
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Transactional Memory (TM) is a key future

technology for emerging many-cores. On the other hand,
OpenMP provides a vast established base for writing parallel
programs, especially for scientific applications. Combining TM
with OpenMP provides a rich, enhanced programming
environment and an attractive solution to the many-core software
productivity problem.

In this paper, we discuss the runtime environment for
supporting our combined TM and OpenMP framework. Through
motivating examples, we briefly illustrate how the combined
TM/OpenMP can facilitate writing parallel programs. We then
discuss issues in runtime environment design. In another
contribution, we introduce a set of applications that we
specifically developed for our combined TM/OpenMP
framework. Using those applications, we show how we can use
the rich features provided by TM such as retry to support
efficient TM/OpenMP programs. We also include an initial
performance analysis of the runtime using the applications.

Index Terms— OpenMP, Transactional Memory, Runtime
Environment

I. INTRODUCTION

he advent of shared-memory multi-core microprocessors
has created an opening to exploit thread-level parallelism.

In most applications, parallel thread execution requires
synchronization or ordering mechanisms for accessing shared
data. Traditional multithreaded programming models usually
offer a set of low-level primitives, such as locks, to guarantee
mutual exclusion; ownership of one or more locks protects
access to shared data. However, locks are complex to use and
error prone—especially when a programmer is trying to avoid
deadlock situations or to achieve better scalability on highly
parallel hardware by using fine-grained locking. Consequently,
the programming and computer architecture communities are
concerned that a parallel-programming productivity and
performance wall might be looming. Transactional Memory
(TM) is a crucial mechanism to tackle this problem by
abstracting away the complexities associated by concurrent
access to shared data [1] where multiple threads need to
simultaneously access shared memory locations atomically.
TM makes it relatively easy to develop parallel programs.

OpenMP [2], the industrial standard for writing parallel
programs on shared-memory architectures, for C, C++ and

Fortran, is a “traditional” programming model in terms of
mechanisms offered to guarantee mutual exclusion. A
significant number of applications have been parallelized for
shared memory multiprocessor systems using OpenMP.
Consequently, a large programmer base exists with significant
OpenMP expertise. OpenMP offers a set of low-level
primitives around locks and the high-level critical construct to
protect the access to shared data (through the ownership of one
or more locks).

We believe that the fusion of OpenMP with TM offers the
best of both worlds for developing parallel programs for many-
cores: an established programmer base coupled with a more
intuitive way of writing shared-state programs.

Given that actual conflicts are rare in many programs [3],
the optimistic TM approach makes much more sense as a
future programming model. With TM the programmer
specifies intent rather than mechanism (i.e. the programmer
can focus on determining where atomicity is necessary, rather
than the mechanisms used to enforce it), resulting in a higher-
level abstraction than locks.

Two main TM implementation styles stand out: hardware-
and software-based. Historically, the earliest design proposals
were hardware based. Software Transactional Memory (STM)
[7] has been proposed to address, among other things, some
inherent limitations of earlier forms of Hardware Transactional
Memory (HTM) [8] such as a lack of commodity hardware
with the proposed features, or a limitation to the number of
locations that a transaction can access.

Beyond these two main approaches, two additional mixed
approaches have recently been considered. Hybrid
Transactional Memory (HyTM) [9, 10] supports transactional
execution that generally occurs using HTM transaction but
which backs off to STM transactions when hardware resources
are exceeded. Hardware-assisted STM (HaSTM) combines
STM with new architectural support to accelerate parts of the
STM’s implementation [11, 12]. These designs are both active
research topics and provide very different performance
characteristics: HyTM provides near-HTM performance for
short transactions, but a “performance cliff” when falling back
to STM. In contrast, HaSTM may provide performance some
way between HTM and STM.

Some recently proposed programming models, such as
Sun’s Fortress [4], IBM’s X10 [5] and Cray’s Chapel [6],
include an atomic statement to define atomic and/or

Practical Experience with Nebelung: The Runtime
Support for Transactional Memory and OpenMP

Miloš Milovanović, Roger Ferrer, Vladimir Gajinov, Osman S. Unsal,
Adrian Cristal, Eduard Ayguadé and Mateo Valero

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/148622359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

conditional atomic blocks of statements that are executed as
transactions. In some cases, atomic can also be an attribute for
variables so that any update to them in the code is treated as if
the update is in a short atomic section. OpenMP also offers an
atomic pragma to specify certain indivisible read-operation-
write sequences, for which current microprocessor usually
provide hardware support. For example microprocessors offer
this support through load linked-store conditional (LL-SC).
However, note that the atomic pragma is extremely limited in
this case. In our previous work [18], we described how
OpenMP can be combined with TM to offer a fully-featured
atomic program section.

In this paper, we introduce the Nebelung runtime which
brings together TM with OpenMP and which can be easily
customized to work with STM, HTM, HyTM or HaSTM
systems. To keep the text brief, here we consider an STM-
based TM implementation. In parallel with this work, Baek et
al. proposed the The OpenTM Transactional Application
Programming Interface [17]. Their proposal is similar to our
OpenMP-TM extension [18] with additional constructs for
features such as conditional synchronization, nesting,
transactional handlers, and contention management. Moreover,
OpenTM has been implemented using a compiler-based
approach as opposed to our source to source compiler.
Nevertheless, it is reasonable to merge the two proposals into a
unified set of OpenMP extensions for TM programming.

Contributions of our paper are:
• We present the first multithreaded STM runtime with

eager conflict detection in a separate thread.
• We present the retry feature in real applications
• We present specific applications written using the

combined OpenMP, TM framework
• We dwell on the problem of “notifyAll” overhead, which

occurs when using retry. We proposed the concept of the
transaction queues to solve it.

II. BASIC CONCEPTS

A transaction is a sequence of instructions, including reads
and writes to memory, that either executes completely
(commit) or has no effect (abort). When a transaction commits,
all its writes are made visible and values can be used by other
transactions. When a transaction is aborted, all its speculative
writes are discarded.

Commit or abort are decided based on the detection of
memory conflicts among parallel transactions. In order to
detect and handle these conflicts, each running transaction is
typically associated with a ‘read set’ and a ‘write set’. Inside a
transaction, the execution of each transactional memory read
instruction adds the memory address to the read set. Each
transactional memory write instruction adds the memory
address and value to the write set of the transaction.

Conflict detection can be either eager or lazy. Eager conflict
detection checks every individual read and write to see if there
is a conflicting operation in another transaction. Eager conflict
detection requires that the read and write sets of a transaction
are visible to all the other transactions in the system. On the
other hand, with lazy conflict detection a transaction waits

until it tries to commit before checking its read and write sets
against the write sets of other transactions.

Another fundamental design choice is how to resolve a
conflict once it has been detected. Usually, if there is a conflict
it is necessary to resolve it by immediately aborting one of the
transactions involved in the conflict.

In order to support the execution of a transaction, a data
versioning mechanism is needed to record the speculative
writes. This speculative state should be discarded on an abort
or used to update the global state on a successful commit. The
two usual approaches to implement data versioning are based
on using an undo-log or using buffered updates. Using an
undo-log, a transaction applies updates directly to memory
locations while logging the necessary information to undo the
updates in case of abort. On the contrary, approaches using
buffered updates keep the speculative state in a transaction-
private buffer until commit time; if the commit succeeds, the
original values before the store instructions are dropped and
the speculative stores of the transaction are committed to
memory.

III. OUR “PROOF-OF-CONCEPT” APPROACH

In order to explore how TM could influence the future
design and implementation of OpenMP, we have adopted a
“proof-of-concept” approach based on a source-to-source code
restructuring process, implemented in Mercurium [13], and
two libraries to support the OpenMP execution model and to
support transactional memory: NthLib [14] and Nebelung [15],
respectively. We also propose the new OpenMP extensions to
specify transactions.

A. Proposed OpenMP extension for TM

The first extension is a pragma to delimit the sequence of
instructions that compose a transaction:

#pragma omp transaction [exclude(list)|only(list)]
 structured-block

With this extension, the programmer should be able to write
standard OpenMP programs, but instead of using intrinsic
routines to lock/unlock, atomic or critical pragmas, he/she
could use this pragma to specify the sequence of statements
that need to be executed as a transaction. The optional
exclude clause can be used to specify the list of variables for
which it is not necessary to check for conflicts. This means
that the STM library does not need to keep track of them in the
read and write sets. On the contrary, if the programmer uses
the optional only clause, he/she is explicitly specifying the list
of variables that need to be tracked. In any case, data
versioning for all speculative writes is needed for all shared
and private variables in case the transaction needs to do the
rolled-back.

Another possibility is the use of a new clause associated to
the OpenMP work sharing constructs:

#pragma omp for transaction
[exclude(list)|only(list)]
 for (…;…;…)
 structured-block

or

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

#pragma omp sections transaction
[exclude(list)|only(list)]
#pragma omp section
 structured-block
#pragma omp section
 structured-block

In the first case, each iteration of the loop constitutes a
transaction, while in the second case, each section is a
transaction.

For OpenMP 3.0, a new tasking execution model is being
proposed. Tasks are defined as deferrable units of work that
can be executed by any thread in the thread team associated to
the active parallel region. Task can create new tasks and can
also be nested inside work sharing constructs. In this scenario,
data access ordering and synchronization based on locks will
be even more difficult to express, so transactions appear as an
easy way to express intent and leave the mechanisms to the
TM implementation. For tasks we propose the possibility of
tagging a task as a transaction, using the same clause specified
above.

#pragma omp task transaction
[exclude(list)|only(list)]
 structured-block

B. Nebelung library interface and behavior

In order to have a complete execution environment
supporting transactional memory, we have implemented our
own STM library and runtime system, named Nebelung. The
library satisfies the interface presented in the Figure 1.
Nebelung library is typeless (work on a byte level) so we also
developed wrapper functions read and write around readtx
and writetx , which cast results into the proper types. Note
that this interface is similar to the ones provided by other
current STM libraries [3].

Transaction* createtx ();
void starttx (Transaction *tr);
status committx (Transaction *tr);
void destroytx (Transaction *tr);
void aborttx (Transaction *tr);
void retrytx (Transaction *tr);
void* readtx (Transaction *tr,
 void *addr, int blockSize);
void* writetx (Transaction *tr,
 void *addr, void *obj,
 int blockSize);
void* invalidateAddr(Transaction* tr,
 void* addr);
void* invalidateRange(Transaction* tr,
 void* fromAddr, void* toAddr);
status validatetx(Transaction *tr);
status resolveConflicttx(Transaction *t);
void _mCommittx(Transaction *tr);

Fig.1. Nebelung library interface. The interface provides functions for
maintenance of the memory transactions. It is very generic so behind that
interface can be any implementation of TM: STM, HyTM or HaSTM.

The library functions have the following semantics:

createtx and destroytx create and destroy the required data
structures for the execution of a transaction, starttx starts the
transaction, committx publishes (i.e., makes visible) the results
(writes) of the transaction, aborttx cancels the transaction and
retrytx cancels the transaction and restarts it. readtx and
writetx are functions for handling memory accesses. The
transaction should be started and finished with the code
presented in the Figure 2.

The most important parts of the library are surely function
calls readtx and writetx and they require special attention.
Both functions operate on the byte level. writetx receives the
real address where the data should be stored, a size of data and
the data itself. Function readtx receives the real address which
should be read and the size of the data, and returns the pointer
to the location which holds the requested data. Returned
pointer does not need to be the same as the original one and
this is implementation dependent. Returned value should be
just read only once, after that it is invalidated and cannot be
used anymore. Writes need to be done through writetx
function and not through the pointer returned with readtx .
Responsibility of those functions it so notify the runtime that
transaction is trying to access to some memory location.

{ Transaction* t = createtx();
while (1) {
 starttx (t);
 if (setjmp (t->context) ==
TRANSACTION_STARTED) {

(a)

 if (COMMIT_SUCCESS == committx (t))
break;
 else aborttx (t);
 } else aborttx (t);
 }
 destroytx (t);
}

(b)

startTransaction();
// transaction body
endTransaction();

(c)

Fig. 2. Macros for (a) starting and (b) ending a transaction. (c) Code of the
transaction surrounded by the previous macros.

Functions invalidateAddr and invalidateRange are used

for dealing with the stack variables. We are doing the source to
source translation so we don’t have directly under our control
operations on stack variables (e.g. placing and removing of
function arguments). So we need to invalidate stack variables
after the return from the function which was using those
variables. Although functions invalidateAddr and
invalidateRange were introduced to solve the technical
problems they are also useful for potential implementation of
early release [19] [21] in OpenMP-TM. For example, Unread-
Tvar in Haskell is a transactional variable which can be
excluded from the read set before the end of the transaction
thus providing early release (example: in case of insertion in a
sorted linked list we can remove list elements from the read set
when the transaction passes them, because their change will
not affect the result of the transaction).

Functions validatetx , resolveConflicttx , and
_mCommittx are obtained by decomposition of the function
committx . Those functions are used for conflict detection and
resolution and for the publishing of the temporary
transactional data respectively. We identified those functions
because we noticed that they can be parallelized and executed
in pipeline fashion in some cases. Function validatetx can be
perfectly parallelized because conflict checking with multiple

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

transactions is inherently parallel. As it will be described in the
next section those functions can be executed in different
threads of the Nebelung runtime for performance gains.

The current implementation of Nebelung library performs
lazy conflict detection. Read and write sets are maintained
dynamically and all memory operations are performed locally
for the transaction. At commit time, the library checks if there
is any conflict with other transactions. If conflict exists, the
current transaction is committed and other transactions are
aborted. In this way the transaction progress is guaranteed.

C. Nebelung Runtime System

Nebelung runtime system is responsible for the management
of the memory transactions. In the beginning we implemented
a static STM library but after the initial tests we realized that
many tasks in the STM library can be done in parallel with the
execution of the transactions. A typical example is the eager
conflict detection which can be done by a separate thread on a
dedicated core, completely in parallel with the transactional
execution. Because very soon we will have hundreds of cores
on a single die, we can use some of them just for the runtime,
which can also scale according to the active workload. Figure
3 shows the overheads which exist in the static STM systems.

Fig. 3. Static STM Library overheads and the expected gain in case of the
active runtime with the eager conflict detection. Two mayor overheads are the
commit time which directly increase the total transaction time and the time
which transactions spends in the wasteful execution until the conflict is
detected.

Fig. 4. Expected time diagram with the active STM runtime system.
Transactions just sent the message to the runtime when they will access to
some memory location. Then runtime will check if there is a conflict with
other transactions, in case of conflict resolve it and send a message to the
conflicting transaction to abort.

 We designed the Nebelung runtime system so that it is
executed in separate threads from transactions. As soon as
some transaction tries to access some memory location it will
just send a message to the runtime and continue the execution.
Runtime system is responsible for the transaction management.
Among other operations, the runtime will perform conflict
detection and resolution. As soon as the runtime detects and
resolves the conflict it will notify the conflicting transaction to

abort. Figure 4 shows the expected behavior of Nebelung
runtime.

Runtime system should lower the two overheads in the
transactional system: 1. conflict detection and resolution will
be done in parallel with the transaction execution so it will not
increase the transaction execution time and 2. the conflicting
transaction will be notified to abort immediately when the
conflict appears so that transaction will not waste the time on
the calculation with the incorrect data. Complete
implementation of the Nebelung runtime is the part of our
future work.

In this paper we present the preliminary results of this idea
which are promising in Section IV-D. We implemented the
system with the dedicated thread just for conflict detection.
Transactions only send a message to this thread, when they
access to some memory location, and a separate thread is
checking for conflicts. In case the conflict is detected, the
conflicting transaction which started the execution later will be
aborted. Transactions occasionally execute the call to the
runtime function validatetx to check if they are still valid
and can proceed with the execution.

D. Transactional Memory Feature: Retry

Retry is a very useful language feature which was proposed
for Transactional Memory [3]. The retry implementation
allows transactional execution to continue speculatively as
long as possible and if some condition is not satisfied the
transaction will be re-executed from the beginning. Most
importantly, retry semantics require that the transaction should
be re-executed if and only if its read set changes (if transaction
is re-executed immediately the result will be probably the same
with the same read set so transaction will busy wait). Figure 5a
shows the syntax of the retry directive and figure 5b shows the
usage of the retry for the implementation of the bounded
buffer.

#pragma omp retry [trigger (set)][when (contidion)]

Fig. 5a. Proposal for the OpenMP retry directive. Retry can be used without
any option and transaction will wait until anything in its read set is changed.
If the trigger set is given then transaction should be restarted when something
is changed in the given trigger set. If when condition is set then transaction
should be restarted when the condition is satisfied. A similar concept to the
trigger set is proposed by McDonald et al. [16].

int putBB(BBuffer* buf, int val){
#pragma omp transaction
{
 while (buf->size == buf->cap)
 #pragma omp retry
 ;
 buf->size++;
 buf->a[buf->i] = val;
 buf->i = (buf->i + 1) % buf->cap;
}
}

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

int getBB(BBuffer* buf){
 int r;
#pragma omp transaction
{
 while (buf->size == 0)
 #pragma omp retry
 ;
 buf->size--;
 r = buf->a[buf->j];
 buf->j = (buf->j + 1) % buf->cap;
}
 return r;
}
Fig. 5b. Bounded buffer implemented using Transactional Memory and its
retry feature. Code is simple as with coarse grain lock-base approach and fine
grain performance will be gained by the runtime. If buffer is full in the
moment of insertion or empty in case of removal proper transaction will be
blocked until the buffer is changed. While loops are needed in order to follow
the semantics of OpenMP that pragmas can be removed and program need to
be correct. Without the retry transaction will spin until it is aborted.

 We can see from the figure 5 that the retry implementation
in OpenMP–TM is a very user friendly feature: the
programmer doesn’t need to worry about the conditional
synchronization or locks. He or she should just wait until the
data is changed. In this way we have implemented data flow
programming model using transactional memory. The
transaction will be executed atomically when its data is ready.
If we chain the transactions properly, when one transaction
commits, it can trigger the other one and so on. When
transaction commits it will do retry again and wait for the new
input. In this way we provided the data flow between the
transactions. This is the easy programming model with good
performance for free.
 Retry feature can be used after the conflict resolution.
Instead to abort one of the conflicting transaction, transaction
should do retry. This approach has the two advantages. First,
transaction which is “aborted” will be blocked until the other
transaction from the conflict commits. Gain of this approach is
that conflicting transaction will not start again until the other
transaction finishes. In that way the new conflict will be
avoided. Second, retry is much faster for implementation then
abort. In general abort means destroy (free) the transaction
which can take the significant time and retry means just
invalidate temporary data and start again.

E. Contention management

Previous work confirmed that Transactional Memory
performs poorly when the rollback rate is high. This is natural
because the TM is expected to be used in cases when the
conflicts are rare. But, in any case we need to handle the
applications and the application phases when the conflict rate
is high. To do this we added two functions in our runtime:
entryPolicy(Transaction* t) and
exitPolicy(Transaction* t) , which are called when
transaction should be started or aborted/committed
respectively. They are the interface to the contention manager
which is the subject of our current work. The idea of the
contention manager is that in cases of the high contention
execution of the newly created transactions are stopped. When
contention manager detects the high contention it should
postpone the execution of the newly created transaction or
event and it can even abort some already running transactions.

In this way we are lowering the conflict rate and increasing the
throughput.

F. Parallel region and Transactions

In our current proposal and the implementations of the
OpenMP library and the STM Nebelung Runtime we allowed
the transactions inside the OpenMP parallel region. Currently
we are working on a support for parallel regions inside the
transactions. This will allow that transaction can span over
more than one thread. That can be very useful for example in
case of the atomic matrix multiplication.

G. Source-to-source translation in Mercurium

The Mercurium OpenMP source-to-source translator
transforms the code inside the transaction block in such a way
that for each memory access, a proper STM library function
call is invoked. The current version of Mercurium accepts
OpenMP 2.5 for Fortran90 and C.

Figure 6 shows the representative part of the AMMP Spec
OMP 2001 application which should be executed inside the
transaction and the code generated by Mercurium. Figure 7
shows a synthetic example using the exclude clause.

Finally, Figure 8 shows another example which operates on a
binary tree, inserting n nodes into the tree. We are using the
current tasking proposal for OpenMP 3.0. Notice that n tasks
will be created and executed atomically in parallel. Figure 9
shows the code generated by Mercurium.

#pragma omp transaction {
 …
 r0 = sqrt(r);
 ux = ux*r0;
 k = -dielectric*a1->q*a2->q*r;
 ...
}

(a)

{ startTransaction();
…
 write(t, &r0, sqrt(*read(t, &r)));
 write(t, &ux, *read(t, &ux) * *read(t, &r0));
 write(t, &k, - *read(t, &dielectric) *
 *read(t, &((*read(t, &a1)) ->q)) *
 *read(t, &((*read(t, &a2)) ->q)) *
 *read(t, &r));
 …
endTransaction(); }

(b)

Fig. 6. Excerpt from AMMP SpecOMP2001. The code which should be
executed atomically (a) and the generated code(b).

int f(int);
int correct(int* a, int* b, int* x){
 int fx;
#pragma omp transaction exclude (fx) {
 fx = f(*x);
 a += fx;
 b -= fx;
 }
}
 (original code)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

int correct(int* a, int* b, int* x){
 int fx;
 { startTransaction();
 {
 fx = f(*read(t, x));
 write(t, &a, *read(t, &a) + fx);
 write(t, &b, *read(t, &b) - fx);
 }
 endTransaction();
 }
}
 (transformed code)

Fig. 7. Example using the exclude clause.

void ParallelInsert(struct BTNode** rootp, int n,
int keys[], int values[]){
#pragma omp parallel single {
 for (int i = 0; i < n; ++i) {
 int key = keys[i], value=values[i];
#pragma omp task capturevalue(key, value)
captureaddress(rootp) {
 int inserted, f;
 BTNode* curr;
 BTNode* n;
 n = NewBTNode;
 initNode(n,key,value);
 inserted = 0;
 f = 0;
#pragma omp transaction {
 if (*rootp == 0) {*rootp = n;}
 else {
 curr = *rootp;
 while (inserted == 0) {
 if (curr->key == key){
 curr->value = value;
 …
 }
 } // end oftransaction
 if (f == 1) free(n);
 } // end of task
 } // end if for loop
 } // end of parallel region
} // end of ParallelInsert function

Fig. 8. Function for parallel insertion of n nodes into a binary search tree,
expressed using the tasking execution model.

{ startTransaction();
{ if (*read(t, rootp) == 0) { write(t, rootp,
*read(t, &n));
 } else {
 write(t, &curr, *read(t, rootp));
 while (*read(t, &inserted) == 0) {
 if (*read(t, &((*read(t,&curr))->key))==
*read(t, &key)) {
 write(t, &((*read(t, &curr))->value),
*read(t, &value));
 …
}
endTransaction();}

Fig. 9. Code generated for the transaction inside the parallelInsert
function.

IV. RESULTS

We tested our system for performance with the tree
applications: B+tree, Gauss-Seidel finite difference method
application and the Producer/Consumer application. We
executed those applications on an 8 core Intel(R) Xeon™ CPU
machine on a 3.2GHz and the 8MB of cache. Subsections A, B
and C presents the results without the dedicated thread for the
conflict detection and subsection D compares the execution of
the test application on a runtime with and without the
dedicated thread.

A. B+tree application

In B+tree application we tested the performance of our
system when it operates on a complex data structure with huge
amount of data (~100MB). We executed 80 transactions per
thread where each transaction atomically takes the data from
one B+tree structure, performs compute-intensive non
conflicting operations for an average of 50µs and stores the
result in the other B+tree.

Fig. 10. Results for the B+tree application. Test compares the average
transaction execution time of the Nebelung Runtime system and the
appropriate coarse-grain lock based system. Results show performance on a
par with a fine-grain lock based approach even though the programming
model is as easy as a coarse-grain lock based approach.

Figure 10 compares the average transaction time using

coarse grain lock-based approach and Nebelung TM system.
TM is better because B+tree structures are filled with the huge
amount of data so the probability of the conflict is very low
(read sets intersects but write sets and read sets don’t) so
transactions are really executed in parallel without too many
aborts. This is obvious for example in case with 2 cores, TM
approach is two times faster then the coarse grain lock-based
approach.
 In case of the B+tree data structure performance of the
coarse-grain and fine-grain lock based solution is almost the
same. That is because when we insert the new value in a
B+tree there is a possibility that even root node can be
changed so we need to lock the root also and that is exactly
what we are doing in case of coarse-grain solution. So with
this application we showed that our system and Transactional
Memory in general can give better performance in cases when
fine-grain solution doesn’t exist or is to difficult to be
implemented (e.g. two phase insert in B+tree or similar).

B. Gauss-Seidel application

In Gauss-Seidel application we implemented Gauss-Seidel
finite difference method for solving the linear system of
equations [20] using Transactional Memory and retry. For
each element of the matrix we created a separate thread, which
will iteratively calculate the value of that element. Element
mT

i,j (value of the element at the position (i, j) in the iteration
T) should be calculated using the expression:

),,,(1
1,1,

1
,1,1,

−
+−

−
+−= T

ji
T

ji
T

ji
T

ji
T

ji mmmmfm

 As we can see from the above expression, in order to
calculate the element at position (i, j) at iteration T, its adjacent
elements needs to be in the proper iteration (data dependency).
That is where we used the retry to create a nice parallel

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

application, without any problem with synchronization and
conditional variables and locks. Figure 11 presents the part of
the code of the Gauss-Saidel application and figure 12 presents
the obtained results.

#pragma omp transaction
{

 x1=0;
 if (r-1>=0){
 while (m[r-1][c].step != t)
 #pragma omp retry

 x1=m[r-1][c].value;

}
 …
}

Fig. 11. Sample of the code from Gauss-Seidel application. In order to
calculate element at position (i, j) in the iteration T, we need to wait for its
adjacent elements to be in the proper iteration. That is where retry can
perfectly help.

 Results obtained from Gauss-Seidel application shows that
systems scales very well until the square matrix dimension 6,
because number of threads raises with the square of the matrix
dimension. In that moment number of threads/transactions is
36 and the number of available cores is 8 so effect of trashing
begin to be dominant. But with the larger number of cores we
expect that our application will continue to scale even for the
bigger matrices.

Fig. 12. Results achieved from Gauss-Seidel application. Number of threads
is equals to the square of the matrix dimension and each thread is executing
one transaction at the time.

C. Producer/Consumer application

In the Producer/Consumer application we tested the
performance of the bounded buffer we shown in the figure 5b.
We created the application with one producer and many
consumers. We set that producer is eight time faster than
consumers and varied the number of consumer for the constant
workload produced by the producer. Results are presented in
the figures 13a and 13b.

Execution time

0

5

10

15

20

25

30

1 2 4 6 8

Number of consumers

T
im

e
in

 s
ec

o
n

d
s

(a)

Execution time pertransaction

0

5

10

15

20

25

1 2 4 6 8

Number of consumers

T
im

e
in

 m
s

(b)

Fig. 13. Results for the Producer/Consumer application. Figure a) presents the
total execution time and figure b) presents the average execution time per
transaction. Total time scales well with the increased number of cores but the
average transaction time is a little bit higher because of “notify all overhead”.

 Results show that our system scales very well and that
proposed retry feature have very big potential. Retry gives the
programmer user friendly programming model from one side
and good performance for free. With this test we also
discovered the overhead we named “notify all overhead”. It is
very similar with the notifyAll feature which exists in Java
for notification to all threads which are synchronized on the
same object. We noticed that average transactional execution
increases because when the producer stores the data in the
buffer all clients are notified and of course only one will
succeed and all others will be aborted. Figure 13b shows that
“notify all” overhead can rise with the number of cores. In our
future work we will pay more attention to lower this overhead.
Currently we propose something like the retrying transaction
queue. Idea is that when the queue is notified, it will select the
one transaction from the queue and notify it. Other will remain
to do retry without wakeup. This can be good idea in any
client/server application when we have more servers of the
same type so it is not important which will serve the request. It
is just important that the proper server queue is notified, and
that the queue delivers the request to the proper server (e.g.
load balancing).

D. Dedicated Conflict Detection Thread Results

This section presents the results of the runtime system with
the dedicated conflict detection thread (CDT). Figure 14
presents the results of the application which has n dependant
transactions and m independent transactions executed on a 2
core machine. Results with the CDT are much better for two
reasons: 1. CDT performs the eager conflict detection and 2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

there is no overhead for eager conflict detection in the running
transactions because it is performed in the dedicated thread.
The only overhead for this kind of system is overhead for
sending the message to the CDT. This issue presents
interesting tradeoffs and will be addressed in future work.

0

100

200

300

400

500

600

700

800

900

(3, 3) (3, 4) (4, 4) (5, 5) (6, 6)

Number of dependant/independatnt jobs

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
[s

]

Without CDT

With CDT

Fig. 14. Results of the test application executed on Nebelung runtime with
and without the dedicated core for the conflict detection. (n, m) stands for the
application which has n dependant transactions and m independent
transactions. System with the CDT is scaling much better.

V. CONCLUSION

In a previous paper we presented the language design for
integrating OpenMP with TM, presented solutions for some
challenges and dwelled on some open issues. In this paper, we
describe our runtime environment, Nebelung, for supporting
OpenMP-TM. We also introduced new ideas made possible by
the combined OpenMP-TM framework. One such idea is to
use separate runtime threads for Conflict Detection which are
then executed on available idle cores; we include a first-order
feasibility study to confirm the promise of the idea. Future
work consists of significantly expanding on this idea, including
a full implementation that will be supported by the Nebelung
runtime.

VI. ACKNOWLEDGEMENTS

This work is supported by the cooperation agreement
between the Barcelona Supercomputing Center – National
Supercomputer Facility and Microsoft Research, by the
Ministry of Science and Technology of Spain and the
European Union (FEDER funds) under contract TIN2004-
07739-C02-01 and by the European Network of Excellence on
High-Performance Embedded Architecture and Compilation
(HiPEAC).

REFERENCES

[1] J. Larus and R. Rajwar, “Transactional Memory”, Morgan Claypool,
2006.

[2] OpenMP Architecture Review Board, OpenMP Application Program
Interface, May 2005.

[3] T. Harris, M. Plesko, A. Shinnar and D. Tarditi, “Optimizing Memory
Transactions”, PLDI ’06: ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, June 2006.

[4] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, S. Ryu, G.L.Steele
Jr. and S. Tobin-Hochstadt. The Fortress Language Specification. Sun
Microsystems, 2005.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.
Ebcioglu, C. von Praun and V. Sarkar. X10: an Object-oriented
approach to non-uniform Cluster Computing. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems Languages and Applications (OOPSLA), pages 519-538, New
York USA, 2005.

[6] Cray. Chapel Specification. February 2005.
[7] N. Shavit and D. Touitou, "Software Transactional Memory",

Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, 1995, pp. 204-213.

[8] M. Herlihy and J. Eliot B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures”, In Proc. of the 20th Int’l Symp.
on Computer Architecture (ISCA’93), pp. 289-300, May 1993.

[9] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir and D.
Nussbaum, "Hybid Transactional Memory", Proceedings of the Twelfth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 2006.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, A. Nguyen, “Hybrid
Transactional Memory”, In the Proceedings of ACM Symp. on
Principles and Practice of Parallel Programming , March 2006.

[11] B. Saha, A. Adl-Tabatabai, Q. Jacobson. “Architectural Support for
Software Transactional Memory”, 39th International Symposium on
Microarchitecture (MICRO), 2006.

[12] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat,
C. Heriot, W. N. Scherer III, and M. F. Spear. “Hardware Acceleration
of Software Transactional Memory”, TRANSACT 2006.

[13] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé and J.
Labarta. “Nanos Mercurium: A Research Compiler for OpenMP”.
European Workshop on OpenMP (EWOMP'04). Pp. 103-109.
Stockholm, Sweden. October 2004

[14] X. Martorell, E. Ayguadé, N. Navarro, J. Corbalan, M. Gonzalez and J.
Labarta, “Thread Fork/join Techniques for Multi-level Parallelism
Exploitation in NUMA Multiprocessors”. 13th International Conference
on Supercomputing (ICS’99), Rhodes (Greece). June 1999

[15] M. Milovanović, O. S. Unsal, A. Cristal, S. Stipić, F. Zyulkyarov and
M. Valero, “Compile time support for using Transactional Memory in
C/C++ applications”, 11th Annual Workshop on the Interaction between
Compilers and Computer Architecture INTERACT-11, Phoenix,
Arizona, February 2007.

[16] A. McDonald, J. Chung, B. Carlstrom, C. Minh, H. Chafi, C. Kozyrakis
and K. Olukotun, “Architectural Semantics for Practical Transactional
Memory” in Proc. 33th Annu. international symposium on Computer
Architecture, pp. 53-65, 2006.

[17] W. Baek, C.-C. Minh, M. Trautmann, C. Kozyrakis and K. Olukotun,
“The OpenTM Transactional Application Programming Interface”. In
Proc. 16th International Conference on Parallel Architectures and
Compilation Techniques (PACT’07). Romania, September 2007.

[18] M. Milovanović, R. Ferrer, O. Unsal, A. Cristal, E. Ayguadé, J. Labarta
and M. Valero, “Transactional Memory and OpenMP”. In the
Proceedings of the Intl. Workshop on OpenMP, Beijing/China, June
2007.

[19] N. Sonmez, C. Perfumo, S. Stipic, A. Cristal, O. Unsal and M. Valero,
“unreadTVar: Extending Haskell Software transactional Memory for
Performance”. In the Proceedings of the Eight Symposium on Trends in
Functional Programming, New York/USA, April 2007.

[20] Gauss-Seidel Method for solving the linear system of equations. Online
material available at: http://en.wikipedia.org/wiki/Gauss-Seidel_method,
July 18, 2007.

[21] K. Fraser, Practical lock freedom. PhD thesis, University of Cambridge
Computer Laboratory, 2003.

