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Abstract— Transactional Memory (TM) is a key future 

technology for emerging many-cores. On the other hand, 
OpenMP provides a vast established base for writing parallel 
programs, especially for scientific applications. Combining TM 
with OpenMP provides a rich, enhanced programming 
environment and an attractive solution to the many-core software 
productivity problem.    

In this paper, we discuss the runtime environment for 
supporting our combined TM and OpenMP framework. Through 
motivating examples, we briefly illustrate how the combined 
TM/OpenMP can facilitate writing parallel programs. We then 
discuss issues in runtime environment design. In another 
contribution, we introduce a set of applications that we 
specifically developed for our combined TM/OpenMP 
framework. Using those applications, we show how we can use 
the rich features provided by TM such as retry to support 
efficient TM/OpenMP programs. We also include an initial 
performance analysis of the runtime using the applications. 
 

Index Terms— OpenMP, Transactional Memory, Runtime 
Environment 

I. INTRODUCTION 

he advent of shared-memory multi-core microprocessors 
has created an opening to exploit thread-level parallelism. 

In most applications, parallel thread execution requires 
synchronization or ordering mechanisms for accessing shared 
data. Traditional multithreaded programming models usually 
offer a set of low-level primitives, such as locks, to guarantee 
mutual exclusion; ownership of one or more locks protects 
access to shared data. However, locks are complex to use and 
error prone—especially when a programmer is trying to avoid 
deadlock situations or to achieve better scalability on highly 
parallel hardware by using fine-grained locking. Consequently, 
the programming and computer architecture communities are 
concerned that a parallel-programming productivity and 
performance wall might be looming. Transactional Memory 
(TM) is a crucial mechanism to tackle this problem by 
abstracting away the complexities associated by concurrent 
access to shared data [1] where multiple threads need to 
simultaneously access shared memory locations atomically. 
TM makes it relatively easy to develop parallel programs.   

OpenMP [2], the industrial standard for writing parallel 
programs on shared-memory architectures, for C, C++ and 

 
 

Fortran, is a “traditional” programming model in terms of 
mechanisms offered to guarantee mutual exclusion. A 
significant number of applications have been parallelized for 
shared memory multiprocessor systems using OpenMP. 
Consequently, a large programmer base exists with significant 
OpenMP expertise.  OpenMP offers a set of low-level 
primitives around locks and the high-level critical construct to 
protect the access to shared data (through the ownership of one 
or more locks).  

We believe that the fusion of OpenMP with TM offers the 
best of both worlds for developing parallel programs for many-
cores: an established programmer base coupled with a more 
intuitive way of writing shared-state programs. 

Given that actual conflicts are rare in many programs [3], 
the optimistic TM approach makes much more sense as a 
future programming model. With TM the programmer 
specifies intent rather than mechanism (i.e. the programmer 
can focus on determining where atomicity is necessary, rather 
than the mechanisms used to enforce it), resulting in a higher-
level abstraction than locks.  

Two main TM implementation styles stand out: hardware- 
and software-based. Historically, the earliest design proposals 
were hardware based. Software Transactional Memory (STM) 
[7] has been proposed to address, among other things, some 
inherent limitations of earlier forms of Hardware Transactional 
Memory (HTM) [8] such as a lack of commodity hardware 
with the proposed features, or a limitation to the number of 
locations that a transaction can access.  

Beyond these two main approaches, two additional mixed 
approaches have recently been considered. Hybrid 
Transactional Memory (HyTM) [9, 10] supports transactional 
execution that generally occurs using HTM transaction but 
which backs off to STM transactions when hardware resources 
are exceeded. Hardware-assisted STM (HaSTM) combines 
STM with new architectural support to accelerate parts of the 
STM’s implementation [11, 12].  These designs are both active 
research topics and provide very different performance 
characteristics: HyTM provides near-HTM performance for 
short transactions, but a “performance cliff” when falling back 
to STM.  In contrast, HaSTM may provide performance some 
way between HTM and STM. 

Some recently proposed programming models, such as 
Sun’s Fortress [4], IBM’s X10 [5] and Cray’s Chapel [6], 
include an atomic statement to define atomic and/or 
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conditional atomic blocks of statements that are executed as 
transactions. In some cases, atomic can also be an attribute for 
variables so that any update to them in the code is treated as if 
the update is in a short atomic section. OpenMP also offers an 
atomic pragma  to specify certain indivisible read-operation-
write sequences, for which current microprocessor usually 
provide hardware support. For example microprocessors offer 
this support through load linked-store conditional (LL-SC). 
However, note that the atomic pragma  is extremely limited in 
this case. In our previous work  [18], we described how 
OpenMP can be combined with TM to offer a fully-featured 
atomic program section. 

In this paper, we introduce the Nebelung runtime which 
brings together TM with OpenMP and which can be easily 
customized to work with STM, HTM, HyTM or HaSTM 
systems. To keep the text brief, here we consider an STM-
based TM implementation. In parallel with this work, Baek et 
al. proposed the The OpenTM Transactional Application 
Programming Interface  [17]. Their proposal is similar to our 
OpenMP-TM extension  [18] with additional constructs for 
features such as conditional synchronization, nesting, 
transactional handlers, and contention management. Moreover, 
OpenTM has been implemented using a compiler-based 
approach as opposed to our source to source compiler. 
Nevertheless, it is reasonable to merge the two proposals into a 
unified set of OpenMP extensions for TM programming.  

Contributions of our paper are: 
• We present the first multithreaded STM runtime with  

eager conflict detection in a separate thread. 
• We present the retry feature in  real applications 
• We present specific applications written using the 

combined OpenMP, TM framework  
• We dwell on the problem of  “notifyAll” overhead, which 

occurs when using retry. We proposed the concept of the 
transaction queues to solve it. 

II.  BASIC CONCEPTS 

A transaction is a sequence of instructions, including reads 
and writes to memory, that either executes completely 
(commit) or has no effect (abort). When a transaction commits, 
all its writes are made visible and values can be used by other 
transactions. When a transaction is aborted, all its speculative 
writes are discarded. 

Commit or abort are decided based on the detection of 
memory conflicts among parallel transactions. In order to 
detect and handle these conflicts, each running transaction is 
typically associated with a ‘read set’ and a ‘write set’.  Inside a 
transaction, the execution of each transactional memory read 
instruction adds the memory address to the read set. Each 
transactional memory write instruction adds the memory 
address and value to the write set of the transaction. 

Conflict detection can be either eager or lazy. Eager conflict 
detection checks every individual read and write to see if there 
is a conflicting operation in another transaction. Eager conflict 
detection requires that the read and write sets of a transaction 
are visible to all the other transactions in the system. On the 
other hand, with lazy conflict detection a transaction waits 

until it tries to commit before checking its read and write sets 
against the write sets of other transactions. 

Another fundamental design choice is how to resolve a 
conflict once it has been detected. Usually, if there is a conflict 
it is necessary to resolve it by immediately aborting one of the 
transactions involved in the conflict.  

In order to support the execution of a transaction, a data 
versioning mechanism is needed to record the speculative 
writes. This speculative state should be discarded on an abort 
or used to update the global state on a successful commit. The 
two usual approaches to implement data versioning are based 
on using an undo-log or using buffered updates. Using an 
undo-log, a transaction applies updates directly to memory 
locations while logging the necessary information to undo the 
updates in case of abort. On the contrary, approaches using 
buffered updates keep the speculative state in a transaction-
private buffer until commit time; if the commit succeeds, the 
original values before the store instructions are dropped and 
the speculative stores of the transaction are committed to 
memory.   

III.  OUR “PROOF-OF-CONCEPT”  APPROACH 

In order to explore how TM could influence the future 
design and implementation of OpenMP, we have adopted a 
“proof-of-concept” approach based on a source-to-source code 
restructuring process, implemented in Mercurium [13], and 
two libraries to support the OpenMP execution model and to 
support transactional memory: NthLib [14] and Nebelung [15], 
respectively. We also propose the new OpenMP extensions to 
specify transactions. 

A. Proposed OpenMP extension for TM 

The first extension is a pragma to delimit the sequence of 
instructions that compose a transaction: 

#pragma omp transaction [exclude(list)|only(list)] 
   structured-block 

With this extension, the programmer should be able to write 
standard OpenMP programs, but instead of using intrinsic 
routines to lock/unlock, atomic or critical pragmas, he/she 
could use this pragma to specify the sequence of statements 
that need to be executed as a transaction. The optional 
exclude  clause can be used to specify the list of variables for 
which it is not necessary to check for conflicts. This means 
that the STM library does not need to keep track of them in the 
read and write sets. On the contrary, if the programmer uses 
the optional only clause, he/she is explicitly specifying the list 
of variables that need to be tracked. In any case, data 
versioning for all speculative writes is needed for all shared 
and private variables in case the transaction needs to do the 
rolled-back. 

Another possibility is the use of a new clause associated to 
the OpenMP work sharing constructs: 

#pragma omp for transaction 
[exclude(list)|only(list)] 
   for (…;…;…) 
      structured-block 

or 
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#pragma omp sections transaction 
[exclude(list)|only(list)] 
#pragma omp section 
   structured-block 
#pragma omp section 
   structured-block 

In the first case, each iteration of the loop constitutes a 
transaction, while in the second case, each section is a 
transaction. 

For OpenMP 3.0, a new tasking execution model is being 
proposed. Tasks are defined as deferrable units of work that 
can be executed by any thread in the thread team associated to 
the active parallel region. Task can create new tasks and can 
also be nested inside work sharing constructs. In this scenario, 
data access ordering and synchronization based on locks will 
be even more difficult to express, so transactions appear as an 
easy way to express intent and leave the mechanisms to the 
TM implementation. For tasks we propose the possibility of 
tagging a task as a transaction, using the same clause specified 
above. 

#pragma omp task transaction 
[exclude(list)|only(list)] 
   structured-block 

B. Nebelung library interface and behavior 

In order to have a complete execution environment 
supporting transactional memory, we have implemented our 
own STM library and runtime system, named Nebelung. The 
library satisfies the interface presented in the Figure 1. 
Nebelung library is typeless (work on a byte level) so we also 
developed wrapper functions read  and write  around readtx  
and writetx , which cast results into the proper types. Note 
that this interface is similar to the ones provided by other 
current STM libraries [3]. 

Transaction*  createtx (); 
void starttx  (Transaction *tr); 
status committx (Transaction *tr); 
void destroytx (Transaction *tr); 
void aborttx  (Transaction *tr); 
void retrytx  (Transaction *tr); 
void*   readtx  (Transaction *tr,  
                 void *addr, int blockSize); 
void* writetx  (Transaction *tr,  
              void *addr, void *obj,  
              int blockSize); 
void* invalidateAddr(Transaction* tr, 
                            void* addr); 
void* invalidateRange(Transaction* tr, 
                void* fromAddr, void* toAddr); 
status validatetx(Transaction *tr); 
status resolveConflicttx(Transaction *t); 
void _mCommittx(Transaction *tr); 

Fig.1. Nebelung library interface. The interface provides functions for 
maintenance of the memory transactions. It is very generic so behind that 
interface can be any implementation of TM: STM, HyTM or HaSTM. 

 
The library functions have the following semantics: 

createtx  and destroytx  create and destroy the required data 
structures for the execution of a transaction, starttx  starts the 
transaction, committx  publishes (i.e., makes visible) the results 
(writes) of the transaction, aborttx  cancels the transaction and 
retrytx  cancels the transaction and restarts it. readtx  and 
writetx  are functions for handling memory accesses. The 
transaction should be started and finished with the code 
presented in the Figure 2. 

The most important parts of the library are surely function 
calls readtx  and writetx  and they require special attention. 
Both functions operate on the byte level. writetx  receives the 
real address where the data should be stored, a size of data and 
the data itself. Function readtx  receives the real address which 
should be read and the size of the data, and returns the pointer 
to the location which holds the requested data. Returned 
pointer does not need to be the same as the original one and 
this is implementation dependent. Returned value should be 
just read only once, after that it is invalidated and cannot be 
used anymore. Writes need to be done through writetx  
function and not through the pointer returned with readtx . 
Responsibility of those functions it so notify the runtime that 
transaction is trying to access to some memory location. 

{ Transaction* t = createtx(); 
while (1) {  
   starttx (t); 
   if (setjmp (t->context) == 
TRANSACTION_STARTED) { 

(a) 

          if (COMMIT_SUCCESS == committx (t)) 
break; 
          else aborttx (t); 
       } else aborttx (t); 
   } 
   destroytx (t); 
}  

(b) 

startTransaction(); 
// transaction body 
endTransaction(); 

(c) 

Fig. 2. Macros for (a) starting and (b) ending a transaction. (c) Code of the 
transaction surrounded by the previous macros. 

 
Functions invalidateAddr  and invalidateRange  are used 

for dealing with the stack variables. We are doing the source to 
source translation so we don’t have directly under our control 
operations on stack variables (e.g. placing and removing of 
function arguments). So we need to invalidate stack variables 
after the return from the function which was using those 
variables. Although functions invalidateAddr  and 
invalidateRange  were introduced to solve the technical 
problems they are also useful for potential implementation of 
early release   [19]  [21] in OpenMP-TM. For example, Unread-
Tvar in Haskell is a transactional variable which can be 
excluded from the read set before the end of the transaction 
thus providing early release (example: in case of insertion in a 
sorted linked list we can remove list elements from the read set 
when the transaction passes them, because their change will 
not affect the result of the transaction). 

Functions validatetx , resolveConflicttx , and 
_mCommittx  are obtained by decomposition of the function 
committx . Those functions are used for conflict detection and 
resolution and for the publishing of the temporary 
transactional data respectively. We identified those functions 
because we noticed that they can be parallelized and executed 
in pipeline fashion in some cases. Function validatetx  can be 
perfectly parallelized because conflict checking with multiple 
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transactions is inherently parallel. As it will be described in the 
next section those functions can be executed in different 
threads of the Nebelung runtime for performance gains. 

The current implementation of Nebelung library performs 
lazy conflict detection.  Read and write sets are maintained 
dynamically and all memory operations are performed locally 
for the transaction. At commit time, the library checks if there 
is any conflict with other transactions. If conflict exists, the 
current transaction is committed and other transactions are 
aborted. In this way the transaction progress is guaranteed. 

C. Nebelung Runtime System 

Nebelung runtime system is responsible for the management 
of the memory transactions. In the beginning we implemented 
a static STM library but after the initial tests we realized that 
many tasks in the STM library can be done in parallel with the 
execution of the transactions. A typical example is the eager 
conflict detection which can be done by a separate thread on a 
dedicated core, completely in parallel with the transactional 
execution. Because very soon we will have hundreds of cores 
on a single die, we can use some of them just for the runtime, 
which can also scale according to the active workload. Figure 
3 shows the overheads which exist in the static STM systems. 
 

 
Fig. 3. Static STM Library overheads and the expected gain in case of the 
active runtime with the eager conflict detection. Two mayor overheads are the 
commit time which directly increase the total transaction time and the time 
which transactions spends in the wasteful execution until the conflict is 
detected. 

 
Fig. 4. Expected time diagram with the active STM runtime system. 
Transactions just sent the message to the runtime when they will access to 
some memory location. Then runtime will check if there is a conflict with 
other transactions, in case of conflict resolve it and send a message to the 
conflicting transaction to abort. 

 
 We designed the Nebelung runtime system so that it is 
executed in separate threads from transactions. As soon as 
some transaction tries to access some memory location it will 
just send a message to the runtime and continue the execution. 
Runtime system is responsible for the transaction management. 
Among other operations, the runtime will perform conflict 
detection and resolution. As soon as the runtime detects and 
resolves the conflict it will notify the conflicting transaction to 

abort. Figure 4 shows the expected behavior of Nebelung 
runtime. 

Runtime system should lower the two overheads in the 
transactional system: 1. conflict detection and resolution will 
be done in parallel with the transaction execution so it will not 
increase the transaction execution time and 2. the conflicting 
transaction will be notified to abort immediately when the 
conflict appears so that transaction will not waste the time on 
the calculation with the incorrect data. Complete 
implementation of the Nebelung runtime is the part of our 
future work.  

In this paper we present the preliminary results of this idea 
which are promising in Section IV-D. We implemented the 
system with the dedicated thread just for conflict detection. 
Transactions only send a message to this thread, when they 
access to some memory location, and a separate thread is 
checking for conflicts. In case the conflict is detected, the 
conflicting transaction which started the execution later will be 
aborted. Transactions occasionally execute the call to the 
runtime function validatetx  to check if they are still valid 
and can proceed with the execution. 

D. Transactional Memory Feature: Retry 

Retry is a very useful language feature which was proposed 
for  Transactional Memory  [3]. The retry implementation 
allows transactional execution to continue speculatively as 
long as possible and if some condition is not satisfied the 
transaction will be re-executed from the beginning. Most 
importantly, retry semantics require that the transaction should 
be re-executed if and only if its read set changes (if transaction 
is re-executed immediately the result will be probably the same 
with the same read set so transaction will busy wait). Figure 5a 
shows the syntax of the retry directive and figure 5b shows the 
usage of the retry for the implementation of the bounded 
buffer.  
 
#pragma omp retry [trigger (set)][when (contidion)]  
 
Fig. 5a. Proposal for the OpenMP retry directive. Retry can be used without 
any option and transaction will wait until anything in its read set is changed. 
If the trigger set is given then transaction should be restarted when something 
is changed in the given trigger set. If when condition is set then transaction 
should be restarted when the condition is satisfied. A similar concept to the 
trigger set is proposed by McDonald et al.   [16]. 

 
int putBB(BBuffer* buf, int val){ 
#pragma omp transaction 
{ 
  while (buf->size == buf->cap) 
    #pragma omp retry 
  ; 
  buf->size++; 
  buf->a[buf->i] = val; 
  buf->i = (buf->i + 1) % buf->cap; 
} 
} 
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int getBB(BBuffer* buf){ 
  int r; 
#pragma omp transaction 
{ 
  while (buf->size == 0) 
    #pragma omp retry 
  ; 
  buf->size--; 
  r = buf->a[buf->j]; 
  buf->j = (buf->j + 1) % buf->cap; 
} 
  return r; 
} 
Fig. 5b. Bounded buffer implemented using Transactional Memory and its 
retry feature. Code is simple as with coarse grain lock-base approach and fine 
grain performance will be gained by the runtime. If buffer is full in the 
moment of insertion or empty in case of removal proper transaction will be 
blocked until the buffer is changed. While loops are needed in order to follow 
the semantics of OpenMP that pragmas can be removed and program need to 
be correct. Without the retry transaction will spin until it is aborted. 
 

 We can see from the figure 5 that the retry implementation 
in OpenMP–TM is a very user friendly feature: the 
programmer doesn’t need to worry about the conditional 
synchronization or locks. He or she should just wait until the 
data is changed. In this way we have implemented data flow 
programming model using transactional memory. The 
transaction will be executed atomically when its data is ready. 
If we chain the transactions properly, when one transaction 
commits, it can trigger the other one and so on. When 
transaction commits it will do retry again and wait for the new 
input. In this way we provided the data flow between the 
transactions. This is the easy programming model with good 
performance for free. 
 Retry feature can be used after the conflict resolution. 
Instead to abort one of the conflicting transaction, transaction 
should do retry. This approach has the two advantages. First, 
transaction which is “aborted” will be blocked until the other 
transaction from the conflict commits. Gain of this approach is 
that conflicting transaction will not start again until the other 
transaction finishes. In that way the new conflict will be 
avoided. Second, retry is much faster for implementation then 
abort. In general abort means destroy (free) the transaction 
which can take the significant time and retry means just 
invalidate temporary data and start again. 

E. Contention management 

Previous work confirmed that Transactional Memory 
performs poorly when the rollback rate is high. This is natural 
because the TM is expected to be used in cases when the 
conflicts are rare. But, in any case we need to handle the 
applications and the application phases when the conflict rate 
is high. To do this we added two functions in our runtime: 
entryPolicy(Transaction* t)  and 
exitPolicy(Transaction* t) , which are called when 
transaction should be started or aborted/committed 
respectively. They are the interface to the contention manager 
which is the subject of our current work. The idea of the 
contention manager is that in cases of the high contention 
execution of the newly created transactions are stopped. When 
contention manager detects the high contention it should 
postpone the execution of the newly created transaction or 
event and it can even abort some already running transactions. 

In this way we are lowering the conflict rate and increasing the 
throughput. 

F. Parallel region and Transactions 

In our current proposal and the implementations of the 
OpenMP library and the STM Nebelung Runtime we allowed 
the transactions inside the OpenMP parallel region. Currently 
we are working on a support for parallel regions inside the 
transactions. This will allow that transaction can span over 
more than one thread. That can be very useful for example in 
case of the atomic matrix multiplication.  

G. Source-to-source translation in Mercurium 

The Mercurium OpenMP source-to-source translator 
transforms the code inside the transaction block in such a way 
that for each memory access, a proper STM library function 
call is invoked. The current version of Mercurium accepts 
OpenMP 2.5 for Fortran90 and C. 

Figure 6 shows the representative part of the AMMP Spec 
OMP 2001 application which should be executed inside the 
transaction and the code generated by Mercurium. Figure 7 
shows a synthetic example using the exclude clause. 

Finally, Figure 8 shows another example which operates on a 
binary tree, inserting n nodes into the tree. We are using the 
current tasking proposal for OpenMP 3.0. Notice that n tasks 
will be created and executed atomically in parallel. Figure 9 
shows the code generated by Mercurium. 

#pragma omp transaction {  
   …    
   r0 = sqrt(r); 
   ux = ux*r0; 
   k = -dielectric*a1->q*a2->q*r; 
   ... 
} 

(a) 

{ startTransaction(); 
…  
 write(t, &r0, sqrt( *read(t, &r) )); 
 write(t, &ux,  *read(t, &ux) * *read(t, &r0) );  
 write(t, &k, - *read(t, &dielectric) *  
    *read(t, &( ( *read(t, &a1)  ) ->q) ) *  
    *read(t, &( ( *read(t, &a2)  ) ->q) ) *  
    *read(t, &r) );  
 … 
endTransaction(); }  

(b) 

Fig. 6.  Excerpt from AMMP SpecOMP2001. The code which should be 
executed atomically (a) and the generated code(b). 

 

int f(int); 
int correct(int* a, int* b, int* x){ 
   int fx; 
#pragma omp transaction exclude (fx) {  
   fx = f(*x); 
   a += fx; 
   b -= fx; 
   } 
}                          
           (original code) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

int correct(int* a, int* b, int* x){ 
   int fx; 
   { startTransaction();  
      { 
      fx = f(*read(t, x)); 
      write(t, &a, *read(t, &a) + fx); 
      write(t, &b, *read(t, &b) - fx); 
      } 
   endTransaction(); 
   } 
}                         
          (transformed code) 

Fig. 7. Example using the exclude clause. 
 

void ParallelInsert(struct BTNode** rootp, int n, 
int keys[], int values[]){ 
#pragma omp parallel single { 
   for (int i = 0; i < n; ++i) { 
      int key = keys[i], value=values[i]; 
#pragma omp task capturevalue(key, value) 
captureaddress(rootp) { 
      int inserted, f; 
      BTNode* curr; 
      BTNode* n; 
      n = NewBTNode; 
      initNode(n,key,value); 
      inserted = 0; 
      f = 0; 
#pragma omp transaction { 
      if (*rootp == 0) {*rootp = n;} 
      else { 
         curr = *rootp; 
         while (inserted == 0) { 
            if (curr->key == key){ 
               curr->value = value; 
            … 
      } 
      }  // end oftransaction 
      if (f == 1) free(n); 
      }  // end of task 
   } // end if for loop 
   }  // end of parallel region 
} // end of ParallelInsert function 

Fig. 8.  Function for parallel insertion of n nodes into a binary search tree, 
expressed using the tasking execution model. 

 
{ startTransaction(); 
{ if (  *read(t, rootp)  == 0 ) { write(t, rootp,  
*read(t, &n) ); 
  } else { 
     write(t, &curr,  *read(t, rootp)); 
     while (  *read(t, &inserted)  == 0) { 
         if (*read(t, &((*read(t,&curr))->key))== 
*read(t, &key)) { 
            write(t, &((*read(t, &curr))->value), 
*read(t, &value)); 
  … 
} 
endTransaction();}  
 
Fig. 9. Code generated for the transaction inside the parallelInsert  
function. 

IV.  RESULTS 

We tested our system for performance with the tree 
applications: B+tree, Gauss-Seidel finite difference method 
application and the Producer/Consumer application. We 
executed those applications on an 8 core Intel(R) Xeon™ CPU 
machine on a 3.2GHz and the 8MB of cache. Subsections A, B 
and C presents the results without the dedicated thread for the 
conflict detection and subsection D compares the execution of 
the test application on a runtime with and without the 
dedicated thread. 

A. B+tree application 

In B+tree application we tested the performance of our 
system when it operates on a complex data structure with huge 
amount of data (~100MB). We executed 80 transactions per 
thread where each transaction atomically takes the data from 
one B+tree structure, performs compute-intensive non 
conflicting operations for an average of 50µs and stores the 
result in the other B+tree.  
 

 
Fig. 10. Results for the B+tree application. Test compares the average 
transaction execution time of the Nebelung Runtime system and the 
appropriate coarse-grain lock based system. Results show performance on a 
par with a fine-grain lock based approach even though the programming 
model is as easy as a coarse-grain lock based approach. 

 
Figure 10 compares the average transaction time using 

coarse grain lock-based approach and Nebelung TM system. 
TM is better because B+tree structures are filled with the huge 
amount of data so the probability of the conflict is very low 
(read sets intersects but write sets and read sets don’t) so 
transactions are really executed in parallel without too many 
aborts. This is obvious for example in case with 2 cores, TM 
approach is two times faster then the coarse grain lock-based 
approach. 
 In case of the B+tree data structure performance of the 
coarse-grain and fine-grain lock based solution is almost the 
same. That is because when we insert the new value in a 
B+tree there is a possibility that even root node can be 
changed so we need to lock the root also and that is exactly 
what we are doing in case of coarse-grain solution. So with 
this application we showed that our system and Transactional 
Memory in general can give  better performance in cases when 
fine-grain solution doesn’t exist or is to difficult to be 
implemented (e.g. two phase insert in B+tree or similar). 

B. Gauss-Seidel application 

In Gauss-Seidel application we implemented Gauss-Seidel 
finite difference method for solving the linear system of 
equations  [20] using Transactional Memory and retry. For 
each element of the matrix we created a separate thread, which 
will iteratively calculate the value of that element. Element 
mT

i,j (value of the element at the position (i, j) in the iteration 
T) should be calculated using the expression: 

),,,( 1
1,1,

1
,1,1,

−
+−

−
+−= T
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T
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T
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T

ji
T

ji mmmmfm  

 As we can see from the above expression, in order to 
calculate the element at position (i, j) at iteration T, its adjacent 
elements needs to be in the proper iteration (data dependency). 
That is where we used the retry to create a nice parallel 
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application, without any problem with synchronization and 
conditional variables and locks. Figure 11 presents the part of 
the code of the Gauss-Saidel application and figure 12 presents 
the obtained results. 
 

#pragma omp transaction 
{ 

  x1=0; 
  if (r-1>=0){ 
   while (m[r-1][c].step != t)  
    #pragma omp retry 
 
   x1=m[r-1][c].value;  

} 
                … 
} 

Fig. 11. Sample of the code from Gauss-Seidel application. In order to 
calculate element at position (i, j) in the iteration T, we need to wait for its 
adjacent elements to be in the proper iteration. That is where retry can 
perfectly help. 

 

 Results obtained from Gauss-Seidel application shows that 
systems scales very well until the square matrix dimension 6, 
because number of threads raises with the square of the matrix 
dimension. In that moment number of threads/transactions is 
36 and the number of available cores is 8 so effect of trashing 
begin to be dominant. But with the larger number of cores we 
expect that our application will continue to scale even for the 
bigger matrices. 

 
Fig. 12. Results achieved from Gauss-Seidel application. Number of threads 
is equals to the square of the matrix dimension and each thread is executing  
one transaction at the time. 

 

C. Producer/Consumer application 

In the Producer/Consumer application we tested the 
performance of the bounded buffer we shown in the figure 5b. 
We created the application with one producer and many 
consumers. We set that producer is eight time faster than 
consumers and varied the number of consumer for the constant 
workload produced by the producer. Results are presented in 
the figures 13a and 13b. 
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Fig. 13. Results for the Producer/Consumer application. Figure a) presents the 
total execution time and figure b) presents the average execution time per 
transaction. Total time scales well with the increased number of cores but the 
average transaction time is a little bit higher because of “notify all overhead”.  

 
 Results show that our system scales very well and that 
proposed retry feature have very big potential. Retry gives  the 
programmer user friendly programming model from one side 
and good performance for free. With this test we also 
discovered the overhead we named “notify all overhead”. It is 
very similar with the notifyAll  feature which exists in Java 
for notification to all threads which are synchronized on the 
same object. We noticed that average transactional execution 
increases because when the producer stores the data in the 
buffer all clients are notified and of course only one will 
succeed and all others will be aborted. Figure 13b shows that 
“notify all” overhead can rise with the number of cores. In our 
future work we will pay more attention to lower this overhead. 
Currently we propose something like the retrying transaction 
queue. Idea is that when the queue is notified, it will select the 
one transaction from the queue and notify it. Other will remain 
to do retry without wakeup. This can be good idea in any 
client/server application when we have more servers of the 
same type so it is not important which will serve the request. It 
is just important that the proper server queue is notified, and 
that the queue delivers the request to the proper server (e.g. 
load balancing).  

D. Dedicated Conflict Detection Thread Results 

This section presents the results of the runtime system with 
the dedicated conflict detection thread (CDT). Figure 14 
presents the results of the application which has n dependant 
transactions and m independent transactions executed on a 2 
core machine. Results with the CDT are much better for two 
reasons: 1. CDT performs the eager conflict detection and 2. 
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there is no overhead for eager conflict detection in the running 
transactions because it is performed in the dedicated thread. 
The only overhead for this kind of system is overhead for 
sending the message to the CDT. This issue presents 
interesting tradeoffs and will be addressed in future work. 
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Fig. 14. Results of the test application executed on Nebelung runtime with 
and without the dedicated core for the conflict detection. (n, m) stands for the 
application which has n dependant transactions and m independent 
transactions. System with the CDT is scaling much better. 

V. CONCLUSION 

In a previous paper we presented the language design for 
integrating OpenMP with TM, presented solutions for some 
challenges and dwelled on some open issues. In this paper, we 
describe our runtime environment, Nebelung, for supporting 
OpenMP-TM. We also introduced new ideas made possible by 
the combined OpenMP-TM framework. One such idea is to 
use separate runtime threads for Conflict Detection which are 
then executed on available idle cores; we include a first-order 
feasibility study to confirm the promise of the idea. Future 
work consists of significantly expanding on this idea, including 
a full implementation that will be supported by the Nebelung 
runtime.    
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