4.1. Let C be a coloring of Kn such that the edge uv (which is the edge that joins
vertices u and v) is painted in color µ0. Let C ′ be a recoloring of C, in such a way that
the edge uv of Kn is painted in another color µ1 ≠ µ0, that is, C and C ′ are equal except
for the color of the edge uv. Then we have

φ(C ′
) = φ(C) + 2(au,µ1(C) + av,µ1(C) + 2 − au,µ0(C) − av,µ0(C)).

Proof. Notice that aν,µ(C) = aν,µ(C
′) for all ν ∈ [n] different from u and v and for all

µ ∈ [n − 1] different from µ0 and µ1.

Since µ0 ≠ µ1, we have
⎧⎪⎪
⎨
⎪⎪⎩

au,µ0(C) = 1 + au,µ0(C
′),

av,µ0(C) = 1 + av,µ0(C
′),

because in C ′ there is one less edge painted in color µ0 than in C. Indeed, the only
difference between C and C ′ is the color of one edge. Moreover,

⎧⎪⎪
⎨
⎪⎪⎩

au,µ1(C
′) = 1 + au,µ1(C),

av,µ1(C
′) = 1 + av,µ1(C),

since in C ′ there is one more edge painted in color µ1.
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Taking this into account and applying the definition of the potential of C ′ announced
before,

φ(C ′
) =

n

∑
ν=1

φ(ν) =
n

∑
ν=1

n−1

∑
µ=1

(aν,µ(C
′
))

2
=

n

∑
ν=1
ν≠u,v

n−1

∑
µ=1

(aν,µ(C
′
))

2
+

n

∑
ν=1

n−1

∑
µ=1

µ≠µ0,µ1

(aν,µ(C
′
))

2

+(au,µ0(C
′
))

2
+ (av,µ0(C

′
))

2
+ (au,µ1(C

′
))

2
+ (av,µ1(C

′
))

2
=

n

∑
ν=1
ν≠u,v

n−1

∑
µ=1

(aν,µ(C))
2

+
n

∑
ν=1

n−1

∑
µ=1

µ≠µ0,µ1

(aν,µ(C))
2
+ (au,µ0(C) − 1)2

+ (av,µ0(C) − 1)2
+ (au,µ1(C) + 1)2

+ (av,µ1(C) + 1)2

= φ(C) + 2(au,µ1(C) + av,µ1(C) + 2 − au,µ0(C) − av,µ0(C)).

⊓⊔

Corollary 4.1. Let C be a coloring of Kn, then φ(C) is even.

Proof. Let C an arbitrary coloring of Kn. We want to see that φ(C) is even. Let us
consider a coloring C0 with a single color. We have that

φ(C0) =
n

∑
ν=1

n−1

∑
µ=1

(aν,µ(C0))
2
= n(n − 1)2.

Notice that we can find a sequence of colorings C0,C1, . . . ,Cm = C in such a way that
Ci+1 comes from Ci by changing the color of a single edge. By Lemma 4.1, φ(Ci+1) has
the same parity as φ(Ci). Then, since φ(C0) is even (because n is even), φ(C) is also
even. ⊓⊔

Lemma 4.2. Let C be a coloring of Kn. Then n(n − 1) ≤ φ(C) ≤ n(n − 1)2. Moreover, it
holds:

● φ(C) = n(n − 1) if and only if C is a proper coloring.
● φ(C) = n(n − 1)2 if and only if all edges of Kn are painted with the same color.

Proof. Notice that it suffices to prove that n − 1 ≤ φ(ν) ≤ (n − 1)2 for all vertex ν and

● φ(ν) = (n − 1) if and only if all the incident edges of ν have different color.
● φ(C) = n(n − 1)2 if and only if all the incident edges of ν have the same color.

● Firstly, we prove by backwards induction over the number of colors incident to ν
that n − 1 ≤ φ(ν).
Fix an arbitrary coloring C. Define the set

A = {colors incident to ν according to C}.

According to this definition, the potential of ν can be written as

φ(ν) = ∑
µ∈A

(aν,µ(C))
2.

The first step of the induction is when ∣A∣ = n − 1, and it is obviously fulfilled,
since we have n − 1 colors to share with n − 1 edges, so the only possibility is that

φ(ν) = 1+ (n−1). . . +1 = n − 1. By hypothesis of induction, assume that for ∣A∣ = k + 1 it
holds that φ(ν) ≥ n− 1, and we have to prove this condition for ∣A∣ = k, 1 ≤ k ≤ n− 2.
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Since k is at the most n − 2 and ν has n − 1 incident edges, ν has at least two edges
with the same color. Suppose that µ0 ∈ A is the color repeated in the incident edges
of ν. Now we choose one edge colored with µ0 and change the color by µ1. Notice
that we have a recoloring C ′ of C with one color more than C. Let us define

A
′
= {colors incident to ν according to C ′

}.

We have that A′ = A ⊍ {µ1}, so ∣A′∣ = k + 1. By induction,

n − 1 ≤ ∑
µ∈A′

(aν,µ(C
′
))

2
= ∑
µ∈A∩A′
µ≠µ0

(aν,µ(C
′
))

2
+ (aν,µ0(C

′
))

2
+ (aν,µ1(C

′
))

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= ∑
µ∈A∩A′
µ≠µ0

(aν,µ(C))
2
+ (aν,µ0(C) − 1)2

+ 1

= ∑
µ∈A

(aν,µ(C))
2
+ 2(1 − aν,µ0(C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥2

) ≤ ∑
µ∈A

(aν,µ(C))
2
− 2

< ∑
µ∈A

(aν,µ(C))
2
= φ(ν).

● Finally, we prove by induction over the number of colors incident to ν that φ(ν) ≤
(n − 1)2.
Fix an arbitrary coloring C and consider A defined as before. The first step of the
induction is when ∣A∣ = 1, so all the incident edges of ν are of the same color. Then
φ(ν) = (n−1)2, since one color is repeated n−1 times and the other colors are not in
A. Suppose by hypothesis of induction that for ∣A∣ = k it holds that φ(ν) < (n − 1)2,
and we prove this condition for ∣A∣ = k + 1, 1 ≤ k ≤ n − 2. Notice that ∣A∣ = k + 1 ≥ 2,
thereby the incident edges of ν have at least two different colors, call them µ0 and
µ1. Now we paint all the edges painted in µ1 with color µ0 (joining in this way two
colors in a single one). Then we have a recoloring of C, C ′, with one color less than
C, that is, using the same notation as before, A′ = A/{µ1}. Then ∣A′∣ = ∣A∣ − 1 = k,
and by induction hypothesis,

(n − 1)2
≥ ∑
µ∈A′

(aν,µ(C
′
))

2
= ∑
µ∈A∩A′
µ≠µ0

(aν,µ(C
′
))

2
+ (aν,µ0(C

′
))

2
+ (aν,µ1(C

′
))

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= ∑
µ∈A∩A′
µ≠µ0

(aν,µ(C))
2
+ (aν,µ0(C) + aν,µ1(C))

2

= ∑
µ∈A

(aν,µ(C))
2
+ 2aν,µ0(C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1

aν,µ1(C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1

≥ ∑
µ∈A

(aν,µ(C))
2
+ 2 ≥ ∑

µ∈A
(aν,µ(C))

2
= φ(ν).

Hence, we arrive at n − 1 ≤ φ(ν) ≤ (n − 1)2, and since Kn has n vertices, according to
the definition of the potential of a coloring, it holds that the potential of the coloring C
satisfies that n(n − 1) ≤ φ(C) ≤ n(n − 1)2. ⊓⊔

The idea of the algorithm is, from a given coloring of Kn with n− 1 colors, to move in the
Markov chain until arriving at a proper coloring. One of the problems of this procedure
are the so-called local minimums, which are colorings that have less or equal potential to
their neighbors.



36 4. AN APPLICATION OF MARKOV CHAINS IN COMBINATORIAL DESIGN THEORY

If we were using a strict walk on the Markov chain, in the sense that we moved from C
to a recoloring C ′ of it if and only if φ(C ′) < φ(C), then our algorithm would stop when
arriving at a local minimum coloring C, so there would not be convergence. Intuitively,
the algorithm would converge asymptotically, because the proportion of local minimums
seems to decrease as n grows.

In our case, as we allow the chain to move even when φ(C ′) is equal to φ(C), it seems
that this problem should not appear, so convergence for any order n should be expected.

We study new and original properties of local minimum colorings in what follows.

Definition 4.4. We say that a coloring C is a local minimum if φ(C) ≤ φ(C ′) for all
coloring C ′ that can be reached from C by changing the color of a single edge (i.e., for all
recoloring C ′).

Lemma 4.3. Let C be a coloring of Kn such that the edge uv is painted in color µ0. If
φ(C ′) ≥ φ(C) for all recoloring C ′ of the edge uv of C, then

au,µ0(C) + av,µ0(C) ≤ 3.

Proof. Since we are assuming that φ(C ′) ≥ φ(C), by Lemma 4.1

au,µ1(C) + av,µ1(C) + 2 − au,µ0(C) − av,µ0(C) ≥ 0,

that is,

au,µ1(C) + av,µ1(C) + 2 ≥ au,µ0(C) + av,µ0(C)

for all µ1 ≠ µ0. Now, applying ∑µ1≠µ0 at both sides we obtain

(n − 2)(au,µ0(C) + av,µ0(C)) ≤ ∑
µ1≠µ0

au,µ1(C) + ∑
µ1≠µ0

av,µ1(C) + 2(n − 2)

=
n−1

∑
µ1=1

au,µ1(C) − au,µ0(C) +
n−1

∑
µ1=1

av,µ1(C) − av,µ0(C) + 2(n − 2)

= (n − 1) − au,µ0(C) + (n − 1) − av,µ0(C) + 2(n − 2) = 4n − 6 − (au,µ0(C) + av,µ0(C)).

Then,

(n − 2)(au,µ0(C) + av,µ0(C)) ≤ 4n − 6 − (au,µ0(C) + av,µ0(C)),

which is the same as saying

(n − 1)(au,µ0(C) + av,µ0(C)) ≤ 4n − 6.

Therefore

au,µ0(C) + av,µ0(C) ≤
4n − 6

n − 1
< 4,

as n increases. Since au,µ0(C) + av,µ0(C) ∈ Z, we arrive at

au,µ0(C) + av,µ0(C) ≤ 3.

⊓⊔

Hereinafter, we will denote by µ(uv) the color of the edge uv of the initial coloring C.

Lemma 4.4 (Characterization of local minimum colorings of Kn). Let C be a coloring of
Kn. The following conditions are equivalent:

(1) φ(C ′) ≥ φ(C), for all recoloring C ′ of C.
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(2) au,µ(uv)(C) + av,µ(uv)(C) ≤ 3 for all edge uv, and if for some edge uv the equality
holds, then au,µ(C) + av,µ(C) ≥ 1 for each color µ.

Proof.

● (1) implies (2):
By Lemma 4.3, we know that if φ(C ′) ≥ φ(C) for all recoloring C ′, then au,µ(uv)(C)+

av,µ(uv)(C) ≤ 3, for every edge uv. Suppose that there exists an edge uv such that
au,µ(uv)(C) + av,µ(uv)(C) = 3. Then, by Lemma 4.1, for all µ1 ≠ µ(uv) we have

au,µ1(C) + av,µ1(C) + 2 ≥ au,µ(uv)(C) + av,µ(uv)(C) = 3.

Thus, for all µ1 ≠ µ(uv), au,µ1(C) + av,µ1(C) ≥ 3 − 2 = 1.
● (2) implies (1):

Suppose by contradiction that there exists C ′ recoloring of C such that φ(C ′) < φ(C).
Assume that C ′ consists in repainting an edge u0v0 with color µ0(u0v0) ≠ µ(u0v0).
Since φ(C ′) < φ(C), by Lemma 4.1:

au0,µ(u0v0)(C) + av0,µ(u0v0)(C) > au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2.

Now we distinguish two cases:
– case au0,µ(u0v0)(C) + av0,µ(u0v0)(C) = 3: we have that

3 > au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2 ≥
´¸¶

by hypothesis

1 + 2 = 3,

and this is a contradiction.
– case au0,µ(u0v0)(C) + av0,µ(u0v0)(C) ≤ 2: we have that

2 > au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2,

and this is a contradiction, since au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) ≥ 0.

⊓⊔

Lemma 4.5 (Characterization of proper colorings of Kn). Let C be a coloring of Kn. The
following statements are equivalent:

(1) φ(C ′) > φ(C) for all recoloring C ′ of C.
(2) The following two conditions fulfill:

(a) au,µ(C) + av,µ(C) ≥ 1 for all edge uv and for each color µ.
(b) au,µ(uv)(C)+av,µ(uv)(C) ≤ 3 for all edge uv, and if for some edge uv the equality

holds, then au,µ(C) + av,µ(C) ≥ 2 for each color µ.
(3) C is a proper coloring.

Proof.

● (1) implies (2):
By Lemma 4.3 we know that au,µ(uv)(C) + av,µ(uv)(C) ≤ 3 for all edge uv. Suppose

that there exists an edge uv such that au,µ(uv)(C) + av,µ(uv)(C) = 3. Since φ(C ′) >
φ(C) for all recoloring C ′ of C, by Lemma 4.1, for each color µ1 ≠ µ(uv) we have

au,µ1(C) + av,µ1(C) + 2 > au,µ(uv)(C) + av,µ(uv)(C) = 3.
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Then au,µ1(C) + av,µ1(C) > 1, that is, au,µ1(C) + av,µ1(C) ≥ 2, which proves (b).
Now we prove (a). Since φ(C ′) > φ(C) for all recoloring C ′ of C, we have that for
all edge uv and for each color µ1 ≠ µ(uv),

au,µ1(C) + av,µ1(C) + 2 > au,µ(uv)(C) + av,µ(uv)(C) ≥ 2.

Then, for all µ1 ≠ µ(uv), au,µ1(C) + av,µ1(C) ≥ 1, which shows (a).
● (2) implies (1):

Suppose by contradiction that there exists C ′ (recoloring of C) such that φ(C ′) ≤

φ(C). Assume that C ′ consists in repainting the edge u0v0 with color µ0(u0v0) ≠

µ(u0v0). We have, by Lemma 4.1,

au0,µ(u0v0)(C) + av0,µ(u0v0)(C) ≥ au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2.

We distinguish two cases:
– case au0,µ(u0v0)(C) + av0,µ(u0v0)(C) = 3: we have that

3 ≥ au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2 ≥
´¸¶
(b)

2 + 2 = 4,

and this is a contradiction.
– case au0,µ(u0v0)(C) + av0,µ(u0v0)(C) ≤ 2: we have that

2 ≥ au0,µ0(u0v0)(C) + av0,µ0(u0v0)(C) + 2 ≥
´¸¶
(a)

1 + 2 = 3,

which is again a contradiction.
● (2) implies (3):

Suppose by contradiction that there exists an edge uv with au,µ(uv)(C)+av,µ(uv)(C) =

3. Then, by (b), we have that

au,µ(C) + av,µ(C),

for each color µ. Consider Figure 5, where the edges painted in color blue represent
any color (or colors) different from µ(uv), painted in green.

Fig. 5. General form of the edge uv of Kn.

As we can see in 5, the number of edges with color different from µ(uv) is 2n−5, and
this number, by what we proved, is greater or equal than 2(n−2) = 2n−4, since n−2
is the number of possible colors different from µ(uv). But this is a contradiction.

● (3) implies (2):
If C is proper, for all edge uv we have that

au,µ(uv)(C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

+av,µ(uv)(C)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= 2,
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and this proves (b). Moreover, we also have that, for all edge uv and for each color
µ, au,µ(C) + av,µ(C) = 2 ≥ 1, and this proves (a).

⊓⊔

Corollary 4.2. Let C be a coloring of Kn. Then C is proper if and only if φ(C) < φ(C ′)
for all recoloring C ′ of C.

Next, we are going to see that the distance between a local minimum coloring and a proper
coloring depends only on the number of monochromatic 2-paths of the local minimum
coloring. Denote by

φC(α) =
n

∑
ν=1

aν,α(C)
2, (1.1)

cC(α) = number of times color α appears in coloring C,

Vα(C) = number of 2-paths of color α

and

V (C) = number of monochromatic 2-paths =
n−1

∑
α=1

Vα(C).

Notice that

φ(C) =
n−1

∑
α=1

φC(α),

n−1

∑
α=1

cC(α) =
n(n − 1)

2

and
n

∑
ν=1

aν,α(C) = 2cC(α). (1.2)

Lemma 4.6. Let C be a local minimum. Then, for each color α,

Vα(C) =
φC(α)

2
− cC(α).

As a consequence,

V (C) =
φ(C) − n(n − 1)

2
.

Proof. By Lemma 4.4, C is composed by α-colored 2-paths and independent edges. A
2-path of color α contributes 6 to φC(α) in (1.1) and 4 to (1.2). An α-colored independent
edge contributes 2 to both (1.1) and (1.2). Then φC(α) − 2cC(α) = 2Vα, as wanted.
Summing over all colors α and taking into account the equalities from above, the second
equality holds. ⊓⊔

We present our algorithm in R. From any coloring of Kn with n − 1 colors, it arrives at
a proper coloring of Kn moving on the Markov chain according to the potential of the
neighbors (recolorings).

The following function creates an arbitrary coloring in matrix form. The entry (i, j) of the
matrix indicates the color of the edge joining the vertices i and j of Kn. Recall that we
use n − 1 colors. The matrix is symmetric, and we place n in the diagonal by convention.
This matrix is a symmetric Latin square with n symbols and with constant diagonal equal
to n.
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arbitrary_coloring <- function(n) {

# Goal: with n-1 colors (1,2,...,n-1), to color uniformly the edges of the

# complete graph Kn.

# Input: n=size of the complete graph Kn, we understand n even.

# Output: matrix C such that C(i,j) is the color of the edge {i,j}, i distinct

# j. The coloring is uniform (each color has probability 1/(n-1)). We

# have considered C(i,i)=n (just notation).

C <- matrix(0,n,n) # initialize matrix

diag(C) <- rep(n,n) # put n at the diagonal (just notation, there are no

# loops in Kn)

for(column in 1:(n-1)) # fill the lower part of C with colors

C[(column+1):n,column] <- sample(1:(n-1),size=n-column,replace=TRUE,

prob=rep(1/(n-1),n-1))

for(row in 1:(n-1)) # fill the upper part of C so that C is symmetric

# (Kn is an undirected graph)

C[row,(row+1):n] <- C[(row+1):n,row]

return(C)

}

The following function computes the potential of any coloring given in matrix form:

potential_function <- function(C) {

# Goal: to compute the potential function of the coloring given by the matrix C.

# Input: coloring matrix C.

# Output: potential function.

n <- dim(C)[1]

phi <- 0

for(vertex in 1:n)

for(color in 1:(n-1))

phi <- phi + sum(C[,vertex]==color)^2

return(phi)

}

In the next function, the algorithm is implemented. The authors of [7] propose an im-
plementation of the algorithm which, from a coloring C, one moves to a recoloring C ′
with probability 1/∣Nφ(C)∣ if C ′ ∈ Nφ(C). That is, one needs to know Nφ(C) explicitly.
In practice, this implementation is computationally expensive (we have to compute the
potential of all recolorings). We suggest an alternative, which makes the Markov chain
to move in the same way, but more efficiently in terms of computations. The alternative
algorithm consists in:

i) Choose randomly a recoloring C ′ of C;
ii) If C ′ ∈ Nφ(C), move to it. Otherwise, do step i) again

(if after doing step ii) we do step i) again, the probability of choosing a recoloring C ′ in
step i) is independent of the choices done before). By Lemma 4.5, if C is not proper, we
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will find a recoloring C ′ ∈ Nφ(C) at some instant. On the other hand, let us see that
performing steps i) and ii) (approach 2) is equivalent to moving from a coloring C to a
recoloring C ′ with probability 1/∣Nφ(C)∣ if C ′ ∈ Nφ(C) (approach 1, the one explained in
the previous pages). We will call attempt the coloring we obtain each time we do step ii)
in approach 2. Let N(C) be the set of recolorings of C ′. We have

P(move to C ′
∣approach 1) =

1

∣Nφ(C)∣

and

P(move to C ′
∣approach 2) =

∞
∑
n=0

P(attempt1 ∉ Nφ(C), . . . ,attemptn ∉ Nφ(C),attemptn+1 = C
′
)

indep.
=

∞
∑
n=0

P(attempt1 ∉ Nφ(C))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ∣N(C)∣−∣Nφ(C)∣
∣N(C)∣

⋯P(attemptn ∉ Nφ(C))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ∣N(C)∣−∣Nφ(C)∣
∣N(C)∣

P(attemptn+1 = C
′
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1
∣N(C)∣

=
1

∣N(C)∣

∞
∑
n=0

(1 −
∣Nφ(C)∣

∣N(C)∣
)

n

=
1

∣N(C)∣

1

1 − (1 −
∣Nφ(C)∣
∣N(C)∣ )

=
1

∣Nφ(C)∣
.

Thus, both approaches are equivalent, but computationally approach 2 is considerably
more efficient. In the algorithm below we obtain as an output the proper coloring we
arrive at, a logical variable indicating if there has been convergence and the number of
steps required (to check numerically that the computational cost is polynomial on n).

find_proper_coloring_2 <- function(n) {

# Goal: to find a proper coloring of the complete graph Kn.

# Input: n=size of the complete graph Kn. n must be EVEN.

# Output: a list having a coloring C, a boolean that is TRUE if C is a proper

# coloring and FALSE otherwise, and the number of steps to find C.

C <- arbitrary_coloring(n) # start with an arbitrary coloring

phiC <- potential_function(C) # potential of coloring C

steps <- 0

proper <- FALSE

while(proper == FALSE & steps < n^10) {

edge <- sample(1:n,size=2,replace=FALSE,prob=rep(1/n,n)) # choose an

# arbitrary edge

color <- sample((1:(n-1))[-C[edge[1],edge[2]]],size=1,replace=FALSE,

prob=rep(1/(n-2),n-2)) # choose a color

C1 <- C # recolor

C1[edge[1],edge[2]] <- color

C1[edge[2],edge[1]] <- color # the matrix C1 represents changing the color

# of an edge from C, i.e., C1 is a recoloring (step i))

phiC1 <- potential_function(C1) # potential of coloring C1

if(phiC1 <= phiC) { # step ii)

C <- C1 # if the potential of C1 is smaller or equal, we move to C1,

# otherwise remain at C

phiC <- phiC1

steps <- steps + 1 # count step whenever we move

}

# case when we finish the procedure:

if(phiC == n*(n-1))
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proper <- TRUE

}

return(list(C,proper,steps))

}

After executing this algorithm for different n, we conjecture that it should always converge,
and not only asymptotically, as [7] states. We analyze the number of steps taken by
find_proper_coloring_2 to arrive at a proper coloring. We plot the number of steps
in a logarithmic scale to analyze if the number of steps is polynomial in n (in this case,
it is said that the algorithm converges polynomial in time). We show the code to obtain
Figure 6.

x <- sort(rep(seq(10,22,2),30))

y <- c()

for(size in x) {

continue <- TRUE

while(continue == TRUE) {

result <- find_proper_coloring_2(size)

if(result[[2]]== TRUE) {

y <- c(y,result[[3]])

continue <- FALSE

}

}

}

logx <- log(x)

logy <- log(y)

plot(logx,logy,xlab=’log(size of graph)’,ylab=’log(number of steps)’,

main=’log convergence rate to a proper coloring’) # draw points of

# the numerical experiments

coeff <- lm(logy ~ logx)$coefficients # linear model

lines(logx,coeff[[1]]+coeff[[2]]*logx,col=2) # plot the regression line

text(1.9,6,paste0(’y=’,round(coeff[[1]],2),’+’,

round(coeff[[2]],2),’ x’),col=2) # write the line$

We notice several differences with the [7]. First, as we explained, we conjecture that the
algorithm always converges, and not just asymptotically. It would converge asymptotically
if we moved only when the potential is strictly smaller, but this is not our setting. On the
other hand, we conjecture that the polynomial time is smaller than O(n4), in fact O(np),
where 2 < p < 3 and p ≈ 2.51, see the regression line in Figure 6.

Conjecture 4.2. Consider Kn, with n even, and all possible colorings of it with n − 1
colors. Consider the algorithm in which we move from a coloring C to a recoloring C ′ of it
if and only if φ(C ′) ≤ φ(C). Then the algorithm always converges for all n and, moreover,
the number of steps required by the algorithm is O(np), where 2 < p < 3.

In the following sections, we tackle this conjecture. We start in Section 2 and Section 3
with K4 and K6. We use R and theory of Markov chains to get new results and an original
solution to the conjecture for K4 and K6. In Section 4, we try to extend our findings to
the general case of Kn by presenting new results. The conjecture in its general form is left
open.
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Fig. 6. Steps required in the Markov chain to arrive at a proper coloring
of Kn. In red, a regression line to study the cost in polynomial time.

2. Proofs of the conjecture in the case K4

2.1. Computational proof.

We show that the algorithm converges in the case of K4.

To prove the conjecture we are going to construct explicitly in R the Markov chain asso-
ciated to the colorings of K4, and we will see that independently of the coloring we start
with, we will get absorbed by the states associated to the proper colorings. To do this
we will construct the transition matrix P with the help of R and we will prove that the
expected number of steps until getting absorbed by a proper coloring is finite.

Since we have 6 edges and 3 colors, we start by computing all 36 = 729 possible permuta-
tions (colorings) which will be the states of the Markov chain we are dealing with, using
the following R command:
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colorings <- expand.grid(rep(list(1:3),6))

Let us see an example of the first 6 permutations:

#Example we show the first $6$

> colorings[1:6,]

Var1 Var2 Var3 Var4 Var5 Var6

1 1 1 1 1 1 1

2 2 1 1 1 1 1

3 3 1 1 1 1 1

4 1 2 1 1 1 1

5 2 2 1 1 1 1

6 3 2 1 1 1 1

Let us call by m all possible colorings, that is, m = 729:

m <- dim(colorings)[1] #3^6

> m

[1] 729

We write each coloring as a matrix, and we save them in a list of matrices called list_matri
ces_colorings. From now on, we are going to work with colorings via 4 × 4 symmetric
matrices which would have the number 4 in the diagonal (this 4 can be seen as a symbol,
since there are no loops in the graph) and the other entries will be 1, 2 and 3, which are
our 3 possible colors. To do this, we use the following R command:

list_matrices_colorings <- list()

for(i in 1:m) {

C <- matrix(0,4,4)

diag(C) <- rep(4,4)

C[2,1] <- colorings[i,1]; C[1,2] <- C[2,1]

C[3,1] <- colorings[i,2]; C[1,3] <- C[3,1]

C[4,1] <- colorings[i,3]; C[1,4] <- C[4,1]

C[3,2] <- colorings[i,4]; C[2,3] <- C[3,2]

C[4,2] <- colorings[i,5]; C[2,4] <- C[4,2]

C[4,3] <- colorings[i,6]; C[3,4] <- C[4,3]

list_matrices_colorings[[i]] <- C

}

Let us see as an example the first coloring:

#Example: list_matrices_colorings[[1]]

> list_matrices_colorings[[1]]

[,1] [,2] [,3] [,4]

[1,] 4 1 1 1

[2,] 1 4 1 1

[3,] 1 1 4 1

[4,] 1 1 1 4

Notice that this coloring assigns color 1 to all of the edges of the graph K4.

Now, once we have the 729 matrices that represent all the possible colorings of K4, we
compute the potential of all these matrices (colorings) taking into account the definition
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of potential we stated at the beginning of the chapter, and then we will keep all the 729
potentials in a vector called potentials via the following R code:

potential_function <- function(C) {

# Goal: to compute the potential function of the coloring

# given by the matrix C.

# Input: coloring matrix C.

# Output: potential function.

n <- dim(C)[1]

phi <- 0

for(vertex in 1:n)

for(color in 1:(n-1))

phi <- phi + sum(C[,vertex]==color)^2

return(phi)

}

potentials <- numeric(m) # vector of potentials

for(i in 1:m)

potentials[i] <- potential_function(list_matrices_colorings[[i]])

To build the transition matrix that characterizes the Markov chain associated to the color-
ings of the graph K4, we change the order of the colorings in list_matrices_colorings
and we put at the beginning all the proper colorings, that is, all the colorings that have
the value 12 = 4 × (4 − 1) as a potential (see Lemma 4.2).

positions_proper <- which(potentials==12) # positions proper colorings

> positions_proper

[1] 157 205 317 413 525 573

for(i in 1:length(positions_proper)) {

aux <- list_matrices_colorings[[ positions_proper[i] ]]

list_matrices_colorings[[ positions_proper[i] ]] <- list_matrices_colorings[[i]]

list_matrices_colorings[[i]] <- aux.

} # put proper colorings at the beginning (to simplify)

# reordered vector of potentials

potentials <- numeric(m)

for(i in 1:m)

potentials[i] <- potential_function(list_matrices_colorings[[i]])

# check that the proper colorings are at the beginning

which(potentials==12)

> which(potentials==12)

[1] 1 2 3 4 5 6

Taking into account that in the first 6 places of list_matrices_colorings we have the
proper colorings, which are absorbing states since if we start in a proper coloring we do not
do any more step, and also considering that from one coloring we move uniformly among
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the colorings whose potential is smaller or equal, we construct the transition matrix P as
follows:

# The matrix P is constructed as follows.

P <- matrix(0,m,m)

#we want the proper colorings to be absorbing states.

for(i in 1:length(positions_proper))

P[i,i] <- 1

for(i in 1:m) {

for(j in 1:m) {

# P(i,j)=(probability of going from coloring i to coloring j)

A <- list_matrices_colorings[[i]]

B <- list_matrices_colorings[[j]] # compare colorings A and B

if( sum(A != B) == 2 ) { # one colored edge different

if(potential_function(B)<=potential_function(A))

P[i,j] <- 1 # we can move

if(potential_function(A)<=potential_function(B))

P[j,i] <- 1 # we can move

}

}

}

for(i in 1:m)

P[i,] <- P[i,] / sum(P[i,]) # normalize so that P is stochastic

Since the proper colorings are absorbing states and are located at the beginning, the
transition matrix P has the following structure:

P = (
I 0
R Q

) ,

where I is the 6 × 6 identity matrix, 0 is the 6 × 723 matrix of zeros, R represents the
probabilities of moving from a non-proper coloring to a proper coloring, and Q represents
the probabilities of going from a non-proper coloring to a non-proper coloring.

Let us see that, from Q, we can compute the expected number of steps until the chain
gets absorbed by a proper coloring. Indeed, the number of visits to a non-proper state j
is ∑∞

n=0 1{Xn=j}. Therefore, the expected number of visits to a non-proper state j having
started at a non-proper state i is

E [
∞
∑
n=0

1{Xn=j}∣X0 = i] =
∞
∑
n=0

E[1{Xn=j}∣X0 = i] =
∞
∑
n=0

P(Xn = j∣X0 = i) =
∞
∑
n=0

Qn(i, j) = (
∞
∑
n=0

Qn)(i, j).

The expected number of steps until getting absorbed by a proper coloring having started
at a non-proper state i is

723

∑
j=1

(
∞
∑
n=0

Qn)(i, j).

Notice that, in principle, some of these values could be ∞. Nevertheless, if we prove that
all these values are finite (this is our goal), the convergence of the algorithm will be ensured
(recall that if a random variable has finite expectation, then it is finite).

In R, we observe that there exists N ∶= (I −Q)−1.

n_proper <- length(positions_proper)#number of proper colorings

Q <- P[(n_proper+1):m,(n_proper+1):m]
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I <- diag(dim(Q)[1])

N <- solve(I-Q)

In the following propositions, we prove that ∑∞
n=0Q

n is indeed convergent and N =

∑
∞
n=0Q

n. This will imply that the algorithm converges for any initial coloring and that
the expected number of steps until being absorbed is the sum of the corresponding row of
N .

Proposition 4.2. If there exists N = (I − Q)−1 and N(i, j) ≥ 0 for all i, j, then every
eigenvalue of Q has modulus less than 1.

Proof. Since Q has all entries nonnegative, by Perron-Frobenius Theorem (see Chapter
8 in [15]) the maximum eigenvalue of Q in modulus is a nonnegative real number, call it λ.
Assume by contradiction that λ ≥ 1. It cannot be 1, because in such a case I −Q has zero
as eigenvalue, therefore I −Q is not invertible, which is a contradiction. Thus, λ > 1. Let x
be an eigenvector of Q corresponding to λ. By Perron-Frobenius Theorem, we can assume
that all components of x are nonnegative. From Qx = λx it follows Nx = 1/(1−λ)x. Now,
Nx has all its components nonnegative, but 1/(1 − λ) < 0, so this is a contradiction. This
proves that λ < 1. ⊓⊔

In fact, the result of this proposition can be checked in R:

eigenvaluesQ <- eigen(Q)$values

max(Mod(eigenvaluesQ))

> eigenvaluesQ <- eigen(Q)$values

> max(Mod(eigenvaluesQ))

[1] 0.8430703

Proposition 4.3. If every eigenvalue of Q has modulus less than 1, then limnQ
n = 0

(where the limit is understood componentwise).

Proof. The idea of this proof comes from Proposition 6.1.8 of [2]. Write the matrix Q
as Q = HJH−1, where H is an invertible matrix and J is the Jordan form of Q. Since
Qn =HJnH−1, it suffices to show that Jn → 0 as n→ 0. The structure of J is the following:

J =
⎛
⎜
⎝

J1

⋱

Jt

⎞
⎟
⎠
,

where each box Jt is an ni × ni lower-triangular matrix of the form

Ji =

⎛
⎜
⎜
⎜
⎝

λi
1 λi

⋱ ⋱

1 λi

⎞
⎟
⎟
⎟
⎠

,

where λ1, . . . , λt are the eigenvalues of Q. It suffices to prove that Jni → 0 as n → ∞, for
each i = 1, . . . , t. The key fact is that each box Ji can be decomposed in the following
manner: Ji = λiIni +Ni, where Ni is a nilpotent matrix: Nni−1

i = 0. Using the Newton
binomial and the fact that the two matrices λiIni and Ni commute, we have

Jni = (λiIni +Ni)
n
= λni Ini + λ

n−1
i Ni + . . . + λ

n−(ni−2)
i Nni−2

i

n→∞
Ð→ 0,

since ∣λi∣ < 1 by hypothesis. This completes the proof of the proposition. ⊓⊔
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Proposition 4.4. If limnQ
n = 0, then I −Q is invertible and N = ∑

∞
n=0Q

n.

Proof. Although we already know that I −Q is invertible by our computations in R, let
us prove it just by knowing that limnQ

n = 0. We need to check that, if (I −Q)x = 0 for
some vector x, then x = 0. If (I −Q)x = 0, then Qx = x. Multiplying by Q at both sides,
Q2x = Qx = x. Continuing in this way, Qnx = x for all n ≥ 1. Now, let n→ 0: x = Qnx→ 0,
therefore x = 0. This shows that I −Q is invertible.

It remains to prove that N = (I − Q)−1 is equal to ∑∞
n=0Q

n. Notice that I − Qn+1 =

(I −Q)(I +Q+ . . .+Qn). Multiply by N at both sides: N −NQn+1 = I +Q+ . . .+Qn. Let
n→∞ and use the fact that Qn → 0: N = ∑

∞
n=0Q

n. ⊓⊔

Since we computed N in R, the algorithm converges (because (∑
∞
n=0Q

n)(i, j) = N(i, j) <
∞) and the expected number of steps until getting absorbed is the sum of each of the rows
of N :

expected_steps_arrive_proper <- numeric(dim(Q)[1])

for(i in 1:dim(Q)[1])

expected_steps_arrive_proper[i] <- sum(N[i,])

To end up, we show the first 6 components of the last vector as an example

> expected_steps_arrive_proper[1:6]

[1] 11.49876 10.05000 11.16202 11.49876 11.16202 10.05000

Computational experiments with the algorithm with particular instances of the initial
coloring show that the number of steps is close to the the expected value computed above.
We next describe the code of the algorithm and some examples which turn out to fit with
the theoretical value.

find_proper_coloring <- function(mat) {

# Goal: to find a proper coloring of the complete graph Kn from the matrix mat.

# Input: mat=matrix to start from. Its size n must be EVEN.

# Output: a list having a coloring C, a boolean that is TRUE if C is a proper

# coloring and FALSE otherwise, and the number of steps to find C.

n <- dim(mat)[1]

C <- mat # start with matrix mat

phiC <- potential_function(C) # potential of coloring C

steps <- 0

proper <- FALSE

while(proper == FALSE & steps < n^10) {

edge <- sample(1:n,size=2,replace=FALSE,prob=rep(1/n,n)) #choose an arbitrary edge

# choose a different color

color <- sample((1:(n-1))[-C[edge[1],edge[2]]],size=1,

replace=FALSE,prob=rep(1/(n-2),n-2))

C1 <- C # recolor

C1[edge[1],edge[2]] <- color

C1[edge[2],edge[1]] <- color

# the matrix C1 represents changing the color of an edge from C

phiC1 <- potential_function(C1) # potential of coloring C1

if(phiC1 <= phiC) {
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C <- C1 # if the potential of C1 is smaller or equal, we move to C1,

#otherwise remain at C

phiC <- phiC1

steps <- steps + 1

}

# case when we finish the procedure:

if(phiC == n*(n-1))

proper <- TRUE

}

return(list(C,proper,steps))

}

For example,

# Example with coloring number 7 (counting the first six proper colorings),

# with expected value of steps 11.498760:

example_steps <- numeric(10000)

for(i in 1:10000)

example_steps[i] <- find_proper_coloring(list_matrices_colorings[[7]])[[3]]

(example_expected_steps <- mean(example_steps))

expected_steps_arrive_proper[[1]]

> (example_expected_steps <- mean(example_steps))

[1] 11.4414

> expected_steps_arrive_proper[[1]]

[1] 11.49876

# Example with coloring number 74 (counting the first six proper colorings),

# with expected value of steps 6:

example_steps <- numeric(10000)

for(i in 1:10000)

example_steps[i] <- find_proper_coloring(list_matrices_colorings[[74]])[[3]]

(example_expected_steps <- mean(example_steps))

expected_steps_arrive_proper[[68]]

> (example_expected_steps <- mean(example_steps))

[1] 5.9432

> expected_steps_arrive_proper[[68]]

[1] 6

# Example with coloring number 157 (counting the first six proper colorings),

# with expected value of steps 12.498760:

example_steps <- numeric(10000)

for(i in 1:10000)

example_steps[i] <- find_proper_coloring(list_matrices_colorings[[157]])[[3]]

(example_expected_steps <- mean(example_steps))

expected_steps_arrive_proper[[151]]

> (example_expected_steps <- mean(example_steps))

[1] 12.5198

> expected_steps_arrive_proper[[151]]

[1] 12.49876
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2.2. Graphical proof.

To prove the conjecture in the case of K4, or maybe in general for Kn (n even), we could
use the following idea. As we did in the previous subsection, we can see the colorings
as states in a Markov chain, where the proper colorings are absorbing states and the
transition matrix P has the structure

P = (
I 0
R Q

) (2.1)

(we put the proper colorings at the beginning of P ). Let C be an arbitrary non-proper
coloring. If C is not a local minimum, then at the next step we are able to reach a new
coloring C ′ with φ(C ′) < φ(C). If C is a local minimum, then it suffices to prove that
there exists a finite sequence of steps in our Markov chain until we reach a coloring C ′
such that φ(C ′) < φ(C). In such a case, we will have that there is a positive probability
for the initial non-proper coloring C to be absorbed by a proper coloring at some step.
The forthcoming Proposition 4.5 and Proposition 4.4 will give as a consequence that the
algorithm converges.

Proposition 4.5. Consider a finite and absorbing Markov chain {Xn}
∞
n=0 with transition

probability matrix of the form (2.1). If every non-absorbing state has a positive probability
of being absorbed at some step, then limn→∞Qn = 0.

Proof. Let T be the set of non-absorbing states. For each j ∈ T , let mj be the minimum
number of steps until j reaches an absorbing state (by hypothesis, mj < ∞). Let 0 ≤

pj < 1 be the probability that j does not reach an absorbing state in mj steps. Define
m = maxj∈T mj and p = maxj∈T pj < 1.

Notice that, starting at any non-absorbent state, the probability of not reaching an ab-
sorbing state in m steps is less or equal than p. Fix i, j ∈ T . Claim:

Qkm+l(i, j) = P(Xkm+l = j∣X0 = i) ≤ p
k, l = 0, . . . ,m − 1. (2.2)

From (2.2) and the fact that limk→∞ pk = 0, we deduce that limn→∞Qn(i, j) = 0 for all
i, j ∈ T , as desired.

Thus, we need to prove the claim (2.2). We do so by induction on k ≥ 1.

Case k = 1. For the case l = 0, just notice that

{Xm = j} ⊆ {in m steps an absorbing state has not been reached},

whence P(Xm = j∣X0 = i) ≤ pi ≤ p = p
k. For the case l ∈ {1, . . . ,m − 1}, we have:

P(Xm+l = j∣X0 = i) = ∑
s∈T

P(Xm+l = j,Xm = s∣X0 = i) + ∑
s∉T

P(Xm+l = j,Xm = s∣X0 = i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= ∑
s∈T

P(Xm+l = j,Xm = s∣X0 = i)

=
´¸¶
TPT

∑
s∈T

P(Xm+l = j∣Xm = s)P(Xm = s∣X0 = i)

≤ ∑
s∈T

P(Xm = s∣X0 = i) = P(Xm ∈ T ∣X0 = i) ≤ p,
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where the initials TPT stand for the Total Probability Theorem. Suppose (2.2) true for
k − 1 and we prove it for k, k ≥ 2. For l ∈ {0, . . . ,m − 1}, we proceed in an similar manner
as before:

P(Xkm+l = j∣X0 = i) = ∑
s∈T

P(Xkm+l = j,Xm = s∣X0 = i) + ∑
s∉T

P(Xkm+l = j,Xm = s∣X0 = i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= ∑
s∈T

P(Xkm+l = j,Xm = s∣X0 = i)

=
´¸¶
TPT

∑
s∈T

P(Xkm+l = j∣Xm = s)P(Xm = s∣X0 = i)

= ∑
s∈T

P(X(k−1)m+l = j∣X0 = s)P(Xm = s∣X0 = i)

≤
´¸¶

induction

pk−1
∑
s∈T

P(Xm = s∣X0 = i) = p
k−1P(Xm ∈ T ∣X0 = i) ≤ p

k−1p = pk.

⊓⊔

Thus, to derive that the algorithm converges, our main goal is to prove that, for any
arbitrary non-proper local minimum C, there exists a finite sequence of steps in our Markov
chain until we reach a coloring C ′ such that φ(C ′) < φ(C).

This first part of the reasoning will hold for any Kn (n even). We will inform when we
restrict to K4 later on. Consider Kn and let C be a non-proper local minimum coloring.
By Lemma 4.4, au,µ(uv)(C)+ av,µ(uv)(C) ≤ 3 for every edge uv. As C is non-proper, there
exists an edge u0v0 such that au0,µ(u0v0)(C)+av0,µ(u0v0)(C) = 3. For every such edge u0v0,
by Lemma 4.4, au0,µ(C) + av0,µ(C) ≥ 1 for each color µ.

Suppose by contradiction that au0,µ(C)+ av0,µ(C) ≥ 2 for all µ ≠ µ(u0v0). Figure 7 shows
that the number of edges incident to uv with color distinct from µ(u0v0) is 2n − 5 (in the
figure, blue represents any color distinct from µ(u0v0), which is pink). Then,

2n−5 = (number of edges incident to uv with color distinct from µ(u0v0)) ≥ 2(n−2) = 2n−4,

which is a contradiction. Therefore, there must exist µ̄(u0v0) distinct from µ(u0v0) such
that au0,µ̄(u0v0)(C) + av0,µ̄(u0v0)(C) = 1.

Fig. 7. General form of the edge u0v0 of Kn.

In order to imagine C visually, if u0v0 is an edge with au0,µ(u0v0)(C) + av0,µ(u0v0)(C) = 3,
then the neighborhood of u0v0 has the structure given by Figure 8 (the edges painted in
pink represent the color µ(u0v0), the edge painted in green represents the color µ̄(u0v0)

and the edges painted in blue mean whatever color (or colors) different from µ(u0v0) and
µ̄(u0v0)).

This structure for non-proper local minimum colorings allows us to find all non-proper
local minimum colorings for the particular case of K4. Consider such an edge u0v0 in



52 4. AN APPLICATION OF MARKOV CHAINS IN COMBINATORIAL DESIGN THEORY

Fig. 8. Form of the edge u0v0 of Kn according to its neighbors.

K4 and consider colors orange, green and pink. Without loss of generality (by making a
permutation of the colors, changing the role of u0 and v0 and rotating the graph), we may
assume that µ(u0v0) is pink and that u0 has a pink incident edge, as Figure 9 shows.

Fig. 9. Possible options (without loss of generality).

By what we proved and without loss of generality (by making a permutation of the colors
and automorphisms of K4), there exists a unique green edge incident to either u0 or v0.
The other two edges incident to u0 and v0 are orange (see Figure 10).

Fig. 10. Six possible cases.

It remains to find suitable colors for the non-intersecting edge with u0v0. See Figure 11
for the non-proper local minimum colorings of K4 (except bijections between the colors,
change in the roles of u0 and v0 and rotations).

Notice that, taking into account Lemma 4.4, in order to have a non-proper local minimum
coloring, the only permissible color for the non-intersecting edge with u0v0 is green in all
colorings of Figure 11, because:

● if in the first coloring (starting from the left) the non-intersecting edge with u0v0 were
pink, then the vertices associated to the pink edge of the left-hand side would have in
total 4 incident edges with color pink; and if it were orange, the vertices associated
to the non-intersecting edge with u0v0 would have in total 4 incident edges with color
orange.

● if in the second coloring (starting from the left) the non-intersecting edge with u0v0

were pink, then the vertices associated to the pink edge of the left-hand side would
have in total 4 incident edges with color pink; and if it were orange, the vertices
associated to the non-intersecting edge with u0v0 would have in total 4 incident
edges with color orange.

● if in the third coloring (starting from the left) the non-intersecting edge with u0v0

were pink, then the vertices associated to the pink edge of the left-hand side would
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have in total 4 incident edges with color pink; and if it were orange, the vertices
associated to the non-intersecting edge with u0v0 would have in total 4 incident
edges with color orange.

● if in the fourth coloring (starting from the left) the non-intersecting edge with u0v0

were pink, then the vertices associated to the orange edge of the right-hand side
would not have any incident edge with color green; and if it were orange, the vertices
associated to the non-intersecting edge with u0v0 would have in total 4 incident edges
with color orange.

● if in the fifth coloring (starting from the left) the non-intersecting edge with u0v0

were pink, then the vertices associated to the the centered pink edge would have in
total 4 incident edges with color pink; and if it were orange, the vertices associated
to the non-intersecting edge with u0v0 would have in total 4 incident edges with color
orange.

● Finally, if in the sixth coloring (starting from the left) the non-intersecting edge with
u0v0 were pink, then the vertices associated to the orange edge at the left-hand side
would not have any incident edge with color green; and if it were orange, the vertices
associated to the non-intersecting edge with u0v0 would have in total 4 incident edges
with color orange.

Fig. 11. Six allowed cases.

Now we check by hand that, after a finite number of steps (in fact 2 steps), we can strictly
decrease the potential of each coloring from Figure 11. See Figure 12 (below each graphic
of K4, its potential according to the coloring is written).

Fig. 12. Finding a coloring with smaller potential from the six allowed cases.

By the comments at the beginning of this subsection, the algorithm converges, and we are
done.

Notice that one could try to generalize this proof for the case of Kn, whereas the compu-
tational proof from the previous section becomes intractable when n is large.
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3. Proofs of the conjecture in the case K6

Now we tackle the conjecture for the complete graph K6. The problem now is that, since
we have 5 colors, there are

5(
6
2
)
= 515

= 30,517,578,125

colorings of the edges of K6. This is a notable difference with the case K4, in which we
have, with 3 colors,

3(
4
2
)
= 36

= 729

colorings.

Actually, if we consider colorings of K6 up to permutations of colors and permutations of
labeled vertices, there are 515/(5!6!) = 211,927,625 colorings. But, taking into account the
symmetries arising from permutations of colors or automorphisms of K6 has an equivalent
computational cost.

This growth in the number of colorings makes it impossible to tackle the problem via a
computational proof, as the one presented in Subsection 2.1 for K4. If we try to create a
list containing all possible colorings of K6, we get an error from R, as vectors with such a
big length cannot be allocated in R.

> colorings <- expand.grid(rep(list(1:5),15)) # combinations with the 5 colors

Error: cannot allocate vector of size 113.7 Gb

In addition: Warning messages:

1: In rep.int(rep.int(seq_len(nx), rep.int(rep.fac, nx)), orep) :

Reached total allocation of 3963Mb: see help(memory.size)

2: In rep.int(rep.int(seq_len(nx), rep.int(rep.fac, nx)), orep) :

Reached total allocation of 3963Mb: see help(memory.size)

3: In rep.int(rep.int(seq_len(nx), rep.int(rep.fac, nx)), orep) :

Reached total allocation of 3963Mb: see help(memory.size)

4: In rep.int(rep.int(seq_len(nx), rep.int(rep.fac, nx)), orep) :

Reached total allocation of 3963Mb: see help(memory.size)

A direct graphical proof, as the one done in Subsection 2.2 for K4, is not feasible again.
With the information given by Lemma 4.4, the case analysis we carried over in the case
of K4 becomes unpractical due to the large number of local minimum colorings.

Thus, our idea is, first, to obtain new theoretical results in the spirit of Subsection 2.2,
so that we will understand better the structure of local minimum colorings in K6. Then,
we will be able to divide the set of non-proper local minimum colorings in three groups,
according to the number of times each one of the five colors is used. At this step, it
will be possible to check both computationally and graphically that the potential of the
non-proper local minimum colorings can be decreased. This will give two subsections,
Subsection 3.1 and Subsection 3.2, which will provide two different proofs of the conjecture
forK6. Finally, Proposition 4.5 will give as a consequence the convergence of the algorithm.

We present two lemmas, which will allow us to divide non-proper local minimum colorings
of K6 in three groups, according to the number of times each color appears in the coloring.
After these lemmas, we will deal with each one of the three groups both in the computer,
to have one proof of the conjecture for K6, and graphically, to have a second proof of the
conjecture for K6.
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Lemma 4.7. Let C be a non-proper local minimum coloring of Kn, n being even. Let α
be a color such that there is a 2-path in Kn of color α. Then, either C contains a unique
2-path of color α, which implies that there exists another 2-path of color γ ≠ α such that
its center does not have any adjacent edge of color α; or there is another two path of color
α. See Figure 13.

Fig. 13. Two possible options.

Proof. Notice that, as C is non-proper, there are a color α and a 2-path in Kn of color
α, by Lemma 4.4. There are two cases:

● There is a unique 2-path of color α. Suppose by contradiction that every vertex has
an incident edge of color α. Then we have the picture of Figure 14.

Fig. 14. Form of the edges with color α, which is represented in color pink.

This implies that there is an odd number of vertices, but n is even, which gives a
contradiction. Hence, there exists a vertex w0 in Kn such that it has no incident
edge of color α. Then there is a 2-path of color γ ≠ α centered at w0 (because w0 has
n − 1 incident edges and n − 2 remaining colors, therefore a color must be repeated,
say γ). See Figure 15.

Fig. 15. Incident edges to the vertex w0. In this picture, color γ is purple
and the gray color represents another color different from α.
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● There is another two path of color α.

⊓⊔

Lemma 4.8. Let C be a local minimum coloring of K6. If

cC(µ) ∶= number of times color µ appears in coloring C,

then 2 ≤ cC(µ) ≤ 4, for each color µ.

Proof. If C is proper, then each color is repeated 3 times. Thus, we may assume that C
is a non-proper local minimum coloring of K6.

Notice that every color has to appear at least once, otherwise we could change the color of
an edge by the absent color and the potential would decrease (another reasoning consists
in using Lemma 4.4, which says that any edge of a monochromatic 2-path must have all
colors incident).

Clearly, no color can appear 5 times, since by Lemma 4.4 this would imply that, either
there are two 2-paths and a single edge of this color, but this would cover 8 vertices, which
is not possible in K6; or there is one 2-path and three disjoint edges, but this would cover
9 vertices, which is not possible in K6.

It remains to prove that cC(µ) ≥ 2, for each color µ. Suppose by contradiction that there
is a color µ̃ among the 5 colors such that cC(µ̃) = 1. If there were 3 colors among the
four remaining ones that are repeated in K6 at most 3 times, then these 3 colors would
encompass at most 9 edges, and together with the µ̃ colored edge, at most 10 edges,
therefore the remaining color would be repeated at least 5 times (because there are 15
edges in K6), which is not possible. Hence, there are at least 2 colors that are repeated 4
times. There are two possible sequences of color repetitions: 13344 and 12444. As there
are two colors repeated 4 times, say red and blue, by Lemma 4.4 there must be two red
colored 2-paths and two blue colored 2-paths. By Lemma 4.4 again, the center of these
2-paths must have the µ̃-colored edge incident. If we paint with green the color µ̃, we
have the structure given in Figure 16. There is a color µ′ ∉ {red,blue} that is repeated
at least 3 times (recall the sequences of repetitions, 13344 and 12444). The edges with
color µ′ cover at least 5 vertices (because either there is a 2-path and a single edge of
color µ′, which cover 5 vertices; or there are 3 µ′-colored independent edges, which cover
6 vertices). However, in Figure 16, we clearly see that the µ′-colored edges can only be
incident to the 4 vertices at the bottom (the ones not touching the green edge), because
the eight incident edges to the green edge are already painted with red and blue. This
gives a contradiction, because, as we explained, the µ′-colored edges must cover at least 5
vertices, but there are only 4 available vertices (the ones not touching the green edge) to
be incident with.

⊓⊔

As a consequence, changing the name of the colors if necessary, the structure of the non-
proper local minimum colorings C of K6 is given in Table 1.

An example of each one of the three structures given in Table 1 is presented in Figure 17.

From Table 1, we divide the non-proper local minimum colorings of K6 in three groups.
From now on we will denote the vertices of K6 as in Figure 18.
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Fig. 16. Schema of a non-proper local minimum coloring of K6 with a
color (green) repeated once. The red and blue colors must be repeated 4
times.

colors color 1 color 2 color 3 color 4 color 5
3 3 3 3 3

cC(color) 2 3 3 3 4
2 2 3 4 4

Table 1. Structure of the non-proper local minimum colorings of K6 ac-
cording to the number of times each color appears.

Fig. 17. Examples of the three possible cases. To the right-hand side
option 33333, in the center option 23334 and to the left-hand side option
22344 from Table 1. Color 1 is green, color 2 is blue, color 3 is orange,
color 4 is purple and color 5 is pink.

Fig. 18. Notation of K6.

We handle each of the three groups separately, both in the computer and graphically.
This gives rise to two proofs of the conjecture for K6 in Subsection 3.1 and Subsection
3.2, respectively.

3.1. Computational proof.

In what follows we will check that, for each local minimum of the potential, our algorithm
finds a way out to a coloring with smaller potential. As we have mentioned, this shows
that the algorithm converges to a proper coloring.
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We analyze each of the three groups arisen from Table 1:

● Group 2, 2, 3, 4 and 4. Let α be the fifth color, which is repeated 4 times. Notice
that there must be two 2-paths of color α in K6, otherwise the condition of Lemma
4.4 for non-proper local minimum colorings does not hold. By changing the name of
the vertices of K6 if necessary, we may assume that the two 2-paths of color α are at
the top and at the bottom of the hexagon K6, see Figure 19.

Fig. 19. Structure of K6 in cases 22344 and 23334 from Table 1. Color α
is color 5, which is represented pink.

Thus, given the other four colors, which are repeated 2, 2, 3 and 4 times, respectively,
there are

11!

2!2!3!4!
= 69,300

colorings. Among this 69,300 colorings of K6, we have the non-proper local minimum
colorings of K6 with the first four colors repeated 2, 2, 3 and 4 times, respectively. If
we check that the potential of the non-proper colorings among the 69,300 colorings
can be decreased, then, in particular, the potential of the non-proper local minimum
colorings of K6 among the 69,300 colorings will be decreased as well. These 69,300
colorings are handled in R. This is possible because 69,300 is a small number in terms
of memory allocation in R.
First, recall our function to compute potentials of colorings C in matrix form:

potential_function <- function(C) {

# Goal: to compute the potential function of the coloring given

# by the matrix C.

# Input: coloring matrix C.

# Output: potential function.

n <- dim(C)[1]

phi <- 0

for(vertex in 1:n)

for(color in 1:(n-1))

phi <- phi + sum(C[,vertex]==color)^2

return(phi)

}

We also need a function to check that, given a non-proper coloring C, its potential
can be decreased:

potential_decreases <- function(mat) {

# Goal: to check that the potential function of the coloring given
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# by the matrix C

# can be decreased.

# Input: coloring matrix C.

# Output: TRUE if the potential can be decreased, FALSE otherwise.

n <- dim(mat)[1]

C <- mat

phiC <- potential_function(C)

steps <- 0

decrease <- FALSE

while(decrease == FALSE & steps < n^10) {

edge <- sample(1:n,size=2,replace=FALSE,prob=rep(1/n,n))

color <- sample((1:(n-1))[-C[edge[1],edge[2]]],size=1,replace=FALSE,

prob=rep(1/(n-2),n-2))

C1 <- C # recolor

C1[edge[1],edge[2]] <- color

C1[edge[2],edge[1]] <- color

phiC1 <- potential_function(C1)

if(phiC1 < phiC)

decrease <- TRUE

else if(phiC1 == phiC) {

C <- C1

phiC <- phiC1

steps <- steps + 1

}

}

return(decrease)

}

We need a function to compute permutations of a set with repeated elements. Since,
at least to our knowledge, there is no built-in function in R to perform such task, we
create the following function:

permutation_duplicates <- function(numbers) {

# Goal: to compute all possible permutations of a vector c() of

# elements (colors), with repeated elements.

# Input: the vector of elements.

# Output: all possible permutations.

all_permutations <- c()

n <- length(numbers)

if(n > 1) {

positions_unique_elements <- order(numbers)[!duplicated(sort(numbers))]

for(position in positions_unique_elements) {

first_element <- numbers[position]

A <- permutation_duplicates(numbers[-position])

if(is.matrix(A))

rows <- dim(A)[1]

else

rows <- 1

perm_starting_at_position <- cbind(rep(first_element,rows),A)

all_permutations <- rbind(all_permutations,perm_starting_at_position)

}
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return(all_permutations)

}

else

return(numbers)

}

Now, we are in a position to create the 69,300 colorings of Figure 19 with the first
four colors repeated 2, 2, 3 and 4 times, respectively.

# Case 1,1,2,2,3,3,3,4,4,4,4

colorings_22344 <- c(1,1,2,2,3,3,3,4,4,4,4)

colorings_22344 <- permutation_duplicates(colorings_22344)

m <- dim(colorings_22344)[1]

Finally, we check that the potential of the non-proper colorings among the 69,300
colorings can be decreased (in the code, the last line checks that the variable decrease
is TRUE). As a consequence, the potential of the non-proper local minimum colorings
among the 69,300 colorings can be decreased.

decrease <- TRUE

for(i in 1:m) {

C <- matrix(0,6,6)

diag(C) <- rep(6,6)

C[2,1] <- 5; C[1,2] <- C[2,1]

C[3,1] <- colorings_22344[i,1]; C[1,3] <- C[3,1]

C[4,1] <- colorings_22344[i,2]; C[1,4] <- C[4,1]

C[5,1] <- colorings_22344[i,3]; C[1,5] <- C[5,1]

C[6,1] <- colorings_22344[i,4]; C[1,6] <- C[6,1]

C[3,2] <- 5; C[2,3] <- C[3,2]

C[4,2] <- colorings_22344[i,5]; C[2,4] <- C[4,2]

C[5,2] <- colorings_22344[i,6]; C[2,5] <- C[5,2]

C[6,2] <- colorings_22344[i,7]; C[2,6] <- C[6,2]

C[4,3] <- colorings_22344[i,8]; C[3,4] <- C[4,3]

C[5,3] <- colorings_22344[i,9]; C[3,5] <- C[5,3]

C[6,3] <- colorings_22344[i,10]; C[3,6] <- C[6,3]

C[5,4] <- 5; C[4,5] <- C[5,4]

C[6,4] <- colorings_22344[i,11]; C[4,6] <- C[6,4]

C[6,5] <- 5; C[5,6] <- C[6,5]

if(potential_function(C)>30) { # non-proper

if(potential_decreases(C)==FALSE) {

decrease <- FALSE

break

}

}

print(m-i) # to know for how long we have to wait :)

}

decrease # TRUE, then all potentials of non-proper colorings have decreased.

> decrease

[1] TRUE

● Group 2, 3, 3, 3 and 4. Let α be the fifth color, which is repeated 4 times. Exactly
as in the previous case, we may assume that K6 is painted as schematized in Figure
19. Given the other four colors, which are repeated 2, 3, 3 and 3 times, respectively,
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there are
11!

2!3!3!3!
= 92,400

colorings. Among this 92,400 colorings of K6, we have the non-proper local minimum
colorings of K6 with the first four colors repeated 2, 3, 3 and 3 times, respectively. If
we check computationally that the potential of the non-proper colorings among the
92,400 colorings can be decreased, then, in particular, the potential of the non-proper
local minimum colorings of K6 among the 92,400 colorings will be decreased as well.
We create the 92,400 colorings of Figure 19 with the first four colors repeated 2, 3,
3 and 3 times, respectively.

# Case 1,1,2,2,2,3,3,3,4,4,4

colorings_23334 <- c(1,1,2,2,2,3,3,3,4,4,4)

colorings_23334 <- permutation_duplicates(colorings_23334)

m <- dim(colorings_23334)[1]

Eventually, we prove that the potential of the non-proper colorings among the 92,400
colorings can be decreased (in the code, the last line checks that the variable decrease
is TRUE). This fact implies that the potential of the non-proper local minimum col-
orings among the 92,400 colorings can be diminished.

decrease <- TRUE

for(i in 1:m) {

C <- matrix(0,6,6)

diag(C) <- rep(6,6)

C[2,1] <- 5; C[1,2] <- C[2,1]

C[3,1] <- colorings_23334[i,1]; C[1,3] <- C[3,1]

C[4,1] <- colorings_23334[i,2]; C[1,4] <- C[4,1]

C[5,1] <- colorings_23334[i,3]; C[1,5] <- C[5,1]

C[6,1] <- colorings_23334[i,4]; C[1,6] <- C[6,1]

C[3,2] <- 5; C[2,3] <- C[3,2]

C[4,2] <- colorings_23334[i,5]; C[2,4] <- C[4,2]

C[5,2] <- colorings_23334[i,6]; C[2,5] <- C[5,2]

C[6,2] <- colorings_23334[i,7]; C[2,6] <- C[6,2]

C[4,3] <- colorings_23334[i,8]; C[3,4] <- C[4,3]

C[5,3] <- colorings_23334[i,9]; C[3,5] <- C[5,3]

C[6,3] <- colorings_23334[i,10]; C[3,6] <- C[6,3]

C[5,4] <- 5; C[4,5] <- C[5,4]

C[6,4] <- colorings_23334[i,11]; C[4,6] <- C[6,4]

C[6,5] <- 5; C[5,6] <- C[6,5]

if(potential_function(C)>30) { # non-proper

if(potential_decreases(C)==FALSE) {

decrease <- FALSE

break

}

}

print(m-i) # to know for how long we have to wait :)

}

decrease # TRUE, then all potentials of non-proper colorings have decreased.

> decrease

[1] TRUE
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● Group 3, 3, 3, 3 and 3. Let α be the fifth color, which is repeated 3 times. Reordering
the vertices of K6 if necessary, we may assume that K6 is painted as outlined in Figure
20.

Fig. 20. Structure of K6 in case 33333 from Table 1. Color α is color 5,
which is represented pink.

Given the other four colors, which are repeated 3 times, there are

12!

3!3!3!3!
= 369,600

colorings. Among this 369,600 colorings of K6, we have the non-proper local mini-
mum colorings of K6 with the first four colors repeated 3 times. If we verify compu-
tationally that the potential of the non-proper colorings among the 369,600 colorings
can be diminished, then, in particular, the potential of the non-proper local minimum
colorings of K6 among the 369,600 colorings will be decreased too.
We create the 369,600 colorings of Figure 20 with the first four colors repeated 3
times, respectively.

# Case 1,1,1,2,2,2,3,3,3,4,4,4

colorings_33333 <- c(1,1,1,2,2,2,3,3,3,4,4,4)

colorings_33333 <- permutation_duplicates(colorings_33333)

m <- dim(colorings_33333)[1]

Finally, we show that the potential of the non-proper colorings among the 369,600
colorings can be decreased (in the implementation, the last line of code checks that
the logical variable decrease is TRUE). This implies that the potential of the non-
proper local minimum colorings among the 369,600 colorings can go down.

decrease <- TRUE

for(i in 1:m) {

C <- matrix(0,6,6)

diag(C) <- rep(6,6)

C[2,1] <- 5; C[1,2] <- C[2,1]

C[3,1] <- colorings_33333[i,1]; C[1,3] <- C[3,1]

C[4,1] <- colorings_33333[i,2]; C[1,4] <- C[4,1]

C[5,1] <- colorings_33333[i,3]; C[1,5] <- C[5,1]

C[6,1] <- colorings_33333[i,4]; C[1,6] <- C[6,1]

C[3,2] <- 5; C[2,3] <- C[3,2]

C[4,2] <- colorings_33333[i,5]; C[2,4] <- C[4,2]

C[5,2] <- colorings_33333[i,6]; C[2,5] <- C[5,2]

C[6,2] <- colorings_33333[i,7]; C[2,6] <- C[6,2]

C[4,3] <- colorings_33333[i,8]; C[3,4] <- C[4,3]

C[5,3] <- colorings_33333[i,9]; C[3,5] <- C[5,3]
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C[6,3] <- colorings_33333[i,10]; C[3,6] <- C[6,3]

C[5,4] <- colorings_33333[i,11]; C[4,5] <- C[5,4]

C[6,4] <- colorings_33333[i,12]; C[4,6] <- C[6,4]

C[6,5] <- 5; C[5,6] <- C[6,5]

if(potential_function(C)>30) { # non-proper

if(potential_decreases(C)==FALSE) {

decrease <- FALSE

break

}

}

print(m-i) # to know for how long we have to wait :)

}

decrease # TRUE, then all potentials of non-proper colorings have decreased.

> decrease

[1] TRUE

In the three cases, we have proved that the potential of the non-proper local minimum
colorings of K6 can go down, which means, in terms of Markov chains, that every non-
proper coloring of K6 has a positive probability of getting absorbed at some step by a
proper coloring. Proposition 4.5 combined with Proposition 4.4 give the convergence of
the algorithm for K6, as wanted.

3.2. Graphical proof.

The common feature of non-proper local minimum colorings having the structure 2, 2, 3,
4, 4 and 2, 3, 3, 3, 4 (third and second rows in Table 1) is that there is a color repeated 4
times and another color repeated 2 times. From this fact and Lemma 4.4, we will derive
that, in a single step, we can move to a coloring having the structure 3, 3, 3, 3, 3 (first row
in Table 1). Thus, it will suffice to check that the non-proper local minimum colorings
with structure 3, 3, 3, 3, 3 have a potential that can be decreased. For this goal, Lemma
4.7 will be essential.

We will work with K6 as Figure 18 shows. Let C be a non-proper local minimum coloring
having the structure 2, 2, 3, 4, 4 or 2, 3, 3, 3, 4. We will paint with blue and red a color
repeated 4 and 2 times, respectively. By changing the ordering of the vertices 1, 2, 3, 4, 5
and 6 if necessary, we may assume that C has the form given in Figure 21.

Fig. 21. Positions of color blue, which is repeated 4 times.

According to Lemma 4.4, the red color that is repeated twice has to be at the positions
drawn in Figure 22 (except, as usual, rotations, symmetries, etc.). Let us explain why
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Figure 22 covers all possibilities. In principle, any vertex may have an incident red edge.
Notice however that it suffices to consider the cases in which a red edge is incident to vertex
1 or to vertex 2, by reordering of the vertices (symmetries). In the case in which a red edge
is incident to vertex 1, this red edge can be edge 13 (colorings C1, C2 and C3), edge 14
(colorings C4, C5 and C6), edge 15 (colorings C7, C8 and C9) and edge 16 (colorings C10

and C11). In the case in which a red edge is incident to vertex 2, this red edge can be edge
26 (colorings C12 and C13). Multiple cases in terms of reordering of vertices (symmetries
and rotations) have been deleted. All possibilities have been obtained taking into account
what Lemma 4.4 tells us in this case: since 123 and 456 form a blue 2-path, the blue edges
12, 23, 45 and 56 must intersect a red edge.

Fig. 22. Positions of color blue and red, which are repeated 4 and 2 times,
respectively. Non-proper local minimum colorings of K6 with structures
23334 and 22344.

The potentials of the 13 colorings of Figure 22 are easily computed. We will denote by ∆i

the remaining part of the potential of Ci that arises from the other three colors. Notice
that ∆i is not affected by the blue and red colors. In the following explicit sums, the order
of the addends will be from vertex 1 up to 6, taking into account how many blue and red
edges are incident and the definition of potential:

φ(C1) = 2 + 4 + 2 + 2 + 4 + 2 +∆1 = 16 +∆1,

φ(C2) = 5 + 4 + 2 + 1 + 5 + 1 +∆2 = 18 +∆2,

φ(C3) = 2 + 5 + 2 + 1 + 5 + 1 +∆3 = 16 +∆3,

φ(C4) = 2 + 5 + 1 + 2 + 4 + 2 +∆4 = 16 +∆4,

φ(C5) = 2 + 5 + 1 + 2 + 5 + 1 +∆5 = 16 +∆5,

φ(C6) = 2 + 4 + 2 + 2 + 4 + 2 +∆6 = 16 +∆6,

φ(C7) = 2 + 4 + 2 + 2 + 5 + 1 +∆7 = 16 +∆7,

φ(C8) = 2 + 5 + 1 + 2 + 5 + 1 +∆8 = 16 +∆8,

φ(C9) = 2 + 5 + 1 + 1 + 5 + 2 +∆9 = 16 +∆9,

φ(C10) = 2 + 4 + 2 + 2 + 4 + 2 +∆10 = 16 +∆10,

φ(C11) = 2 + 5 + 1 + 1 + 5 + 2 +∆11 = 16 +∆11,

φ(C12) = 1 + 8 + 1 + 1 + 5 + 2 +∆12 = 18 +∆12,

φ(C13) = 1 + 8 + 1 + 2 + 4 + 2 +∆13 = 18 +∆13.

We move from each coloring of Figure 22 to an allowable coloring C ′ (in terms of Markov
chains, to a neighbor C ′ of C) having the same potential as C, but with the structure 3, 3,
3, 3, 3 (C ′ is not necessarily a local minimum). We will change a blue edge by a red edge
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so that the potential remains the same. See Figure 23. We have that C ′
i is a neighbor of

Ci with the same potential, for i = 1, . . . ,13.

Fig. 23. Neighbors of the colorings from Figure 22, with structure 33333.

Let us compute the potentials of C ′
i , and notice that they are equal to φ(Ci), for i =

1, . . . ,13:
φ(C ′

1) = 2 + 2 + 4 + 2 + 4 + 2 +∆1 = 16 +∆1 = φ(C1),

φ(C ′
2) = 5 + 2 + 4 + 1 + 5 + 1 +∆2 = 18 +∆2 = φ(C2),

φ(C ′
3) = 2 + 5 + 2 + 1 + 5 + 1 +∆3 = 16 +∆3 = φ(C3),

φ(C ′
4) = 2 + 5 + 1 + 4 + 2 + 2 +∆4 = 16 +∆4 = φ(C4),

φ(C ′
5) = 2 + 5 + 1 + 2 + 5 + 1 +∆5 = 16 +∆5 = φ(C5),

φ(C ′
6) = 2 + 2 + 4 + 2 + 4 + 2 +∆6 = 16 +∆6 = φ(C6),

φ(C ′
7) = 2 + 2 + 4 + 2 + 5 + 1 +∆7 = 16 +∆7 = φ(C7),

φ(C ′
8) = 2 + 5 + 1 + 2 + 5 + 1 +∆8 = 16 +∆8 = φ(C8),

φ(C ′
9) = 2 + 5 + 1 + 1 + 5 + 2 +∆9 = 16 +∆9 = φ(C9),

φ(C ′
10) = 2 + 2 + 4 + 2 + 4 + 2 +∆10 = 16 +∆10 = φ(C10),

φ(C ′
11) = 2 + 5 + 1 + 1 + 5 + 2 +∆11 = 16 +∆11 = φ(C11),

φ(C ′
12) = 1 + 8 + 1 + 1 + 5 + 2 +∆12 = 18 +∆12 = φ(C12),

φ(C ′
13) = 1 + 8 + 1 + 4 + 2 + 2 +∆13 = 18 +∆13 = φ(C13).

Thus, we need to check that the potential of the non-proper local minimum colorings of
the form 3, 3, 3, 3, 3 can be decreased at some step. This will give as a consequence that,
given any non-proper local minimum coloring of K6, its potential can go down at some
step.

To analyze all non-proper local minimum colorings of the form 3, 3, 3, 3, 3 in a clever
way, let us paint with blue any of the five colors that is repeated 3 times. By reordering
the vertices 1, 2, 3, 4, 5 and 6 of K6 if necessary, we may assume that the coloring has the
form specified in Figure 24.

We have a blue 2-path and a single blue edge. Thus, there is a unique 2-path of color
blue. By Lemma 4.7, there must exist another 2-path, say of color red, such that its
center has no incident edge of color blue. With this information, given Figure 21, the
red 2-path must have its center at vertex 4. Once we have all possible red 2-paths with
center at vertex 4, see Figure 25, the remaining red edge has to be painted according to
the conditions of Lemma 4.4. All the possibilities are given in Figure 26. In Figure 26,
we can see the schemas drawn in Figure 25, together with a vertical arrow that leads to
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Fig. 24. Position of the color blue, which is repeated 3 times. Non-proper
local minimum colorings of K6 with structure 33333.

the possible positions of the alone red edge. Thereby, Figure 26 gives all possible schemas
for a non-proper local minimum coloring of the form 3, 3, 3, 3, 3. The colorings have the
name C1, . . . ,C21.

Fig. 25. Position of the color blue, which is repeated 3 times, and position
of the red 2-path. Non-proper local minimum colorings ofK6 with structure
33333.

Fig. 26. Position of the color blue, which is repeated 3 times; position
of the red 2-path; and position of the alone red edge. Non-proper local
minimum colorings of K6 with structure 33333.

Now we need to prove that, at some step, the potential of C1, . . . ,C21 decreases strictly.
In Figure 27, we move from Ci to either a coloring with lower potential (indicated with
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(LP)) or to a coloring that is not a local minimum (indicated by (NLM)), by Lemma 4.4
(there is a monochromatic 3-path), for i = 1, . . . ,20, by interchanging colors blue and red
appropriately. In Figure 27, the potential of each coloring is written below each hexagon.
The case C21 is special, in the sense that we cannot move to a coloring with less potential
by interchanging colors blue and red. This is due to the fact that C21 has two unconnected
triangles, each one with a color repeated twice. Thus, a different reasoning is required for
C21. The idea is that, if the blue and red colors appear in C21 in the form of Figure 26 (two
unconnected triangles), then there are two other colors from the three remaining ones, say
green and orange, that are repeated three times each one and that, reordering the vertices
again, they are located in edges following the structure of C1, . . . ,C20 (with green and
orange instead of blue and red, so that the green and orange colored edges do not form
two unconnected triangles, basically because there are no more uncolored triangles in the
coloring C21 of Figure 26). Thus, working with the colors green and orange in C21, we are
able to decrease its potential at some step, as this case belongs to the previous colorings
C1, . . . ,C20 (because the green and orange edges do not form two unconnected triangles
in C21).

Hence, we conclude that any non-proper local minimum coloring of the form 3, 3, 3, 3,
3 can be decreased in terms of its potential function. As any non-proper local minimum
coloring can reach a coloring of the form 3, 3, 3, 3, 3, we derive that the potential of any
non-proper local minimum coloring of K6 can be decreased at some step. In the language
of Markov chains, every non-proper coloring of K6 has a positive probability of getting
absorbed at some step by a proper coloring. Proposition 4.5 together with Proposition 4.4
give the convergence of the algorithm for K6, and we are done.

4. Tackling the conjecture in Kn

The goal of this section is to propose ideas in order to tackle the conjecture in the general
case of Kn, n even. These ideas will be in the spirit of our proofs for K4 and K6. In the
case of Kn, a computational proof cannot be done, as n is arbitrary. Hence, via theoretical
results, we will try to understand the structure of the local minimum colorings of Kn.

The key auxiliary results for the proof of the conjecture in K4 and K6 have been Lemma
4.4, Lemma 4.7 and Lemma 4.8. Both Lemma 4.4 and Lemma 4.7 hold for the general
case Kn. By contrast, Lemma 4.8 is subject to K6. As we saw, Lemma 4.8 allowed
us to understand better the structure of local minimum colorings. Thus, we attempt to
generalize Lemma 4.8 for Kn.

Lemma 4.9. Let C be a local minimum coloring of Kn, n even. If

cC(µ) ∶= number of times color µ appears in coloring C,

then

cC(µ) ≤ ⌊
2n

3
⌋ ,

for each color µ.

Proof. If C is proper, then each color is repeated n/2 times. Thus, we may assume that
C is a non-proper local minimum coloring.

Suppose by contradiction that cC(µ) > ⌊2n/3⌋, for certain color µ. We distinguish cases
according to the value nmod 3:
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Fig. 27. Decreasing the potential of the non-proper local minimum color-
ings of K6 with structure 33333. The initials (LP) and (NLM) stand for
less potential and non local minimum coloring, respectively. Below each
hexagon, the potential is written.
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● Case n ≡ 0 mod 3. In this case, ⌊2n/3⌋ = 2n/3, therefore, our assumption becomes
cC(µ) > 2n/3. At least 2n/3 + 1 edges are painted µ. These edges can go alone or
forming 2-paths, by Lemma 4.4. The way these 2n/3 + 1 cover less vertices is when
there are n/3 2-paths and an isolated edge, which takes up 3 ⋅n/3+ 2 = n+ 2 vertices.
This is a contradiction, as Kn has n vertices.

● Case n ≡ 1 mod 3. In this case, ⌊2n/3⌋ = (2n − 2)/3 (since 2n − 2 ≡ 0 mod 3). Our
assumption on µ becomes cC(µ) > (2n − 2)/3. At least (2n − 2)/3 + 1 edges are
painted µ. These edges can go alone or forming 2-paths, by Lemma 4.4. The manner
these (2n − 2)/3 + 1 edges cover less vertices is with (n − 1)/3 2-paths and a single
edge, which take up 3 ⋅ (n − 1)/3 + 2 = n + 1 vertices, and this gives a contradiction.

● Case n ≡ 2 mod 3. In this case, ⌊2n/3⌋ = (2n−1)/3 (notice that 2n−1 ≡ 0 mod 3). Our
surmise on µ becomes cC(µ) > (2n − 1)/3. At least (2n − 1)/3 + 1 edges are painted
µ. These edges can go alone or forming 2-paths, by Lemma 4.4. The way these
(2n− 1)/3+ 1 = (2n+ 2)/3 edges occupy less vertices is with (n+ 1)/3 2-paths, which
cover 3 ⋅ (n + 1)/3 = n + 1 vertices, and this gives once again a contradiction.

This finishes the proof. Notice that this upper-bound is tight, because for n = 4 and n = 6
it is reached. ⊓⊔

The lower-bound, as in the case of K6, is harder to prove. By symmetry with 2n/3 and
from the known lower-bound for K4 and K6, which is 2 for both cases, we conjecture that
the lower-bound for Kn is ⌈n/3⌉.

Conjecture 4.3. Let C be a local minimum coloring of Kn, n even. Then

cC(µ) ≥ ⌈
n

3
⌉ ,

for each color µ.

The problem is that, although we knew that this lower-bound is true, the corresponding
Table 1 for a general Kn would be extremely large, so considering all cases as we did in
K6 is not feasible.

Thus, in any case, alternatives should be explored. We consider the following lemma,
which is a simple and direct consequence of Lemma 4.1, but very useful. Denote by

cuv,µ(C) = au,µ(C) + av,µ(C)

the total number of edges of color µ incident to uv.

Lemma 4.10. Let C be a local minimum coloring. Let uv be an edge of Kn of color µ in
C. Then, for every color µ′,

cuv,µ(C) − cuv,µ′(C) ≤ 2.

Equality holds if and only if φ(C ′) = φ(C), where C ′ is the recoloring of C constructed by
changing the color of the edge uv to µ′.

Proof. By Lemma 4.1,

φ(C ′
) = φ(C) + 2(cuv,µ′(C) + 2 − cuv,µ(C)).

As C is a local minimum,

φ(C) ≤ φ(C ′
) = φ(C) + 2(cuv,µ′(C) + 2 − cuv,µ(C)).

Hence, cuv,µ(C)− cuv,µ′(C) ≤ 2, as wanted. Equality holds if and only if φ(C) = φ(C ′). ⊓⊔
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Let C be a local minimum coloring. Let uv be any edge of C. By Lemma 4.4, either uv
is part of a monochromatic 2-path or it is independent of the other edges with its same
color. If uv is part of an α-colored 2-path, then cuv,α(C) = 3. By Lemma 4.10, for each
color µ′, cuv,µ′ ≥ 3− 2 = 1. Thus, if C ′ is a recoloring of C consisting in changing the color
α of uv by β, then φ(C ′) = φ(C) if and only if cuv,β = 1, or in words, there is a single
β-colored edge incident to uv. On the other hand, if uv is an independent α-colored edge,
then the unique way of having φ(C ′) = φ(C) is by changing α by a color not incident to
uv.

Thus, the moves permitted to maintain the potential of a local minimum coloring are:

● if uv is part of a monochromatic 2-path, you can change the color of uv by the color
of an edge incident once in uv;

● if uv is an independent edge, you can change the color of uv by a non-incident color
to uv.

With these ideas, for a general Kn, one may try to maintain the potential of a local
minimum coloring until arriving at a non-local minimum coloring. Then there would
be a positive probability of arriving at a proper coloring and, by Proposition 4.5 and
Proposition 4.4, the convergence of the algorithm would follow for Kn.

For instance, let us see the following case. Let C be a non-proper local minimum coloring.
As C is non-proper, it has a 2-path of color α. As we saw in the reasoning of Figure 7
and Figure 8, there is a color β such that cuv,β(C) = 1. If β is part of a 2-path of color β,
then, by changing the color of uv by β, we obtain a recoloring C ′ such that φ(C ′) = φ(C)

and with a 3-path of color β. By Lemma 4.4, C ′ is not a local minimum, so its potential
can be decreased in a next step, and we are done with this case. See Figure 28.

Fig. 28. Example of how to arrive at a non-local minimum coloring C ′
from a non-proper local minimum coloring C in Kn. Color β is repeated
once in uv.

The idea would be to prove this for a general local minimum coloring of Kn. Just to give
more ideas, it is easy to see that it suffices to deal with local minimum colorings with a
unique 2-path α, for a certain color α. Indeed, consider two 2-paths of color α. Refer to
the two 2-paths as P1 and P2. Consider one of the two edges of P1, call it uv. We know
that there is a color β incident once to uv. We change the color α of uv to β. Then the
2-path P1 of color α has disappeared and it remains P2. See Figure 29.

Repeating this procedure, we arrive at a unique α-colored 2-path. From here, one could
think of using Lemma 4.7, which asserts that there exists another 2-path, say of color γ,
such that its center does not have any incident α-colored edge.
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Fig. 29. Proving that one may assume that a non-proper local minimum
coloring has a unique α-colored 2-path.

Using these ideas, one could think of a proof for Kn. We leave Conjecture 4.2 open for a
general Kn.

5. The potential function from another point of view: the
entropy

As we could not finish the proof of the convergence of the algorithm for Kn, let us think
in a different way. We will change our definition of potential function by another mea-
sure concerning the information of the coloring, the entropy, which is a central tool in
information theory and in probability theory.

Our definition of the potential of a coloring C of Kn, n even,

φ(C) =
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)
2,

can be seen as an expectation. Let Ω = {(ν,µ) ∶ ν ∈ [n], µ ∈ [n−1]} be a sample space and

P(ν,µ) =
aν,µ(C)

n(n − 1)

be a probability defined on Ω. This probability is greater for vertices ν and colors µ such
that nearly all edges incident to ν are µ-colored. In some way, this probability penalizes
vertices and colors that favor C to be proper. Define the random variable X ∶ Ω→ R as

X(ν,µ) =
aν,µ(C)

n(n − 1)
.

This random variable contains the information given by P. The expected information in
C is

E[X] =
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)2

(n(n − 1))2
=

φ(C)

(n(n − 1))2
.

However, intuitively, the information should be something that, when a very unlikely event
occurs, this fact gives a lot of information, whereas when a very probable event happens,
this fact does not give much information. For example, imagine that there are five benches
in Barcelona painted pink, and they are located in the same small area of Barcelona, say
A. In A and outside A, the rest of benches are not pink. I go for a walk in Barcelona.
If I find a white bench, then I do not obtain information about where A is; however, if I
am lucky and I sit down in one of the five pink benches, I have information about A and
about where the other four pink benches are.
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Thus, if P(ν,µ) is small, then the occurrence of the event (ν,µ) should give a lot of
information, and vice versa. Thus, we redefine the information as

X(ν,µ) = − log(
aν,µ(C)

n(n − 1)
)

since proper colorings are less probable and give as much more information(here, log is the
logarithm in base e and 0 log(0) is interpreted as 0, by taking a limit). The expectation
of X, which is the so-called Shannon entropy [8, Chapter 2] and is denoted by H(C), is

H(C) = −
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(

aν,µ(C)

n(n − 1)
) .

The entropy H can be considered as an alternative measure to φ.

The entropy is the mean information of the system C. It measures the chaos-uncertainty-
surprise of the system. In our case, when Kn is monochromatic, there is no uncertainty.
Instead, when Kn is properly colored, the probability distribution P is uniform and the
degree of uncertainty is maximum.

Proposition 4.6. For every coloring C,

log(n) ≤H(C) ≤ log(n(n − 1)).

Moreover, H(C) = log(n) if and only if C is monochromatic, and H(C) = log(n(n−1)) if
and only if C is proper.

Proof. To prove the upper bound, we use Jensen’s inequality [18, Theorem 3.3]: “if
f ∶ I ⊆ R → R is a convex function, x1, . . . , xm ∈ I and a1, . . . , am > 0 positive weights such
that ∑mi=1 ai = 1, then f(∑mi=1 aixi) ≤ ∑

m
i=1 aif(xi)”.

Let f(x) = −x log(x), x ∈ (0,1). This function is concave, because f ′′(x) = −1/x < 0, so
Jensen’s inequality works the other way around.

The entropy is expressed as

H(C) =
n

∑
ν=1

n−1

∑
µ=1

f (
aν,µ(C)

n(n − 1)
) .

By Jensen’s inequality with weights ai = 1/(n(n − 1)) for i = 1, . . . , n(n − 1),

H(C)

n(n − 1)
=

n

∑
ν=1

n−1

∑
µ=1

1

n(n − 1)
f (

aν,µ(C)

n(n − 1)
) ≤ f

⎛

⎝

n

∑
ν=1

n−1

∑
µ=1

1

n(n − 1)

aν,µ(C)

n(n − 1)

⎞

⎠
= f (

1

n(n − 1)
) ,

so

H(C) ≤ n(n − 1)f (
1

n(n − 1)
) = − log(

1

n(n − 1)
) = log(n(n − 1)).

The equality holds when there is equality in Jensen’s inequality, that is, if x1 = . . . = xm,
which means aν,µ(C) constant. Hence, aν,µ(C) = 1, and the coloring C is proper.

To prove the lower bound, we use Lagrange multipliers Theorem [1, Theorem 13.12].
Given k = n(n − 1), we want to minimize

H(p1, . . . , pk) = −
k

∑
i=1

pi log(pi)

on the set Ω0 = {p⃗ ∈ (0,1/n)k ∶ g(p⃗) = 1}, being g(p⃗) = ∑ki=1 pi and p⃗ = (p1, . . . , pk). We
know that H has an absolute minimum and maximum on Ω̄0 = [0,1/k]k∩g−1({1}) (closure
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of Ω0), by Weierstrass Extreme Value Theorem (because H is a continuous function on
a compact set). By Lagrange multipliers Theorem, if a local extremum p⃗0 = (p1, . . . , pk)
belongs to Ω0, then there exists a λ ∈ R such that

∇H(p⃗0) + λ∇g(p⃗0) = 0, (5.1)

where ∇ denotes the gradient operator. Doing the computations, λ = log(pj) + 1, for all
j = 1, . . . , k, therefore, since λ is the same for all j = 1, . . . , k, we derive p1 = . . . = pk,
so necessarily pi = 1/k = 1/(n(n − 1)), for all i = 1, . . . , k. This point corresponds to the
absolute maximum, as we saw using Jensen’s inequality. Thus, since every extreme value
on Ω0 must satisfy (5.1), and if it satisfies (5.1) we have seen that it is a maximum, the
absolute minimum of H must be reached at the boundary of Ω0: that is, pi ∈ {0,1/n} for

all i = 1, . . . , k. As ∑ki=1 pi = 1, there must be n terms among p1, . . . , pk that take on the

value 1/n, and the rest of the terms are 0. On the other hand, for pi of the form
aν,µ(C)
n(n−1) ,

this implies aν,µ(C) = n − 1, for a fixed color µ and all vertices ν = 1, . . . , n. Hence, C is
monochromatic. ⊓⊔

Although the entropy may seem more adequate than the potential in terms of information,
the advantage of the potential is that it is always an integer, and the relation between a
coloring C and a recoloring C ′ can be explicitly computed (see Lemma 4.1). The logarithm
function is more difficult to deal with, and Mathematical Analysis plays an important role
to prove properties of the entropy, as we saw in Proposition 4.6.

The algorithm to obtain a proper coloring from any arbitrary coloring works analogously
as the potential function. In the Markov chain with its nodes given by the colorings of Kn,
we move from C to a recoloring C ′ if and only if H(C) ≤ H(C ′). We have implemented
the algorithm in R.

The following function creates an arbitrary coloring:

arbitrary_coloring <- function(n) {

# Goal: with n-1 colors (1,2,...,n-1), to color uniformly the edges of the

# complete graph Kn.

# Input: n=size of the complete graph Kn, we understand n even.

# Output: matrix C such that C(i,j) is the color of the edge {i,j}, i distinct

# j. The coloring is uniform (each color has probability 1/(n-1)).

# We have considered C(i,i)=n (just notation).

C <- matrix(0,n,n) # initialize matrix

diag(C) <- rep(n,n) # put n at the diagonal (just notation)

for(column in 1:(n-1)) # fill the lower part of C with colors

C[(column+1):n,column] <- sample(1:(n-1),size=n-column,replace=TRUE,

prob=rep(1/(n-1),n-1))

for(row in 1:(n-1)) # fill the upper part of C so that C is symmetric

C[row,(row+1):n] <- C[(row+1):n,row]

return(C)

}

The following function computes the entropy of a coloring given in matrix form:

entropy <- function(C) {
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# Goal: to compute the entropy of the coloring given by the matrix C.

# It belongs to the interval [-log(1/n),-log(1/(n*(n-1)))].

# Input: coloring matrix C.

# Output: entropy of C.

n <- dim(C)[1]

H <- 0

for(vertex in 1:n) {

for(color in 1:(n-1)) {

p <- sum(C[,vertex]==color)/(n*(n-1)) # a_{vertex,color}(C)=sum(C[,vertex]==color)

if(p == 0)

expected_information <- 0 # R does not assign 0 for 0*log(0)

else

expected_information <- -p*log(p)

H <- H+expected_information

}

}

return(H)

}

Finally, the following function performs the algorithm. The problem with the entropy is
that, as it is not an integer, the infinite decimal part coming from the logarithm evaluation
may induce errors in equalities and inequalities, as two numbers that are actually the same
may be different from some decimal place due to the numerical errors. Thus, we need to
round in order to avoid such a problem:

find_proper_coloring_entropy <- function(n) {

# Goal: to find a proper coloring of the complete graph Kn via the entropy measure.

# Input: n=size of the complete graph Kn. n must be EVEN.

# Output: a list having a coloring C, a boolean that is TRUE if C is a proper

# coloring and FALSE otherwise, and the number of steps to find C.

C <- arbitrary_coloring(n) # start with an arbitrary coloring

entropyC <- entropy(C) # entropy of coloring C

steps <- 0

proper <- FALSE

while(proper == FALSE & steps < n^10) {

edge <- sample(1:n,size=2,replace=FALSE,prob=rep(1/n,n)) # choose an arbitrary edge

color <- sample((1:(n-1))[-C[edge[1],edge[2]]],size=1,replace=FALSE,

prob=rep(1/(n-2),n-2)) # choose color

C1 <- C # recolor

C1[edge[1],edge[2]] <- color

C1[edge[2],edge[1]] <- color # the matrix C1 represents changing the color

# of an edge from C

entropyC1 <- entropy(C1) # potential of coloring C1

if(round(entropyC,4) <= round(entropyC1,4)) {

C <- C1 # if the entropy of C1 is greater or equal, we move to C1,

# otherwise remain at C

entropyC <- entropyC1

steps <- steps + 1 # count step whenever we move

}
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# case when we finish the procedure:

if(round(entropyC,4) == round(log(n*(n-1)),4))

proper <- TRUE

}

return(list(C,proper,steps))

}

We can obtain a plot similar to Figure 6 but in this entropy setting. The code to obtain
the plot is the following, which gives Figure 30.

x <- sort(rep(seq(10,22,2),30))

y <- c()

for(size in x) {

continue <- TRUE

while(continue == TRUE) {

result <- find_proper_coloring_entropy(size)

if(result[[2]]== TRUE) {

y <- c(y,result[[3]])

continue <- FALSE

print(length(y)) # we know how long is taking

}

}

}

logx <- log(x) # logarithmic scale

logy <- log(y)

plot(logx,logy,xlab=’log(size of graph)’,ylab=’log(number of steps)’,

main=’log convergence rate to a proper coloring’) # draw points of the

# numerical experiments

coeff <- lm(logy ~ logx)$coefficients # linear model

lines(logx,coeff[[1]]+coeff[[2]]*logx,col=2) # plot the regression line

text(2.4,7,paste0(’y=’,round(coeff[[1]],2),’+’,

round(coeff[[2]],2),’ x’),col=2) #$ write the line

Numerical experiments suggest that working with the potential and the entropy is more or
less equivalent. Just at an intuitive level, we know that log(1 + x) ≈ x for x ≈ 0, therefore

H(C) = −
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(

aν,µ(C)

n(n − 1)
) = −

n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(1 +

aν,µ(C)

n(n − 1)
− 1)

≈ −
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
(
aν,µ(C)

n(n − 1)
− 1) = −

φ(C)

(n(n − 1))2
+ 1.

In fact, this expression with the inequality ≥ always holds. One has to use the well-known
inequality log(1 + x) ≤ x, x ≥ −1:

H(C) = −
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(

aν,µ(C)

n(n − 1)
) = −

n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(1 +

aν,µ(C)

n(n − 1)
− 1)

≥ −
n

∑
ν=1

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
(
aν,µ(C)

n(n − 1)
− 1) = −

φ(C)

(n(n − 1))2
+ 1.
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Fig. 30. Steps required in the Markov chain to arrive at a proper coloring
of Kn via the entropy algorithm. In red, a regression line to study the cost
in polynomial time.

Results concerning entropy in the spirit of the potential function could be attempted,
although they are more complicated and require tools from Mathematical Analysis, in the
sense that, since the entropy is not an integer, proofs by counting or induction are not so
viable (compare Lemma 4.1 with the subsequent development).

Given a coloring C and a recoloring C ′ of it, we would like to analyze when H(C ′) <H(C),
H(C ′) = H(C) or H(C ′) > H(C) holds. Suppose that the edge uv is painted µ0 in C.
Suppose that C ′ consists in painting uv with color µ1 ≠ µ0. As we saw in the proof of
Lemma 4.1, aν,µ(C) = aν,µ(C

′) for all ν ∈ [n] different from u and v and for all µ ∈ [n − 1]
different from µ0 and µ1. Since µ0 ≠ µ1, we have

⎧⎪⎪
⎨
⎪⎪⎩

au,µ0(C) = 1 + au,µ0(C
′),

av,µ0(C) = 1 + av,µ0(C
′),

because in C ′ there is one less edge painted in color µ0 than in C, and

⎧⎪⎪
⎨
⎪⎪⎩

au,µ1(C
′) = 1 + au,µ1(C),

av,µ1(C
′) = 1 + av,µ1(C),
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as in C ′ there is one more edge painted in color µ1. Thus,

H(C ′
) = −

n

∑
ν=1

n−1

∑
µ=1

aν,µ(C
′)

n(n − 1)
log(

aν,µ(C
′)

n(n − 1)
)

= −
n

∑
ν=1
ν≠u,v

n−1

∑
µ=1

aν,µ(C
′)

n(n − 1)
log(

aν,µ(C
′)

n(n − 1)
) −

n

∑
ν=1

n−1

∑
µ=1

µ≠µ0,µ1

aν,µ(C
′)

n(n − 1)
log(

aν,µ(C
′)

n(n − 1)
)

−
au,µ0(C

′)
n(n − 1)

log(
au,µ0(C

′)
n(n − 1)

) −
av,µ0(C

′)
n(n − 1)

log(
av,µ0(C

′)
n(n − 1)

) −
au,µ1(C

′)
n(n − 1)

log(
au,µ1(C

′)
n(n − 1)

)

−
av,µ1(C

′)
n(n − 1)

log(
av,µ1(C

′)
n(n − 1)

)

= −
n

∑
ν=1
ν≠u,v

n−1

∑
µ=1

aν,µ(C)

n(n − 1)
log(

aν,µ(C)

n(n − 1)
)

−
n

∑
ν=1

n−1

∑
µ1

µ≠µ0,µ1

aν,µ(C)

n(n − 1)
log(

aν,µ(C)

n(n − 1)
) −

au,µ0(C) − 1

n(n − 1)
log(

au,µ0(C) − 1

n(n − 1)
)

−
av,µ0(C) − 1

n(n − 1)
log(

av,µ0(C) − 1

n(n − 1)
) −

au,µ1(C) + 1

n(n − 1)
log(

au,µ1(C) + 1

n(n − 1)
)

−
av,µ1(C) + 1

n(n − 1)
log(

av,µ1(C) + 1

n(n − 1)
) .

Hence,

H(C ′
)
<=>H(C)

if and only if

−
au,µ0(C) − 1

n(n − 1)
log(

au,µ0(C) − 1

n(n − 1)
) −

av,µ0(C) − 1

n(n − 1)
log(

av,µ0(C) − 1

n(n − 1)
)

−
au,µ1(C) + 1

n(n − 1)
log(

au,µ1(C) + 1

n(n − 1)
) −

av,µ1(C) + 1

n(n − 1)
log(

av,µ1(C) + 1

n(n − 1)
)

<=> −
au,µ0(C)

n(n − 1)
log(

au,µ0(C)

n(n − 1)
) −

av,µ0(C)

n(n − 1)
log(

av,µ0(C)

n(n − 1)
)

−
au,µ1(C)

n(n − 1)
log(

au,µ1(C)

n(n − 1)
) −

av,µ1(C)

n(n − 1)
log(

av,µ1(C)

n(n − 1)
) (5.2)

Let us define

f(x) = −x log(x).

Then, the last expression (5.2) becomes:

f (
au,µ0(C) − 1

n(n − 1)
) + f (

av,µ0(C) − 1

n(n − 1)
) + f (

au,µ1(C) + 1

n(n − 1)
) + f (

av,µ1(C) + 1

n(n − 1)
)

<=>f (
au,µ0(C)

n(n − 1)
) + f (

av,µ0(C)

n(n − 1)
) + f (

au,µ1(C)

n(n − 1)
) + f (

av,µ1(C)

n(n − 1)
) (5.3)

Therefore, rewriting (5.3), we get:

f (
au,µ1(C) + 1

n(n − 1)
) + f (

av,µ1(C) + 1

n(n − 1)
) − f (

au,µ1(C)

n(n − 1)
) − f (

av,µ1(C)

n(n − 1)
)

<=>f (
au,µ0(C)

n(n − 1)
) + f (

av,µ0(C)

n(n − 1)
) − f (

au,µ0(C) − 1

n(n − 1)
) − f (

av,µ0(C) − 1

n(n − 1)
) (5.4)
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To make computations easily, let us simplify repeated notation (at the end we will redo
this change of notation):

x =
au,µ1(C)

n(n − 1)
, y =

av,µ1(C)

n(n − 1)
, z =

1

n(n − 1)
, a =

au,µ0(C)

n(n − 1)
, b =

av,µ0(C)

n(n − 1)

Thus, according to this notation introduced, expression (5.4) becomes:

f(x + z) + f(y + z) − f(x) − f(y)
<=>f(a) + f(b) + f(a − z) + f(b − z) (5.5)

Define the following functions, taking into account the definition of f we did before:

F (r, s) = f(r) + f(s) = −r log(r) − s log(s) (5.6)

and

G(t) = F (x + t, y + t) − F (x, y) − F (a, b) + F (a − t, b − t). (5.7)

Then, since we deduced that

H(C ′
)
<=>H(C) if and only if (5.5) holds,

according to the definition of G and H,

H(C ′
)
<=>H(C) if and only if G(z)

<=>0.

From this characterization, we can obtain some results concerning the comparison of
H(C ′) and H(C) (considering its corresponding relation <, = and >). We will present
two results for H(C ′) < H(C). Notice that we are not able to obtain a characterization
of H(C ′) <H(C), so this is a major difference compared with the potential function (see
4.1).

Proposition 4.7. Let C be a coloring of Kn such that the edge uv is painted with color
µ0. Let C ′ be a recoloring of C, in such a way that the edge uv of Kn is painted with
another color µ1 ≠ µ0. If

log(au,µ0(C)) + log(av,µ0(C)) < log(au,µ1(C)) + log(av,µ1(C)) +
1

n − 1
,

then H(C ′) <H(C).

Proof. In this proof we are going to take advantage of the notation a, b, x, y and z and
the definition of the functions F and G (see (5.6 and 5.7), respectively) we introduced
before. By Taylor’s theorem [1, Theorem 5.19],

G(t) = G(0) +G′
(0)t +

G′′(εt)
2

t2 =
´¸¶
G(0)=0

G′
(0)t +

G′′(εt)
2

t2,

where t ∈ [0, z] and εt ∈ [0, t]. We know that H(C ′) < H(C) if and only if G(z) < 0, so
according to our Taylor’s expansion, we have

H(C ′
) <H(C) if and only if G′

(0)z +
G′′(εz)

2
z2

< 0,

and simplifying this is equivalent to

H(C ′
) <H(C) if and only if G′

(0) < −
G′′(εz)

2
z.
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Now, let us obtain explicit expressions for G′ and G′′ differentiating one and two times,
respectively, the function G (5.7) 2:

G′
(t) =

∂F

∂r
(x + t, y + t) +

∂F

∂s
(x + t, y + t) −

∂F

∂r
(a − t, b − t) −

∂F

∂s
(a − t, b − t)

= (−1 − log(x + t)) + (−1 − log(y + t)) − (−1 − log(a − t)) − (−1 − log(b − t))

= − log(x + t) − log(y + t) + log(a − t) + log(b − t) (5.8)

and

G′′
(t) = −

1

x + t
−

1

y + t
−

1

a − t
−

1

b − t
.

Since color µ0 is different from color µ1, we have that au,µ1(C) ≤ n− 2. Hence, x ≤ n−2
n(n−1) .

Moreover, since t ∈ [0, z],

x + t ≤ x + z ≤
´¸¶

z= 1
n(n−1)

n − 2

n(n − 1)
+

1

n(n − 1)
=

1

n
.

From this last inequality, we obtain − 1
x+t ≤ −n. Analogously, we deduce − 1

y+t ≤ −n. Then,

G′′
(t) ≤ −

1

x + t
−

1

y + t
≤ −2n.

Applying this for t = εz and the definition of z = 1/(n(n − 1)),

−
G′′(εz)

2
z ≥ nz =

1

n − 1
.

Thus, if G′(0) < 1/(n − 1), then H(C ′) < H(C). So we compute G′(0) and we impose
G′(0) < 1/(n − 1):

G′
(0) = − log(x) − log(y) + log(a) + log(b)

=
´¸¶

definition of
x,y,a,b

− log(
au,µ1(C)

n(n − 1)
) − log(

av,µ1(C)

n(n − 1)
) + log(

au,µ0(C)

n(n − 1)
) + log(

av,µ0(C)

n(n − 1)
)

= − log(au,µ1(C)) − log(av,µ1(C)) + log(au,µ0(C)) + log(av,µ0(C)) < 1/(n − 1). (5.9)

And from (5.9), we obtain that, if

log(au,µ0(C)) + log(av,µ0(C)) < log(au,µ1(C)) + log(av,µ1(C)) +
1

n − 1
,

then G′(0) < 1/(n − 1), and therefore H(C ′) <H(C). ⊓⊔

Proposition 4.8. Let C be a coloring of Kn such that the edge uv is painted with color
µ0. Let C ′ be a recoloring of C, in such a way that the edge uv of Kn is painted with
another color µ1 ≠ µ0. If H(C ′) <H(C), then

log(au,µ0(C) − 1) + log(av,µ0(C) − 1) < log(au,µ1(C) + 1) + log(av,µ1(C) + 1).

Proof. As in the proof of Proposition 4.7, in this proof we are going to use the notation a,
b, x, y and z and the definition of the functions F and G (see (5.6) and (5.7), respectively).

2The notation ∂F
∂r

means differentiating with respect to the first variable and ∂F
∂s

means differentiating

with respect to the second variable.
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By Taylor’s theorem [1, Theorem 5.19],

G(0)
´¸¹¶
=0

= G(z) −G′
(z)z +

G′′(εz)
2

z2,

where εz ∈ [0, z]. Since H(C ′) <H(C) implies G(z) < 0, H(C ′) <H(C) also implies

0 < −G′
(z)z +

G′′(εz)
2

z2,

which is equivalent to G′(z) < G′′(εz)
2 z < 0. The important conclusion is that G′(z) < 0.

Using the computations we did to compute G′, see (5.8),

G′
(z) = − log(x + z) − log(y + z) + log(a − z) + log(b − z).

Substituting a, b, x, y and z by their definition that was introduced in a red box, x =
au,µ1(C)
n(n−1) , y =

av,µ1(C)
n(n−1) , z = 1

n(n−1) , a =
au,µ0(C)
n(n−1) and b =

av,µ0(C)
n(n−1) , we are done, because

H(C ′) <H(C) also implies

0 > G′
(z) = − log(

au,µ1(C) + 1

n(n − 1)
) − log(

av,µ1(C) + 1

n(n − 1)
)

+ log(
au,µ0(C) − 1

n(n − 1)
) + log(

av,µ0(C) − 1

n(n − 1)
) = − log(au,µ1(C) + 1)

− log(av,µ1(C) + 1) + log(au,µ0(C) − 1) + log(av,µ0(C) − 1),

as we wanted to show. ⊓⊔

As we do not have any characterization for the comparison of H(C ′) and H(C), we believe
that it is much more difficult to characterize local maximum colorings in terms of entropy
(entropy greater than or equal to the entropy of its neighbors).

In any case, numerical experiments make us think that the following statement is true:

Conjecture 4.4. Consider Kn, with n even, and all possible colorings of it with n − 1
colors. Consider the algorithm in which we move from a coloring C to a recoloring C ′
of it if and only if H(C) ≤ H(C ′). Then the algorithm always converges for all n and,
moreover, the number of steps required by the algorithm is O(np), where 2 < p < 3.
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Conclusions

We conclude this work with a summary of the main results obtained and conjectures arisen
from them.

The main goal of this work has been to study the application of Markov chains to the
random generation of combinatorial objects. The work concentrates on the still open
problem of efficient random generation of proper edge colorings of complete graphs. The
problem is connected to the more general problem of random generation of Latin squares,
the above one corresponding to the case of symmetric Latin squares.

The work was prompted by a conjecture formulated in a recent paper by Dotan and Linial
[7] on the convergence of a Markov chain based on a simple appealing algorithm. Given the
complete graph Kn, with n even, and all its edge colorings with n−1 colors, a mathematical
problem in the last decades has consisted in proving that the extant algorithms to generate
proper colorings converge. The conjecture states that the algorithm that starts with an
arbitrary coloring C, and moves to a recoloring C ′ if and only if φ(C ′) ≤ φ(C), converges
asymptotically in polynomial time. Our numerical experiments in R suggest that the
convergence always holds for all even n, and not just asymptotically, in polynomial time.
Thus, we have established Conjecture 4.2. This conjecture has been shown for K4 and
K6, both computationally and analytically, in Sections 2 and 3 of Chapter 4. The ideas
used for K4 and K6 have been extended to Kn and new results have been proved in an
attempt to tackle the conjecture in the general case. The problem is that our proofs rely
on the structure of K4 and K6. The new Conjecture 4.2 remains open:

Conjecture 4.2. Consider Kn, with n even, and all possible colorings of it with n − 1
colors. Consider the algorithm in which we move from a coloring C to a recoloring C ′ of it
if and only if φ(C ′) ≤ φ(C). Then the algorithm always converges for all n and, moreover,
the number of steps required by the algorithm is O(np), where 2 < p < 3.

A new algorithm using Shannon entropy instead of the potential has been implemented in
Section 5 of Chapter 4. Shannon entropy is a tool in probability theory that models the
mean information of a system of events. In our case, the system of events is a coloring
C, where the events are pairs of vertices and colors (ν,µ). Numerical experiments and
analytical approximations suggest that entropy provides the same information as the po-
tential. An open question for us is which is the exact relation between the entropy and the
potential of a coloring: Is there an expression that relates both functions? Are the local
minimums in terms of potential and the local maximums in terms of entropy the same in
both approaches? A conjecture in the spirit of the potential function arises:
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Conjecture 4.4. Consider Kn, with n even, and all possible colorings of it with n − 1
colors. Consider the algorithm in which we move from a coloring C to a recoloring C ′
of it if and only if H(C) ≤ H(C ′). Then the algorithm always converges for all n and,
moreover, the number of steps required by the algorithm is O(np), where 2 < p < 3.

We have developed implementations in R of the algorithms described in the work, both for
the potential and the entropy function. The implementation is accompanied with several
additional functions, like the generation of colorings, computation of the number of steps
up to convergence and many others. These tools are available for potential interested
researchers in the area.

The problems in random generation require not only that the algorithm outputs a desired
object (a proper edge coloring of Kn in our case), but also that the stationary distribution
is uniform. In this work we concentrated in convergence issues as formulated in Conjecture
4.2. Once convergence is assured, standard tools show that the Metropolis version of the
algorithm (by allowing increasing of potential with a small probability) will converge to
the uniform distribution.

We have also concentrated on proper edge colorings of complete graphs. Most of the tools
and arguments adapt easily to obtain proper edge colorings of other families of graphs. Of
particular interest are the proper edge colorings of bipartite complete graphs Kn,n. Again
our interest in analyzing Conjecture 4.2 drove us to focus on the particular case of the
complete graph.
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València, 2000.
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