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Abstract 11 

Progressive freeze-concentration is a technology to separate water from solutions by 12 

freezing. In the present investigation, ethanol-water solutions were freeze-concentrated by 13 

the progressive stirred technique. The freezing stage was carried out in a stirring vessel. 14 

Solute recovery by the fractionated thawing of ice was also studied. The effects of stirring 15 

speed (500, 1000, and 2000 rpm), initial concentration of the solution (3%, 5%, and 8% 16 

ethanol), and temperature of the thawing stage (0, 10, and 20 °C) on the solute yield and 17 

average distribution coefficient were determined using response surface analysis. The 18 

ethanol concentration was found to have increased by 1.3 and 2.1 times at the end of the 19 

freeze concentration process. It was found that the initial concentration had a significant 20 

effect on the distribution coefficient. In addition, the average yield was increased by 28% 21 

by fractionated thawing. Subsequently, a non-dimensional analysis of the distribution 22 

coefficient was developed to yield a model to predict the distribution coefficient as a 23 

function of the Reynolds number, the relationship between the average ice growth rate and 24 

the stirring speed, the agitator diameter, and the liquid fraction. This technique proved to 25 

be valid with respect to the concentration of ethanol-water solutions, with better yields 26 

being obtained at low initial concentrations. This model is the first of its kind to describe the 27 

ethanol-water interaction in agitated freeze-concentration systems. 28 

Keywords: freeze concentration, ethanol, response surface, dimensionless analysis 29 
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NOMENCLATURE 
 

��	�	 Ethanol mass fraction in 
the initial solution (w/w) 

 ����� Average distribution 
coefficient 
(dimensionless) 

��		
� Ethanol mass fraction in 
ice (w/w)  

 � Solute yield 
(dimensionless) 

��	
	� Ethanol mass fraction in 
the freeze-concentrated 
liquid fraction (w/w) 

 �� Concentration index 
(dimensionless) 

��	
í� Solute mass in the liquid 
fraction (kg) 

 �̅	
� Average ice growth rate 
(µm/s) 

��	� Solute mass in the initial 
solution (kg) 

 � Liquid fraction 
(dimensionless) 

�	
� Mass of the ice sheet 
(kg) 

 �� Area under the Y vs. f 
curve (dimensionless) 

�
í� Collected liquid mass 
(kg) 

 �� Diameter of the agitator 
(m) 

�� Initial mass (kg)  � Stirring speed (rps) 
�	
� Ice density (kg/m3)  � Vessel radius (m) 
�� Water density (kg/m3)  � Time of freezing (h) 
��� Ethanol density (kg/m3)  ℎ Ice layer height (m) 
� Solution density (kg/m3)   ! Heating temperature (°C) 
"� Water viscosity (kg/ms)  �# Initial concentration (w/w) 
"�� Ethanol viscosity (kg/ms)  $� Stirring speed (rpm) 
" Solution viscosity (kg/ms)    

1 Introduction 35 

Freeze-concentration (FC) is a technique defined as a method to remove water from 36 

solutions by freezing until the formation and separation of ice crystals occurs. In this way, it 37 

is possible to obtain a product of greater concentration than the initial solution while 38 

preserving its quality (Sánchez et al. 2009). In general, there are three types of FC: 39 

suspension, block and film FC. The first is the most used in the industry for its high 40 

efficiencies, although it is associated with high operating and investment costs (Miyawaki 41 

et al. 2005; Auleda et al. 2011); which is why the researchers have looked for ways to 42 

make other techniques improve their performance (Moreno, Raventós, et al. 2014b; 43 

Moreno, Raventós, et al. 2014a). 44 

Film freeze-concentration is an FC method, in which unidirectional crystallization of the 45 

water present in the solution takes place. In this technique, a single layer grows while 46 

being adhered to the walls of the heat exchange surface. The solution is concentrated as it 47 

is circulated on the surface of the formed ice, which grows layer by layer. Due to the 48 
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formation of a single ice layer, separation of the concentrated solution is facilitated (Liu et 49 

al. 1997; Miyawaki, Omote, et al. 2016; Miyawaki, Gunathilake, et al. 2016; Miyawaki et al. 50 

2005; Sánchez et al. 2009). Film FC can be classified into two types: plate FC (also called 51 

falling film) and progressive FC, as proposed by (Sánchez et al. 2009; Sánchez et al. 52 

2011). The main difference between the two techniques is the geometry of the equipment 53 

used for the formation of crystals; the falling film FC uses a plate whereas in the 54 

progressive FC, concentration of the solute occurs at the bottom or on the walls of a tank 55 

or pipe (Sánchez et al. 2009). Further, the progressive FC equipment can be classified into 56 

two types based on their design – vertical progressive FC and tubular progressive FC 57 

(Miyawaki et al. 2015; Miyawaki & Kitano 2015; Miyawaki et al. 2005; Miyawaki, 58 

Gunathilake, et al. 2016). 59 

Agitated tanks are used for vertical progressive FC; the growth of a single ice crystal 60 

occurs at the base of the tank while it is submerged at a specific velocity in the refrigerant 61 

(Miyawaki et al. 2012). On the other hand, a tubular progressive FC consists of two 62 

connected tubes; the solution circulates inside the tube while the refrigerant circulates 63 

outside, thus generating a solid phase on the inner walls and the concentrated solution 64 

flows through the ring that has not yet frozen (Miyawaki et al. 2005). Both techniques have 65 

delivered promising results using which it has been possible to demonstrate that both 66 

geometries are efficient. In the case of tubular progressive FCs, their high efficiency and 67 

ease of scaling is emphasized while in the case of vertical progressive FCs, it has been 68 

possible to obtain crystals of high purity (Miyawaki, Gunathilake, et al. 2016). Recently, 69 

there was a report on hybrid equipment (Ojeda et al. 2017), which functions as a vertical 70 

progressive FC but manages to generate the ice film not only at the bottom but also on the 71 

inner walls of the tank, similar to a progressive tubular FC. One of the most important 72 

challenges faced by progressive FCs is in increasing the solute recovery (increased 73 

separation efficiency) as ice tends to grow with impurities. One strategy to increase the 74 

recovered amount is to apply controlled thawing to ice after the FC process, similar to what 75 

was  is done during block FC, also known as freeze-thaw process (Robles et al. 2016). 76 

Controlled thawing is usually performed on other equipment than those used to make the 77 

progressive FC (Miyawaki et al. 2012; Moreno, Raventós, et al. 2014b). Therefore, 78 

research is being conducted to design hybrid equipment that allows high separation 79 

efficiencies, easy scalability, and allows the controlled recovery of solutes within the same 80 

unit. 81 
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Progressive FC has been used to recover solutes from products such as wine must 82 

(Miyawaki, Gunathilake, et al. 2016; Hernández et al. 2010), ethanol–water solutions 83 

(Haizum et al. 2015), juices (Miyawaki, Gunathilake, et al. 2016), and coffee extracts 84 

(Gunathilake et al. 2014). The comprehension of ethanol – water solutions is useful for the 85 

application of FC to alcohol-containing matrices, such as wines or beers, which present 86 

concentration difficulties due to the loss of ethanol and volatile components related to the 87 

flavor of the drinks. A water ethanol mixture has a crystallizing line and a melting line that 88 

are separated, and thus it can exist together both liquid and solid phases (Kuwahara & 89 

Ohkubo 2010). This condition makes the ethanol water mixtures favorable to be separated 90 

by freeze concentration techniques, in a temperature range between 0 and -70 ° C, 91 

according to the phase diagram proposed by (Ohkubo et al. 1997). 92 

The objective of this work was to evaluate a progressive FC technique that combines 93 

elements of vertical and tubular progressive FCs and allows us to recover ice in the same 94 

equipment; this process will be called progressive stirred freeze-concentration (PSFC) 95 

assisted by fractionated thawing. Ethanol-water model solutions were used to study the 96 

technique and the effect of initial concentration and stirring speed during the PSFC 97 

process on the average distribution coefficient and solute yield were determined. At the 98 

same time, a non-dimensional analysis was performed to propose an empirical 99 

mathematical model that allows us to calculate the classic variables of the FC in the 100 

proposed technique.  101 

2 Materials and methods 102 

2.1 Materials 103 

Ethanol-water solutions were prepared from distilled water and commercial grade ethanol 104 

(Quimics Dalmau, Barcelona, Spain) with an initial concentration of 93.3% (w/w) ethanol.  105 

2.2 Methods  106 

The effect of stirring speed (VA) and initial concentration (CO) on the concentration of 107 

ethanol in the PSFC equipment was studied. Similarly, the effect of thawing temperature 108 

(TH) on the recovery of solutes was also studied. A freezing temperature of -15 ° C was 109 

defined for the initial concentration interval studied. This condition avoids a fast freezing 110 

that can lead to the occlusion of solutes, and also allows a desirable average freezing rate, 111 
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according to those reported in literature (Nakagawa et al. 2010; Moreno, Raventós, et al. 112 

2014b; Petzold et al. 2016). All the FC tests were performed for one hour. 113 

The concentration of ethanol in each of the samples was analyzed using an electronic 114 

densimeter (DMA 35, Anton Paar) capable of reading ethanol concentration data in terms 115 

of percentage weight/weight, percentage volume/volume, density, and degrees Brix. 116 

2.2.1 Freeze-concentration protocol 117 

The tests were performed in the freeze-concentration equipment, similar to the one shown 118 

in Figure 1. In the receiving tank (1), 1400 g of a previously refrigerated sample was 119 

placed; the sample was held until it reached a temperature of approximately 0 °C in a 120 

cooler. The tank, which has a total height of 24 cm and diameter of 11 cm is made of AISI 121 

304 stainless steel, and has an outer jacket (3) to allow the cooling liquid to flow; the 122 

cooling liquid is composed of a mixture of ethylene glycol and water (53% w/w) circulating 123 

in the thermostatic bath (4) equipped with a temperature controller (6). The tank has an 124 

outer covering of an insulating material to prevent the transfer of heat with the 125 

environment. The routing of the said flows was controlled by a system of pumps and 126 

valves (7). Due to the arrangement of the cooling jackets, the tank allows the formation of 127 

an ice film on the side walls only; a discharge cone at the bottom allows the liquid to flow 128 

out (8). The height of the solution inside the tank was 20 cm. 129 

The solutions were agitated with a turbine rotor (5), which has 3 blades of 3 cm of length, 130 

located at 21.5 cm from the top. A mechanical stirrer (2) (RGL-100, Heidolph Instruments, 131 

Germany) equipped with a speed control system (PCE-DT62, PCE Deutschland GmbH, 132 

Germany) with 0.05% precision and 0.1 RPM resolution was used to stir the contents of 133 

the tank. 134 

For all the tests, the refrigerant was brought to a stable processing temperature of –15 °C. 135 

After that, the solution was added to the process tank. The stirring speed was defined and 136 

the FC process was then carried out for one hour. At the end of that time, the concentrated 137 

liquid (9) was removed and weighed (10). The concentration of ethanol was measured in 138 

both the concentrated liquid and the ice obtained.  139 
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2.2.2 Thawing protocol 140 

After the concentrated liquid has been retired, the thawing stage begins. During the 141 

controlled thawing process for the recovery of solutes from ice, the temperature of the 142 

thermostatic bath was adjusted as needed for the test in order to recover the samples in 143 

receiving containers (10). Using an analytical balance (KERN, Germany) (11), 10% of the 144 

total weight of the block was collected in each container. 145 

2.2.3 Experimental design 146 

A factorial design with two factors at three levels was applied for the FC tests; the stirring 147 

speeds were varied between 500, 1000, and 2000 rpm and the initial concentration of 148 

ethanol was varied between 3%, 5%, and 8% w/w. All the tests were performed in 149 

triplicate. 150 

To analyze the controlled thaw stage, each sample was evaluated at a thawing 151 

temperature (TH) (0, 10, and 20 °C). 152 

2.2.4 Data analysis 153 

2.2.4.1 Average distribution coefficient (�����) 154 

The average distribution coefficient, �����, represents an average ratio between the 155 

concentration of solute in the ice and the concentration of solute in the liquid phase at the 156 

end of each test (Moreno, Raventós, et al. 2014a; Miyawaki et al. 2012). It can be 157 

determined as shown in equation 1 158 

����� = ��		
�
��	
	� 		(1) 

where Xs ice is the solute concentration in the ice sheet (w/w) and Xs liq is the solute 159 

concentration in the freeze concentrated liquid (w/w). 160 

2.2.4.2 Solute yield (Y)  161 

The solute yield was used to analyze the rate of solute recovery by PSFC; it is defined as 162 

the mass of solute in the liquid fraction divided by the initial total mass of the solute 163 

(Nakagawa et al. 2010; Moreno et al. 2013). The solute yield can be determined as shown 164 

in equation 2 165 
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� = ��	
í�
��	�

		(2) 

where ms liq is the mass of solute in the liquid phase and ms 0 is the initial solute mass. 166 

The obtained yield was used for both the PSFC (YFC) and thawing stage (YTS).  167 

2.2.4.3 Concentration index (CI) 168 

The concentration index is a variable used to evaluate the increase in concentration at the 169 

end of the FC process. It is a relation between the final concentration of the solute in the 170 

concentrated liquid and the initial concentration of the sample, as shown in equation 3. 171 

�� = ��	
	�
��	� 		(3) 

2.2.4.4 Average ice growth rate (�� 	
�)  172 

The average ice growth rate is calculated at the end of the operation and takes into 173 

account the ice conditions (mass, concentration, and density), in addition to the area of 174 

heat transfer and time of operation, as shown in equation 4 (Chen et al. 1998; Moreno, 175 

Raventós, et al. 2014a). Chen & Chen (2000) showed the application of this variable for a 176 

falling film FC equipment. Equation 4 shows the application of the average ice growth rate 177 

for a stirred tank, where r is the vessel radius and h is the height of ice layer, both in 178 

meters. mice is the mass of the ice obtained (kg), Xs ice is the mass concentration of ethanol 179 

in ice, and ρice is the density of ice. 180 

�̅	
� =
� −,�- −�	
�(1 − ��		
�)�	
�	ℎ	.

� 		(4)		 
2.2.4.5 Liquid fraction (f) 181 

The liquid fraction, f, is defined as the ratio between the concentrated liquid mass and the 182 

initial total mass (Nakagawa et al. 2010; Miyawaki et al. 2012). It is used in controlled 183 

thawing trials to follow the development of the solute recovery process (Gulfo et al. 2014). 184 

2.2.4.6 Area under the Y vs. f curve (Ac) 185 
 186 

The graph of Y vs. f represents the percentage of solute recovered from the initial solution 187 

in each thawed liquid fraction (Nakagawa et al. 2010). The area under the curve can be 188 
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used as a parameter to analyze the efficiency of the separation process and to examine 189 

the effect of the factors studied (Moreno, Raventós, et al. 2014b). The area under the 190 

curve of Y vs. f was obtained by a spline regression procedure, according to (Moreno, 191 

Raventós, et al. 2014b). 192 

2.2.5 Dimensionless model 193 

A non-dimensional analysis was performed for the PSFC using the Vaschy–Buckingham π 194 

theorem (Curtis et al. 1982; Baker et al. 1991) to develop a model for �����, which acts as a 195 

representative of the geometry of the equipment studied. Within the factors chosen to 196 

develop the model, the physical properties of the solutions were taken into account as well 197 

as the parameters of operation and equipment design (Delaplace et al. 2015b; Delaplace 198 

et al. 2015a). Two of the studied factors were the density (ρ) and viscosity (µ) of the 199 

mixture; these parameters are important when analyzing transport phenomena. In 200 

addition, several researchers identified that the average growth rate of ice is an important 201 

variable in obtaining the purest ice (Chen et al. 1998; Moreno, Raventós, et al. 2014a). 202 

The other factor employed in the model is f; it is used in various FC techniques as an 203 

operation parameter (Nakagawa et al. 2010; Miyawaki et al. 2012; Moreno, Raventós, et 204 

al. 2014b). Finally, the initial concentration was taken into account because it has been 205 

confirmed that it is a variable with a significant effect on the average distribution coefficient 206 

(Moreno, Raventós, et al. 2014b; Petzold & Aguilera 2009; Raventós et al. 2007). 207 

At the same time, the stirring speed and the agitator diameter were considered as they are 208 

classical parameters for any process carried out in a stirred tank (Michell & Perry 1964). 209 

The model for the progressive stirred FC is shown in equation 5. 210 

����� = �(�, �1 , �, ", �, 2̅	
�, ��)		(5) 
The density of the solution was calculated using equations 6–8. Similarly, the viscosity was 211 

calculated using equations 9–11. Equations 7, 8, 10, and 11 were simulated in the ASPEN 212 

PLUS software, using the NRTL thermodynamic model. Equations 6 and 9 were used 213 

(Moreno, Raventós, et al. 2014a) with coffee solutions and were shown to be suitable for 214 

modeling density and viscosity near the freezing temperatures.  215 

1
� =

��	
í� 	
��� + (1 − ��	
í�)

�� 	(6) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

��� = 807,66 − 0,8249 − 0,0003 - 		:;<�=>						(7) 

�� = 1002,7 − 0,2712 − 0,0015 - 		:;<�=>						(8) 

ln " = ��	
	� ln("��) + A1 − ��	
	�B ln("�)		:;<�C>		(9) 

"�� = 0,0017 − 0,00004 − 0,000002 -	 		:;<�C>	(10) 

"� = 0,0018 − 0,00003 − 0,0000008 - 	:;<�C>		(11) 
The density data calculated from equation 6 was compared with experimental data on the 216 

density of ethanol-water solutions reported in the International Organization of Legal 217 

Metrology (OIML) alcohol grade conversion tables (OIML 1972). The densities of the 218 

water-ethanol blends (20% alcohol) were compared at temperatures of 0, –5, and –10 °C. 219 

The correlation coefficient, R2, between the data predicted by the equations and the 220 

experimental data had a value of 0.999. The results calculated using equations 10 and 11 221 

were contrasted with the data reported elsewhere (Nikumbh & Kulkarni 2013) at a 222 

temperature of 20 °C.  223 

 224 

2.3 Statistical analysis  225 

A response surface analysis methodology was developed to find the optimum operating 226 

points for the PSFC and for the recovery of solutes by controlled thawing, with a 227 

significance level of 95%. One-way analysis of variance (ANOVA) was applied to the 228 

results followed by a LSD test with a significance level of 95%. 229 

To obtain the parameters of the model, it was linearized and later linear regression was 230 

performed with Stepwise to determine which variables had a significant effect on the 231 

model and using which the R2 of the model was maximized. The assumptions of the linear 232 

regression model were validated and the residuals were evaluated through a Shapiro-233 

Wilks test for normality; the variance was tested for homogeneity and presence of atypical 234 

and influential data. All statistical analyses were conducted using the SAS 9.2 software. 235 
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3 Results and discussion 236 

3.1 Progressive stirred FC 237 

Twenty-seven tests were carried out on the progressive stirred freeze-concentration 238 

equipment. The obtained ����� values were in the range of 0.17 to 0.6 with an average 239 

value of 0.42, similar to those obtained in other FC systems with ethanol and water 240 

mixtures (Haizum et al. 2015), in coffee extracts (Moreno, Raventós, et al. 2014a), and 241 

other food matrices such as sucrose and juice solutions (Miyawaki et al. 2005; Miyawaki, 242 

Gunathilake, et al. 2016; Gulfo et al. 2014; Auleda et al. 2011). The results are shown in 243 

table 1. 244 

Table 1 shows the results of ����� and the average crystal growth rate at each of the 245 

studied conditions. The lowest values were obtained when the initial concentration of 246 

ethanol was low. This may be because the viscosity increases at high concentrations, 247 

which hinders mass transfer (Moreno, Raventós, et al. 2014a; Moreno, Raventós, et al. 248 

2014b), and induces a tendency for the formation of dendritic ice that generates 249 

occlusions, when the solute concentration is high (Robles et al. 2016). In the same way, 250 

higher values of CI were obtained at lower initial concentrations, and are comparable to 251 

those reported in other samples as coffee extract (Moreno, Hernández, et al. 2014). 252 

However, at higher initial concentration the CI is lower in comparation than those reported 253 

in other samples, such as  sucrose and juice solutions (Miyawaki et al. 2005; Miyawaki, 254 

Gunathilake, et al. 2016; Gulfo et al. 2014; Auleda et al. 2011). When the initial 255 

concentration increases, there will be a greater molecular interaction, which can cause a 256 

lower diffusion of the solute through the formed ice film, decreasing the CI  (Petzold & 257 

Aguilera 2009). This effect will be more evident in the studied sample, since hydrogen 258 

bonds of water are reinforced by addition of ethanol molecules (Li et al. 2017). 259 

The average growth rate of the ice crystals is in the range of 3.13 µm/s to 4.82 µm/s. At 260 

similar ice growth rates, freeze-concentration was reported for solutions of sucrose and 261 

coffee (Moreno, Raventós, et al. 2014a; Moreno, Raventós, et al. 2014b; Nakagawa et al. 262 

2010; Chen & Chen 2000). An ANOVA procedure was performed on the mean ice growth 263 

rate for each of the initial concentrations; at a confidence interval of 5%, there was no 264 

significant difference between the ice growth rates at different initial concentrations. One 265 

possible explanation for this behavior may be the use of a constant freezing temperature 266 

for all the tests. On the other hand, the value of �����	decreases with an increase in the 267 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

stirring speed at each initial concentration, but not significantly in the studied interval. The 268 

largest drops in 		�����	with respect to the stirring speed occurred at low initial 269 

concentrations of the solution. 270 

Response surface analysis was conducted to identify the effect of various parameters on 271 

����� and Y; the results are shown in Table 2. It was found that of the various parameter 272 

ranges studied, the initial concentration of ethanol had a significant effect on the average 273 

distribution coefficient as well as the solute yield. Conversely, neither the stirring rate nor 274 

the interactions between the initial concentration and stirring speed had a significant effect 275 

on the two response variables studied. It was found that the initial concentration of ethanol 276 

had a positive effect on the average distribution coefficient and a negative effect on the 277 

solute yield of the FC phase. This can be explained as follows. A higher concentration of 278 

solutes in the solution will generate greater occlusions in the formed ice sheet, leading to 279 

an increase in �����, which in turn causes a decrease in the yield of the recovered solutes 280 

(Moreno, Raventós, et al. 2014a). 281 

For the parameter ranges studied in this work, response surface analysis indicated that an 282 

initial ethanol concentration of 3% and a stirring speed of 1300 rpm were the optimum 283 

operating points, which corresponds to the lowest concentration and a medium stirring 284 

speed; However, the stirring speed did not have a significant effect in the studied interval. 285 

Figure 2 corroborates the expected behavior of both the variables with respect to the initial 286 

concentration. Low yields and high �����	values were observed at high concentrations, 287 

which indicates a large number of occlusions in the ice. 288 

3.2 Controlled thawing 289 

A controlled thawing process was performed on the ice sheet to increase the value of Y 290 

obtained in the first phase of the process. During the thawing process, the solute occluded 291 

in the ice layer can be recovered by its diffusion into the drops that are melting. Controlled 292 

thawing has been tested for block FC (Moreno et al. 2013; Moreno, Raventós, et al. 293 

2014b) and film FC (Miyawaki et al. 2012; Miyawaki, Omote, et al. 2016; Gulfo et al. 2014). 294 

In the present study, controlled thawing could be performed in the same equipment in 295 

which progressive FC was implemented. A response surface analysis of the factors VA, 296 

CO, and TH was performed on the response variables Y (when CI was equal to one) and 297 

Ac; significant effects were found with CO and TH. The significance levels of both the 298 

variables are shown in Table 3. 299 
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Figure 3 shows that the effect of initial concentration on the concentration index and area 300 

under the curve is negative; at a low CO, a high CI was obtained for the first fractions 301 

recovered, in addition to reaching the CI equal to 1 to a minor fraction of thawing. 302 

Likewise, the area under the curve is high at low concentrations. As mentioned previously, 303 

low concentrations are associated with low ����� values; therefore, at the beginning of the 304 

controlled thaw process, concentrated fractions can be obtained easily as well as the final 305 

fractions without any solutes. The same behavior was reported elsewhere (Moreno et al. 306 

2013; Moreno, Raventós, et al. 2014b; Gulfo et al. 2014) with coffee extracts. 307 

 308 

Figure 4 shows that TH had a negative effect on both the variables, similar to the results 309 

reported previously (Moreno et al. 2013). This may be because the higher the 310 

temperatures the faster the heat transfer, so the ice melts faster and it is not feasible to 311 

recover the concentrated solution trapped in the crystal structure before the melting 312 

phenomenon occurs. However, the use of low thawing temperatures during the thawing 313 

process can be associated with low mass transfer, so the solutes trapped on the ice layer 314 

will not be able to migrate to the external surface of the ice. Also, low temperatures 315 

significantly increases time of controlled thawing; to reach a CI of 1 at 0 °C, it takes about 316 

4 h, while at 10 °C and 20 °C, 3 h and 1.5 h, respectively, were required.  317 

Although this equipment has a single jacket, which does not allow recovery with a 318 

counterflow system as recommended (Moreno, Raventós, et al. 2014b), it was possible to 319 

obtain Y values in the range of 0.59 to 0.98 (average value of 0.76) in the thawing stage, 320 

which are comparable to those reported for coffee (Moreno, Raventós, et al. 2014b). On 321 

the other hand, the Ac values were in the range of 0.72 to 0.96, with an average value of 322 

0.81. A response contour plot (Figure 5) was generated for these variables as functions of 323 

the initial concentration and the thawing temperature. Response surface analysis allowed 324 

us to calculate the optimal points for these variables at CO of 0.03 and TH of 8 °C, which 325 

led to a Y value of 0.89 and Ac value of 0.8. This temperature can allows a good balance 326 

between thawing speed (heat transfer) and separation speed (mass transfer) (Moreno et 327 

al. 2013). 328 

Equation 2 was used to calculate the total solute yield, considering that the mass of the 329 

total solute is composed of the mass of the solute obtained in the FC phase and the mass 330 

obtained during the controlled thawing stage, which was calculated using a mass balance 331 
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to evaluate the amount of ethanol in the ice block once the controlled thawing process 332 

started and the yield reached at an CI equal to 1. The application of controlled thawing 333 

allowed an average total solute yield of 0.84, which is ~28% higher than that obtained with 334 

only PSFC. The application of the controlled thaw phase proved to be a viable route to 335 

increasing the solute yield, presenting a possible solution to the negative effect of 336 

increasing concentration on the Y and ����� values, as it allows us to recover those solutes 337 

that were occluded during the FC stage. 338 

3.3 Dimensionless model  339 
 340 

A dimensionless model was developed for the PSFC without the thawing stage. For the 341 

model, the non-dimensional numbers shown in equations 13–15 were obtained in addition 342 

to the initial concentration. The first number obtained was the inverse of the Reynolds 343 

number for agitated tanks (Michell & Perry 1964). The second number is a relationship 344 

between the average ice growth rate, stirring speed, and agitator diameter. The third 345 

dimensionless number is the liquid fraction. The model and its linearization are shown in 346 

equation 16 and equation 17, respectively. 347 

.D = "
��-	�	� = 1

EF	(13) 

.- = 2	
�
���	(14) 

.= = �	(15) 

����� = �(.D, .-, .=, �1) = : 1EF>
�
: 2	
����>

G (�)
(�1)H	(16) 

	lnA�����B = I ∗ ln : 1EF> + K ∗ ln : 2̅	
����> + � ∗ ln(�) + L ∗ ln	(�1)		(17)	 

To determine the coefficients a, b, c, and d in the model, a linear regression model was 348 

used via the SAS maximization methodology of R2; the model shown in equation 18 was 349 

obtained, with a R2 value of 0.7726. Experimental data were compared with predicted data 350 

in figure 6. This value indicates that the model can suitably predict �����	values. 351 

����� = 13131.77(E�)D.N= : 2	
����>
-.�O (�)D.�D(�1)�.P=	(18) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

To determine the significance of the variables in the model, a stepwise regression analysis 352 

was performed and the results are shown in Table 4. It was found that, for the case 353 

studied, the term ln(�1) has a significant effect. 354 

The dimensionless number of equation 14 is very similar to the relationship proposed in 355 

the Chen & Chen model (Chen & Chen 2000; Chen et al. 1999) for a falling film FC. It was 356 

suggested that this velocity relation is the relationship between the heat transfer 357 

phenomena, which is in turn related to 2̅	
� (Qin et al. 2009) and the mass transfer 358 

phenomena; in this case, related to the velocity, ���, of the fluid driven by the impeller of 359 

the agitated tank (Chen et al. 1998). In this way, the value of ����� will decrease (greater 360 

separation efficiencies will be obtained) at lower ice crystal growth velocities and high 361 

stirring rates; thus, high mass transfer rates can be observed in the liquid phase. This 362 

behavior can be observed in Figure 7, in which the effect of concentration is evident. This 363 

behavior has already been reported in the freeze-concentration theory and is explained as 364 

follows. At low crystal growth rates, it is feasible for the formed network to grow in an 365 

orderly manner allowing the expulsion of solutes (Robles et al. 2016; Moreno, Raventós, et 366 

al. 2014b; Chen et al. 1999). On the other hand, a high mass transfer rate in the liquid 367 

phase allows the elution of solutes near the ice surface in formation so that the ice grows 368 

cleaner (Haizum et al. 2015). 369 

Another factor that appears in the model is an expression of the Reynolds number, whose 370 

behavior with respect to ����� is shown in Figure 8.  ����� depend mainly on the initial 371 

concentration. The effect of the stirring speed on Kapp was inverse, but with not 372 

significance in the studied interval.  This may be because in the evaluated parameter 373 

ranges, all the experimental data were found to be in the turbulent regime. Therefore, an 374 

increase in the velocity will not affect the system, similar to the case of the number of 375 

power in agitated tanks (Doran & Doran 2013). 376 

Finally, the influence of the initial concentration of the solution is considered; at higher 377 

concentrations, the average distribution coefficient is higher. This experimental 378 

observation is in good agreement with the available literature (Moreno, Raventós, et al. 379 

2014b; Petzold & Aguilera 2009; Raventós et al. 2007). The model proved to fulfill all the 380 

assumptions of a linear regression model and was tested using the Shapiro-Wilk method; 381 

it demonstrates a causal relationship between the chosen variables and the response 382 

variables.  383 
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4 Conclusions 384 
 385 

It was possible to freeze concentrate solutions of ethanol-water in a progressive stirred 386 

FC, thus showing the feasibility of the new technique. The initial concentration of the 387 

water-ethanol solutions was found to have a significant effect on the average distribution 388 

coefficient and solute recovery; purer ices and consequently lower �����	values were 389 

obtained at low initial concentrations. It was possible to apply a controlled thawing stage to 390 

improve the recovery of the occluded ice after the PSFC process in the same equipment, 391 

thus increasing solute recovery by ~28%. Based on the concept of dimensionless 392 

modeling, a mathematical model was proposed for the �����	behavior; it showed a good fit 393 

and could accurately predict ����� values. 394 
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 1 

1. Figure 1. Experimental set up of the PSFC process 2 

2. Figure 2 Response contours of K���� and Y as functions of the initial concentration and stirring speed 3 

3. Figure 3. Effect of initial concentration on CI (dotted line) and Ac (solid line) for the test at 2000 rpm 4 
and 0 °C. The initial concentrations were 3% (blue - �), 5%(green -� ), and 8% (red - �). 5 

4. Figure 4. Effect of thawing temperature on CI (dotted line) and Ac (solid line) at 1000 rpm and 5% 6 
ethanol concentration. The TH values were 0 °C (blue - �), 10 °C (green - �), and 20 °C (red - �). 7 

5. Figure 5. Response contours of Y and Ac at 1100 rpm. 8 

6. Figure 6. Parity plot of the average distribution coefficient. Experimental vs predicted data from Eq. 9 
(18).  10 

7. Figure 7. Effect of 
�����

	
�
 on ��
��. CO 3% (blue - �), 5%(orange - �), and 8% (red - �). The solid lines 11 

represent experimental data while the dotted lines represent confidence limits of 95%. 12 

8. Figure 8. Effect of Reynolds number on ��
��. The initial concentrations were 3% (blue - �), 5% 13 
(orange - �), and 8% (red - �). Dotted lines represent the trend of the data for each initial 14 
concentration. 15 
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Table 1. Results obtained for the PSFC for different solutions.  1 

CO VA Y IC 
����� 

µm/s 
���		 f 
�	
�� 
�	��� 

Liquid 

volumen 

(L) 

Ice volumen 

(L) 

0,03 500 0,38 ± 0,02 0,05 ± 0,00 0,01 ± 0,00 0,85 ± 0,03 0,54 ± 0,03 0,62 ± 0,03 1,76 ± 0,06 4,30 ± 0,23 0,32 ± 0,03 

0,03 1000 0,38 ± 0,02 0,05 ± 0,00 0,01 ± 0,00 0,85 ± 0,03 0,54 ± 0,03 0,65 ± 0,04 1,92 ± 0,08 4,30 ± 0,20 0,25 ± 0,05 

0,03 2000 0,33 ± 0,01 0,06 ± 0,00 0,01 ± 0,00 0,92 ± 0,01 0,48 ± 0,01 0,67 ± 0,08 2,06 ± 0,23 4,74 ± 0,09 0,23 ± 0,09 

0,05 500 0,43 ± 0,01 0,07 ± 0,00 0,03 ± 0,00 0,79 ± 0,01 0,60 ± 0,01 0,56 ± 0,02 1,49 ± 0,04 3,86 ± 0,09 0,45 ± 0,03 

0,05 1000 0,38 ± 0,04 0,08 ± 0,00 0,03 ± 0,00 0,85 ± 0,06 0,54 ± 0,06 0,46 ± 0,05 1,66 ± 0,16 4,21 ± 0,36 0,42 ± 0,08 

0,05 2000 0,36 ± 0,02 0,09 ± 0,01 0,03 ± 0,00 0,89 ± 0,03 0,51 ± 0,03 0,52 ± 0,04 1,82 ± 0,26 4,41 ± 0,20 0,35 ± 0,05 

0,08 500 0,48 ± 0,02 0,10 ± 0,00 0,05 ± 0,00 0,71 ± 0,03 0,69 ± 0,03 0,54 ± 0,03 1,36 ± 0,02 3,31 ± 0,18 0,52 ± 0,04 

0,08 1000 0,42 ± 0,03 0,12 ± 0,00 0,05 ± 0,00 0,81 ± 0,05 0,59 ± 0,05 0,48 ± 0,05 1,51 ± 0,02 3,80 ± 0,29 0,48 ± 0,02 

0,08 2000 0,43 ± 0,01 0,11 ± 0,00 0,05 ± 0,00 0,80 ± 0,02 0,61 ± 0,02 0,51 ± 0,04 1,47 ± 0,05 3,75 ± 0,11 0,49 ± 0,02 

 2 
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Table 2. Significance factors of the response surface analysis of the progressive stirred FC.  1 

 
����� Y 

Parameter Estimator Pr < f Estimator Pr < f 

CO 15.712 0.0009* –15.764 0.0009* 

VA –0.001 0.3346 –0.0001 0.1450 

CO * CO –107.407 0.0063 127.407 0.0017* 

CO * VA 0.001 0.1949 –0.0001 0.2904 

VA* VA 5.92E–09 0.8917 8.81E–08 0.0533 

*indicates significance with an alpha of 0.05 2 
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Table 3. Significance values from ANOVA, with an alpha of 0.05*, for controlled thawing 1 

 

Ac YRS 

Parameter F value Pr<f F value Pr<f 

Co 19,098 3,20E-04* 7,118 0,02* 

VA 1,188 0,415 6,137 0,945 

TH 1,752 0,219 0,056 0,015* 

 2 
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Table 4. Results of stepwise regression analysis and the parameters with a significant effect on the model 1 
(equation 18).  2 

Variable 
Parameter 

estimator 
Pr > F 

Intercept 9.48279 0.2991 

ln(CO) 0.93468 0.0020* 

ln(f) 1.01192 0.6701 

ln(
�����

���
) 2.07019 0.4878 

ln(
	

��

 	�	�

) –1.83535 0.5367 

*indicates significance with an alpha of 0.05 3 
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 1 

Figure 1. Experimental set up of the PSFC process 2 
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 1 

 2 

Figure 2 Response contours of K̅app and Y as functions of the initial concentration and stirring speed 3 
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 1 

Figure 3. Effect of initial concentration on CI (dotted line) and Ac (solid line) for the test at 2000 rpm and 0 °C. 2 
The initial concentrations were 3% (blue - ), 5%(green - ), and 8% (red - ). 3 
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 1 

Figure 4. Effect of thawing temperature on CI (dotted line) and Ac (solid line) at 1000 rpm and 5% ethanol 2 
concentration. The TH values were 0 °C (blue - ), 10 °C (green - ), and 20 °C (red - ). 3 
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 1 

Figure 5. Response contours of Y and Ac at 1100 rpm. 2 
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 1 

Figure 6. Parity plot of the average distribution coefficient. Experimental vs predicted data from Eq. (18).  2 
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 1 

Figure 7. Effect of 
𝜐̅𝑖𝑐𝑒

𝐷𝑎𝑁
 on 𝐾𝑎𝑝𝑝. CO 3% (blue - ), 5%(orange - ), and 8% (red - ). The solid lines represent 2 

experimental data while the dotted lines represent confidence limits of 95%. 3 
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 1 

Figure 8. Effect of Reynolds number on 𝐾𝑎𝑝𝑝. The initial concentrations were 3% (blue - ), 5% (orange - ), 2 
and 8% (red - ). Dotted lines represent the trend of the data for each initial concentration. 3 
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A progressive stirred freeze concentration technique is presented. 1 

The technique allows to increase the concentration of ethanol by 1.3 and 2.1 times. 2 

A model for the distribution coefficient was obtained from a dimensional analysis. 3 

The initial concentration of ethanol had a significant effect on the solute yield. 4 


