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Abstract— Transactional Memory (TM) is a key future
technology for emerging many-cores. On the other mal,
OpenMP provides a vast established base for writingarallel
programs, especially for scientific applications. @mbining TM
with  OpenMP provides a rich, enhanced programming
environment and an attractive solution to the manyeore software
productivity problem.

In this paper, we discuss the runtime environment dr
supporting our combined TM and OpenMP framework. Through
motivating examples, we briefly illustrate how the combined
TM/OpenMP can facilitate writing parallel programs. We then
discuss issues in runtime environment design. In ather
contribution, we introduce a set of applications tht we
specifically developed for our combined TM/OpenMP
framework. Using those applications, we show how wean use
the rich features provided by TM such as retry to spport
efficient TM/OpenMP programs. We also include an iitial
performance analysis of the runtime using the apptiations.

Index Terms— OpenMP, Transactional Memory, Runtime
Environment

I. INTRODUCTION

he advent of shared-memory multi-core microprocesso

has created an opening to exploit thread-levelligdism.
In most applications, parallel thread execution unexs
synchronization or ordering mechanisms for accgssivared
data. Traditional multithreaded programming modesally
offer a set of low-level primitives, such as locks,guarantee
mutual exclusion; ownership of one or more locketgets
access to shared data. However, locks are complage and
error prone—especially when a programmer is trymgvoid
deadlock situations or to achieve better scalgbdit highly
parallel hardware by using fine-grained lockingnS€equently,
the programming and computer architecture comnasiéire
concerned that a parallel-programming productivéyd
performance wall might be looming. Transactionalndey
(TM) is a crucial mechanism to tackle this probldm
abstracting away the complexities associated bycuwent
access to shared data [1] where multiple thread=l rne
simultaneously access shared memory locations edigni
TM makes it relatively easy to develop parallelgreons.
OpenMP [2], the industrial standard for writing @igel
programs on shared-memory architectures, for C, @Gnet

Fortran, is a “traditional” programming model inrrtes of
mechanisms offered to guarantee mutual exclusion. A
significant number of applications have been peliadd for
shared memory multiprocessor systems using OpenMP.
Consequently, a large programmer base exists vgtlifisant
OpenMP expertise. OpenMP offers a set of low-level
primitives around locks and the high-level criticainstruct to
protect the access to shared data (through thershipeof one

or more locks).

We believe that the fusion of OpenMP with TM offéhe
best of both worlds for developing parallel progsdior many-
cores: an established programmer base coupled awitiore
intuitive way of writing shared-state programs.

Given that actual conflicts are rare in many prawgd3],
the optimistic TM approach makes much more sensa as
future programming model. With TM the programmer
specifies intent rather than mechanism (i.e. theg@ammer
can focus on determining where atomicity is neagssather
than the mechanisms used to enforce it), resuitiray higher-
level abstraction than locks.

Two main TM implementation styles stand out: handwa

and software-based. Historically, the earliest glegiroposals
were hardware based. Software Transactional Mef®Fw)
[7] has been proposed to address, among othersthgmme
inherent limitations of earlier forms of Hardwareafsactional
Memory (HTM) [8] such as a lack of commodity hardeva
with the proposed features, or a limitation to thember of
locations that a transaction can access.

Beyond these two main approaches, two additionakdhi
approaches have recently been considered. Hybrid
Transactional Memory (HyTM) [9, 10] supports tractganal
execution that generally occurs using HTM transactbut
which backs off to STM transactions when hardwassources
are exceeded. Hardware-assisted STM (HaSTM) combine
STM with new architectural support to acceleratedgaf the
STM’s implementation [11, 12]. These designs arh lactive
research topics and provide very different perforcea
characteristics: HyTM provides near-HTM performarfoe
short transactions, but a “performance cliff” wifaling back
to STM. In contrast, HaSTM may provide performaroene
way between HTM and STM.

Some recently proposed programming models, such as
Sun’s Fortress [4], IBM’s X10 [5] and Cray's Chagdél],
include an atomic statement to define atomic and/or
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conditional atomic blocks of statements that arecaied as until it tries to commit before checking its reaadawrite sets
transactions. In some cases, atomic can also bétrisute for against the write sets of other transactions.

variables so that any update to them in the cotied@ed as if ~ Another fundamental design choice is how to resave
the update is in a short atomic section. OpenM® affers an  conflict once it has been detected. Usually, ifehis a conflict
atomic pragma to specify certain indivisible read-operation-it is necessary to resolve it by immediately atmgrtone of the
write sequences, for which current microprocesssually ~transactions involved in the conflict. _
provide hardware support. For example microproassstier In order to support the execution of a transact@rdata
this support through load linked-store conditiolal-SC).  Versioning mechanism is needed to record the spibeel
However, note that the atomjeagma is extremely limited in writes. This speculative state should be dlscamedtr_w abort
this case. In our previous worki8], we described how or used to update the global state on a successfumit. The

OpenMP can be combined with TM to offer a fullyiiead two us_ual approaches to |mpl_ement data versmmagaasgd
. . on using an undo-log or using buffered updatesngsin
atomic program section.

\ . o undo-log, a transaction applies updates directlym@mory

_In this paper, we |r_1tr0duce the Nebelung runtlme_ctn/h locations while logging the necessary informatioruhdo the
brings ftogether ™ W't.h OpenMP and which can balgas updates in case of abort. On the contrary, appesacising
customized tok Workh with SJMf T]TM' HyTM (_)a;eHaSTM buffered updates keep the speculative state irarsdction-
Eyste(;ns. T_O leep the _text net, ”elre _er ;1:_0n5| Bgﬁ(M private buffer until commit time; if the commit steeds, the
ased TM implementation. In parallel with this woBaek et original values before the store instructions arepged and

al. propos_ed the The OpenTM Transac_tion_al_ Applorati the speculative stores of the transaction are ctieunito
Programming Interfac§l7]. Their proposal is similar to our memory

OpenMP-TM extensior{18] with additional constructs for
features such as conditional synchronization, ngsti m
transactional handlers, and contention managerikneover, ]

OpenTM has been implemented using a compiler-based!n order to explore how TM could influence the fatu
approach as opposed to our source to source compildesign and implementation of OpenMP, we have adopte
Nevertheless, it is reasonable to merge the twpqsals into a Proof-of-concept” approach based on a source-to@mcode

OUR “PROOFOFCONCEPT APPROACH

unified set of OpenMP extensions for TM programming
Contributions of our paper are:

restructuring process, implemented in Mercurium],[l&hd
two libraries to support the OpenMP execution maatal to

« We present the first multithreaded STM runtime witSUPPOrt transactional memory: NthLib [14] and Neibel [15],

eager conflict detection in a separate thread.
* We present the retry feature in real applications

respectively. We also propose the new OpenMP extiens$o
specify transactions.

* We present specific applications written using the A. Proposed OpenMP extension for TM

combined OpenMP, TM framework

* We dwell on the problem of “notifyAll” overhead hich
occurs when using retry. We proposed the conceftieof
transaction queues to solve it.

Il. Basic CONCEPTS
A transaction is a sequence of instructions, indgdeads

and writes to memory, that either executes comlglete

(commit) or has no effect (abort). When a transactiommits,
all its writes are made visible and values can sedby other
transactions. When a transaction is aborted, @peculative
writes are discarded.

Commit or abort are decided based on the deteafon
memory conflicts among parallel transactions. Imleorto
detect and handle these conflicts, each runningsagction is
typically associated with a ‘read set’ and a ‘wst’. Inside a
transaction, the execution of each transactionahong read
instruction adds the memory address to the readEsath
transactional memory write instruction adds the mem
address and value to the write set of the trarwacti

Conflict detection can be either eager or lazy.eEagnflict
detection checks every individual read and writedse if there
is a conflicting operation in another transactiBager conflict
detection requires that the read and write set toAnsaction
are visible to all the other transactions in thstem. On the
other hand, with lazy conflict detection a transactwaits

The first extension is a pragma to delimit the sempe of
instructions that compose a transaction:

#pragma omp transaction [exclude(list)|only(list)]
struct ur ed- bl ock

With this extension, the programmer should be &blerite
standard OpenMP programs, but instead of usingnsitr
routines to lock/unlock, atomic or critical pragmdwe/she
could use this pragma to specify the sequenceabéraents
that need to be executed as a transaction. Theonapti
exclude clause can be used to specify the list of varafbde
which it is not necessary to check for conflicthisT means
that the STM library does not need to keep tracthem in the
read and write sets. On the contrary, if the prognar uses
the optional only clause, he/she is explicitly sfyétg the list
of variables that need to be tracked. In any cakda
versioning for all speculative writes is needed dtirshared
and private variables in case the transaction nezdmo the
rolled-back.

Another possibility is the use of a new clause eiséed to
the OpenMP work sharing constructs:

#pragma omp for transaction

...........

struct ur ed- bl ock

or
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#pragma omp sections transaction
[exclude(list)|only(list)]
#pragma omp section

struct ured- bl ock
#pragma omp section

struct ur ed- bl ock

In the first case, each iteration of the loop cibuists a
transaction, while in the second case, each sedtom
transaction.

For OpenMP 3.0, a new tasking execution model iagbe
proposed. Tasks are defined as deferrable unitgook that
can be executed by any thread in the thread teaatiased to
the active parallel region. Task can create nekstand can
also be nested inside work sharing constructshitngcenario,
data access ordering and synchronization basedaks will
be even more difficult to express, so transactapear as an
easy way to express intent and leave the mechartsrtise
TM implementation. For tasks we propose the po#sitnf
tagging a task as a transaction, using the sarnsekspecified
above.

#pragma omp task transaction

[exclude(list)|only(list)]
st ruct ur ed- bl ock

B. Nebelung library interface and behavior

In order to have a complete execution environment

supporting transactional memory, we have implenterter
own STM library and runtime system, named Nebelurige
library satisfies the interface presented in thgufé 1.
Nebelung library is typeless (work on a byte lewssl)we also
developed wrapper functionsad andwrite aroundreadtx
and writetx
that this interface is similar to the ones provided other
current STM libraries [3].

Transaction* createtx ();

void starttx (Transaction *tr);
status committx (Transaction *tr);
void destroytx (Transaction *tr);
void aborttx (Transaction *tr);
void retrytx (Transaction *tr);
void* readtx (Transaction *tr,
void *addr, int blockSize);
void* writetx (Transaction *tr,
void *addr, void *obj,
int blockSize);
void* invalidateAddr(Transaction* tr,
void* addr);
void* invalidateRange(Transaction* tr,
void* fromAddr, void* toAddr);
status validatetx(Transaction *tr);
status resolveConflicttx(Transaction *t);
void _mCommittx(Transaction *tr);

Fig.1. Nebelung library interface. The interfaceoyides functions for
maintenance of the memory transactions. It is \gageric so behind that
interface can be any implementation of TM: STM, Ny®r HaSTM.

The
createtx  anddestroytx
structures for the execution of a transactimatritx
transactiongommittx
(writes) of the transactiomporttx
retrytx. ~ cancels the transaction and restartsetdtx
writetx
transaction should be started and finished with tloele
presented in the Figure 2.

starts the

and

The most important parts of the library are surfelyction
callsreadtx andwritetx and they require special attention.
Both functions operate on the byte levwaitetx  receives the
real address where the data should be storede a&gata and
the data itself. Functioradtx receives the real address which
should be read and the size of the data, and sethenpointer
to the location which holds the requested data.ufRed
pointer does not need to be the same as the drigiaand
this is implementation dependent. Returned valumulshbe
just read only once, after that it is invalidated azannot be
used anymore. Writes need to be done througtatx
function and not through the pointer returned withdtx .
Responsibility of those functions it so notify thentime that
transaction is trying to access to some memortimta

{ Transaction* t = createtx();
while (1) {
starttx (t);

if (setjimp (t->context) ==
TRANSACTION_STARTED) {

@

if (COMMIT_SUCCESS == committx (t))
break;
else aborttx (t);
} else aborttx (t);

destroytx (t);

(b)

startTransaction();
/I transaction body
endTransaction();

, Which cast results into the proper types. Note

(©)
Fig. 2. Macros for (a) starting and (b) ending angaction. (c) Code of the
transaction surrounded by the previous macros.

FunctionsinvalidateAddr and invalidateRange are used
for dealing with the stack variables. We are ddhmgsource to
source translation so we don't have directly urmar control
operations on stack variables (e.g. placing andovamg of
function arguments). So we need to invalidate stagiables
after the return from the function which was usithgpse
variables.  Although  functions invalidateAddr and
invalidateRange were introduced to solve the technical
problems they are also useful for potential impletaton of
early releasg19] [21] in OpenMP-TM. For example, Unread-
Tvar in Haskell is a transactional variable whichncbe
excluded from the read set before the end of thlesaction
thus providing early release (example: in caseeéition in a
sorted linked list we can remove list elements ftbmread set
when the transaction passes them, because theigehaill

library functions have the following semanticsnot affect the result of the transaction).
create and destroy the required data Functions

validatetx resolveConflicttx , and
_mCommittx are obtained by decomposition of the function

publishes (i.e., makes visible) the resultsommittx . Those functions are used for conflict detectiod a
cancels the transaction andresolution and

for the publishing of the temporary
transactional data respectively. We identified éh@uanctions

are functions for handling memory accesses. THeecause we noticed that they can be parallelizddeaacuted

in pipeline fashion in some cases. Functigiatetx ~ can be
perfectly parallelized because conflict checkinghwnultiple
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transactions is inherently parallel. As it will Hescribed in the
next section those functions can be executed iferdiit
threads of the Nebelung runtime for performancegai

The current implementation of Nebelung library peris
lazy conflict detection. Read and write sets awlgntained
dynamically and all memory operations are perforiaeally
for the transaction. At commit time, the libraryecks if there
is any conflict with other transactions. If confliexists, the
current transaction is committed and other transastare
aborted. In this way the transaction progress &anuteed.

C. Nebelung Runtime System

Nebelung runtime system is responsible for the meament
of the memory transactions. In the beginning welémgnted
a static STM library but after the initial tests waalized that
many tasks in the STM library can be done in paralith the
execution of the transactions. A typical examplé¢his eager
conflict detection which can be done by a sepatatad on a
dedicated core, completely in parallel with thens@ctional
execution. Because very soon we will have hundofdores
on a single die, we can use some of them justi®nrantime,
which can also scale according to the active wadkld-igure
3 shows the overheads which exist in the static Sy#fems.

Transaction 1 Transaction 2 Transaction 3

Execution
Time Conflicting

operations

Conflict detection

time

Conflict resolution

Commit
(overhead?)

Waste of time

| Conflict

detection
| time

Fig. 3. Static STM Library overheads and the exgeaiain in case of the
active runtime with the eager conflict detectiomolmayor overheads are the
commit time which directly increase the total traction time and the time
which transactions spends in the wasteful executiotil the conflict is
detected.

Dedicated
Thread/Core

Transaction 1 Transaction 2

[0}
S , | _messagecheck |~o it ES
3 E detection 1 R
g message abort J, 2%
a Conflict +—— g2
. resolution ==
€ o o
EE {1 Verification +
(¢] Commit to memory

Fig. 4. Expected time diagram with the active STMhtime system.
Transactions just sent the message to the runtilenwhey will access to
some memory location. Then runtime will check iémh is a conflict with

other transactions, in case of conflict resolvaritl send a message to the

conflicting transaction to abort.

We designed the Nebelung runtime system so théa it}

executed in separate threads from transactionssobs as
some transaction tries to access some memory doctivill

just send a message to the runtime and continuexiheution.
Runtime system is responsible for the transactianagement.
Among other operations, the runtime will performnfiict

detection and resolution. As soon as the runtinteotie and
resolves the conflict it will notify the conflictintransaction to

4

abort. Figure 4 shows the expected behavior of Nege
runtime.

Runtime system should lower the two overheads m th
transactional system: 1. conflict detection andlg®n will
be done in parallel with the transaction execusiorit will not
increase the transaction execution time and 2ctmdlicting
transaction will be notified to abort immediatelyhen the
conflict appears so that transaction will not wasie time on
the calculation with the incorrect data. Complete
implementation of the Nebelung runtime is the pafrtour
future work.

In this paper we present the preliminary resultshif idea
which are promising in Section 1V-D. We implementtg:
system with the dedicated thread just for conftietection.
Transactions only send a message to this threadn vley
access to some memory location, and a separatadthse
checking for conflicts. In case the conflict is etded, the
conflicting transaction which started the executater will be
aborted. Transactions occasionally execute the twalthe
runtime functionvalidatetx to check if they are still valid
and can proceed with the execution.

D. Transactional Memory Feature: Retry

Retry is a very useful language feature which wapased
for Transactional Memonf3]. The retry implementation
allows transactional execution to continue spetudbt as
long as possible and if some condition is not Satisthe
transaction will be re-executed from the beginnihgost
importantly, retry semantics require that the teatisn should
be re-executed if and only if its read set charfiésansaction
is re-executed immediately the result will be ptaigaghe same
with the same read set so transaction will busy)waigure 5a
shows the syntax of the retry directive and figbibeshows the
usage of the retry for the implementation of theurimed
buffer.

#pragma omp retry [trigger (set)][when (contidion)]

Fig. 5a. Proposal for the OpenMP retry directivetrik can be used without
any option and transaction will wait until anythingits read set is changed.
If the trigger set is given then transaction shdwgdrestarted when something
is changed in the given trigger setwlien condition is set then transaction
should be restarted when the condition is satisffedimilar concept to the

trigger set is proposed by McDonald et[&B].

int putBB(BBuffer* buf, int val){
#pragma omp transaction

while (buf->size == buf->cap)
#pragne onp retry

buf—>’size++;

buf->a[buf->i] = val;

buf->i = (buf->i + 1) % buf->cap;

}
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int getBB(BBuffer* buf){
intr;
#pragma omp transaction
while (buf->size == 0)
#pragne onp retry

buf—>’size——;
r = buf->afbuf->jJ;
buf->j = (buf->j + 1) % buf->cap;

returnr;

}
Fig. 5b. Bounded buffer implemented using Transaeti Memory and its

retry feature. Code is simple as with coarse dgathk-base approach and fine
grain performance will be gained by the runtime.bifffer is full in the
moment of insertion or empty in case of removalpprotransaction will be
blocked until the buffer is changed. While loops aeeded in order to follow
the semantics of OpenMP that pragmas can be remanegrogram need to
be correct. Without the retry transaction will spimtil it is aborted.

We can see from the figure 5 that the retry imgetation
in OpenMP-TM is a very user friendly feature:
programmer doesn't need to worry about the condtio
synchronization or locks. He or she should justt watil the
data is changed. In this way we have implementdd flaw
programming model using transactional
transaction will be executed atomically when itsada ready.
If we chain the transactions properly, when onedaation
commits, it can trigger the other one and so on.ekVh
transaction commits it will do retry again and wait the new
input. In this way we provided the data flow betwethe
transactions. This is the easy programming modti good
performance for free.

Retry feature can be used after the conflict reami.
Instead to abort one of the conflicting transagtimansaction
should do retry. This approach has the two advastairst,
transaction which is “aborted” will be blocked uritie other
transaction from the conflict commits. Gain of thjgproach is
that conflicting transaction will not start againtilithe other
transaction finishes. In that way the new confhigll be
avoided. Second, retry is much faster for implemgon then
abort. In general abort means destroy (free) thastction
which can take the significant time and retry megunst
invalidate temporary data and start again.

E. Contention management

Previous work confirmed that Transactional
performs poorly when the rollback rate is high.sTisi natural
because the TM is expected to be used in cases thgen
conflicts are rare. But, in any case we need todleathe
applications and the application phases when tndicbrate
is high. To do this we added two functions in ountime:
entryPolicy(Transaction* t) and
exitPolicy(Transaction*  t) , Wwhich are called when
transaction should be started or
respectively. They are the interface to the coitentnanager
which is the subject of our current work. The idefathe
contention manager is that in cases of the highetdion
execution of the newly created transactions angpstd. When
contention manager detects the high contentionhdulsl
postpone the execution of the newly created trdivsaor
event and it can even abort some already runnargéctions.

memory. Th

Memory
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In this way we are lowering the conflict rate andreasing the
throughput.

F. Parallel region and Transactions

In our current proposal and the implementationsthaf
OpenMP library and the STM Nebelung Runtime wevedid
the transactions inside the OpenMP parallel regiturrently
we are working on a support for parallel regionside the
transactions. This will allow that transaction cspan over
more than one thread. That can be very usefulXamele in
case of the atomic matrix multiplication.

G. Source-to-source translation in Mercurium

The Mercurium OpenMP source-to-source
transforms the code inside the transaction blockuch a way
that for each memory access, a proper STM libranction
call is invoked. The current version of Mercuriurocepts

theOpenMP 2.5 for Fortran90 and C.

Figure 6 shows the representative part of the AMSfec
OMP 2001 application which should be executed mdiik
transaction and the code generated by Mercuriugur&i?7
%hOWS a synthetic example using the exclude clause.

Finally, Figure 8 shows another example which ofgsran a

binary tree, insertingn nodes into the tree. We are using the

current tasking proposal for OpenMP 3.0. Notice théasks
will be created and executed atomically in paralléyure 9
shows the code generated by Mercurium.

#pragma onp transaction {

10 = sqrt(r);
ux = ux*ro;
k = -dielectric*al->q*a2->q*r;

@)
{ startTransaction();

write(t, &0, sqrt( *read(t, &r) ));

write(t, &ux, *read(t, &ux) * *read(t, &r0) );

write(t, &k, - *read(t, &dielectric) *
*read(t, &( (*read(t, &al) )->q))*
*read(t, &( (*read(t, &a2) ) ->q) ) *
*read(t, &r) );

éHdTransaction(); }

(b)
Fig. 6. Excerpt from AMMP SpecOMP2001. The codeciwhshould be
executed atomically (a) and the generated code(b).

int f(int);

int correct(int* a, int* b, int* x){
int fx;

#pragma onp transaction exclude (fx) {
fx = f(*x);
a+=1x;

aborted/committed b -=fx;

}
}

(original code)

translator
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int correct(int* a, int* b, int* x){
int fx;
{ startTransaction();

fx = f(*read(t, x));
write(t, &a, *read(t, &a) + fx);
write(t, &b, *read(t, &b) - fx);

}
endTransaction();

(transformed code)

Fig. 7. Example using the exclude clause.

void Parallelinsert(struct BTNode** rootp, int n,
int keys[], int values[]){
#pragma onp parall el
for (inti=0;i<n; ++i) {

int key = keys[i], value=valuesiJ;
#pragma onp task captureval ue(key,
capt ur eaddr ess(rootp) {

int inserted, f;

BTNode* curr;

BTNode* n;

n = NewBTNode;

initNode(n,key,value);

inserted = 0;

f=0;
#pragma onp transaction {

if (*rootp == 0) {*rootp = n;}

else {

curr = *rootp;
while (inserted == 0) {
if (curr->key == key}{
curr->value = value;

single {

val ue)

/1l end oftransaction
if (f == 1) free(n);
/1 end of task
}// end if for loop
// end of parallel
} /I 'end of Parallelinsert function

—— e

regi on

Fig. 8. Function for parallel insertion of n nodas a binary search tree,
expressed using the tasking execution model.

{ startTransaction();
{if ( *read(t, rootp) == 0) { write(t, rootp,
*read(t, &n) );
}else {
write(t, &curr, *read(t, rootp));
while ( *read(t, &inserted) == 0) {
if (*read(t, &((*read(t,&curr))->key))==
*read(t, &key)) {
write(t, &((*read(t, &curr))->value),

*read(t, &value));

endTransaction();}

Fig. 9. Code generated for the transaction insideparallelinsert
function.

IV. RESULTS

A. B+tree application

In B+tree application we tested the performanceoof
system when it operates on a complex data struetiibchuge
amount of data (~100MB). We executed 80 transastiwer
thread where each transaction atomically takesdtta from
one B+tree structure, performs compute-intensiven no
conflicting operations for an average of 50us atmdes the
result in the other B+tree.

Lock vs. Nebelung STM

0060
Dméoooooooo

0040

0030

& Lock
—8— Mehelung ETM

Time per transaction

Num. of cores/threads
Fig. 10. Results for the B+tree application. Testmpares the average
transaction execution time of the Nebelung Runtisystem and the
appropriate coarse-grain lock based system. Reshit& performance on a
par with a fine-grain lock based approach even ghothe programming
model is as easy as a coarse-grain lock basedaqgipro

Figure 10 compares the average transaction timegusi
coarse grain lock-based approach and Nebelung TSy
TM is better because B+tree structures are fill@t the huge
amount of data so the probability of the conflistviery low
(read sets intersects but write sets and read dsmi%) so
transactions are really executed in parallel withme many
aborts. This is obvious for example in case wittofes, TM
approach is two times faster then the coarse doakbased
approach.

In case of the B+tree data structure performanfc¢he
coarse-grain and fine-grain lock based solutioalisost the
same. That is because when we insert the new \alwe
B+tree there is a possibility that even root nodm de
changed so we need to lock the root also and shakactly
what we are doing in case of coarse-grain solutm.with
this application we showed that our system and Saetional
Memory in general can give better performanceases when
fine-grain solution doesn’t exist or is to diffituto be
implemented (e.g. two phase insert in B+tree oilain

B. Gauss-Seidel application

In Gauss-Seidel application we implemented Gaugdebe
finite difference method for solving the linear ®m of
equations[20] using Transactional Memory and retry. For

We tested our system for performance with the tregach element of the matrix we created a sepanaadhwhich

applications: B+tree, Gauss-Seidel finite diffeenmethod
application and the Producer/Consumer applicatigvie
executed those applications on an 8 core Intel@)nt™ CPU
machine on a 3.2GHz and the 8MB of cache. SubsehioB
and C presents the results without the dedicated thfeathe

conflict detection and subsecti@hncompares the execution of

the test application on a runtime with and withabe
dedicated thread.

will iteratively calculate the value of that elemeBilement
mTi,j (value of the element at the positifinj) in the iteration
T) should be calculated using the expression:

T _ T T-1 T T-1

m,j - f (m—l,j ' rn+:L,j ' rn,j—l’ rn,j+l
As we can see from the above expression, in otder
calculate the element at positifinj) at iterationT, its adjacent

elements needs to be in the proper iteration (diepe@ndency).
That is where we used the retry to create a nicallph
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application, without any problem with synchronipati and
conditional variables and locks. Figure 11 presémspart of
the code of the Gauss-Saidel application and fid@rpresents
the obtained results.

#pragma omp transaction

x1=0;
if (r-1>=0){
while (m[r-1][c].step !=1)
#pragma omp retry

x1=m[r-1][c].value;

Fig. 11. Sample of the code from Gauss-Seidel egfiin. In order to
calculate element at positidp j) in the iterationT, we need to wait for its
adjacent elements to be in the proper iterationatTih where retry can
perfectly help.

Results obtained from Gauss-Seidel applicatiorwshibat
systems scales very well until the square matnixegision 6,
because number of threads raises with the squate ahatrix
dimension. In that moment number of threads/traimas is
36 and the number of available cores is 8 so efitttashing
begin to be dominant. But with the larger numbecafes we
expect that our application will continue to scaieen for the

bigger matrices.
0.001

0.0009

0.0008

0.0007

0.0006

0.0005

0.0004

0.0003

Execution time per transaction

0.0002

0.0001

i}

g B
Matrix dimension
Fig. 12. Results achieved from Gauss-Seidel apmitaNumber of threads
is equals to the square of the matrix dimension eaxth thread is executing
one transaction at the time.
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C. Producer/Consumer application

In the Producer/Consumer application we tested
performance of the bounded buffer we shown in itperé 5b.
We created the application with one producer andcyma
consumers. We set that producer is eight time rfatten
consumers and varied the number of consumer fotghstant
workload produced by the producer. Results areepied in
the figures 13a and 13b.

7

Execution time

Time in seconds

\\
o~

4

Number of consumers

@)

Execution time pertransaction

e

Timein ms

4

Number of consumers

(b)
Fig. 13. Results for the Producer/Consumer apjlinatigure a) presents the
total execution time and figure b) presents theraye execution time per
transaction. Total time scales well with the inseghnumber of cores but the
average transaction time is a little bit higherahese of “notify all overhead”.

Results show that our system scales very well tad
proposed retry feature have very big potentialryRgives the
programmer user friendly programming model from sige
and good performance for free. With this test weoal
discovered the overhead we named “notify all ovadielt is
very similar with thenotifyAll feature which exists in Java
for notification to all threads which are synchzed on the
same object. We noticed that average transactexedution
increases because when the producer stores theird#te
buffer all clients are notified and of course ordgpe will
succeed and all others will be aborted. Figure 4f3fws that
“notify all” overhead can rise with the number afres. In our
future work we will pay more attention to lowerdhiverhead.
Currently we propose something like the retryingngaction

ueue. Idea is that when the queue is notifiedillitselect the

e transaction from the queue and notify it. Othidrremain
to do retry without wakeup. This can be good ideaany
client/server application when we have more servdrshe
same type so it is not important which will serkie tequest. It
is just important that the proper server queueotifiad, and
that the queue delivers the request to the propeses (e.g.
load balancing).

D. Dedicated Conflict Detection Thread Results

This section presents the results of the runtinsesy with
the dedicated conflict detection thread (CDT). Figul4
presents the results of the application which makependant
transactions andh independent transactions executed on a 2
core machine. Results with the CDT are much béttetwo
reasons: 1. CDT performs the eager conflict daiacéind 2.
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there is no overhead for eager conflict detectiothe running
transactions because it is performed in the deslic#tread.
The only overhead for this kind of system is ovexhdor

(6]
[7]

sending the message to the CDT. This issue presents

interesting tradeoffs and will be addressed inrkutuork.
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Fig. 14. Results of the test application executed\Nebelung runtime with
and without the dedicated core for the conflictedgbn. q, m) stands for the
application which hasn dependant transactions amu independent
transactions. System with the CDT is scaling muettel.

V. CONCLUSION

In a previous paper we presented the language rdésig
integrating OpenMP with TM, presented solutions $ome
challenges and dwelled on some open issues. |papsr, we
describe our runtime environment, Nebelung, forpsupng
OpenMP-TM. We also introduced new ideas made plesbib

the combined OpenMP-TM framework. One such idetois

use separate runtime threads for Conflict Detectibith are
then executed on available idle cores; we includiestorder
feasibility study to confirm the promise of the édeFuture
work consists of significantly expanding on thigséd including
a full implementation that will be supported by tNebelung
runtime.
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