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Abstract 
 

In this study we use agents’ expectations about the state of the economy to generate indicators of 

economic activity in twenty-six European countries grouped in five regions (Western, Eastern, 

and Southern Europe, and Baltic and Scandinavian countries). We apply a data-driven procedure 

based on evolutionary computation to transform survey variables in economic growth rates. In a 

first step, we design five independent experiments to derive a formula using survey variables that 

best replicates the evolution of economic growth in each region by means of genetic programming, 

limiting the integration schemes to the main mathematical operations. We then rank survey 

variables according to their performance in tracking economic activity, finding that agents’ 

“perception about the overall economy compared to last year” is the survey variable with the 

highest predictive power. In a second step, we assess the out-of-sample forecast accuracy of the 

evolved indicators. Although we obtain different results across regions, Austria, Slovakia, 

Portugal, Lithuania and Sweden are the economies of each region that show the best forecast 

results. We also find evidence that the forecasting performance of the survey-based indicators 

improves during periods of higher growth. 
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1. Introduction 

 

Agents’ expectations about the state of the economy are instrumental for economic 

modelling. Business and consumer surveys, also known as tendency surveys, are directly 

addressed to economic agents as a means to measure their expectations. Respondents are 

asked about the expected direction of change of a wide range of variables (capital 

expenditures, private consumption, exports, imports, etc.). Accordingly, survey results 

provide important information about agents’ economic expectations, allowing 

comparisons among different countries' business cycles. On the one hand, sectoral results 

of the surveys have been often used as partial indicators for the construction of more 

general aggregate economic indicators and for the estimation of macro magnitudes 

through their introduction in econometric models (Abberger, 2007; Bruestle and Crain, 

2015; Graff, 2010; Hanson et al., 2005; Lehmann and Wohlrabe, 2017; Martinsen et al., 

2014; Wilms et al., 2016). On the other hand, survey-based expectations have also been 

introduced into behavioural equations postulated by economic theory such as the Phillips 

curve and to evaluate the formation of expectations, as they provide a direct measure of 

expectations to test the rationality of agents (Altug and Çakmakli, 2016; Bovi, 2013; Jean-

Baptiste, 2012; Lee, 1994; Miah et al., 2016; Paloviita, 2006). See Pesaran and Weale 

(2006) for a review of the uses of survey data for testing and modelling of expectations. 

Survey results are available ahead of the publication of quantitative official data, 

which makes them very useful for monitoring the evolution of the economy. Nevertheless, 

the fact that survey-based expectations are qualitative in nature has centred research in 

the development of different approaches to transform survey responses into quantitative 

measures of agents’ expectations. See Driver and Urga (2004), Nardo (2003) and Pesaran 

(1987) for a review of methods for the quantification of survey results. Recent 

developments in empirical modelling have allowed to develop conversion approaches 

based on evolutionary computation. This study extends previous research by Claveria et 

al. (2016), who proposed an evolutionary-based two-step procedure to generate estimates 

of economic growth. The authors derived preliminary building blocks defined as simple 

combinations of survey variables, and then linearly combined the functions to generate 

estimates of economic growth in Central and Eastern European economies, finding that 

the forecasting performance of evolved survey-based indicators could be improved by 

designing ad-hoc quantification procedures for countries with similar characteristics. 
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These findings have led us to use evolutionary computation to generate indicators of 

economic growth that combine different survey variables of 26 European countries 

grouped into five major European regions (Western, Eastern, and Southern Europe, and 

Baltic and Scandinavian countries). First, we design five independent experiments that 

link survey expectations to economic growth, limiting the preliminary functions to the 

main mathematical operations with the aim of facilitating the implementation of the 

evolved economic indicators. Once we obtain the optimal combination of survey 

variables that best replicates the evolution of economic activity in each region, we rank 

the expectations according to the relative weight of each one in the evolved indicators. In 

a second step, we assess the out-of-sample forecast accuracy of the obtained economic 

indicators country by country. 

Some of the features of empirical modelling are particularly indicated to deal with the 

problem at hand. First, empirical modelling is especially suitable for finding patterns in 

large data sets with little or no prior information about the system. Second, empirical 

modelling allows us to simultaneously evolve both the structure and the parameters of the 

model without imposing any assumptions regarding agents’ expectations. In a recent 

study, Lahiri and Zhao (2015) found significant improvements in the forecasting 

performance of quantified expectations when relaxing the assumptions of quantification 

methods of qualitative survey data. 

The empirical modelling approach applied in this research is based on symbolic 

regression (SR) via genetic programming (GP). While SR is a modelling approach 

characterised by the search of the space of mathematical expressions that best fit a given 

dataset, GP is a soft computing search technique for problem-solving (Cramer, 1985). GP 

is based on the implementation of genetic algorithms (GAs), which are a specific type of 

evolutionary algorithm (EA). Evolutionary computation can be regarded as a subfield of 

artificial intelligence, and is being increasingly applied to automated problem solving in 

economics. 

The main aim of this study is twofold. On the one hand, we implement GP to find the 

optimal combinations of survey expectations to forecast economic growth at a regional 

level, restricting the integration schemes to the main four mathematical operations so as 

to obtain easily replicable expressions. This allows us to rank survey variables according 

to their predictive capacity. On the other hand, we assess the forecasting performance of 

the evolved economic indicators in each country and compare it to a benchmark model. 
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The structure of the paper is as follows. The next section reviews the existing literature. 

In Section 3 we present the methodological approach, describing the data and the 

experimental set-up. Empirical results are provided in Section 4. Finally, conclusions are 

drawn in Section 5. 

 

 

2. Literature review 

 

Economic expectations have been widely studied (Pesaran, 1987; Visco, 1984; Wren-

Lewis, 1986). Tendency surveys ask respondents whether they expect a variable to rise, 

to remain constant, or to fall. The relationship between quantitative data and survey 

results was first formalised by Anderson (1952), who regressed the actual average 

percentage change of an aggregate variable on the percentage of respondents expecting a 

variable to rise and to fall. Carlson and Parkin (1975) developed the theoretical 

framework for quantifying survey expectations by assuming that respondents report a 

variable to go up if the mean of their subjective probability distribution lies above a 

threshold level, also known as indifference interval (Theil, 1952). 

This relationship has been also explored by matching individual responses with firm-

by-firm realisations, both empirically (Lahiri and Zhao, 2015; Lui et al., 2011a, b; 

Mitchell et al., 2002, 2005a, b; Mokinski et al., 2015; Müller, 2010), and experimentally 

via Monte Carlo simulations (Claveria et al., 2006; Nardo, 2003). Common (1985) used 

experimental expectations to test the rational expectations hypothesis. Muth (1961) 

assumed that rationality implied that expectations had to be generated by the same 

stochastic process that generates the variable to be predicted. While Common (1985) 

rejected the presence of rational agents, Miah et al. (2016) have recently found survey 

expectations in 18 emerging economies to be mostly unbiased and efficient. Simulation 

experiments have also been used to assess the forecasting performance of different 

quantification methods of survey expectations (Claveria, 2010; Löffler, 1999; Nardo and 

Cabeza-Gutés, 1999; Terai, 2009). 

The link between survey expectations and quantitative data at the aggregate level has 

been further and widely investigated (Abberger, 2007; Balcombe, 1996; Batchelor, 1981, 

1982, 1986; Bennett, 1984; Bergström, 1995; Berk, 1999; Białowolski, 2016; Bovi, 2016; 

Breitung and Schmeling, 2013; Claveria et al., 2007; Franses et al., 2011; Ghonghadze 

and Lux, 2012; Graff, 2010; Guizzardi and Stacchini, 2015; Jonsson and Österholm, 



5 

 

2011, 2012; Lacová and Král, 2015; Lahiri and Teigland, 1987; Maag, 2009; Martinsen 

et al., 2014; Mittnik and Zadrozny, 2005; Nolte and Pohlmeier, 2007; Paloviita, 2006; 

Pesaran, 1985; Robinzonov et al., 2012; Seitz, 1988; Smith and McAleer, 1995; 

Vermeulen, 2014). These studies use a wide range of econometric techniques, but none 

of them assesses the relationship between both types of data by means of evolutionary 

methods. 

In this study we fill this gap by linking survey data and economic growth in a SR 

setting solved by means of evolutionary computation. This approach is based on the 

implementation of GAs, which adopt Darwinian principles of the theory of natural 

selection in the context of expensive optimisation (Fogel et al., 1966). GAs are the most 

common type of EA, and were initially proposed by Holland (1975). GP allows the model 

structure to vary during the evolution, which makes it particularly indicated for non-linear 

and empirical modelling. See Banzhaf et al. (2008), Dabhi and Chaudhary (2015) and 

Poli et al. (2010) for a review of the state of the art in GP. 

Most economic applications of evolutionary computing are in finance (Chen and Kuo, 

2002; Fogel, 2006; Goldberg, 1989). GAs have been used to predict the financial failure 

of firms (Acosta-González and Fernández, 2014), to explain the 2008 financial crisis 

(Acosta-González et al., 2012), to model exchange rates (Lawrenz and Westerhoff, 2003), 

to evaluate the convergence to the rational expectations equilibrium (Maschek, 2010), to 

optimize the signals generated by technical trading tools (Thinyane and Millin, 2011), to 

forecast stock price trends in Taiwan (Wei, 2013), etc. See Drake and Marks (2002) for a 

review of the applications of GAs in financial forecasting. 

Regarding GP, Vasilakis et al. (2013) proposed a GP-based technique to predict 

returns in the trading of the euro/dollar exchange rate. GP has also been applied to to 

model short-term capital flows (Yu et al., 2004), to forecast exchange rates (Álvarez-Díaz 

and Álvarez, 2005), and for stock price forecasting (Chen et al., 2008; Kaboudan, 2000; 

Larkin and Ryan, 2008; Wilson and Banzhaf, 2009). Wilson and Banzhaf (2009) 

compared a developmental co-evolutionary GP approach to standard linear GP for 

interday stock prices prediction. Alexandridis et al. (2017) have recently compared the 

forecasting performance of GP in the context of weather derivatives pricing with other 

state-of-the-art machine learning algorithms and classic linear approaches, finding that 

non-linear methods outperformed the alternative linear models significantly. 

Up until now there have been very few applications of GP in macroeconomics. The 

first GP application is that of Koza (1992), who used GP to solve a SR problem designed 

http://scholar.google.es/citations?user=ICWc5CwAAAAJ&hl=es&oi=sra
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to reassess the exchange equation, relating the price level, gross national product, money 

supply, and the velocity of money. More recent macroeconomic applications of GP have 

been used with forecasting purposes (Chen et al., 2010; Duda and Szydło, 2011). Ferreria 

(2011) developed a version of GP known as gene expression programming (GEP). 

Recently, Peng et al. (2014) proposed an improved GEP algorithm especially suitable for 

dealing with SR problems. Gandomi and Roke (2015) compared the forecasting 

performance of artificial neural network models to that of GEP techniques. 

SR is an empirical modelling technique used to construct regression models. Given a 

predetermined set of operations and functions, SR searches appropriate models from the 

space of all possible mathematical expressions that best fit the data. Zelinka et al. (2005) 

introduced analytical programming in order to synthesise suitable solutions in SR. 

Given its versatility, SR has been increasingly used in different areas (Barmpalexis et 

al., 2011; Ceperic et al., 2014; Sarradj and Geyer, 2014; Vladislavleva et al., 2010; Wu et 

al., 2008; Yang et al., 2015; Yao and Lin, 2009; Zameer et al., 2017), but there have been 

very few SR applications in macroeconomics. Claveria et al. (2016) implemented SR via 

GP to derive a set of building blocks used to estimate economic activity. Kľúčik (2012) 

used SR to estimate total exports and imports to Slovakia. Kotanchek et al. (2010) 

implemented SR via GP to predict economic activity. By means of SR, Kronberger et al. 

(2011) identified interactions between economic indicators in order to estimate the 

evolution of prices in the US. The authors suggested using SR for the exploration of 

variable interplay when approaching complex modelling tasks, as it provides a quick 

overview of the most relevant interactions and can help to identify new unknown links 

between variables. 

In this study we design five independent SR experiments and apply GP in order to 

find the optimal combinations of survey expectations that best fit the actual evolution of 

economic activity in each region. We also asses the forecast accuracy of the obtained 

evolved economic indicators and compare it with several benchmarking models. 

 

 

3 Data and Methodology 

 

In this study we use SR via GP to formalize the optimal interactions between survey 

variables that best allow to predict economic growth, restricting them to the main 

mathematical operations (addition, subtraction, multiplication, and division). In order to 
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do so, we need to combine two types of information: qualitative survey expectations and 

quantitative official statistics from 2000:Q2 to 2016:Q3. Regarding the former, we make 

use of survey data on expectations from the World Economic Survey (WES) carried out 

quarterly by the Ifo Institute for Economic Research. As a proxy of economic activity we 

use the year-on-year growth rates of the Gross Domestic Product (GDP) retrieved from 

the Organisation for Economic Co-operation and Development (OECD) 

(https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart). 

The analysis is carried out for 26 European economies grouped in five regions based 

on the criteria used for statistical processing purposes by the United Nations Statistics 

Division. As a result, Austria, Belgium, France, Germany, Ireland, the Netherlands and 

the United Kingdom (UK) are grouped as Western Europe (1); Bulgaria, the Czech 

Republic, Hungary, Poland, Romania and the Slovak Republic as Eastern Europe (2); 

Croatia, Greece, Italy, Portugal, Slovenia and Spain as Southern Europe (3); Estonia, 

Latvia and Lithuania as the Baltic countries (4); Denmark, Finland, Norway and Sweden 

as the Scandinavian countries (5). 

 

Table 1. Survey variables 

Judgements about the Present  

economic situation 
Overall economy itX1  

Capital expenditures itX 2  

Private consumption itX 3  

Perceptions about the Economic situation 

compared to last year 

Overall economy itX 4  

Capital expenditures itX 5  

Private consumption itX 6  

Expectations about the Economic situation 

and foreign trade for the next 6 months 

Overall economy itX 7  

Capital expenditures itX8  

Private consumption itX 9  

Volume of exports itX10  

Volume of imports itX11  

Trade balance itX12  

 

In Table 1 we present the twelve survey variables used in the study, denoted as itX , 

where i refers to each country and t to the time period. Survey variables can be divided in 

judgements, perceptions and expectations, depending on whether they refer to the 

https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart
https://en.wikipedia.org/wiki/United_Nations_Statistics_Division
https://en.wikipedia.org/wiki/United_Nations_Statistics_Division
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expected value in the present, in the present compared to last year, or for the next six 

months. See Kudymowa et al. (2013), Hutson et al. (2014), and Garnitz et al. (2015) for 

an appraisal of the WES data. 

By means of GP we evolve a symbolic expression for each region combining the 

different survey variables for each country until a stopping criterion is reached. Regarding 

this criterion, it can either be a predetermined value of the fitness function or a given 

number of generations. As there is a trade-off between accuracy and simplicity, we have 

chosen a maximum number of 50 generations as as stopping criterion. In Table 2 we 

summarize the steps for implementing the experiment in each of the regions. 

 

Table 2. GP implementation – Steps 

1. Creation of an initial population of programs 50,000 

2. Evaluation of fitness for each program Mean absolute error (MAE) 

3. Selection of a reproduction strategy Tournament method (size 3) 

4. Application of genetic operators Mutation probability 0.25 

5. Determination of constants Automatically generated 

6. Creation of a new population Max. generations 150 

 

Genetic operators (crossover and mutation) are applied to the parents selected on the 

basis of the fitness function. Crossover consists on the recombination of randomly chosen 

parts of parents, while mutation on randomly altering a part of a parent. Consequently, 

the fitness of the population increases generation after generation. The output of this 

process is a set with the best individual functions from all generations for each region. In 

this study we have used the open source Distributed Evolutionary Algorithms Package 

(DEAP) framework implemented in Python (Fortin et al., 2012; Gong et al., 2015). 

The obtained symbolic expressions are then used to generate out-of-sample forecasts 

of economic growth in all countries. To evaluate the performance of the evolved 

economic indicators we compute the accuracy of the forecasts and we compare it to that 

of the predictions obtained with both naïve and autoregressive (AR) time series models 

used as a benchmark. 

 

 

4 Results 

 

In this section we first present the results of the different experiments undertaken for each 

region (R=1, 2, 3, 4, 5) for the in-sample period (2000:Q2 to 2014:Q1). The output,
itRy ,ˆ , 
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is the evolved expression obtained in each region, formed by the optimal combination of 

survey variables for each set of countries. The following evolved symbolic expressions 

can be regarded as survey-based indicators of economic activity for each region: 
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We can observe that variable itX 4  (perception of the overall economic situation 

compared to last year) is by far the variable that more frequently appears in the symbolic 

expressions, being present in all five evolved indicators. The second most frequent 

variables is itX 3 , which refers to the judgement about the present situation of private 

consumption. The expectations about the future are the variables with a lower weight, 

being itX 7  and itX8  (expectations for the next six months about the overall economy and 

capital expenditures respectively) the only variables that do not appear in any of the 

regions. Klein and Özmucur (2010) analysed the role of survey expectations in 26 

European countries and found that he question related to production expectations was 

more useful in improving the forecasting performance than the aggregated confidence 

and sentiment indicators. 

Given that itX 4  and itX 3  seem to be the most relevant survey variables, we repeated 

the five experiments using only those two variables, obtaining the following evolved 

symbolic expressions: 

itit
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Next, we generate forecasts of GDP growth using both sets of evolved indicators and 

evaluate their predictive performance in an out-of-sample forecasting comparison for the 

period 2014:Q2 to 2016:Q3. With this aim we compute several measures of prediction 

accuracy. First, the the mean absolute error (MAE), the root mean square error (RMSE), 

and the mean absolute percentage error (MAPE) in order to assess the predictive content 

in terms of forecast accuracy. 

Table 3 summarises the information of the different accuracy measures and the 

change in precision resulting from the use of the indicators of the second set of 

experiments. The best forecasting performance is obtained for Austria and the UK in 

Western Europe, for Slovakia in Eastern Europe, for Portugal in Southern Europe, and 

for Lithuania in the Baltic countries. If we average the results by region, we obtain the 

best results for the Baltic countries. These results are in line with those of Claveria et al. 

(2017), who in a similar experiment obtained the lowest MAE and RMSE values for 

Austria, Belgium, Bulgaria, Estonia, and Lithuania. 

By using only itX 4  and itX 3  as the input variables, we find a deterioration of 

predictive accuracy in most countries, with the exception of Belgium, Germany, Italy, the 

Netherlands and the UK, where the three accuracy measures (MAE, RMSE and MAPE) 

decrease with respect to the ones obtained in the first set of experiments. 

Finally, we compare the forecast accuracy of the evolved economic indicators 

obtained by means of all survey variables to the benchmark models. With this aim, we 

compute the mean absolute scaled error (MASE) and the percentage of periods with lower 

absolute error (PLAE) to compare the forecasting performance to the benchmarks. 

Let us denote ty  as the actual value, and tŷ  as forecast at period t , nt ,,1  . 

Forecast errors can then be defined as ttt yye ˆ . We have two competing models A and 

B, where A refers to the forecasting model under evaluation and B stands for benchmark 

model. Given that there is a delay of more than a quarter between the publication of 

official quantitative data with regard to survey data, in this study we use two-step ahead 

naïve forecasts as a baseline. The MASE can then be obtained as the mean of the absolute 

value of the scaled error tq : 
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tq   mean  MASE   where 
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The MASE, proposed by Hyndman and Koehler (2006), allows to scale the forecast 

errors by the mean absolute in-sample errors obtained with a benchmark model. This 

statistic presents several advantages over other forecast accuracy measures. On the one 

hand, it is independent of the scale of the data. On the other hand, it is easy to interpret: 

values less than one indicate that the average prediction computed with the benchmark 

model is worse than the estimates obtained with the proposed method.  

With the aim of finding an easy to interpret measure to compare the forecast accuracy 

between two models, Claveria et al. (2015) proposed the PLAE statistic, which is also a 

dimensionless measure. The PLAE is based on the CJ statistic proposed by Cowles and 

Jones (1937) for testing market efficiency and the ‘percent better’ measure proposed by 

Makridakis and Hibon (2000) to compare the forecast accuracy of the models to a random 

walk. The PLAE consists on a ratio that calculates the proportion of periods in which the 

model under evaluation obtains a lower absolute forecasting error than the benchmark 

model: 

n
PLAE

n
t t  1  where 
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λ   (12) 

When comparing the obtained out-of-sample forecasts with the models used as a 

benchmark (last two columns of Table 3), MASE values show that in the case of Germany, 

Ireland, Italy and Greece, the forecast accuracy of the evolved indicators does not improve 

that of the in-sample average prediction of the naive method. The PLAE values obtained 

in these four countries also highlight that the percentage of out-of-sample periods in 

which the proposed regional indicator generates lower absolute forecasting errors is very 

low. Conversely, the high PLAE values obtained for both the Naïve method and the AR 

model for Croatia, Spain, Lithuania and Sweden are indicative of the good forecasting 

performance of the generated indicators for these countries. In most cases, the PLAE 

values obtained for both benchmarks are very similar, with the exception of Bulgaria or 

Slovakia, where the relative performance of the AR model improves. In Fig. 1 we 

graphically compare actual and predicted economic growth. 
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Table 3. Out-of-sample forecast accuracy – SR indicators vs. benchmark models 

 
SR indicators 

with all variables 

SR indicators 

with just itX 3  and itX 4  
Benchmark models 

       Naïve AR 

 MAE RMSE MAPE MAE RMSE MAPE MASE 
PLAE

(%) 

PLAE

(%) 

Western 

Europe 
2.554 3.140 0.761 2.482 3.017 0.753 0.972 27% 21% 

Austria 0.498 0.581 0.663 0.761 0.835 1.059 0.264 50% 40% 

Belgium 0.952 1.072 0.672 0.793 0.853 0.562 0.543 10% 10% 

France 0.818 0.926 0.918 1.156 1.178 1.366 0.492 20% 20% 

Germany 1.900 1.964 1.317 1.256 1.277 0.876 1.439 0% 0% 

Ireland 11.800 15.241 0.651 12.206 15.568 0.711 3.032 20% 20% 

NL 1.110 1.309 0.743 0.663 0.786 0.454 0.627 50% 50% 

UK 0.798 0.886 0.365 0.541 0.623 0.241 0.405 40% 10% 

Eastern 

Europe 
1.058 1.241 0.395 2.481 2.625 0.759 0.379 60% 25% 

Bulgaria 1.152 1.292 0.497 2.249 2.449 0.721 0.362 90% 10% 

Czechia 1.065 1.366 0.395 2.583 2.733 0.763 0.451 70% 60% 

Hungary 1.351 1.536 0.681 2.219 2.307 0.823 0.620 60% 10% 

Poland 0.972 1.125 0.322 2.594 2.652 0.827 0.249 20% 30% 

Romania 1.302 1.549 0.325 2.915 3.195 0.741 0.457 30% 10% 

Slovakia 0.505 0.575 0.147 2.325 2.416 0.676 0.132 90% 30% 

Southern 

Europe 
0.860 1.011 1.354 1.250 1.370 2.430 0.817 55% 53% 

Croatia 0.781 0.893 1.167 1.339 1.442 2.818 0.449 90% 80% 

Greece 0.904 1.248 2.904 1.290 1.421 7.455 1.260 50% 50% 

Italy 0.669 0.756 2.581 0.342 0.405 2.250 1.446 30% 30% 

Portugal 0.646 0.759 0.632 0.804 0.872 0.699 0.753 50% 40% 

Slovenia 1.119 1.298 0.478 1.674 1.816 0.656 0.474 10% 20% 

Spain 1.039 1.115 0.361 2.050 2.267 0.702 0.517 100% 100% 

Baltic 

countries 
0.828 1.043 0.483 0.990 1.236 0.515 0.192 53% 73% 

Estonia 0.849 1.123 0.409 1.057 1.399 0.487 0.206 30% 70% 

Latvia 0.904 1.058 0.766 0.977 1.199 0.673 0.206 40% 60% 

Lithuania 0.730 0.947 0.274 0.935 1.109 0.385 0.163 90% 90% 

Scandinavian 

countries 
0.791 0.920 0.881 1.632 1.772 1.604 0.416 58% 65% 

Denmark 0.563 0.643 0.699 1.444 1.623 1.143 0.456 50% 70% 

Finland 0.594 0.720 1.709 0.969 1.119 2.965 0.269 50% 60% 

Norway 0.921 1.060 0.823 1.883 2.035 1.673 0.496 40% 30% 

Sweden 1.085 1.255 0.292 2.230 2.309 0.634 0.442 90% 100% 

Note: Mean for each group/region in bold. We have used Eurostat GDP data for Bulgaria, Romania and Croatia. 

  



13 

 

Fig. 1 Evolution of actual vs. predicted economic growth 

Austria Belgium 

  
Bulgaria Croatia 

  
Czech Republic Denmark 

  
Estonia Finland 

  
France Germany 

  
Note: The grey line represents the year-on-year growth rate of GDP in each country. The black line represents the evolution of the 

proposed evolved economic indicator. The black dotted line shows the evolution of the autoregressive forecasts. 
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Fig. 1 (cont. 1) Evolution of actual vs. predicted economic growth 

Greece Hungary 

  
Ireland Italy 

  
Latvia Lithuania 

  
Netherlands Norway 

  
Poland Portugal 

  
Note: The grey line represents the year-on-year growth rate of GDP in each country. The black line represents the evolution of the 

proposed evolved economic indicator. The black dotted line shows the evolution of the autoregressive forecasts. 
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Fig. 1 (cont. 2) Evolution of actual vs. predicted economic growth 

Romania Slovak Republic 

  
Slovenia Spain 

  
Sweden United Kingdom 

 
 

 

Note: The grey line represents the year-on-year growth rate of GDP in each country. The black line represents the evolution of the 
proposed evolved economic indicator. The black dotted line shows the evolution of the autoregressive forecasts. 

 

In Fig. 1 we can observe that proposed evolved economic indicators seem to better 

capture the evolution of GDP growth in most countries. The worst results are obtained in 

Ireland, which shows a particularly high economic growth during 2015. Therefore, with 

the aim of graphically assessing whether there are differences in the accuracy of the 

estimates of economic activity across regions depending on the level of growth, we 

compute the correlation between actual and predicted economic growth, differentiating 

between those periods in which economic growth lies out or within the interquartile range 

(IQR) of the distribution in the European Union. The IQR, also known as midspread, is a 

measure of statistical dispersion, obtained as the difference between upper and lower 

quartiles, Q3−Q1. 

 

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Quartile
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Fig. 2. Correlations between GDP and expected GDP within and out of IQR 

Western Europe Eastern Europe 

  
Southern Europe Baltic countries 

  
Scandinavian countries All countries 

 
 

 

Note: IQR stands for interquartile range. 

 

By discriminating between these two states of growth, we can graphically determine 

whether there are notable differences in the accuracy of the estimates of economic activity 

across regions. In Fig. 2 we present the boxplots for each region. We want to note that 

empirical correlation values in the smaller samples containing the extreme values are 

likely to be higher than in the subsets containing the remaining larger samples. 
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In Fig. 2 we can observe that the highest correlations during periods of high growth 

rates are obtained in Western Europe, with the exception of Ireland. It can also be seen 

that in all regions the performance of the evolved indicators seems to vary depending on 

the level of dispersion: during periods of average growth the correlation between 

estimates and actual values is lower than during periods of high growth rates. These 

results are in line with those obtained by Łyziak and Mackiewicz-Łyziak (2014), who 

found that the 2008 financial crisis period had led to a decrease in expectational errors in 

transition economies. Similarly, Lahiri et al. (2016) found survey-based expectations to 

have a more pervasive effect on the accuracy of forecasts of all components of aggregate 

consumption during the recession of 2007–2009. 

In the present study we also find evidence regarding the informative value of survey-

based expectations. Our results are in line with recent findings by Altug and Çakmakli 

(2016), Klein and Özmucur (2010), Kłopocka (2017) and Lehmann and Wohlrabe (2017). 

Altug and Çakmakli (2016) found survey expectations useful to improve inflation 

forecasts. Klein and Özmucur (2010) found evidence that survey expectations improved 

the forecasting performance of autoregressive time series models in European countries. 

Kłopocka (2017) showed the usefulness of survey indicators to forecast household saving 

and borrowing rates in Poland. Lehmann and Wohlrabe (2017) found that consumers’ 

unemployment expectations and new orders improved predictions of employment growth 

in Germany. 

While there is ample evidence in the literature in favour of the usefulness of 

expectations to improve the predictive capacity at the macroeconomic level (Batchelor 

and Dua, 1992, 1998; Batchelor and Orr, 1988; Christiansen et al., 2014; Dees and Brinca, 

2013; Girardi, 2014; Hansson et al., 2005; Ivaldi, 1992; Kumar et al., 1995; Leduc and 

Sill, 2013; Lemmens et al., 2005; Müller, 2009; Qiao et al., 2009; Schmeling and 

Schrimpf, 2011), several authors have recently proposed refinements in order to enhance 

the explanatory power of survey expectations in forecasting models. Bruestle and Crain 

(2015) have showed that controlling for significant versus insignificant changes in 

consumer confidence improved the accuracy of household expenditure forecasting 

models. Wilms et al. (2016) have suggested selecting survey indicators from the most 

predictive industries in order to improve the predictive capacity of survey data. Similarly, 

Dreger and Kholodilin (2013) have noted that better performing survey-based indicators 

should be built upon pre-selection methods and data-driven approaches to determine the 

weights. 

http://www.tandfonline.com/author/%C5%81yziak%2C+T
http://www.tandfonline.com/author/Mackiewicz-%C5%81yziak%2C+J
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In this work we have shown the appropriateness of the SR frame for empirical 

modelling. SR allows to address complex modelling issues in large data sets where the 

potential relationships between variables are unknown. In these circumstances, the 

implementation of SR via evolutionary computation provides researchers with an 

overview of the most relevant interactions and helps identifying new unknown links 

between variables. These features make this approach particularly indicated for non-

linear modelling. 

By means of GP we have simultaneously evolved the structure and the parameters of 

the models without imposing any a priori assumptions. In this regard, Bruno (2014) has 

recently noted the importance of avoiding restrictive assumptions about the functional 

form when modelling using survey indicators. Thus, a SR via GP approach can be of 

particular interest when it comes to quantify survey expectations, to construct data-driven 

survey-based indicators or to test economic hypothesis about the formation of agents’ 

expectations. 

 

 

5 Conclusion 

 

This paper proposes an empirical modelling approach to design survey-based economic 

indicators at a regional level. By means of SR via GP we find the optimal combination of 

survey variables that best tracks the evolution of the economic activity in twenty-six 

European countries grouped in five regions (Western Europe, Eastern Europe, Southern 

Europe, Baltic countries and Scandinavian countries). This data-driven approach based 

on evolutionary computation allows us to transform qualitative survey expectations into 

quantitative estimates of economic activity. 

We have used survey variables regarding expectations about the economic situation 

from the World Economic Survey in order to find the most relevant interactions in each 

region. This exercise allows us to rank the expectations according to the relative weight 

of each one in the evolved economic indicators. Although results differ across regions, 

agents’ “perception about the overall economy compared to the same time last year” is 

the best predictor of economic activity. 

In a second step, we assess the out-of-sample forecast accuracy of the evolved survey-

based indicators in each region. The best forecasting performance is obtained for Austria 

and the UK in Western Europe, for Slovakia in Eastern Europe, for Portugal in Southern 
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Europe, for Lithuania in the Baltic countries, and for Sweden in the Scandinavian 

countries. At the regional level we obtain the best results for the Baltic and the 

Scandinavian countries. 

Finally, we evaluate if there are differences in the accuracy of the estimates of 

economic activity across regions depending on the level of growth. We find that during 

periods of average growth rates the correlation between estimates and actual values is 

lower in all regions. The highest correlations during periods of high variability are 

obtained in Western Europe. 

In spite of the novelty of the proposed approach, this research is not without 

limitations. On the one hand, given that we used a data-driven method, the evolved 

economic indicators are not grounded in any theoretical background. On the other hand, 

extending the analysis to other survey data would allow us to examine the extent of the 

similarities in the derived functional forms. Another issue left for further research is 

testing whether the implementation of alternative algorithms could improve the forecast 

accuracy of empirically generated quantitative estimates of expectations. 
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