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Abstract: Time-resolved temporal point spread function (TPSF) measurement of near 
infrared spectroscopic (NIRS) data allows the estimation of absorption and reduced scattering 
properties of biological tissues. Such analysis requires an iterative calculation of the 
theoretical TPSF curve using mathematical and computational models of the domain being 
imaged which are computationally complex and expensive. In this work, an efficient 
methodology for representing the TPSF data using a superposition of cosines calculated in 
frequency domain is presented. The proposed method is outlined and tested on finite element 
realistic models of the human neck and head. Using an adult head model containing ~140k 
nodes, the TPSF calculation at each node for one source is accelerated from 3.11 s to 1.29 s 
within an error limit of ± 5% related to the time domain calculation method. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Time-resolved spectroscopy (TRS) devices [1–3] measure a temporal point spread function 
(TPSF) at several wavelengths within the near infrared window (650 – 1000 nm). The TPSF 
is also called a distribution of time of flight of photons (DTOF), which represents the DTOF 
measured in tissue at some source and detector distances using a pulsed (pico or femto 
seconds in width) light source and single photon counting time-resolved detectors placed 
usually on the tissue surface in reflectance or transmission geometry. Shape of the measured 
TPSF curve depends on both the often heterogeneous absorption μa and reduced scattering μ′s 
properties of the medium. Thus, analysis the TPSF shape allow the estimation of the optical 
properties at different wavelengths to allow recovery of concentrations of chromophores e.g. 
oxygenated and reduced hemoglobin. 

TRS has been used in many in-vivo and clinical studies. In particular it was used to assess 
condition of traumatic brain injury patients [4], brain oxygenation during carotid surgery [5] 
and for optical mammography [6] or functional brain mapping [2]. TRS has also been 
combined with diffuse correlation spectroscopy (DCS) [7, 8] for noninvasive recovery of 
hemodynamic parameters of human thyroid on healthy subjects and cancer patients [9], where 
the TRS was utilized to measure thyroid oxygenation and the optical properties needed to 
assess thyroid perfusion with the DCS technique. In all of these cases, the calculation and 
estimation of the underlying optical properties relies on some model-based parameter fitting 
algorithm, which can be computationally expensive [10]. 

To allow the fitting of the optical parameters to the measured data, the shape of the TPSF 
can be analyzed using different approaches, ranging from extracted curve parameters to full 
shape analysis. Using the normalized statistical moments of the curve where the number of 
photons (intensity), mean time of flight and variance can be used to estimate bulk or two-
homogeneous layers absorption μa and reduced scattering μ′s properties of the medium [11, 
12]. Further, an iterative curve fitting procedure can be applied to improve this recovery [13], 
which minimizes the error between the measured and modelled TPSF with respect to optical 
properties of the medium. Others have also proposed that Mellin-Laplace transform of the 
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TPSF can also be used for tomographic reconstruction of tissue absorption [14], specifically 
when concerned with changes in deep tissue where the so called ‘late-photons’ carry most of 
the information. 

The curve fitting procedure requires calculation of time-resolved data using a 
computational model of light propagation for given optical properties in an iterative manner, 
which as a consequence requires a fast and reliable model for a complex heterogeneous 
system [15, 16]. 

The gold standard of TPSF generation is the Monte Carlo (MC) method [17] as applied in 
for example layered models [18] or arbitrary heterogeneous structures represented by voxels 
or finite element meshes [19]. Despite the accuracy of the MC (the best physical 
representation of photon transport within a turbid medium [20]) and latest improvements on 
speed (graphical processing unit (GPU) accelerated MC) [21] the MC generated TPSFs will 
always be inherently slow and noisy, particularly when considering late photons, large 
source/detector separation or highly attenuating material. MC is a stochastic process where 
the TPSF noise amplitude approaches to zero when the calculation time (number of simulated 
photons) goes to infinity. Further, fast MC generation of TPSF for a complex model requires 
finely tuned parallel code executed on state of the art GPUs or a cluster of GPUs. It has been 
reported that GPU accelerated MC code executed on a single GPU will generate the time-
resolved photon fluence rate within MRI based head model (1 mm3 voxel size) in about  
1.7 min for 107 photons [21]. MC method can be used to calculate a lookup table with TPSF 
discretized against absorption and scattering. However, the resolution of recovered optical 
properties will always be limited and the lookup table should be generated for each tissue 
model separately. Thus, the lookup table approach is mainly utilized for semi-infinite or 
homogeneously layered tissue models. 

Another approach for TPSF generation is an analytical method based on diffusion 
approximation of photon transport equation [22]. The time-resolved diffusion equation 
benefits from simple analytical solutions for homogenous semi-infinite or infinite medium 
[23]. Alternatively, a complex tissue model can be described with finite element models 
(FEM) where the diffusion equation can be numerically solved for all degrees of freedom 
(mesh nodes representing spatial distribution) [24, 25] as implemented in NIRFAST software 
package used in this study (www.nirfast.org). However, this approach for time-resolved 
curves requires solving a differential equation at many time points representing the TPSF [22, 
26], typically implemented using the Crank-Nicolson approximation. In this approach, the 
number of time points define the accuracy of the TPSF and calculation speed. 

As an alternative approach to calculating the photon fluence as a function of time, Kienle 
et al. in [27, 28] used a superposition of series of solutions of diffusion equation in frequency 
domain to generate the time-resolved TPSF. This method was used for analytical solution in 
two-layered model and to date has not been investigated for more complex heterogeneous 
models based on numerical solutions. Here, it is observed that this frequency domain 
approach can be extended for complex finite element models and with appropriately limited 
frequency band used in the superposition, it may provide one of the computationally fastest 
approaches in generating time-resolved data within complex heterogeneous models. 

In this work, we present the methodology of representing TPSF by superposition of cosine 
functions calculated in frequency domain to generate the time-resolved TPSF. The method 
has been tested on heterogeneous finite element models of the human neck and head showing 
negligible loss of accuracy and a significant gain in calculation speed, as compared to 
conventional calculation in time domain. 

This work is motivated by a need of fast and reliable method of simulation of TPSFs for 
realistic human neck model and two-layered model in order to recover thyroid optical 
properties and oxygenation [9]. This algorithm has been designed to be a part of analysis suite 
of the Laser and Ultrasound Co-Analyzer for Thyroid Nodules developed under the European 
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project (LUCA, http://www.luca-project.eu) – the purpose of which is building a multi-modal 
instrument for thyroid cancer screening. 

2. Methodology 
In this section the theory of representation of time-resolved time point spread function by 
series of simulations in the frequency domain is presented. Additionally, a practical approach 
of choosing frequencies needed to accurately represent the time-resolved data is shown. 

2.1 Theory 

The time-resolved diffusion approximation of photon transport equation in an optically turbid 
medium represented by a finite element model can be expressed as: 

 ( ) ( ) ( ) ( ) ( )
( ) ( )a s

m

,1, , , ,
t

D t t S t
c t

µ
∂Φ

∇⋅ ∇Φ − Φ − = −
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r r r r r

r
 (1) 

where r is a point in R3 Euclidean space, D(r) = [3(μa(r) + μ′s(r))]−1 is the diffusion 
coefficient, μa(r) is absorption coefficient, μ′s(r) is the reduced scattering coefficient, t is time, 
Φ(r,t) is photon fluence rate (TPSF), cm(r) is speed of light in the medium which is a function 
of the medium’s refractive index n(r), rs is source location and S(rs,t) is a source term e.g. a 
pulse of light (Dirac delta δ(rs,t)) at time t=0. The TPSF Φ(r,t) can be calculated by 
numerically solving a set of differential equations as is currently implemented in NIRFAST 
software [22, 26]: 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )m a s

,
, , , .

t
c D t t S t

t
µ

∂Φ
 = ∇ ⋅ ∇Φ − Φ + ∂

r
r r r r r r  (2) 

Equation (2) can be numerically solved within a time span t ∈ [0; T] for Nt points, where the 
source term S(rs,t) represents a pulse at t = 0 and amplitude 1. 

The Dirac delta light source can be represented by superposition of infinite number of 
cosines of the same amplitude A and oscillating at infinite number of angular frequencies ω. 
For a single frequency ω, Eq. (1) can be transformed into the frequency domain using Fourier 
transform as follows: 
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where the Fourier transform  of the source term δ(rs,t) is equal to A at frequency ω and 0 
elsewhere. Using the superposition principle, Eq. (3) can be solved for an infinite number of 
sources (for infinite number of frequencies) where the right hand side will always equal A. 
Finally, infinite number of solutions in the frequency domain Φ(r,ω) can be transformed back 
into the time domain using inverse Fourier transform as follows: 

 ( ) ( ) ( )( )( ),

0

1, , d .
2

j tt e ω ωω ω
π

∞ +∠ ΦΦ = Φ∫
rr r   (4) 

Discrete representation of Eq. (4) requires reducing number of frequencies from infinity to 
some natural number Nω. 

2.2 Frequencies needed to represent time-resolved data 

Contribution of the Φ(r,ω) to the TPSF Φ(r,t) (Eq. (4)) varies with frequency ω and at some 
frequencies this contribution may be considered as negligible. Thus, the infinite angular 
frequency range ω ∈ [0; ∞) may be limited with a minor loss of information carried by 
photons traveling from the source to the detector. The lowest usable frequency ω0 can be 
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determined by the maximum observable photons travel time T. For example in time-resolved 
diffuse optical spectroscopy and for biological samples, this time is measured within a few 
nanoseconds. In practice, the time scale of TRS hardware [29] for most clinical applications 
such as human brain and breast imaging (source/detector separation of approximately 7–9 cm 
[30]) is usually t ∈ [0; 10] ns . The maximum observation time T is always assumed and 
estimated a-priori for all approaches of TPSF simulations, e.g. MC. Figure 1 shows a 
schematic representation of contributions to a TPSF curve of angular frequencies close to  
ω = π/(2T). 

 

Fig. 1. A schematic representation of contributions to a TPSF curve of angular frequencies 
close to ω = π/(2T) for maximum of a TPSF at t = 0 (a) and t = T/3 (b). T – maximum 
observable photons travel time, A – cosines amplitude. 

As shown in Fig. 1a the contributions of frequency components at frequencies ω < π/(2T) 
approach a constant value A for the entire observation window t ∈ [0; T]. Thus, these 
frequencies of ω < π/(2T) will have a low influence on the TPSF curve shape. However, the 
TPSF curve is always shifted to the right in the time axis, for source-detector separations of 
rsd > 0 as there are no instantly detected photons and the time/phase shift for frequency 
components of low ω will correspond to the maximum of the TPSF curve in such instances. 
Thus, the maximum of the TPSF curve will be located within the range of t ∈ (0; T) which 
further weakens the influence of frequencies ω < π/(2T) as shown in Fig. 1b. Considering the 
above, it is assumed that the lowest usable frequency should be set at ω0 = π/(2T). 

The highest usable frequency ωN can be defined using Nyquist theorem. That is, if the 
number of frequencies used to reproduce the TPSF curve is defined by a natural number Nω, 
the maximum usable frequency can be defined as ωN = 2Nωω0 = Nωπ/T. 

Finally, Eq. (4) can then be approximated at a point in time t by the discrete form as: 
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where ωk = k(ωN - ω0)/Nω + ω0, ω0 = π/(2T), ωN = 2Nωω0 and Nω – number of evenly spaced 
frequencies within [ω0; ωN], t ∈ [0; ∞). 

The unit of fluence in Eq. (5) is mm−2s−1. The value of Nω can be used to control relation 
between speed and accuracy of generating TPSFs with Eq. (5). This relation will be 
investigated in the next section. 

3. Validation 
In this section the new frequency based calculation of the TPSF (Eq. (5)) is evaluated against 
the traditional method (Eq. (2) – time domain) as already implemented in NIRFAST using a 
finite element models of homogenous slab, a human head and a human neck. The test was 
performed on a PC equipped with 10-core Intel Xeon E5-3660 v3 CPU working @ 2.6 GHz 
and NVidia GeForce GTX 1080 GPU with 2560 CUDA parallel processor cores. Execution 
times were averaged for 10 runs for each case. 

Equation (2) and (3) can be expressed as system of linear equations AΦ = q as shown in 
[22, 25, 26], where AN × N is a sparse matrix representing finite element model defined by N 
vertex nodes in R3 Euclidean space, qN × M is composed of M light source vectors and ΦN × M 
is the unknown photon fluence rate for M sources. In this work, the sparse matrices A and q 
are transferred to GPU memory once where the problem is solved for each source 
independently. Thus, the execution time per source decreases exponentially with number of 
simulated sources M. The execution time per source are shown where all calculations were 
carried out for M = 8 sources. 

3.1 Finite element models 

The homogenous slab (120 × 120 × 50 mm) is represented by two finite element models of 
low (LO) and high (HI) resolution meshes quantified as mean volume of tetrahedral FEM 
elements as shown in Table 1. All meshes used have a resolution that is uniform within the 
model. Optical properties of both the homogenous slabs LO and HI were set as:  
μa = 0.01 mm−1, μ′s = 1 mm−1. 

The neck model is developed using images registered with 1.5T Siemens magnetic 
resonance imager using echo planar imaging (T2-weighted) sequence (matrix 256 × 256, 
resolution 0.84 × 0.84 mm, slice thickness 0.9 mm, 88 slices). The neck volume represented 
by 88 grey-scale images has been semi-automatically segmented into 8 structures using 
NIRFASTSlicer [24] software. For the head model, MRI data from a given subject is used 
together with Statistical Parametric Mapping (SPM) [31, 32] which first allows a parametric 
segmentation of the 5 tissue types (scalp, skull, cerebrospinal fluid, gray and white matter) 
based on the pixel intensity probability function distribution. 

Table 1. Quality measures of finite element models. 

 slab LO slab HI Head Neck 
Number of nodes / - 65 959 261 433 139 845 162 390 
Number of elements / - 374 302 1 535 567 821 926 951 880 
element volume/ mm3 1.85±0.50 0.45±0.12 3.24±1.18 0.99±0.35 
mean nodal distance / mm 2.68±0.47 1.67±0.29 3.25±0.70 2.19±0.45 
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Table 2. Optical properties of the neck and head models at 780 nm [24, 33, 34]. 

Neck 

 Superficial 
tissue Muscle Bone Vein Artery Spinal 

cord 
Thyroid 
gland Trachea 

μa /mm-1 0.0140 0.0140 0.0087 0.5121 0.3804 0.0102 0.0140 0.0001 
μ′s /mm-1 0.861 0.861 0.892 0.861 0.861 1.042 0.861 0.005 

Head 
 Scalp Skull Cerebrospinal fluid Gray matter White matter 

μa /mm-1 0.017 0.012 0.004 0.018 0.017 
μ′s /mm-1 0.74 0.94 0.30 0.84 1.19 

 
The segmented neck and head volumes were transformed into finite element mesh of 

linear tetrahedrons, carried out with the NIRFASTSlicer meshing module based on 
Computational Geometry Algorithms Library [35]. Optical properties of the human neck and 
head models at 780 nm are shown in Table 2. Reduced scattering coefficient of cerebrospinal 
fluid was assessed by inverse of its thickness and set to 0.3 mm−1 as shown in [36]. This is 
about two orders of magnitude higher than values used in Monte Carlo methods [37, 38]. 
However, as argued in [36], μ′s = 0.3 mm−1 allows accurate light propagation modeling and 
satisfies diffusion approximation condition μ′s  μa. The refractive index n=1.33 is 
homogenous on all models. Quality/resolution of all finite element models is shown in  
Table 1. 

For each model, a grid of 8 sources and 9 detectors are placed at each model surface as 
shown in Fig. 2. The inter-optode distance within the grid is 13 mm. 

 

Fig. 2. Finite element models/meshes of homogenous slab (a), human head (b) and human 
neck (c). Green cubes show the 8 sources and red spheres show 9 detectors organized into a 
grid with 13 mm inter-optode distance. Models are not in scale. 
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3.2 Accuracy and speed 

Numerical solvers for the time-resolved forward problem as defined in Eq. (2) use a solution 
of the previous time points tn-s (s ≥ 1) to solve the problem at point tn. Thus, the solution 
accuracy increases for shorter integration steps Δt = tn - tn-1 = T/Nt (assuming evenly spaced 
time samples). The relationship between the accuracy and stability of the solution in time 
domain with respect to the number of time points Nt = 2k, k ∈ {6; 7; …; 10} is presented in 
Fig. 3 assuming the neck model (Fig. 2c), observation time of T = 2 ns and source-detector 
separations 29 mm and 44 mm. The relative residuals are calculated with respect to the most 
accurate TPSF generated for Nt = 210. The accuracy for the neck model is shown as an 
example since similar findings were found for the head model. The TPSF region of interest 
(ROI) is defined as a percentage of the maximum value of a TPSF, which is set to 80% on the 
leading edge and 5% on the falling edge as shown in Fig. 3 as it has been reported [40–43] 
that the 50%-100% leading edge limit and 20% – 1% falling edge limit can be used to carry 
out the procedure of curve fitting. 

 

Fig. 3. Relation between accuracy and number of time points Nt of NIRFAST time domain 
method as defined in Eq. (2). Data shown for the neck model as in Fig. 2c and two source-
detector pairs. rsd – source-detector separation of 29 and 44 mm. 80% and 5% mark TPSF 
region of interest calculated as a percentage of the maximum value of TPSF for Nt = 1024. 
Residuals are related to TPSFs calculated for Nt = 1024. 

Accuracy of the TPSF calculated in the frequency domain Eq. (5) depends on the number 
of frequencies Nω (between the lowest and highest outlined above) used to build the curve. 
The relationship between accuracy and number of frequencies Nω = 2k, k ∈ {5; 6; …; 9} is 
presented in Fig. 4 assuming the neck model (Fig. 2c), observation time T = 2 ns, which is 
always discretized into 1024 samples. The relative residuals are calculated in respect to the 
most accurate TPSF generated in time domain for Nt = 1024. The lowest usable frequency 
needed to reproduce the TPSF is set to f0 = ω0/(2π) = 1/(4T) which is equal to 125 MHz at  
T = 2 ns. The upper limit of the frequency band changes with number of frequencies Nω as 
follows: fN = ωN/(2π) = Nω/(2T) which is equal to {8; 16; 32; 64; 128} GHz at T=2 ns. 
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Fig. 4. Relation between accuracy and number of frequencies Nω of NIRFAST frequency 
domain method as defined in Eq. (5). Data shown for the neck model as in Fig. 2(c) and two 
source-detector pairs. rsd – source-detector separation of 29 and 44 mm. 80% and 5% mark 
TPSF region of interest calculated as a percentage of the maximum value of TPSF calculated 
in time domain for Nt = 1024 Residuals are related to TPSFs calculated in time domain for  
Nt = 1024. 

Accuracy of both methods Eq. (2) and (5) is compared with analytical solution [39] of 
diffusion equation assuming semi-infinite medium and Robin boundary condition to match 
NIRFAST implementation [25]. Only top surface of the FEM slab models is considered as a 
boundary. Figure 5 shows maximum and mean of absolute values of the relative residuals 
within the ROI for all unique source-detector separations rsd as in Fig. 2a. In case of the slab 
models the observation time is T = 4 ns and the analyzed number of frequencies was 
expanded to Nω = 2k, k ∈ {3; 4; …; 9}, which gives f0 = 62.5 MHz and fN ∈ {1; 2; 4; 8; 16; 
32; 64} GHz. 
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Fig. 5. Accuracy of TPSF generation with TD – time domain and FD – frequency domain 
methods using low resolution “slab LO” and high resolution “slab HI” homogenous FEM 
models. Residuals are related to analytical solution of diffusion equation within the 80%-5% 
TPSF region of interest. Nω – number of frequencies of FD method, Nt – number of time steps 
of TD method, rsd – source-detector separation. 

Figure 5 shows that the frequency domain approximation error reduces much faster as 
compared to the time domain solution. Further, the low resolution model slab LO may be 
considered as inaccurate for the short source-detector separation rsd = 13 mm as the field is 
rapidly changing near the sources and the model needs to be appropriately represented to 
ensure low numerical errors of Galerkin approximation at short source-detector separations. 
The frequency domain solution appears to be stable for all rsd values, which is not the case for 
the time domain solution. 

Table 3 shows calculation times per source of the spatial distributions of time-resolved 
photon fluence rate Φ(r,t) within the finite element models as shown in Fig. 2. The 
calculation time is linearly proportional to Nt and Nω in time and frequency domain 
respectively. As shown in Table 3, the lowest calculation time within the ± 5% error range in 
the frequency domain is ~50% lower than in the time domain. In other words, the same 
accuracy can be achieved ~2 times faster when utilizing the proposed formulation based on 
frequency decomposition. The difference in execution time between time and frequency 
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domains for the same number of instances of solving the forward problem solver (where  
Nt = Nω) is a consequence of using complex numbers in the frequency domain, where 
arithmetic of complex numbers doubles the required execution time. 

Table 3. Calculation times per source of 3D distributions of time-resolved photon fluence 
rate Φ(r,t) within the finite element models. Marked cells show the lowest calculation 

time within ± 5% relative error. TD – time domain, FD – frequency domain, Nt – number 
of time point in TD and Nω – number of frequencies in FD. 

Nt or 
Nω 

 calculation time per source /s 
 slab LO  slab HI  head  neck 
 TD FD  TD FD  TD FD  TD FD 

32  - 1.03  - 3.69  - 1.29  - 4.23 
64  1.69 2.05  4.58 7.39  1.56 2.59  4.50 8.47 
128  3.38 4.11  9.16 14.77  3.11 5.17  8.99 16.93 
256  6.76 8.22  18.33 29.54  6.22 10.34  17.80 33.87 
512  13.52 16.44  36.66 59.08  12.44 20.68  35.99 67.74 

1024  27.03 -  73.32 -  24.88 -  71.99 - 

 
Table 4 shows errors of recovered optical parameters using slab LO model and both 

methods at Nt = 128 time points and Nω = 32 frequencies respectively. Input data was 
generated with analytical solution of diffusion equation and source-detector separation  
rsd = 29 mm. Observation time T was calculated for each TPSF curve as 3 times the mean 
time of flight of photons (T = 3⟨t⟩). A shot noise was added to the data assuming that each 
TPSF curve is built with 107 photons. The nonlinear curve fitting algorithm (interior-
reflective Newton method) was used which always started at μa = 0.1 mm−1, μ′s = 2 mm−1 and 
was set with error function tolerance and step tolerance of 10−6 and the following constrains: 
μa ∈ [0; 0.1] mm−1, μ′s ∈ [0.05; 2] mm−1. Results show similar recovery errors for both 
methods. The fitting algorithm converged within the same number of iterations for both 
methods (5 to 10 depending on assumed optical properties). 

Table 4. Error of optical parameters recovery using slab models and TD – time domain, 
FD – frequency domain methods at Nt = 128 time point and Nω = 32 frequencies 

respectively. 

semi-infinite medium 
 error of recovered parameters /% 

 μa  μ′s 

μa /mm-1 μ′s /mm-1  TD FD  TD FD 

10-4 1  139.69 85.29  10.94 5.62 
0.01 1  -4.04 -3.65  0.99 -1.42 
0.05 1  -14.43 -13.96  -17.17 -18.65 
0.01 0.5  -5.12 -4.50  0.40 -1.52 
0.01 1.5  -5.62 -4.90  -1.31 -2.77 

 
The heterogeneous finite element models in Fig. 2 consist of highly absorbing structures 

(veins, arteries) and low absorbing and scattering regions (trachea, cerebrospinal fluid). As a 
consequence the condition number of the forward problem (AΦ = q) described by N × N 
sparse matrix A [25] is high, where N is the number of finite element mesh nodes. However, 
in this work iterative solvers are deployed, using linear system preconditioning as follows: 

 T Tand ,= =MAM y Mq Φ M y  (6) 
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where ΦN × 1 is the unknown photon fluence rate, qN × 1 is a light source vector and MN × N is 
factorized sparse preconditioner, which satisfies following conditions: MAMT ≈ I and  
MTM ≈ A−1. Equation (6) is then solved using bi-conjugate gradient stabilized iterative solver 
[44]. Table 5 compares execution time per source as a function of different number of mesh 
nodes. The condition numbers is the 1-norm estimate (MATLAB ‘condest’ function). As 
shown in Table 5 the execution time is also related to the condition number of the 
preconditioned system MAMT. The Factorized Sparse Approximate Inverse preconditioning 
method has been utilized in this work and modified to be used in massive parallel calculation 
environment. The parallel preconditioning is extremely fast (few milliseconds) when 
compared to the time needed to solve Eq. (6). However, it does not reduce the problem 
condition number linearly in relation to any of parameters presented in Table 5. 

Table 5. Execution time per source per mesh node for the finite element models. TD – 
time domain, FD – frequency domain. 

 slab LO slab HI head neck 

#nodes / - 65 959 261 433 139 845 162 390 
#nonzero elements of A / - 967 413 3 909 353 2 093 985 2 427 466 
A condition number (1-norm) / - 190.2 465.5 19 946.5 88 537.5 
MAMT condition number (1-norm) / - 91.5 217.7 153.5 7 550.5 
#iterations of forward solver / - 28 44 23 74 
execution time per node / μs, TD @ Nt = 128 51.24 35.04 22.24 55.36 
execution time per node / μs, FD @ Nω = 32 15.62 14.12 9.22 26.05 

4. Discussion and conclusions 
This work is motivated by a need of fast analysis of time-resolved data using realistic, 
heterogeneous tissue models. The time-resolved near infrared spectroscopic model built on 
the frequency domain approximation executed on a (GPU) accelerated platform opens a path 
to a reliable real-time curve fitting analysis of time-resolved data for heterogeneous tissue 
models. 

The proposed method provides the most accurate result when the time T is linked to the 
expected region of interest, e.g. by using a priori knowledge of the source-detector distance 
rsd and/or scattering and absorption properties. It is proposed that time T can be set to T = 3⟨t⟩. 
The mean time of flight of photons ⟨t⟩ can be approximately assessed as ⟨t⟩ = DPF⋅rsd⋅n/c0 or 
more precisely ⟨t⟩ = rsd

2/[2c0n−1D0.5(rsdμa
0.5 + D0.5)] [11] when optical properties can be 

assumed a priori. c0 / mm⋅s−1 is the speed of light in vacuum, n / - is the medium refractive 
index, rsd / mm is investigated source-detector separation, μa / mm−1 is the absorption 
coefficient, D / mm is the diffusion coefficient and the differential pathlength factor (DPF / -) 
as reported in [45, 46] can be set to 6 for a human head. The DPF depends on for example 
age [47] and should be used with care. If a better representation of late photons fluence rate is 
needed, that is the 80%-5% region is changed to 80%-1% region or more, the number of 
frequencies Nω should be increased. The 80% limit cuts off the early photons where the 
diffusion approximation does not represent the light transport well. The late photons limit is 
often related to the noise level of measured curve and may vary between 20% – 1% [40–43]. 

The proposed methodology highlights which frequency components of modulated or 
pulsed light sources carry usable information about tissue hemodynamic properties. The 
usable frequency band for tissue models as described in this work can be limited to [0.125; 8] 
GHz. It has been shown in [48] that for a multi-frequency diffuse optical tomography 13 
frequencies between 20 MHz and 500 MHz can be used to improve tomographic 
reconstruction. However, considering for example a 30 mm source-detector separation and 
the neck model, frequencies lower than 125 MHz can carry redundant information as shown 
in Fig. 1. Low frequencies will not affect the shape of the TPSF significantly since cosines of 
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low frequencies will be almost flat curves within the observation window [0; T]. The upper 
frequency limit ωN = 2Nωω0 is defined by the minimum number of frequencies Nω = 32 
required to reproduce the TPSF. The frequency band utilized will change with source-detector 
separation and tissue scattering. Other factors, which influence the TPSF (including tissue 
absorption), will have lower impact on the frequency band. 

Theoretically, it is possible to recover a distribution of time of flight of photons using a 
frequency domain instrument capable of measurements on 32 frequencies within [0.125; 8] 
GHz frequency band. It has been discussed in [49] that the frequency domain measurement 
cannot easily differentiate between long pathlength photons, which is understandable since 
the time of flight of a photon through a tissue should be lower than the period of a modulated 
source to avoid phase overlap (phase shift ≥ 2π). However, this restriction does not influence 
the proposed superposition of frequency components which is independent of the phase shift 
overlap. 

All calculations were carried out with graphical processing unit (GPU) accelerated 
NIRFAST version. Speed of GPU parallel solvers is highly dependent on hardware. The 
execution time shown in this paper can be reduced using more efficient or multiple GPUs. 
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