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Liquid  4He  becomes  superfluid  and  flows  without  resistance  below  T =  2.17  K.

Superfluidity has been a subject of intense studies  and notable advances were made in

elucidating  the  phenomenon  by  experiment  and  theory.  Nevertheless,  details  of  the

microscopic state, including dynamic atom-atom correlations in the superfluid state, are

not fully understood.  Here using a technique of neutron dynamic pair-density function

(DPDF)  analysis  we  show  that  4He  atoms  in  the  Bose-Einstein  condensate  have

environment significantly different from uncondensed atoms, with the interatomic distance

larger  than  the  average  by  about  10%,  whereas  the  average  structure  changes  little

through the superfluid transition.  A DPDF peak not seen in the snap-shot pair-density

function is found at 2.3 Å, and is interpreted in terms of atomic tunneling.  The real space

picture of dynamic atom-atom correlations presented here reveal characteristics of atomic

dynamics not recognized so far, compelling yet another look at the phenomenon.
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Introduction

Since the discovery of superfluidity 80 years ago [1, 2] the physics of liquid  4He have been

extensively studied.  London [3, 4] first proposed that the superfluid behavior arises from Bose-

Einstein  condensation  (BEC)  to  the  quantum-mechanical  ground state.   However,  London’s

proposal was based upon the assumption that helium can be regarded as ideal gas, whereas liquid

helium is far from ideal gas.  Landau [5] later proposed a celebrated model, known as the two-

fluid model, based upon the dynamics of the roton mode but without ever referencing to BEC.

Feynman [6, 7] and others tried to reconcile these two conflicting theories, while both BEC and

roton were experimentally detected by neutron scattering [8, 9].  Liquid helium is a condensed

matter with density not much different from that of a crystalline solid [10].  Atoms interact

through the dispersion force, and as a result only about 7% of helium condenses into the Bose-

Einstein ground state [11].  Consequence of helium being a non-ideal system on the nature of

BEC has been the subject of active studies up to today [12-17].  In ideal gas atoms have no

spatial correlations.  But in liquid they are strongly correlated, as described in terms of the same-

time, or snap-shot, pair density function (PDF), g(r), the probability of two atoms separated by

distance r [18].  

Interestingly the PDF is reported to change only slightly through the superfluid transition

[19, 20], even though the excitation spectrum measured by inelastic neutron scattering (INS)

changes  markedly  with  temperature  [12-15,  21].   The  PDF  is  obtained  by  the  Fourier-

transformation  of  the  total  structure  function,  Stotal(Q),  where  Q is  momentum  transfer  in

scattering (see Supplementary Note 1), and  Stotal(Q) is related to the dynamic structure factor

measured by INS, S(Q, E), where E (=) is energy transfer, through the energy integration,  

   total ,S Q S Q E dE . (1)

Therefore  the strong variation  in  S(Q,  E)  with  temperature  implies  that  the dynamic  atomic

correlation  must  be  strongly  dependent  on temperature,  even though they are  almost  totally

masked when it is integrated over energy.      

Results

Dynamic structure factor. This work is designed to observe directly such dynamic atom-atom

correlations in  liquid helium in real  space.   We measure  S(Q,  E)  using INS, and obtain the

information on real space dynamics through the Fourier-transformation of S(Q,  E).  In the past
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most of the data on the dynamics of  4He were obtained by the INS measurement at a reactor

neutron  source  using  a  triple-axis  spectrometer.   In  such  a  measurement  only  one  neutron

detector is used, allowing  S(Q,  E) to be measured at just one set of  Q and  E at a time.  As a

consequence it has been extremely time-consuming and challenging to determine  S(Q,  E) as a

function of both  Q and  E.  In contrast INS spectrometers with a pulsed neutron source have a

large array of position sensitive detectors in the time-of-flight analysis mode, and can produce

the two-dimensional data of S(Q, E) simultaneously over wide ranges of Q and E in a reasonable

measurement time.  We determined  S(Q,  E) for liquid  4He at selected temperatures (T = 1.83,

1.93, 2.04, 2.35 and 2.85K) at the saturated vapor pressure (SVP) using the cold neutron chopper

spectrometer (CNCS) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory

using three different incident energies as described in Method section.  The data were corrected

for absorption and background, mostly due to the sample holder, and were translated into S(Q,

E).  The three data sets of S(Q, E) with different incident energies were merged into one master

S(Q, E), using as much as possible the data with the lower incident energies which had higher Q

and E resolution.  Fig. 1 shows S(Q, E) of liquid 4He at T = 1.83 K (in the superfluid state) and

2.85  K  (normal  state),  and  the  difference  between  the  two  data  sets,  S(Q,  E)  = S(Q,  E,

T=1.83K) - S(Q, E, T=2.85K).  The sharpening of the roton excitations around QR = 1.98 Å-1 and

ER =  0.74 meV and the maxon excitations  around  QM =  1.1 Å-1 and  EM = 1.2 meV in  the

superfluid state is clearly seen, as observed before [21].  

Snap-shot PDF. We calculated Stotal(Q) by eq, (1) (integrated from -1 to 27 meV), and Fourier-

transformed it  to  obtain the total  (snap-shot)  PDF,  0gtotal(r),  where  0 is  the atomic number

density, as shown in Supplementary Figure 1.  According to Ref. 19 the height of the first peak

of the PDF is slightly lower, by about 2%, in the superfluid state, and this was explained as a

consequence of atomic delocalization in the superfluid.  This interpretation was later questioned

theoretically [22].  As discussed in  Supplementary Note 1, in Ref. 19 the energy integration in

eq. (1) was not done at constant  Q, because in their set-up of two-axis diffractometer  Q varies

with E.  On the other hand we integrated correctly at constant Q, because we have a set of two-

dimensional data of S(Q, E).  Our results do not support the conclusion in Ref. 19, and the peak

height is nearly independent of temperature, consistent with the recent quantum mechanical path

integral Monte-Carlo (PIMC) simulation [23].  However, because of significant uncertainty in
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the result we can only raise a question about the validity of the widely cited conclusion in Ref.

19.

Dynamic PDF.  Whereas the total PDF shows small or no change with temperature, the details

of dynamics are much more strongly dependent on temperature and exhibit significant variation

through  T.  It is well known that the energy width of the phonon-roton excitation in  S(Q,  E)

becomes drastically reduced below T, and becomes resolution limited [12-15, 21].  However,

the changes have not been interpreted in terms of local dynamics.  In order to observe the local

atomic  dynamics  we  Fourier-transformed  S(Q,  E)  into  the  dynamic  pair-density  function

(DPDF), 0g(r,  E) [24-26], as discussed in Method section and in Supplementary Note 2.  The

results are shown in Fig. 2 for T = 1.83 K (below T) and 2.85 K (above T) as 0[g(r, E) – 1].

Thus zero  in  Fig.  2  means  g(r,  E)  =  1.   The  strong intensities  near  r =  0 are  due  to  self-

correlations.  The bright spot around r = 4 Å and E = 0.7 meV is due to rotons.  In addition, it is

interesting to note that the intensity contours in DPDF are continuous at 2.85 K, but in the DPDF

at 1.83 K discontinuity develops around 1 meV, indicating that the nature of roton (below 1

meV) excitations may be distinct from that of the excitations above 1 meV.  

To illustrate the changes through T, 0g(r, E), the difference in 0g(r, E) between T =

1.83 K and 2.85 K, the superfluid state minus the normal state, is shown in Fig. 3 (a).  The

emergence of the peak related to sharpening of the roton excitations through T is clearly seen in

the energy range from 0.6 to 1 meV.  In addition to the spot at 4 Å, a weaker spot at 7.5 Å is

seen, both in 0g(r, E) at 1.83 K and in 0g(r, E).  The DPDF is most sensitive to local phonons

and  phonons  near  the  saddle  point  of  dispersion,  whereas  fast-dispersing  phonons  do  not

contribute much [25].  Thus rotons are most clearly seen in the DPDF, because they are close to

the minimum of the dispersion Q, where Q 0d dQ 
.  In addition Fig. 3 (a) shows that there is

significant intensity centered around rt = 2.3 Å and Et = 0.4 meV.  This peak was clearly seen

even when the DPDF was derived only from the data with the incident energy of 3.5 meV or

only from those with 15 meV (see Supplementary Note 5).  Therefore it is highly unlikely that

this  peak is  an artifact  such as termination error.   We compared the results  with the DPDF

obtained for the results of the PIMC calculation [23].  As shown in Fig. 3 (b) the difference

DPDF for the PIMC calculation is in very good agreement with the experimental one, with the

roton peak at 4 Å and the peak at 2.3 Å clearly seen. 
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In Fig. 4 we show by circles the integrated intensity, I(T), of the difference between the

DPDF at various temperatures and that at 2.85 K, (a) over the roton peak (r = 3.4 – 4.6 Å, E =

0.65 – 0.99 meV) and (b) for the peak at 2.3 Å (integrated for r = 2.0 – 2.6 Å, E = 0.15 – 0.45

meV).  I(T) is shown in the unit of the coordination number, NC, which is 10.8 at 1.83 K and 10.6

at 2.85 K.  NC is defined by integrating 4r20g(r) over the first peak in the PDF (Supplementary

Figure  1)  up  to  the  first  minimum at  5.1  Å.   It  is  seen  that  I(T)  follows  the  temperature

dependence of the BEC order parameter,

   0 1
T

I T I
T





  
    
     , (2)

with  = 5.5 [11].  We found I (0) = 0.76  0.02 for the roton peak and I (0) = 0.16  0.02 for

the peak at 2.3 Å, shown by solid lines in Fig. 4.  The value of I(T) for the roton peak at T = 2.35

K is non-zero even though this temperature is above T.  This must be due to local fluctuations

naturally expected for the second-order transition.  Fig. 4 also shows the integrated peak intensity

evaluated in the same way for the result of the PIMC calculation by stars [23].  They also follow

the same temperature dependence.  The fraction of atoms contributing to the roton peak, I (0)/NC,

is  0.07   0.01,  equal  to  the  BEC  fraction.   The  rest  of  the  first  peak  in  the  total  PDF

(Supplementary Figure 1) comes from the energy range other than the roton peaks.  This result

strongly suggests that the changes in 0g(r, E) in the energy range below 1 meV are directly due

to atoms in the BE condensate.    

The peak at 4 Å.  An interesting feature of the result is that the peak position of the roton

excitation in 0g(r, E), rR,1 = 4.0 Å, is significantly longer in distance than the peak of the total

PDF, rtotal = 3.65 Å, shown in Supplementary Figure 1.  The value of rtotal is consistent with the

earlier results [19, 20, 21, 27].  The position of the second peak of the roton mode in 0g(r, E),

rR,2 = 7.5 Å, is also longer in r than that for the second peak of the total PDF at 6.7 Å.  These

increases in distance are far greater than any experimental error.  The shifted positions for the

peaks associated with sharpening of the roton are consistent with the observation that the volume

of 4He liquid significantly expands below T [10] (see Supplementary Note 3).  This increased

atomic distance gives, rR,1QR = 7.92, actually in agreement with the empirical formula, rQ = 7.9 -

8.0 [28] (see Supplementary Note 4).  Therefore it is the peak position of the total PDF, rtotal =

3.65 Å (rtotalQR = 7.23), which is anomalous.  In our view this is because BEC atoms are in the q
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= 0 ground state, so the interatomic distances are close to the minimum of the van der Waals

potential.  On the other hand the distribution of atomic distances among uncondensed atoms is

wide,  as  approximately  given  by  the  first  peak  of  gtotal(r).   But  the  first  peak  is  strongly

asymmetric  in  shape  due  to  the  repulsive  part  of  the  potential,  so  that  the  peak  position

underestimates the average.  The van der Waals potential is very unharmonic, resembling the

hard-core potential which is known to yield a low value of rQ [28].      

The peak at 2.3 Å.  The peak at 2.3 Å was never seen in earlier studies.  This distance is shorter

than the hard-core radius for helium, 2.5 Å [29].  Atoms so close to each other would experience

very strong repulsive force, which is inconsistent with the low energy of this peak.  On the other

hand it should be noted that this distance is the furthest end of the one-body density matrix

(OBDM) except for the long-range tail [11, 12].  Therefore it is more likely that this peak is a

part of the self-correlation, 

      self i i2
i0

1
, 0

4
i tg r E r t e dt

r N


 
   R R

 . (3)  

where Ri(t) is the position of the i-th atom at time t, and <…..> represents thermal and quantum

average.  In Figs. 2 and 3 the intensities close to r = 0 are due to self-correlation because of self-

motion such as vibration or diffusion.  For instance the strong intensity from 0.6 to 1.0 meV near

r = 0 is due to self-correlation for rotons.  However, the peak at rt = 2.3 Å is clearly separated

from the intensity near r = 0, and thus it cannot be due to vibrations, and is most likely due to

tunneling of atoms to cut or form atomic bonds (see Supplementary Note 5 for details).  Such

tunneling occurs at all temperatures, but in the normal state the tunneling action is random and

the  tunneling  distance  is  widely  distributed.   In  the  BEC state,  however,  it  should  become

coherent and well-defined, because all BEC atoms are equivalent and take the same tunneling

action.  

Discussion

Now the self-term of the same-time correlation function is a delta-function at r = 0, and the peak

at 2.3 Å should not appear in the total PDF if it is due to self-correlation.  Indeed upon energy

integration this peak up to E = 0.6 meV is cancelled by the negative peak from 0.6 to 2 meV.  To

illustrate this cancellation we calculated a quantity, Ierr(E), defined by
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   
2

1
err , ' '

E r

r
I E g r E dr dE

 

 
 

   
, (4)

where  r1 = 2.0 Å,  r2 = 2.6 Å.  Ierr(E)  evaluates the contribution of the peak and valley in the

DPDF at 2.3 Å to the total PDF.  Ideally it should go to zero at E  .  As shown in Fig. 5, it

shows strong variation with E, but converges gradually to a small value at large E.  Thus clearly

there  is  a  tendency  of  cancellation  when  integrated  over  energy.   Although  cancellation  is

imperfect  because  of  the  cut-off  in  energy  integration  and  other  errors,  this  tendency  of

cancellation strongly supports our conjecture that the peak at 2.3 Å in the DPDF originates from

the self-correlation.  

The low frequency excitations near QR are seen in almost all glasses and liquids, and are

related to the so-called boson peak in specific heat and Raman scattering [30].  QR is where there

should be a Bragg peak in a corresponding crystal.  In a crystal the phonon dispersion comes

down to zero because QR is equivalent to Q = 0 by the Umklapp operation.  In liquids there is no

Bragg peak in the absence of the translational symmetry, but instead there is a broad first peak in

Stotal(Q).  Consequently Umklapp is incomplete and these phonons near QR become diffuse and

localized [31].  

In crystalline solids the elementary excitations of lattice vibration are phonons.  In normal

liquids, however, phonons are strongly scattered and marginalized because of dynamic structural

disorder.  Instead, the elementary excitations in the liquid were found to be local topological

excitations in atomic connectivity network, the actions of cutting and forming atomic bonds [32],

named anankeons [33].  It is most likely that the excitations which contribute to the boson peak

around peak  QR are anankeons.  Indeed the possible connection between the boson peak and

topological fluctuation has been suggested [34].  Below  T, however, phonons and rotons are

well-defined, and anankeons are suppressed.  In particular the excitations in  S(Q,  E) near  QR

below the roton energy are suppressed by gap opening as shown in Fig. 1 (a) and (c).  Because

rtQR ~ 1.5  this peak contributes negatively to the DPDF, thus the suppression of the intensity in

S(Q,  E) near QR below the roton energy produces a positive effect in  0g(r,  E) around 2.3 Å,

resulting in a relatively coherent peak.  Because these excitations occur within the roton energy

gap,  they  must  represent  tunneling  action  as  we  argued  above.   Such  coherent  atomic

displacements  through  collective  tunneling  could  be  relevant  to  superfluid  dynamics  (see
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Supplementary Note 5).  We plan to examine further the origin of this peak within the quantum

Monte Carlo simulation and further experiments.

In summary the atomic dynamics of superfluid  4He was studied through the dynamic

pair-density  function  method determined by inelastic  pulsed  neutron  scattering.   The results

show that atoms involved in roton excitations below T have longer interatomic distances than

the average, and suggest that the atoms in the BE ground state have environment different from

the average.  A dynamic peak at 2.3 Å which was not recognized before was found, both in

experiment and simulation.  This peak is likely to represent the coherent tunneling action in the

superfluid which could facilitate the flow without viscosity.  Our results present a local view of

atomic dynamics of superfluid 4He, and call for renewed effort on theoretical interpretations of

local atomic dynamics in the superfluid state.     

Methods

Neutron scattering measurement. Inelastic neutron scattering measurements were carried out

using the CNCS of the SNS at Oak Ridge National Laboratory.   Inelastic neutron scattering

measurements were made using three incident neutron energies of 3.5, 15 and 50 meV and at

temperatures, 1.83, 1.93, 2.04, 2.35 and 2.85 K.  The scattering data were collected for about 4

hours for each incident energy and temperature.  As the sample container a cylindrical aluminum

container was used.  The background including the empty container was measured at 2.5 K using

three  incident  neutron  energies.   In  addition  vanadium standard  was  measured  at  300 K to

calibrate  the  detector  efficiency.   Subsequently,  the  container  was  filled  with  liquid  4He at

saturated vapor pressure (SVP).  The measured intensity, I(Q, E), was corrected for background

and  absorption.   Then  the  data  sets  with  different  incident  energies  were  scaled  so  that

overlapping (Q, E) areas maintain the same integrated intensity, and then were merged to obtain

the dynamic structure factor, S(Q, E), by utilizing the data sets with low incident energies, thus

high  Q-E resolution,  as  much  as  feasible.   The  data  were  put  on  an  absolute  scale  by  the

condition Stotal(Q)  1 at high Q.  The merged S(Q, E) covered the Q-E space up to 10 Å-1 and 30

meV. 

 

Dynamic pair-density function (DPDF).  The DPDF,
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      0 i j2
i,j

1
, 0

4
i tg r E r t e dt

r N
 


   R R

, (4)

was obtained by the Fourier-transformation of  S(Q,  E) over  Q (Supplementary Note 2).  By

integrating the DPDF over energy we obtain the same-time PDF,

        0 total i j2
i,j

1
, 0 0

4
g r g r E dE r

r N
 


    R R

, (5)

which is obtained by Fourier-transforming Stotal(Q).  The idea of DPDF goes back to Carpenter

and Pelizzari [35], and was used in a different form for the analysis of dynamics in amorphous

and crystalline solids [36, 37].  The DPDF was successfully used in elucidating the dynamics of

relaxor ferroelectrics [24].  We also Fourier-transformed S(Q, E) for each incident energy before

merging, and confirmed that the salient features discussed here, such as the atomic distances for

roton  mode  and  the  localized  mode,  are  consistently  seen  with  different  resolutions  (see

Supplementary Note 5), except with the incident energy of 50 meV where energy resolution was

too low to discriminate these features.  

Data Availability Statement

The data acquired for this study (data for Figs 1 – 5 and Supplementary Figs 1 – 3) are included

in the Supplementary Information files.
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Figure captions:

Figure 1  Dynamic structure factor, S(Q, E).  (a) S(Q, E) of 4He at T = 1.83 K, (b) at T = 2.85

K, and (c) the difference,  S(Q,  E) = S(Q,  E, T=1.83K) - S(Q,  E, T=2.85K), determined by

inelastic pulsed neutron scattering.  

Figure 2  Dynamic pair-density function (DPDF).  (a) DPDF, 0[g(r, E) – 1], of 4He at T =

1.83 K, and (b) at T = 2.85 K.  The unit is Å-3meV-1.  Zero corresponds to g(r, E) = 1.

Figure  3   The  difference  in  the  DPDFs.  (a)  g(r,  E)  =     1 2, ,T Tg r E g r E
,  for  the

experimental data for  T1 = 1.83K and  T2 = 2.85K, (b) for the quantum Monte-Carlo (PIMC)

simulation for T1 = 1.2K and T2 = 2.5K.

Figure 4  The integrated intensities, I(T).  I(T) of the difference DPDF, g(r, E), between the

DPDF at  temperature  T and  that  at  high temperature,  2.85 K for  experiment  and 2.5 K for

simulation, (a) over the roton peak (r = 3.4 – 4.6 Å, E = 0.65 – 0.99 meV), and (b) the anankeon

peak (r = 2.0 – 2.6 Å, E = 0.15 – 0.45 meV).  Circles for experimental results and stars for PIMC

simulation results.  The solid lines are for the expected temperature dependence of the order

parameter, eq. (2), with  n0(0) = 0.76 for the roton peak and 0.16 for the tunneling peak.  The

vertical bars in circles indicate statistical error.  The errors for the PIMC results are smaller than

the symbol. 

Figure 5  The integral in eq. (4), Ierr(E), as a function of energy.  It varies strongly with E,

but converges to a small value at large E.  The red dot indicates the value of Ierr(E) at the highest

value of E in the present measurement, 27 meV. 
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