
FEMPAR: Scaling Multi-Level Domain Decomposition

up to the full JUQUEEN supercomputer

Santiago Badia, Alberto F. Mart́ın, and Javier Principe

Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE),

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Description of the Code

FEMPAR [1], developed by the members of the LSSC team at CIMNE, is a parallel hybrid
OpenMP/MPI, object-oriented framework for the massively parallel Finite Element (FE) sim-
ulation of multiphysics problems governed by PDEs. It provides tools for the numerical simu-
lation of a wide range of different physical phenomena, including compressible/incompressible
flows, magnetics, solid mechanics, fluid-structure interaction, or thermal coupling. FEMPAR
has been designed to tackle multiphysics, nonlinear, and multiscale problems. For such prob-
lems, it makes use of scalable implicit massively parallel solvers that are based on Balancing
Domain Decomposition by Constraints (BDDC) preconditioning ideas [2, 3], combined with
fully-coupled block LU preconditioning [4].

In particular, within the domain decomposition kernel, FEMPAR provides a novel, fully-
distributed, communicator-aware, recursive, and inter-level overlapped implementation of the
MultiLevel BDDC (MLBDDC) preconditioner [5]. Figure 1 depicts the global structure of com-
putation and communication underlying this kernel. This code weakly scales up to 458,752
JUQUEEN cores for coercive three-dimensional problems (the Laplacian and Linear Elasticity
problems). The largest problem solved with FEMPAR up to now involved 30 billion un-
knowns. FEMPAR is released under the GNU GPL v3 license, and is more than 200K lines
of Fortran95/2003/2008 code long.

As an application example, Figure 2 illustrates the vorticity isosurfaces for the incompressible
Taylor-Green vortex problem at Re = 1600 at four different time steps, starting with the
initial condition at the top-left corner and evolving in time from top to bottom, and left
to right. These simulation results were obtained with FEMPAR by means of a segregated
velocity/pressure algorithm, that involves a pressure Poisson MLBDDC solver per time step.

Results

Before the workshop, we could already scale the MLBDDC solver up to the full JUQUEEN
supercomputer. In particular, a 3-level BDDC preconditioner, supplied either with corner
and edges, or corner, edge and face constraints, was successfully applied to the Laplacian and
Linear elasticity discrete problems with excellent weak scalability results. These experiments
were performed with 16 MPI tasks/node, and 1 OpenMP thread/MPI task, so that we were
not actually taking any profit from the hardware threads of the IBM PowerPC A2 cores. Given
such limitation, the main goal during the workshop was to explore approaches that enable the
exploitation of hardware multi-threading.

23

24 JUQUEEN Extreme Scaling Workshop 2015

.....

co
re

 1

co
re

 2

co
re

 3

co
re

 4

co
re

 P 1

1st level MPI comm

.....

.....

co
re

 1

co
re

 2

co
re

 P 2

2nd level MPI comm

.....

3rd level
MPI comm

co
re

 1

parallel (distributed) global communication

global communication

.....

time

Figure 1: Computation and communication structure of the fully-distributed, communicator-
aware, recursive, and inter-level overlapped implementation of the MLBDDC pre-
conditioner.

Although FEMPAR supports hybrid MPI/OpenMP execution, it (currently) only exploits
OpenMP for some phases during the computation. In particular, in the solution of local Dirich-
let/Neumann problems (at each intermediate level), and in the solution of the coarsest-grid
problem. For the solution of such problems on JUQUEEN, FEMPAR relies on HSL MA87 [6],
a numerical library for the multi-threaded sparse direct solution of SPD linear systems. Al-
though for “large” load per core these kernels consume the bulk of the computation, there is
intrinsically a serial bottleneck for increasing number of threads due to the parts which are not
parallelised. On the other hand, arithmetic complexity of sparse direct methods is well known
to grow as O(n2) for 3D problems, with n being the size of the coefficient matrix. These two
factors render slower (for same global problem size) those hybrid configurations which use less
MPI tasks than physical cores (and more OpenMP threads).

Given such scenario, we have two possible (efficient) approaches for the exploitation of hard-
ware threads. On the one hand, a hybrid MPI/OpenMP approach with 16 MPI tasks/node,
and 2/4 threads/MPI task (core). On the other hand, a pure MPI approach with 32 or 64 MPI
tasks/node. The first approach, although convenient, could not be explored during the work-
shop, due to a memory related issue that is still under investigation with the help of JSC staff.
In particular, heap and mmap system memory consumed by HSL MA87 with 2/4 OpenMP
threads significantly increases with respect to the 1 thread case. Besides, this increase is not
reproducible, and may become “large” depending on how the tasks performed by the threads
are scheduled/synchronised by the underlying software/hardware stack. This prevents the
code from solving problems with a load close to the 1 GB/core limit, precisely those loads for
which we expect the largest performance benefit from the exploitation of hardware threads via

FEMPAR 25

Figure 2: Vorticity isosurfaces for the incompressible Taylor-Green vortex problem at Re =
1600.

OpenMP.

In light of these memory issues, we decided to put on hold the hybrid MPI/OpenMP ap-
proach, focusing ourselves on the pure MPI approach. Although we also performed experiments
with 32 MPI tasks/node, the results with 64 MPI tasks/node confirm a higher profit from the
hardware threads in terms of aggregated efficiency. The usage of 64 MPI tasks/node implies
a very moderate amount of memory of 256 MB/MPI task, and a 4-fold increase in the coarse-
grid problem size to be solved at each level of the hierarchy. In order to cope with a smaller
load per core, and larger coarse-grid problems, we decided to add an additional level in the
preconditioning hierarchy, and study a 4-level BDDC preconditioner. In particular, Table 1
reports the configuration of the experiment that we performed with 64 MPI tasks/node, with
the number of MPI tasks (subdomains) at each level, and the loads per MPI task (subdomain)
tested. We applied this algorithm to the Laplacian problem discretised with Q1 FEs, and
studied the weak scalability of the code on JUQUEEN with the BDDC space supplied with
either corner and edge (ce), or corner, edge, and face (cef) constraints, for 3 different loads
per core on the first level. To keep the presentation simpler, we will focus on the results that
we obtained with the 4-level MLBDDC(cef) solver, with the largest load of 253 FEs/core.

A first bottleneck that we had to face was related to the initialisation stage of the code. In
such stage, the MPI tasks in the global communicator are split into two disjoint subcommuni-
cators via a call to MPI Comm split. One of these two includes the MPI tasks in the first level
of the hierarchy, while the other one those which belong to the rest of levels (2nd, 3rd, and 4th
in Table 1). With default settings, MPI Comm split was scaling as O(P 2), with P being the
number of MPI tasks in the global communicator. The workaround recommended by JSC staff
was to activate the PAMID COLLECTIVES MEMORY OPTIMIZED environment variable. This set-up

26 JUQUEEN Extreme Scaling Workshop 2015

Table 1: Configuration of the 4-level BDDC preconditioner for the FEMPAR experiments with
64 MPI tasks/node performed during the workshop.

Level # MPI tasks FEs/core

1st 592.7K 884.7K 1.26M 1.73M 103/203/253

2nd 9.26K 13.8K 19.7K 64K 43

3rd 343 512 729 1K 33

4th 1 1 1 1 n/a

615K 918K 1280K 1795K

switches to a different algorithm within the underlying message-passing stack. As shown in
Table 2, it also has a tremendous positive impact on performance/scalability, at the price of a
moderate increase in memory consumption.

Table 2: Performance/scalability of MPI Comm split and average memory/1st level MPI task
consumed by the 4-level BDDC(cef) solver, with the largest load of 253 FEs/core,
once the preconditioner is set-up.

Default settings PAMID ... OPTIMIZED

bg size P Time (sec.) Mem. (MB) Time (sec.) Mem. (MB)

9609 615K n/a 115.3 2.46 127.8
14344 918K n/a 122.5 3.92 143.3
20002 1280K 365 131.7 5.74 163.2
28047 1795K 862 n/a 8.09 187.8

Once the bottleneck related to MPI Comm split was overcome, we proceeded with the actual
weak scalability test. Table 3 reports the number of PCG solver iterations and total computa-
tion time in seconds for the 4-level BDDC(cef) solver, when applied to the discrete Laplacian
problem using 64 MPI tasks/node, and the largest load of 253 FEs/core. Total computation
time includes both preconditioner set-up and the PCG phase. These results confirm remark-
able scalability for the approach that we pursue for the extreme scale implementation of the
MLBDDC preconditioner. In particular, with a 4-level BDDC(cef) preconditioner, we were
already able to strike a balance such that computation/communication related to coarser-grid
levels in the hierarchy (i.e., 2nd, 3rd and 4th in Table 1) are completely absorbed (i.e., masked)
by the finest-grid level duties (i.e., 1st level in Table 1) due to the effect of inter-level over-
lapping (see Figure 1). Besides, on smaller scale test cases, we compared the computation
times of the codes using 16 and 64 MPI tasks/node (with the same number of MPI tasks/level
in both cases), confirming an approximately 50% saving in aggregated efficiency by the ex-
ploitation of hardware multi-threading (i.e., the computation time with 64 MPI tasks/node
was approximately twice as much as the one with 16 MPI tasks/node).

Finally, we would like to remark that we expect that the achievements resulting from our
participation in the workshop will have a high impact on the scientific computing community in
general, and in the development of fast parallel solvers tailored for FE analysis in particular [5].

FEMPAR 27

Table 3: Weak scalability for the FEMPAR 4-level BDDC(cef) solver with 64 MPI tasks/node
and the largest load of 253 FEs/core.

bg size P #PCG iterations Total time (sec.)

9609 615K 25 22.1
14344 918K 26 22.6
20002 1280K 27 22.9
28047 1795K 27 23.0

Acknowledgments

This work has been funded by the European Research Council under the FP7 Programme
Ideas through the Starting Grant No. 258443 – COMFUS: Computational Methods for Fusion
Technology. A. F. Mart́ın was also partially funded by the Generalitat de Catalunya under
the program “Ajuts per a la incorporació, amb caràcter temporal, de personal investigador
júnior a les universitats públiques del sistema universitari català PDJ 2013.” We acknowledge
GCS for awarding us access to resource JUQUEEN. We gratefully acknowledge JSC’s staff in
general, and Dirk Brömmel in particular, for their support in porting/debugging FEMPAR
and its dependencies to/on JUQUEEN.

References

[1] FEMPAR web page. https://web.cimne.upc.edu/groups/comfus/fempar.html

[2] S. Badia, A. F. Mart́ın and J. Principe. Implementation and scalability analysis of balanc-
ing domain decomposition methods. Archives of Computational Methods in Engineering.
Vol. 20(3), pp. 239–262, 2013.

[3] S. Badia, A. F. Mart́ın and J. Principe. A highly scalable parallel implementation of
balancing domain decomposition by constraints. SIAM Journal on Scientific Computing.
Vol. 36(2), pp. C190–C218, 2014.

[4] S. Badia, A. F. Mart́ın and R. Planas. Block recursive LU preconditioners for the thermally
coupled incompressible inductionless MHD problem. Journal of Computational Physics,
Vol. 274, pp. 562–591, 2014.

[5] S. Badia, A. F. Mart́ın and J. Principe. Multilevel balancing domain decomposition at
extreme scales. In preparation, 2015.

[6] J. Hogg, J. Reid and J. Scott. Design of a Multicore Sparse Cholesky Factorization Using
DAGs. SIAM Journal on Scientific Computing. Vol. 32(6), pp. 3627–3649, 2010.

https://web.cimne.upc.edu/groups/comfus/fempar.html

