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Abstract—A large number of alarm sounds triggered by
biomedical equipment occur frequently in the noisy environment
of a neonatal intensive care unit (NICU) and play a key role in
providing healthcare. In this paper, our work on the development
of an automatic system for detection of acoustic alarms in
that difficult environment is presented. Such automatic detection
system is needed for the investigation of how a preterm infant
reacts to auditory stimuli of the NICU environment and for an
improved real-time patient monitoring. The approach presented
in this paper consists of using the available knowledge about
each alarm class in the design of the detection system. The
information about the frequency structure is used in the feature
extraction stage and the time structure knowledge is incorporated
at the post-processing stage. Several alternative methods are
compared for feature extraction, modelling and post-processing.
The detection performance is evaluated with real data recorded
in the NICU of the hospital, and by using both frame-level
and period-level metrics. The experimental results show that the
inclusion of both spectral and temporal information allows to
improve the baseline detection performance by more than 60%.

Index Terms—acoustic event detection, alarm detection, neona-
tal intensive care unit, sinusoid detection, non-negative matrix
factorization, neural networks.

I. INTRODUCTION

VERY low birth weight preterms usually spend the first
several weeks or even months of life receiving special-

ized care in a Neonatal Intensive Care Unit (NICU), what is
crucial for their survival. In the acoustically rich environment
of a typical NICU numerous sounds coming from various
human activities and biomedical equipment [1], [2] often take
place simultaneously and contribute to high sound pressure
levels [3]. It is well known that such a noisy environment
may negatively affect the growth and neurodevelopment of
the premature infants [4]–[7] and is of great medical concern.

Equipment alarm sounds provide alerts about the changes
in preterm infant’s condition to the medical staff and occur
frequently in a NICU environment. In fact, a large number
of triggered alarms are not related to any clinically relevant
and/or emergency event [8], which may lead to alarm fatigue.
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B. Muñoz Mahamud and A. Riverola de Veciana are with Neonatology,
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Smart alarming systems are being designed [8], [9] to improve
the alarm handling process in NICUs and reduce noise levels.
Such systems use alternative alerting modalities and only
allow the most critical alarms to sound. Unfortunately, in the
majority of the NICUs such systems are not developed yet.

This paper presents our work on the development of an
automatic system for detection of alarm sounds, which can be
useful for medical application in two ways.

First, for detecting the sounds that are potentially harmful
for a preterm infant due to their particular spectro-temporal
structure (i.e. beats, tones and specially high frequencies).
The effects of a NICU acoustic environment on a preterm
infant could be revealed by the infant reactions to auditory
stimuli from it, which can be investigated by relating the
presence of specific sounds (i.e. sound identities and their
situation in time) with the preterm physiological variables.
Such investigation can complement greatly the work already
reported in the literature, in which only the sound pressure
level is considered (e.g. in [10]), and requires big amounts
of labelled audio data, which can hardly be obtained without
using automatic detection from audio signals.

Second, for assisting the medical staff in their work and
facilitate the reaction to events. E.g. in [11] a sound-activated
light device was implemented for alerting the staff members
when the sound pressure level exceeded a predefined value.
The automatic alarm detection system can be a part of a
more sophisticated notification system allowing smart alarm
handling algorithms, which could be designed to warn about
triggering of particular alarms, to take into account their
clinical relevance and urgency, etc.

The automatic alarm sound detection was previously in-
vestigated for the purposes of hearing impaired assistance
and hearing support in noisy conditions [12]–[14]. To our
knowledge, research on the topic was first reported in [15],
where the detection of various real-world alarm sounds was
addressed. In that work, two different approaches were pre-
sented: a generic model-based approach that employs features
capturing the global properties of the spectrum and neural
networks, and a non-model-based approach that employs
sinusoid modelling and separation and exploits the specific
time-frequency structure of alarms. While the model-based
approach is also followed in [12], most of the posterior
works adhere to the non-model-based approach. For instance, a
simple signal processing based method was reported in [13],
where an autocorrelation function, used to exploit the long-
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term periodicity of alarms, is compared to a threshold. In [14]
amplitude periodicity in a specific frequency bandwidth is
detected using a decision tree based on zero-crossing rate of
the autocorrelation of the signal envelope. In [16] the decision
is made by comparing the presence probability to a predefined
threshold, where the probability is constructed based on pitch
detection in specific frequency bands. Differently, in [17] the
spectrogram is treated as an image and part-based models are
trained in the spectro-temporal domain, providing flexibility
in time and in frequency.

The non-model-based systems usually take advantage of the
particular properties of alarms and their performance depends
strongly on the proper choice of the decision thresholds. The
model-based systems, on the other hand, require model train-
ing on a multitude of alarm samples in multiple conditions,
and the amount of training data is usually an important factor.

In relation to the reported works, this work presents a
combination of the model and non-model based approaches
that takes advantage of both of them. The proposed detection
system employs statistical modelling of the training data,
but also uses the knowledge about spectral and temporal
alarm characteristics. The spectral information is captured in a
feature vector, which is obtained by applying either a method
for detection of sinusoids (previously published in [18]) or
the non-negative matrix factorization algorithm, in frequency
intervals corresponding to alarm-specific frequencies. The
temporal information is incorporated at the post-processing
stage by aggregating the frame-level posterior probabilities,
obtained from statistical modelling, along the intervals cor-
responding to the signal and silence segments in an alarm
period, and a threshold is applied to that estimate to perform
detection at the alarm period level. A non-model-based system
that exploits the knowledge about the alarm characteristics in
a similar manner was reported in [19]. Unlike in that work,
our system is able to take into account the frequency and
duration variation observed in alarms and incorporates the
alarm spectral amplitude structure, which may be important
for discrimination of the alarms that share some frequency
components.

Starting from a basic machine learning system (baseline),
which gives a very low detection performance, we introduce
improvements sequentially at each of its stages and seek to
obtain better detection results. Apart from the widely used
frame-level metrics, we present the results using a metric that
operates at the alarm period level, which is more meaningful
for the medical application.

A preliminary version of this work has been reported in [20].
In comparison to that paper, here a more detailed analysis
of the acoustic alarm classes is presented, different type of
features and classifiers are compared, an optimised decision
threshold based on the Equal Error Rate (EER) criterion is
employed and a more comprehensive analysis of results is
provided, including the analysis of the system performance in
different Signal-to-Noise Ratio (SNR) ranges.

The rest of the paper is organized as follows. In Section II
the produced database and the acoustic alarm classes are de-
scribed. The general scheme of the proposed detection system
is given in Section III. The modelling of the spectral and

Fig. 1. Graphical description of terms used to denote particular alarm
properties. Only fundamental frequency is depicted for clarity of presentation.
[22]

temporal structure of alarms is explained in Sections IV and
V, respectively. Section VI describes several post-processing
schemes we employed. Finally, in Section VII we provide the
information about the evaluation setup and present and discuss
the experimental results.

II. DATA DESCRIPTION

The audio database used in this work contains real-world
audio recordings made in the NICU of Hospital Sant Joan de
Déu Barcelona during ten recording sessions. Two electret uni-
directional microphones connected to a linear PCM recorder
were used to make recordings. One microphone was placed
inside the incubator, close to the infant’s ear, and the other one
outside the incubator, at approximately 50 cm distance above
it, usually pointing to the centre of the room. More information
about the database acquisition and a general description of
the NICU acoustic environment can be found in [21]. The
costly manual annotations cover 54.3 min of the audio data
and alarm sounds occur 19.28% of this time. Note that each
alarm signal (see Figure 1 for notation) was labelled separately.
The recordings were downsampled from original 44.1 kHz to
24 kHz.

Observing the audio data collected in the NICU we found
16 different types of acoustic alarms generated by diverse
biomedical equipment (cardiorespiratory monitors, infusion
pumps, ventilation devices, incubators, etc). From those, 7
types were selected in our tests under the criteria of being
the most represented in the annotated data and being relevant
from the medical point of view (see Table I). The general
properties of the alarms can be described as:

1) They are periodic in time. Each alarm period consists of
signal and silence intervals of established durations (see
Figure 1).

2) The signal interval may consist of one or several consec-
utive stationary signals (tones), each containing one or
several simultaneous frequency components, which may
or may not be harmonically related.

The particular characteristics of the selected alarm classes
are presented in Table I. The alarm-specific frequencies, signal
and silence interval durations were carefully analysed using the
recordings made both in the NICU and in a quiet room. The
alarm-specific frequency values (with a resolution of 1 Hz) and
period durations were obtained by visual inspection of alarm
samples. The reported signal interval durations are an average
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TABLE I
DETAILED CHARACTERISTICS OF THE CONSIDERED ALARM CLASSES

Class Source device Frequencies (kHz) Signal duration (s) Silence duration (s) Samples
a1 Monitor i) 0.495, 1.465, 2.4351,2

ii) 0.515, 2.455, 3.445, 4.415
0.698 ± 0.170 i) 1.352

ii) 1.548
238

a3 Incubator i) 0.665, 1.330, 1.990, 2.660 /
0.540, 1.60, 3.1503

ii) 0.520 / 0.420

0.634 ± 0.142 14.666 130

a6 Ventilator 2.410 0.374 ± 0.069 0.073 203
a7 Monitor i) 0.980, 2.935

ii) 2.880
0.836 ± 0.188 0.179 114

a8 Monitor 0.490, 1.480, 2.460, 3.440, 4.420 0.280 ± 0.060 1.965 452
a10 Infusion pump i) 1.140, 2.280, 3.425

ii) 0.880
0.675 ± 0.112 0.325 75

a16 Monitor 0.495 0.307 ± 0.055 1.746 135
1 Comma-separated frequencies are simultaneous in time. 2 Information in each item corresponds to a different version of the alarm.
3 Information separated with slash corresponds to tones consecutive in time.

over the annotated samples. Except of one alarm class (a3),
all the alarms have a simple “tone-silence” structure. Several
alarm classes (namely, a1, a3, a7 and a10) show some variation
in the frequency and duration values across device units of
the same model. Since for the medical staff such alarms are
perceived alike, they are referred to as different versions of
the alarm class. According to clinicians, the most important
classes are a1, a6 and a7.

Depending on the alarm class, the amount of audio data
annotated as belonging to that class was from 1.24 to 5.02%
of the total annotated data duration, and the signals of 2, 3 or
4 alarms sounded simultaneously for 6.81%, 0.70% or 0.07%
or it, correspondingly.

III. OVERVIEW OF THE ALARM DETECTION SYSTEM

This section outlines the overall structure of the proposed
alarm detection system. The system consists of a set of
detectors operating in a parallel manner. Each individual
detector is devoted to deal with a particular alarm class and
consists of the following blocks: i) modelling of the alarm
spectral structure; ii) modelling of the alarm temporal struc-
ture; iii) post-processing and decision. The overall structure of
the system and of individual detectors is depicted in Figure 2.
In an individual alarm detector, the block on modelling of the
alarm spectral structure provides probabilities of the presence
of the specific type of alarm at the frame level. This block
includes feature extraction and statistical modelling stages and
the description of the techniques we employed is given in
Section IV. The modelling of the alarm temporal structure is
based on aggregating the output of class-specific detectors over
time and is described in Section V. Finally, the post-processing
and decision stages account for assessment at the frame level
and at the alarm period level, and their details are provided in
Section VI.

IV. MODELLING OF THE ALARM SPECTRAL STRUCTURE

A. Feature extraction

We have explored several ways of extracting features from
the signal and these are described in the following subsections.
All types of feature extraction are performed in the spectral
domain. The acoustic signal is split into frames and the

(a)

(b)

Fig. 2. Automatic system for alarm detection: (a) set of parallel detectors,
one per class, and (b) diagram of an individual detector.

discrete Fourier transform (DFT) is applied on each frame. The
frame-length of N = 2048 and frame-shift of L = 1024 were
found a suitable compromise between the time and frequency
resolution.

1) Baseline: The features we used as the baseline are re-
ferred to as frequency-filtered logarithmic filter-bank energies
(FF-LFBEs) [23]. These are generic features used in speech
and audio pattern processing. They cover the entire frequency
bandwidth. These features were obtained by passing the DFT
output through a bank of Mel-scaled triangular band-pass
filters [24] and taking the difference between the LFBE of the
following and preceeding band-pass filter. We used 18 Mel-
scaled filters and the obtained FF-LFBEs were appended with
their temporal derivatives, resulting in 36 dimensional feature
vector per frame.

2) Sinusoidal detection based: This feature extraction
scheme is based on the fact that the alarms we are dealing with
consist of only sinusoidal components. As such, we employ
a method for detection of sinusoidal signals. There have been
a variety of methods proposed for detection of sinusoidal
signals – for instance, a review of methods used in audio
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Fig. 3. An example of a spectrogram (a) of audio recording and the detected sinusoidal components (b).

processing is presented in [25]. The method we employed here
was introduced in [18]. It considers the sinusoid detection as
a pattern recognition problem. We employed this method in
our recent research on recognition of bird species from their
vocalisations [26], [27] and its earlier form, presented in [28],
for analysis of speech [29].

We process each frame l of the signal independently. The
peaks in the short-time magnitude spectrum Sl are considered
as potential sinusoidal components. Let us denote by kp the
frequency index of a spectral peak. The peak is characterised
by a feature vector y=(y1,y2), where y1 captures the mag-
nitude shape and y2 the phase continuity and both are formed
using M points of the short-time spectrum around the peak.
The y1 contains values of the short-time magnitude spectrum
around the peak kp, each normalised by the magnitude value
of the peak, i.e., y1=(|Sl(kp − M)|/|Sl(kp)|, . . . , |Sl(kp +
M)|/|Sl(kp)|). The y2 is calculated as the difference between
the short-time phase of the current φl and previous φl−1

frame, with the shift between the frames being accounted for,
i.e., y2=(∆φl(kp−M), . . . ,∆φl(kp +M)), where ∆φl(k) =
φl(k)− φl−1(k)− 2πkpL/N .

A statistical model is built for features representing si-
nusoidal signals and noise. In this paper, we employed a
mixture of multivariate Gaussian distributions to obtain the
model for spectral peaks corresponding to sinusoidal signals,
denoted by λs, and to noise, denoted by λn. We found through
experimental evaluations the following parameter setup to
perform well: rectangular window was used to split the signal
into frames, which were then padded with 2048 zeros for the
DFT calculation; the parameter M was set to 6 frequency bins;
Gaussian mixture models (GMMs) for both the sinusoidal sig-
nals and noise consisted of 32 mixture components; sinusoidal
signals were corrupted by noise at the signal-to-noise ratio of -
7 dB to obtain the sinusoidal model λs; temporal segments of
a detected sinusoidal component shorter than 3 frames and
segments whose average energy was below 40 dB of the
maximum average segment energy in a given recording file
were discarded. Figure 3 depicts an example of a spectrogram
of an audio recording and the detected sinusoidal components.
Note that the binary decision about each peak based on the
difference p(y|λs)−p(y|λn) is shown. It can be seen that even

weak sinusoidal components (e.g. around frequency index 200)
are detected well. More thorough evaluations of the detection
performance of the method can be found in [18].

In this paper, we form a feature vector consisting of the log-
likelihood values log p(y|λs) and log p(y|λn) obtained from
the sinusoidal detection within the frequency regions around
each alarm-specific frequency, as indicated in Table I, with the
tolerance δ = ±20 Hz. We further refer to these features as SD
LLH (see Table II). For each alarm frequency region, only the
peak that achieves the maximum likelihood on the sinusoidal
model is used. A low log-likelihood value is assigned in a
case there was no peak in the frequency region. In some
experiments, we also incorporate the amplitude structure of
the alarms (features SD LLH & Amp). This is performed
by including in the feature vector the magnitude values at
individual alarm-specific frequency regions. These magnitudes
are normalised by the sum of the magnitudes of all the alarm-
specific frequencies in order to disregard the effect of the
varying alarm amplitude.

3) NMF-based features: Non-negative Matrix Factorization
(NMF) [30] is a linear decomposition technique that attempts
to approximate an input non-negative matrix as a product of
two non-negative matrices. In audio signal processing, NMF is
usually applied to the magnitude spectrogram S of the signal
[31], i.e.,

SN×T ≈WN×R ·HR×T , (1)

where N and T correspond to the number of frequency bins
and number of frames, respectively, and R ≤ N controls the
rank of the approximation. The columns of W are usually
referred to as bases, and the rows of H are their corresponding
weights or activations in time.

The problem of minimizing the divergence between the
input matrix and its approximation needs to be solved:

arg min
W,H

D(S||WH) + β · |H|1 W,H ≥ 0 (2)

where D is a cost function (in this work, the Kullback-Leibler
divergence), and the parameter β ≥ 0 is used to impose
a sparsity constraint on the activations. The minimization is
achieved by iteratively updating W and H with multiplicative
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factors (derived using the gradient descent algorithm) until
convergence [32].

A supervised NMF approach is used where the bases matrix
W is trained beforehand on the training data, and only the
activations matrix H is estimated at the source separation step.
The bases matrix consists of the bases corresponding to alarm
and non-alarm classes W = [WA;WNA]. The alarm bases
WA are trained for each class separately using the alarm signal
intervals and the non-alarm bases WNA are trained using the
data segments that do not contain any alarms.

Similarly to works reported in [33], [34], the feature rep-
resentation employed in this paper is based on the activations
obtained after NMF separation. The activations matrix H is
normalised in each frame such that it sums to 1 and only
activations corresponding to alarm bases HA are used as
features.

In our work, the implementation of NMF described in [32]
is used with the following parameter setup: the input matrix
S is a magnitude spectrogram computed on Hann-windowed
frames. Only the spectral points within frequency regions
around each alarm-specific frequency with a tolerance δ are
used for NMF processing. We train R = 4 and 15 bases
per alarm and non-alarm classes, respectively. The sparsity
parameter β is set to 1. At the training and testing time we
use up to 20 iterations.

B. Statistical modelling

To perform classification based on the spectral structure
features described in the previous subsection we employed
both the generative and discriminative approaches, specifically,
GMM and Neural Networks (NN).

For each alarm class, a GMM-based detector consists of a
model for alarm and a model for non-alarm. Each model is
a single Gaussian probability density function with diagonal
covariance matrix as, in our experiments, this provided better
detection performance than using more mixture components.

The unsupervised pre-training of NN [35] is performed
using a Gaussian-Bernoulli RBM [36]. After pre-training, a
label layer is added on the top of the network and a supervised
backpropagation training is performed, resulting in a discrim-
inative model. Due to the scarcity of data, only networks with
one hidden layer are explored in this paper. The hidden and
the output layers have 32 and 1 neurons, respectively, and the
logistic activation function is used. The training is performed
using minibatches, with the size of each minibatch set to 10
and the inputs are randomly distributed among minibatches.
The input vectors are mean-variance normalised before being
fed to the network; the mean and variance values calculated
on the training data are also applied to the testing data. The
training data is balanced with regards to classes by randomly
selecting samples of the predominant class. The learning rate
(α), the number of epochs (NoE), the momentum, and weight
decay are set, respectively, to 0.001, 80, 0.9, and 2 × 10−7

during the unsupervised and to 0.001, 50, 0.9, and 1.2×10−4

during the supervised training stage.
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Fig. 4. The output of the period probability estimation. Circles correspond
to the estimated period timestamps after applying a threshold and crosses are
the reference period timestamps.

V. MODELLING OF THE ALARM TEMPORAL STRUCTURE

In this block, the longer-term time structure of alarms
is incorporated as follows. First, for each frame, the log-
posteriors of the alarm and the non-alarm class are computed.
The logarithm is taken after the probabilities obtained from
the statistical models described in Section IV are normalised
to sum up to one. Then, these frame-level log-posteriors are
aggregated over the intervals corresponding to durations of
signal and silence segments in every alarm period. At each
frame t, the probability of it being the first frame of the alarm
period is calculated as

Pperiod(t) =

t+Lsig−1∑
i=t

(PA−PNA)+

t+Lsig+Lsil−1∑
i=t+Lsig

(PNA−PA) (3)

where PA and PNA are log-posteriors of the alarm and non-
alarm class, Lsig and Lsil are, respectively, the duration of
signal and silence segments in an alarm period.

An illustration of the output obtained from computing that
aggregated probability is given in Figure 4. According to the
defined expression, each peak of the curve corresponds to the
first frame of the estimated alarm period.

VI. POST-PROCESSING AND DECISION

Two alternative methods have been considered for the last
step in the detection process depicted in Figure 2(b), which
include both post-processing and decision.

In the first method, with the likelihoods obtained from
the models, each frame is classified either as alarm or non-
alarm using the decision threshold that is chosen based on
the Equal Error Rate (EER) criterion, so assuming that both
miss and false alarm errors are equally important at the frame
level. Then the resulting sequence of hypothesized labels is
smoothed by means of majority voting. The length of the
voting window is set to be the minimum of the signal and
silence interval length in an alarm period. For the period-
level evaluation, which is described later in Section VII, the
beginning of each frame sequence of consecutive alarm labels
is regarded as the detected alarm period label. Also, hereafter
a constraint of minimal distance between detected periods is
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applied. That minimal distance is taken equal to 75% of the
period duration.

The second method employs the temporal modeling from
Section V. The period probability function Pperiod(t) from
equation (3) undergoes a class-specific thresholding along the
frame index and the peaks of the curve above the threshold are
chosen as the detected alarm periods (circles in Figure 4), and
are directly used to evaluate at the period level. That class-
specific threshold is chosen so as to provide the best period-
level performance. To obtain the corresponding frame-level
decisions, Lsig frames after each of the detected alarm periods
are assigned to the alarm class.

A third decision method that results from combining in
parallel the previous two methods is also tested in our experi-
ments. In it, if an alarm event (a frame sequence of consecutive
alarm labels) detected with the first method does not coincide
with any of the alarm periods detected by the second method
with a tolerance ±Lsig/2, the frames of that event are assigned
to the non-alarm class.

VII. EXPERIMENTAL EVALUATION

A. Evaluation setup

As the dataset is relatively small, a 10-fold cross-validation
scheme was applied to obtain more statistically relevant re-
sults. On each data fold, 9 sessions were used for training
and 1 session for testing. For each metric, after accumulating
the results for each class over all 10 folds, the overall metric
scores were obtained by averaging along classes. The same
cross-validation scheme was also applied for NMF-based
feature extraction, where 9 sessions were used for training
the bases, which were applied to process 1 testing session.
Only recordings made with the microphone situated outside
the incubator were used in the experimental evaluations to
keep homogeneous experimental conditions, and also because
this microphone is closer to the alarm sources.

During system development, the performance of the detec-
tion system was evaluated at the frame level, with two metrics:
the Missing Rate (MR) and the False Alarm Rate (FAR), which
are defined as

MR =
NM

NA
, FAR =

NFA

NNA
, (4)

where NA and NNA respectively are the total number of alarm
and non-alarm frames, and NM and NFA are the number of
misclassified frames for the alarm class (misses) and for the
non-alarm class (false alarms), respectively.

Along with those frame-level metrics, we propose an event-
based metric that can offer to clinicians a more meaningful
interpretation of the system performance. With that purpose,
we chose as event the signal interval inside every alarm
period, since it is a naturally perceived acoustic unit. This
way, we define the Period-Based ERror Rate (PB-ERR) as a
complementary of F1-score as

PB-ERR = 1− F1 = 1− 2 ·NC

2 ·NC +NFA +NM
(5)

where NC is the number of correctly detected reference alarm
periods, NM and NFA are the number of missed and falsely

TABLE II
ALARM DETECTION PERFORMANCE OBTAINED BY A SYSTEM MODELLING

THE SPECTRAL STRUCTURE ONLY

Features Dimensionality Error (MR = FAR) (%)
Baseline 36 35.30
SD LLH ratio Nf 32.16
SD LLH 2Nf 14.52
SD LLH & Amp 3Nf 13.37
NMF 4 19.41

Nf denotes the number of specific frequencies of an alarm class

inserted periods, respectively. A reference period is correctly
detected if there is a detected alarm period in the tolerance
interval [Tref −Ttol;Tref +Ttol], where Tref is the reference
period timestamp and Ttol is the tolerance interval duration.
Note that Ttol must be less than half the alarm period duration;
otherwise two reference periods may be associated to one
detected period, so counting both of them as correctly detected.

B. Comparison of feature extraction schemes

First of all, the proposed feature extraction techniques were
experimentally evaluated at the frame level, so only GMM
modeling of spectral structure was included in the detection
system. The post-processing steps were left for subsequent
experiments, where GMM modelling is also employed unless
explicitly stated otherwise. Results reported in Table II cor-
respond to both MR and FAR metrics having the same value
(EER).

As it can be seen in Table II, features based on sinu-
soidal detection (SD) and on non-negative matrix factorization
(NMF), which exploit the knowledge of alarm properties, can
significantly outperform the conventional baseline features.
The relative improvement obtained is equal to, correspond-
ingly, 62.12% and 45.01%.

The second part of the Table II (rows 2-4) shows results
when SD is applied for feature extraction. In this case the
feature vector can be formed either using the log-likelihood
ratio between the sinusoidal model and the noise model (LLH
ratio) or using these two log-likelihoods separately (LLH).
The performance of the detection system employing the latter
features is clearly better as more information is provided to
classifiers. To better model the alarm amplitude structure,
the LLH features are further combined with the normalized
magnitude values (row 4), bringing an additional relative
improvement of 7.92%. In fact, the information about the
amplitude structure may be helpful for distinguishing between
alarms that show very similar frequency components.

The last part of the table presents the results for the NMF-
based features and it can be seen that they do not outperform
the SD-based features. Actually, their performance is 45.18%
relatively worse, which may be explained by the fact that
the spectral information captured by NMF-based features is
less accurate. In fact, the NMF framework is based on an
approximation, which is performed both at the training and
the source separation (i.e. feature extraction) steps. While the
SD algorithm treats each spectral point independently, in NMF
processing, the spectral structure of alarms is captured as a
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Fig. 5. Histogram of SNR values over all labelled alarm samples.

whole by the trained bases. Also, unlike the SD-based features,
the activations obtained from NMF processing can be sensitive
to the amplitude of the signal.

The alarm occurrences which are most difficult to detect
are likely those associated with low SNR values. The effect
of such alarm stimuli on the preterm infant is very small, so
a more adequate measurement of the detection error may be
obtained by discarding the alarm occurrences with low SNR
values.

C. Assessing the performance of the system according to the
quality of alarm samples

In this section we explore the performance of the system
considering the quality of the labelled alarms, which is as-
sessed by calculating the local Signal-to-Noise Ratio (SNR)
value. The idea is that the effect on the preterm infant of
the auditory stimulus due to an alarm is noticeable only if
its SNR is sufficiently high. The SNR value is calculated
using the recordings made with the microphone placed inside
the incubator, so it measures what the preterm infant was
receiving. For each alarm sample, the local SNR is calculated
around alarm-specific frequency bins fb. Both the signal and
noise powers are estimated by averaging the spectrum both
in frequency (with a margin ±δ for the signal and ±100 Hz
around the signal margin for the noise) and in time.

Figure 5 shows the distribution of the alarm samples as
a function of their local SNR value. This distribution is
exponentially modified Gaussian with the exponential decay
towards higher SNR values.

The whole range of SNR values over the labelled database
was further divided in 5 dB intervals and all alarm samples
were grouped according to these intervals. These groups
were evaluated independently and the evaluation results are
presented in Table III as an average over the considered alarm
classes. It can be clearly seen that the system performance
improves as the SNR becomes higher and so the quality of
the evaluated alarm samples increases. Note that the models

Fig. 6. The DET graphs for different statistical models. Circles correspond
to points closest to EER.

used for this evaluation were trained using the whole set of
alarms from the database, which means that the models were
trained on multiple conditions.

We further explored how the performance of the detection
system changes in case the lowest quality alarm samples are
discarded from the evaluation. Table IV shows the evolution
of the detection error with regards to the threshold placed on
the SNR values, where alarms with SNR below this threshold
are not included in the evaluation. Notice that there is a drop
in the detection error when alarm samples with SNR value
below 5 dB are discarded, and in that case the detection error
(MR = FAR) becomes 10.55%.

D. Comparison of statistical models

In this work, we explore two different statistical models
described in Section IV. As in the previous subsection, no
post-processing schemes are applied, and the best-performing
feature extraction setup, namely SD LLH & Amp, is em-
ployed. The Detection Error Tradeoff (DET) graphs for the
GMM-based and NN-based statistical models are shown on
Figure 6. The curves were obtained by varying a threshold on
the log-likelihood ratio and averaged over the considered alarm
classes. It can be seen that the GMM-based models outperform
the NN-based ones at almost all the operating points of the
curve, even though the NN-based models are discriminatively
trained. This behaviour may be explained by the fact that a
very limited amount of data is available for model training,
which reduces the generalization capability of the networks
and may cause overfitting.

E. Comparison of post-processing schemes with application-
specific evaluation

Table V shows the results when post-processing is included
before detection in terms of either smoothing (S), temporal
modelling (TM) or a combination of both, as described in
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TABLE III
ALARM DETECTION PERFORMANCE OBTAINED OVER THE SNR INTERVALS

SNR range (dB) < 0 0 - 5 5 - 10 10 - 15 15 - 20 20-25 > 25 All
MR = FAR (%) 19.79 15.84 13.66 13.19 7.40 9.01 7.27 13.37
Alarms evaluated 77 555 354 122 96 36 47 1347

TABLE IV
ALARM DETECTION PERFORMANCE OBTAINED BY DISCARDING THE

ALARM SAMPLES BELOW THE SNR THRESHOLD

SNR threshold (dB) None 0 5
MR = FAR (%) 13.37 13.09 10.55
Alarms discarded 0 77 632

TABLE V
ALARM DETECTION PERFORMANCE OBTAINED FROM DIFFERENT

POST-PROCESSING METHODS

Post-processing Error metrics (%)
MR FAR PB-ERR

None (baseline) 35.30 35.30 93.45
None 13.37 13.37 68.96
Smoothing (S) 13.70 9.61 53.62
Temp. modelling (TM) 33.56 2.36 36.27
Combination (S & TM) 32.49 1.57 33.10

Section VI. It can be seen that none post-processing scheme
improves MR scores compared to not performing any post-
processing at all, but all schemes improve the FAR metric
scores to a large extent (up to 87.8% relative improvement in
the best case). Moreover, all the post-processing schemes are
able to improve the PB-ERR scores. Note that for the PB-
ERR metric calculation the parameter Ttol was set to 49%
of the alarm period duration. In fact, according to what is
explained in Section VII-A, this is a largest value the Ttol can
take on. In this case, the system is expected to detect an alarm
in the tolerance interval that has the duration of almost one
alarm period, which is acceptable for the medical application,
taking into account that the period duration of most of the
alarm classes is quite short.

In general, we could say that smoothing provides better
results at the frame level, while temporal modelling performs
better at the period level. This fact should be mainly attributed
to the way the results are obtained for these post-processing
schemes, as described in Section VI. Notice that, although
smoothing slightly increases MR, it brings a significant error
reduction in terms of FAR (which corresponds to -2.64% and
28.12% relative improvement). Temporal modelling, on the
other hand, reduces even stronger the FAR error (by 82.35%,
relatively) and is not performing well in terms of MR metric,
but gives better period-level score, which is more important
for the medical application. Although there is a big difference
between frame-level metrics in %, due to the significant
unbalance between the alarm and non-alarm classes, in terms
of the absolute number of frame errors the deterioration of
MR results is smaller than the improvement of FAR results.

The best PB-ERR metric score corresponds to the combina-
tion of both smoothing and temporal modelling (S & TM). It

Fig. 7. PB-ERR metric result as a function of the tolerance value Ttol. The
bold black line corresponds to the average over the alarm classes. The far right
points of the curves are the reported PB-ERR results using 49% tolerance, by
classes (%): a1 33.33, a3 27.90, a6 38.99, a7 19.51, a8 33.50, a10 8.50, a16
69.98.

is 52% relatively better than not using any post-processing and
yields more than 60% absolute improvement compared to the
baseline system that uses generic features. The combination
of both schemes outperforms the temporal modelling not only
in terms of PB-ERR, but also at the frame level. It is worth
noticing that in this experiment the system performs 7%
relatively worse on segments where several alarms overlap in
comparison to segments with no overlaps, which is mainly due
to overlaps between alarms that have similar spectro-temporal
structure.

Finally, Figure 7 provides more detailed information about
the period-level performance for the combined post-processing
scheme, and shows the dependency of the results upon the
tolerance value Ttol used for the PB-ERR calculation. Note
from the figure that the performance of most detectors is not
improving significantly when Ttol > 15%. The best results
are obtained for classes a3, a7 and a10, which have spectro-
temporal properties quite different from other alarm classes.
The worst results, on the other hand, are obtained for the alarm
class a16, which shares its only frequency with classes a1 and
a8. The results for class a6 are strongly dependent on Ttol and
a high value is required due to the short period duration of
that alarm class.

VIII. CONCLUSIONS

The reported work presents an automatic system for the
detection of acoustic alarms in a noisy NICU environment,
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which is machine learning based but also exploits the knowl-
edge of their particular spectral and temporal properties. In
particular, it has been shown that the detection system benefits
largely from the introduction of both spectral and temporal
information. The experimental results show that the detection
errors obtained by the proposed system are still rather high,
a fact which may be attributed to the rich multisource, noisy
nature of a real-world NICU environment and to the scarcity
of the available annotated data.

In order to improve the system performance, some detection
hierarchy could be considered, e.g. the alarm classes that
have similar spectral structure could be detected consecutively,
starting first with those having more frequency components.
Also, a more sophisticated algorithm for sinusoidal detection
could be employed. Hopefully, the incorporation of much more
data will allow high performance improvements.

To be implemented in the hospital environment an enhanced
staff notification technology would require two elements: auto-
matic detection of alarm sounds and smart alarm notification.
The robust alarm detection system would provide an input
event to the alarm notification system, and the latter would
infer the clinical relevance of that event based on the severity
and urgency of the corresponding alarm, on the occurrence
of particular alarm combinations, etc. The overall usability
of the notification system would depend on the combination
of the above-mentioned elements and would require thorough
evaluation of clinical effectiveness. Therefore, future work
would entail the development of a complementary smart alarm
notification system.
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Blanca Muñoz Mahamud received the MRes de-
gree in Health Sciences from Universitat Autònoma
de Barcelona, Barcelona, Spain in 2012. She has
been working as a neonatal intensive care nurse in
several hospitals from 2003, and currently works at
Hospital Sant Joan de Déu, Barcelona, Spain.
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