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Abstract—The authors’ automatic speech recognition system
for low-power devices combines a mobile GPU for the deep neural
network with a dedicated hardware accelerator for the Viterbi
search. Their proposal outperforms traditional solutions running
on the CPU by orders of magnitude. Compared to a GPU-only
system, the authors hybrid scheme improves performance by 5.25
times while reducing energy by 2.05 times.

Index Terms—Automatic Speech Recognition, Accelerator,
Viterbi Search

I. INTRODUCTION

Automatic Speech Recognition (ASR) has attracted the
attention of the academic community [1], [2], [3] and indus-
try [4], [5], [6], [7] in recent years. ASR is becoming a key
feature in smartphones, tablets and other energy-constrained
devices such as smartwatches. ASR technology is at the heart
of popular voice-based user interfaces for mobile devices such
as Google Now, Apple Siri or Microsoft Cortana. These sys-
tems deliver large-vocabulary, real-time, speaker-independent,
and continuous speech recognition. Unfortunately, supporting
fast and accurate speech recognition comes at a high energy
cost, which is not affordable in most mobile devices.

An ASR pipeline comprises two stages: a Deep Neural
Network (DNN) and a Viterbi search. The DNN computes
phonemes’ probabilities for each frame (typically around 10
ms) of the input audio signal, whereas the Viterbi search uses
these probabilities to generate the most likely sequence of
words. Our profiling of Kaldi [8], a speech recognition system
widely used in academia and industry, on a NVIDIA TX1
mobile platform shows that the Viterbi search is the main
bottleneck, as it represents 65 percent of the execution time
when running Kaldi on its ARM CPU and 81 percent when
running it on its mobile GPU.

In recent years, much work has focused on GPUs to boost
DNN performance [9], [10], [11], [12], which achieves huge
speedups and energy savings because DNN computation is
easy to parallelize. Similarly, we obtained a speedup of 11.6
times when running the DNN implementation of Kaldi on a
mobile GPU. On the other hand, the Viterbi search is hard
to parallelize [13] and, hence, previous work on GPU accel-
eration reported a more modest speedup of 3.74 times [14].
Our numbers are also consistent with previous findings, as we
obtained a speedup of 5 times for the Viterbi search on a GPU
after thoroughly optimizing and tuning of the code.

In this artcle, we propose an ASR architecture for mobile
devices that combines a mobile GPU and a novel hardware

accelerator. In our system, the GPU performs the DNN com-
putations, as mobile GPUs excel in this task [15], whereas
the Viterbi search runs on a dedicated accelerator specifically
tailored to the needs of ASR systems. The GPU and the
accelerator share the same address space in main memory, so
the results computed by the GPU, i. e. the DNN output, can
be efficiently accessed by the accelerator, avoiding additional
memory copies from GPU memory to system memory. To
further improve performance, the input audio frames are
grouped in batches and both GPU and accelerator work in
parallel in a pipelined manner: the GPU computes the DNN
for the next batch while the accelerator performs the Viterbi
search for the current batch.

II. CPU AND GPU-BASED ASR SYSTEM

ASR comprises three main components: Feature Extraction,
Acoustic Scoring and Viterbi Search. The recognition process
works as follows. Firstly, the Feature Extraction component
splits the audio signal into frames of 10 ms of speech
and computes several features for each frame using signal
processing techniques. ASR systems create acoustic models
for sub-word units or phonemes. The production of sound
corresponding to a phoneme is influenced by neighboring
phonemes, so context-dependent phonemes or triphones are
typically employed by ASR systems to improve accuracy.
After Feature Extraction, for each frame, the Acoustic Scoring
computes the probabilities (also called scores) that the frame
is part of a particular triphone, checking for all potential
triphones. Finally, the Viterbi Search employs these sequence
of probability sets (one set per frame with as many elements as
potential triphones) to find the most likely sequence of words.
The Acoustic Scoring and the Viterbi Search take up the bulk
of execution time.

DNNs are the state-of-the-art approach for computing
acoustic scores. DNNs for ASR consist of a sequence of fully-
connected layers, followed by a softmax output layer. The
scores produced by the DNN are the inputs to the Viterbi
search, which produces the sequence of words. The Viterbi
search employs a graph-based recognition network to find the
sequence of words with maximum likelihood for the sequence
of triphone’s probabilities. The most successful approach for
representing the recognition network is the Weighted Finite
State Transducer (WFST) [16], which is a Mealy finite state
machine that comprises a set of states and a set of arcs. The
WFST is constructed offline during the training process using
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TABLE I
EXECUTION TIME OF KALDI FOR DECODING 127.4 SECONDS OF SPEECH

ON AN NVIDIA TEGRA X1.

CPU - ARM Cortex A57 GPU - GM204
DNN 87.4 s 7.5 s

Viterbi Search 161.5 s 32.2 s
TOTAL 248.9 s 39.7 s

different knowledge sources such as context dependency of
phonemes, pronunciation and grammar. For large vocabulary
ASR systems, the WFST contains millions of states and arcs.

In this paper, we use Kaldi [8] as our baseline ASR software
solution. Kaldi is a widely used toolkit for ASR that delivers
state-of-the-art performance and accuracy. Kaldi provides full
support for acoustic scoring based on DNNs. Moreover, it
implements the Viterbi search based on a WFST. We use the
standard DNN and WFST for English language as provided
in Kaldi’s website. The DNN comprises six fully-connected
layers followed by one softmax layer, it contains 41,095
neurons and 9 million parameters. Regarding the WFST, it is
constructed from a large vocabulary of 125,000 words and it
contains more than 13 million states and more than 34 million
arcs.

Table I shows the execution time of Kaldi on an NVIDIA
Tegra X1 [17] mobile platform. We have first evaluated the
performance of Kaldi when running on the mobile CPU of
Tegra X1, a quad-core ARM Cortex A57. Kaldi does not
achieve real-time performance when running on the mobile
CPU, since it takes 1.95 seconds to decode each second of
speech. The Viterbi search is the main bottleneck as it takes
65 percent of the execution time.

Mobile platforms typically include a GPU that can be used
to speed-up the recognition process. Tegra X1 features a
GM204 GPU, which is based on the Maxwell microarchitec-
ture. Kaldi provides a CUDA implementation of the DNN, but
it does not provide any GPU version for the Viterbi search
since this algorithm is challenging to parallelize. We have
extended Kaldi with the state-of-the-art GPU version of the
Viterbi search presented by Kisun You and colleagues [14].

Table I shows the execution time of our GPU-accelerated
version of Kaldi when running on a Tegra X1. The GPU-
based ASR system achieves real-time performance as it only
takes 0.31 seconds to decode each second of speech. The
GPU provides a speedup of 11.6 times for the DNN. The
Viterbi search achieves a more modest speedup of 5 times, a
bit higher than the 3.7 times reported in previous work [14].
Overall, the Viterbi search is the main bottleneck. It performs
a search on a huge, irregular directed graph to find the most
likely word sequence for the input speech signal. Parallel
graph traversal on large unstructured graphs is a well-known
challenge for parallel architectures, especially in the context
of ASR. The Viterbi search exhibits unpredictable memory
accesses and poor data locality. These characteristics put
significant pressure on the GPU memory subsystem and lead
to substantial underutilization of GPU’s functional units.
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Fig. 1. Architecture of the accelerator for Viterbi search.

III. HARDWARE ACCELERATED ASR SYSTEM

Our GPU-accelerated ASR system achieves real-time per-
formance on a mobile platform. However, further improving
this ASR system’s performance and energy-efficiency can
provide significant benefits. Higher performance will allow the
use of larger and more sophisticated language models in real-
time, improving the system’s accuracy. On the other hand,
mobile devices are battery operated, and hence ASR systems
running on those devices must consume as little energy as
possible.

Because the Viterbi search is the main bottleneck for ASR
systems, our efforts to increase performance and reduce energy
consumption focus on the Viterbi search component. In this
article, we present a low-power accelerator for the Viterbi
search. Figure 1 illustrates the architecture of the accelerator,
which consists of a pipeline with five stages and several on-
chip memories to speed up the access to the data required by
the search process.

The Viterbi search algorithm expands the active states (of
the WFST) at the current frame to create the new set of active
states for the next frame. All the arcs departing from the
active source states are considered during the search process.
The cost of reaching the destination states at a given frame
is computed using the acoustic likelihoods from the DNN
(computed in the GPU) and the weights of the arcs from the
WFST. The active states at a given frame are also called tokens.

The accelerator’s pipeline includes units for fetching states
(State Issuer), arcs (Arc Issuer), and acoustic scores (Acoustic-
likelihood Issuer) from main memory. In addition, the Like-
lihood Evaluation unit computes the cost of reaching the
destination states, using the information fetched from memory
by the previous stages. Finally, the token issuer is used to store
the information of the new active states in memory.

The WFST is typically quite large, so it cannot be stored
in the on-chip memories. WFST states and arcs are stored in
system memory. The accelerator includes a state cache and
an arc cache to speed up the accesses to the states and arcs,
respectively. On the other hand, the acoustic scores generated
by the GPU are stored in main memory and consumed by the
accelerator during the search process. Compared to the GPU-
only system, moving the acoustic scores from the GPU to
the accelerator is the only data movement overhead. However,
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Fig. 2. Architecture of the proposed ASR system.

the latency of this data movement can be completely hidden
by overlapping the memory transfers with computations. To
this end, the accelerator includes a double-buffered Acoustic
Likelihood Buffer that stores the acoustic scores for two
frames of speech. The accelerator fetches from memory the
scores for the next frame while it processes the current frame,
hiding the memory latency of bringing the acoustic scores
from main memory.

The accelerator keeps track of the active states, or tokens,
generated dynamically throughout the search. The information
associated with the tokens is split into two parts, depending
on whether the data has to be kept until the end of the search
or it is only required for a given frame of speech. Persistent
data is stored in main memory leveraging the Token Cache.
Temporary data is stored in the Hash Table. The accelerator
includes two hash tables to store the tokens for the current
and the next frame of speech.

The result generated by the accelerator is the list of tokens
expanded at every frame of speech. The tokens generated for
all frames form what is called a word lattice, which represents
different alternative interpretations of the input speech. A
backtracking algorithm is employed to select the most likely
interpretation. The token with maximum likelihood in the
last frame is selected, and the backpointers saved by the
accelerator are followed to reconstruct the most probable path.
The backtracking requires a negligible amount of time and it
is executed on the CPU.

Figure 2 shows our overall ASR system for mobile devices.
The CPU performs feature extraction to generate the audio
frames in main memory. The GPU computes the DNN for
those audio frames and generates the acoustic likelihoods. The
accelerator performs the Viterbi search by using the acoustic
scores in order to generate the word lattice in system memory.
Finally, the CPU performs the backtracking to obtain the most
likely sequence of words.

In our system, the GPU and the accelerator work in parallel
in a pipelined manner as illustrated in Figure 3. Speech frames
are grouped in batches. The GPU computes the DNN for the
next batch of frames while the accelerator performs the Viterbi
search for the current batch. Therefore, we overlap the latency
of the DNN and the Viterbi search.
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Fig. 3. Execution of the GPU-only ASR system (top) and our proposed
architecture combining a GPU and the Viterbi accelerator (bottom).

TABLE II
MOBILE GPU PARAMETERS.

GPU NVIDIA Tegra X1 - GM204
Streaming multiprocessors 2 (2048 threads/multiprocessor)

Technology 20 nm
Frequency 1.0 GHz
L2 cache 256 KB

IV. EXPERIMENTAL RESULTS

This section presents the evaluation methodology and the
experimental results for the proposed ASR system. Regarding
the methodology, we run our GPU-accelerated version of Kaldi
on an NVIDIA Jetson TX1 platform [15] that features a
GM204 GPU with parameters shown in Table II. To measure
GPU energy consumption, we read the registers of the TI
INA3221 power monitor included in the Jetson TX1 platform,
which provides the actual energy by monitoring the GPU
power rail as described by Merlin Friesen [18].

On the other hand, we have developed a cycle-accurate
simulator that models the architecture of the Viterbi accelerator
presented in Section III. Table III shows the parameters
employed for the experiments in the accelerator. We have
performed a design space exploration to find appropriate
parameters for the different hardware structures, selecting
the configuration that provides the best trade-off considering
performance, power and area [19]. We found that the sizes of
the caches and the hash tables are the most critical parameters,
as misses in these hardware structures are the main sources of
pipeline stalls. According to our experiments, sizes bigger than
the ones shown in Table III provide little reduction in miss
ratio, even for large WFSTs. Note that the size of the Arc
Cache is twice the size of the other caches to deal with the
larger memory footprint required by arc fetching. On average,
two arcs are fetched from memory for each state/token during
Viterbi search.

To estimate energy consumption of the accelerator, we have
implemented the different pipeline components of the accel-
erator in Verilog and synthesized them using the Synopsys
Design Compiler with a 28-nm cell library. In addition, we
use CACTI to estimate the power of the caches included in
the accelerator. All the energy numbers reported in this section
include both static and dynamic energy. We use the delays
provided by CACTI and Synopsys Design Compiler to set
realistic latencies for the different hardware structures in the
cycle-accurate simulator. Finally, by using both the execution
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TABLE III
HARDWARE PARAMETERS FOR THE ACCELERATOR.

Technology 28 nm
Frequency 600 MHz

State Cache 512 KB, 4-way, 64 bytes/line
Arc Cache 1 MB, 4-way, 64 bytes/line

Token Cache 512 kB, 2-way, 64 bytes/line
Acoustic Likelihood Buffer 64 KB

Hash Table 768 KB
Memory Controller 32 in-flight requests

Likelihood Evaluation Unit 4 fp adders, 2 fp comparators

TABLE IV
SPEEDUP AND WORD ERROR RATE FOR DIFFERENT VOCABULARY SIZES.

WFST Size (words) Speedup WER(%)
Voxforge 14,000 2.08 37.05

Fisher English 125,000 22.23 25.87
Librispeech 200,000 38.06 10.49

time and the activity factor of each component generated
by the simulator, an accurate power estimation is conducted
according to the numbers collected from the synthesis tools.

For our datasets, we again used the DNN and the WFST
for English language provided in the Kaldi toolset [8]. These
models are trained with 2000 hours of speech and a large
vocabulary of 125,000 words. We used audio files from Lib-
rispeech corpus [20] and ran the decoding for 127.42 seconds
of speech.

Regarding the experimental results, we first focus on the
Viterbi search and evaluate the performance and energy-
efficiency of our Viterbi accelerator. Results are shown in
Figure 4, together with the energy and performance of a
low-power GPU-only implementation. The Viterbi accelerator
achieves real-time performance by a wide margin, as it takes
11 ms to decode each second of speech. The speedup achieved
by the accelerator over the mobile GPU is 22 times. In addition
to the performance improvement, the accelerator also provides
a huge reduction (48 times) in energy consumption. Energy-
efficiency is drastically improved by using the hardware specif-
ically tailored to the characteristics of the Viterbi search.

Table IV shows the speedup achieved by our Viterbi ac-
celerator over the GPU version for WFSTs of different sizes.
The table also reports the Word Error Rate as a measure of
the accuracy achieved by the different WFSTs. Our Viterbi
accelerator is designed for large-vocabulary ASR systems that
deliver high recognition accuracy; hence, the larger the WFST,
the bigger the speedup achieved.

Figure 5 shows execution time and energy consumption for
the overall ASR system, including the DNN and the Viterbi
search. The GPU-only configuration corresponds to a system
that runs the entire ASR pipeline on the mobile GPU (top
of Figure 3). The GPU+ACC configuration is the system
that employs the GPU for the DNN computation and our
accelerator for the Viterbi search, as illustrated in Figure 2. The
GPU+ACC configuration provides 5.26 times speedup over the
GPU-only system, which comes from two sources. First, the
accelerator provides a large speedup for the main bottleneck
of ASR, the Viterbi search, as shown in Figure 4. Second,
the GPU+ACC configuration overlaps the execution time of
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Fig. 4. Energy consumption versus execution time for the Viterbi search.

the DNN and the Viterbi search, as illustrated in Figure 3,
providing further performance improvements over the GPU-
only configuration that has to serialize the two stages. Besides,
GPU+ACC provides an energy reduction of 2.05 times.

In the proposed system (GPU+ACC), the main bottleneck
for both performance and energy consumption is now the DNN
running on the GPU, because the proposed Viterbi accelerator
is extremely effective. If required, we can further improve
the system by replacing the GPU with an accelerator for
neural networks, such as the one proposed by Zidong Du and
colleagues [21].

Our Viterbi accelerator supports any WFST so it works for
any language, acoustic model (basephones, triphones...) and
language model (bigrams, trigrams...). The accelerator can also
support more sophisticated speech models that may appear in
the future, by just extending the WFST. We believe speech
recognition will be a feature supported by the most computing
devices in the near future, and language models will evolve
towards more complex ones for the sake of better accuracy, so
the benefits of the proposed accelerator will be even higher.

On the other hand, the Viterbi algorithm is also employed by
other applications such as statistical machine translation [22],
text to speech synthesis [23], and computational biology [24],
which can benefit from our accelerator. Thus, we are eager to
extend our accelerator in order to provide a platform that can
support different applications that make extensive use of the
Viterbi search algorithm.

V. RELATED WORK IN AUTOMATIC SPEECH RECOGNITION

Prior works on hardware accelerators for ASR assume
severe constraints to simplify the hardware, mainly by re-
ducing the size of the vocabulary and, hence, the accuracy
of the system. The accelerator presented by Michael Price
and colleagues supports a 5,000-word vocabulary dissipating 6
mW, including acoustic scoring and Viterbi search [3]. On the
other hand. the Viterbi ASIC described by Jeffrey Johnston
and Rob Rutenbar supports a vocabulary of 60,000 words
dissipating 454 mW [2]. In comparison, our Viterbi accelerator
supports a larger vocabulary of 125,000 in real-time dissipating
about the same power (453 mW).
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