
Proactive vs Reactive Failure Recovery

Assessment in Combined Fog-to-Cloud (F2C)

Systems

Vitor Barbosa Souza*
§
, Xavi Masip-Bruin

§
, Eva Marín-Tordera

§
, Wilson Ramírez

§
, Sergio Sánchez-López

§

* Informatics Department (DPI), Universidade Federal de Viçosa (UFV), Brazil
§
Advanced Network Architectures Lab (CRAAX), Universitat Politècnica de Catalunya (UPC), Spain

vitorbs@dpi.ufv.br, {xmasip, eva, wramirez, sergio}@ac.upc.edu

Abstract—The increasing number of end user devices at

the edge of the network, along with their ever increasing

computing capacity, as well as the advances in Data Center

technologies, paved the way for the generation of Internet of

Things (IoT). Several IoT services have been deployed

leveraging Cloud Computing and, more recently, Fog

Computing. In order to enable efficient control of cloud and

fog premises, Fog-to-Cloud (F2C) has been recently proposed

as a distributed architecture for coordinated management of

both fog and cloud resources. Certainly, many challenges

remain unsolved in combined Fog-to-Cloud systems, mostly

driven by the dynamicity and volatility imposed by edge

devices, such as the recovery of failures at the edge of the

network. Indeed, possible failures in computing commodities

may be prohibitive for the achievement of the envisioned

performance in F2C systems. In this work, we assess proactive

and reactive strategies for failure recovery of network

elements by modelling them as a Multidimensional Knapsack

Problem (MKP) and study the impact of each one on several

aspects such as service allocation time, recovery delay and

computing resources load. The obtained results show the

effect each strategy brings, thus concluding with some analysis

on the recovery strategy best suiting distinct IoT scenarios.

Keywords— Cloud computing, Fog computing, combined

Fog-to-Cloud, Internet of Things, Failure recovery

I. INTRODUCTION

The Internet of Things (IoT) envisions a massive,
heterogeneous set of devices demanding connectivity
anywhere, anyhow, by any means, which has coined new
concepts for the Future Internet such as Smart Home or
Smart Cities [1], to name a few. These concepts leverage
advances in Data Center (DC) technologies as well as in the
Cloud Computing paradigm, which has, with no doubt been
positioned as the key enabler for IoT applications
development. This assessment is rooted on the fact that the
huge computational capacity offered by cloud premises
enables the deployment of IoT services with high
requirements, including Video-on-demand or DC backup
solutions.

More recently, the high end-to-end latency observed in
cloud applications—due to the large distance separating
end-user devices and cloud—has driven the need for a new
paradigm, so-called fog computing [2], particularly
addressed to support the highly demanding requirements of

real-time IoT services, such as Smart Transportation or e-
Health. In short, Fog Computing inherits the main concepts
of Cloud Computing, but move them to the edge of the
network. The main idea is to bring remote processing closer
to end-user devices, enforcing locality, imposing low
response time, low network load and less energy
consumption. Since fog computing is not competing but
complementing cloud computing, the next evolution in the
cloud arena will be built upon considering both cloud and
fog resources on a coordinated way to efficiently execute a
wide range of services.

However, such a coordinated scenario, requires new
management policies in place responsible for controlling
and managing the large set of heterogeneous and volatile
resources brough by combining fog and cloud. To that end a
combined Fog-to-Cloud (F2C) management architecture has
been recently proposed in [3]. F2C is intended to provide a
coordinated fog and cloud resources allocation, thus
enabling the distributed execution of IoT services in fog,
cloud, or both, while simultaneously leveraging the
heterogeneity perceived on the combination of Fog and
Cloud Computing systems. As shown in Fig. 1, distinct
resources in F2C are hierarchically organized into layers
enabling IoT services to make the most out of the
heterogeneous and distributed resources.

Albeit works such as [4] have assessed service allocation
in F2C, several open issues are not addressed yet. For
instance, the high dynamicity perceived at edge devices
requires novel mechanisms for failure recovery, specifically
designed for distributed scenarios. In fact, although distinct
strategies have been successfully employed in Cloud
Computing for protection of data and network resources,
this is yet an open challenge in Fog computing, further
inherited by F2C systems. It must be remarked that a key
design aspect of such protection strategy is to enable service
protection with low service allocation time and protection
cost, i.e., the amount of computing resources devoted for
service protection as well as the recovery delay.

In this paper, we introduce, model and analyze the
service protection in F2C, taking into account two failure
recovery strategies: i) the so-called proactive protection,
where protection resources (or secondary) are pre-allocated
and used in case of primary resource failure; and ii) the

reactive protection, where the secondary resources are not
allocated until a failure occurs.

The rest of this paper is organized as follows. Section II
introduces the related work in recovery strategies. Section
III describes in a comprehensive manner the F2C
architectural model. Afterwards, Section IV introduces the
recovery strategies used in this work as well as presents the
failure recovery problem formulation. Then, Section V
provides numerical results regarding the implemented
strategies. Finally, Section VI provides the final
conclusions.

II. RELATED WORK

In this section, we highlight the main research studies
dealing with resilience in Cloud and Fog Computing, as well
as existing contributions dealing with proactive and reactive
recovery strategies. Both, proactive and reactive recovery
techniques, are commonly used in distinct scenarios,
including those making use of plenty of reliable computing
and network resources, such as data centers [5], and those
with unreliable and reduced amount of resources, such as
wireless sensor networks [6]. The work presented in [7]
utilizes a proactive strategy to recover from network failures
by defining backup paths with distinct priorities in network
switches, not requiring the controller participation on the
recovery process. On the fog computing side, authors in [8]
replicate the service execution between the edge device and
a remote server. Albeit protection is not the main focus of
that contribution, the proposed proactive strategy yields a
fault-tolerant service execution.

Among the studies dealing with reactive protection in
Cloud scenarios, the work available in [9] may be

mentioned from a networking perspective. In that work
Cloud resilience is achieved by means of network
virtualization. Other works, such as [10], consider a Cloud
scenario based on an optical network core, where an
analogous technique to shared-protection, so-called shared-
path shared-computing (SPSC) protection is used against a
single link or node failure. Regarding resilience in Fog
scenarios, the work in [11] addresses recovering from
Mobile Edge Computing (MEC) failures. The strategy
presented by the authors is based on workload offloading to
neighboring resources aiming at the recovery for overloaded
or broken MEC. Nevertheless, the availability of
neighboring resources are not guaranteed by a protection
strategy.

Despite the wealth of available studies related to Cloud
computing resilience, to the best of our knowledge, there are
still several open challenges dealing with the negative
effects stemmed from the lack of Fog commodities
availability. In an attempt to address these challenges, in this
paper, we formalize, by means of linear programming,
proactive and reactive protection strategies against
commodity failures. Our goal is to provide enough
computing resources to withstand single commodities
failures. To that end, we assume a F2C scenario where only
failures at the Fog infrastructure are possible. The rationale
driving this assumption is to show the vulnerability of Fog
nodes and its impact on service transmission performance
and protection cost.

III. THE COMBINED F2C ECOSYSTEM

In the F2C architecture considered in this work, F2C
resources are split into three hierarchical layers, consisting
in one cloud layer and two fog layers. In a bottom-up
perspective, the first layer is the fog layer 1, or Fog-1, which
comprises edge devices located at a 1-hop distance from the
end-user. Therefore, it is mostly composed of resource-
constrained devices embracing the ones presenting high
dynamicity, such as moving vehicles, wearables or
smartphones, as well as static devices, such as sensors. The
second layer is the fog layer 2, or Fog-2, which embraces
edge devices presenting lower mobility, higher resource
availability and higher distance from the end-user, if
compared to the ones in fog layer 1. Vehicles in a parking
lot or fog premises deployed in public buildings are
examples of Fog-2 resources. Finally, the third layer is the
cloud layer, or simply cloud, handled by traditional cloud
service providers relying on data centers premises, with high
computing capacity and availability as a tradeoff with the
high end-user communication latency.

The total capacity of each fog and cloud as well as the
capacity demanded by the services are measured in terms of
slot units. Therefore, an slot is the minimum unit for
resource allocation, i.e., the amount of slots required by one
single service is static and their allocation may be done
either in one single F2C node—i.e., fog or cloud—, offering
the required amount of slots, or in a distributed fashion,
where service slots may be allocated in distinct F2C nodes
and even in distinct F2C layers. In addition, for the sake of
simplicity, we consider the allocation of just one resource

Fig. 1. Fog-to-Cloud (F2C) architecture.

type, i.e., we abstract the type of resource slot being
requested by services and offered by F2C nodes. This
assumption aims at the simplification of the problem
modeling, allowing this work to focus on the description and
comparison of the protection strategies.

Finally, also for the sake of simplicity, we consider the
failure of one single fog node, that is to say, only one fog
may become inaccessible on the first or second fog layers.
Moreover, we assume that cloud service providers can
withstand with internal failures through their own protection
schemes, i.e., we consider that the cloud resources are
always available.

IV. FAILURE RECOVERY IN F2C

In this section, we introduce the failure recovery
strategies assessed in this work, presenting main
particularities as well as a formal description.

A. Failure Recovery Strategies

In this subsection, we go deep into the proactive and the
reactive failure recovery strategies modeled in this paper. It
is worth mentioning that, in both strategies, the allocation of
protection resources is done in a horizontal fashion. This
means that the protection is allocated at the same fog layer
in the architecture, i.e., the protection resources for a fog in
Fog-1 are located in a fog also at Fog-1, and so on.
Horizontal allocation may ease the allocation of resources
with similar characteristics, respecting SLA even after
failure events. The assessed strategies work as follows.

 Proactive recovery: in this strategy, protection resources
are pre-allocated for each primary resource allocation. If
the primary resource becomes unavailable, the protection
may be used with no extra allocation delay.

 Reactive recovery: in this strategy, the protection
resources are not allocated until failure occurrence.
Indeed, a set of protection resources may be selected to
react to a failure, but they are not allocated until the
failure takes place. This strategy allows a set of
protection resources to be shared among primary
resources allocated in distinct fogs, diminishing the
resource underutilization whilst delaying the protection
allocation.

B. Problem Model

In this section, we provide a formal description of the
protection strategies assessed in this work by modeling the
failure recovery problem as a Multidimensional Knapsack
Problem (MKP) whose objective is twofold: 1) decrease the
delay for transmission of each service; and 2) decrease the
protection cost –by reducing the slots consumed for
protection–, and diminish the recovery latency –by
provisioning low-delay protection slots using resources
located in lower F2C layers. Therefore, the objective
function, as described in (1), minimizes the sum of delays
for the allocation of each service in the set S (first problem
objective) and the sum of the cost for accessing each
protection slot in the F2C resources in the set R (second
problem objective). All symbols used in the presented
model are defined on Table I.

Min: ∑ 𝐷𝑖𝑖∈𝑆 + ∑ 𝑃𝑟𝑟∈𝑅  

In order to represent the primary and secondary slot
allocation into the available F2C resources, the respective
linear programming integer variables Y and X were defined
as follows.

𝑌𝑖,𝑟,𝑘 = {
1, if service 𝑖 is allocated in resource 𝑟

consuming slot 𝑘
0, otherwise

𝑋𝑟,𝑘 = {
1, if resource 𝑟 has its slot 𝑘 reserved as

a secondary slot (protection)
0, otherwise

TABLE I. MODEL SYMBOLS DEFINITION

Symbol Definition

Di
Delay for the transmission of the service i (all primary slots

required by the service)

Pr Recovery delay offered by resource r

S Set of services to be executed

Ui Total number of slots required to execute service i

R
Set of F2C resources, i.e., set of distinct cloud and fog

nodes

Kr
Set of slots provided by F2C resource r for both primary
and secondary use

Ln Set of fogs available at fog layer n

Fr Set of fog nodes in the same fog layer of fog r

Tr
Allocation delay of a slot in F2C resource r, according to
its F2C layer

Moreover, the objective function is subject to a set of
constraints, as described in the following lines.

 ∑ ∑ 𝑌𝑖,𝑟,𝑘 ∗ 𝑇𝑟𝑘∈𝐾𝑟𝑟∈𝑅 = 𝐷𝑖 , ∀𝑖 ∈ 𝑆 

 ∑ 𝑋𝑟,𝑘 ∗ 𝑇𝑟𝑘∈𝐾𝑟
= 𝑃𝑟 , ∀𝑟 ∈ 𝑅 

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑟∈𝑅𝑠
= 𝑈𝑖 , ∀𝑖 ∈ 𝑆 

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑖∈𝑆 + ∑ 𝑋𝑟,𝑘𝑘∈𝐾𝑟
≤ |𝐾𝑟| , ∀𝑟 ∈ 𝑅 

 ∑ 𝑌𝑖,𝑟,k𝑖∈𝑆 + 𝑋𝑟,k ≤ 1 , ∀𝑟 ∈ 𝑅 ∧ ∀𝑘 ∈ 𝐾𝑟  

The sum of the allocation delay of each service (Di) is
given by (2), whilst the sum of the recovery delay
introduced by the transmission latency on each node Pr, is
defined by (3). The overall protection cost of each node is
defined as the number of slots consumed for protection
multiplied by the delay of a single transmission to this node.
Notice that the protection cost in the model may be reduced
by diminishing the amount of protection slots allocation X
or by using resources with lower transmission delay T. On
the other hand, the primary allocation delay can only be
reduced through the selection of resources offering lower
delay T, since the amount of primary slots allocation cannot
be decreased. This constraint is defined by (4).

Jointly with (4), equations (5) and (6) are responsible for
the coordinated allocation of primary and secondary slots

according to the service requirements and the resources
availability. Therefore, constraint (4) aims at ensuring the
allocation of the required amount of primary slots for each
service in S. In addition, this constraint enables the
distributed service allocation into distinct F2C resources and
layers, as envisioned by F2C. The constraint imposed by (5)
guarantees that each resource capacity, in term of slots, is
not surpassed. This is achieved by considering the capacity
of each F2C node and its allocation of both primary slots
demanded by distinct services and secondary slots required
by protection strategies. Furthermore, (6) is responsible for
constraining the capacity of each slot to, at maximum, one
allocation. That is to say, it ensures that each consumed slot
is allocated as either one primary or one secondary slot.
 In order to cope with the distinct protection strategies
analyzed in this work, two strategy-specific constraints are
introduced. Equation (7) ensures the protection allocation
for the proactive strategy, whilst (8) guarantees the reactive
recovery strategy. The horizontal strategy defined for the
proposed recovery mechanisms is also ensured by both
equations. Therefore, on each primary slot allocated in one
layer, (7) enforces the reservation of a protection slot in the
same layer. On the other hand, the goal of (8) is
accomplished by granting the number of protection slots on
each fog layer do not be lower than the amount of primary
slots allocated in any individual fog located in the same
layer.

 ∑ ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑟∈𝐿𝑛𝑖∈𝑆 = ∑ ∑ 𝑋𝑞,𝑘𝑘∈𝐾𝑞𝑞∈𝐿𝑛
 ,  

∀𝑛 ∈ {1,2}

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑖∈𝑆 ≤ ∑ ∑ 𝑋𝑞,𝑘𝑘∈𝐾𝑞𝑞∈𝐹𝑟−{𝑟} ,  

∀𝑟 ∈ 𝐿1 + 𝐿2 

V. PRELIMINARY RESULTS

In this section, we evaluate the impact of the presented
protection strategies on the overall service transmission
delay, failure recovery delay, and F2C resources load. To
that end we use PuLP [12] and Gurobi Optimizer [13]. The
simulation results were obtained taking into account the
service parameters and resource parameters shown,
respectively, in Table II and Table III.

TABLE II. SIMULATION PARAMETERS: SERVICES

Parameter Value

Number of requested services From 10 to 150

Ratio between amount of service types:

low consuming / high consuming services

90 (low) /

10 (high)

Slots demanded by low consuming services 2

Slots demanded by high consuming services 20

TABLE III. SIMULATION PARAMETERS: F2C RESOURCES

Parameter
Fog layer

1

Fog layer

2
Cloud

Number of F2C nodes per
layer

8 fogs 4 fogs 1 cloud

Available resources per node 10 100 Unlimited

Allocation delay per F2C

layer
1 ms 2 ms 10 ms

In this work, we assumed that, for each service, the
resource allocation in distinct F2C nodes is performed in a
parallel fashion. Therefore, the overall time demanded for
the allocation of each service corresponds to the time for
allocation of the resource with the highest delay.

The impact in terms of delay perceived on both failure
recovery strategies is illustrated by Fig. 2(a). Notice that this
figure presents the delay for service transmission in reactive
and proactive recovery, evidencing the lower delay for the
former. Nevertheless, this single results confrontation is
unfair since proactive schemes consume more resources in
lower layers for protection purposes leading to a premature
primary allocation in higher layers, with higher latency. To
cope with this situation, we also calculate the overall delay
for reactive strategies considering both the service
transmission to the primary resource and delay added by the
service allocation after one eventual fail. Albeit the delay for
the service request transmission in reactive strategies cannot
be overlooked, proactive strategies offer seamless recovery,
hence recovery latency is not applicable, as previously
exposed in this paper. Also shown in Fig. 2(a), the so-called
reactive+RD consists in the overall delay for reactive
strategy including the fail recovery delay. Therefore, a more
realistic comparison, confronting the delays for proactive
and reactive+RD results, reveals that, in failure scenarios,
each strategy may present better performance in distinct
cases according to the number or services to be executed.
The fast delay increase observed in this figure can be
explained by the shift on the service allocations from fog to
cloud due the lack of available resources in lower layers.
Consequently, even taking into account one eventual
reactive recovery, the early depletion of fog layer resources,
perceived in proactive strategies, results in a higher delay of
this strategy under medium load. As can be observed in Fig.
2(b), a direct comparison between proactive and
reactive+RD yields an increase from 50% lower to 100%
higher delay of proactive recovery in comparison with the
reactive+RD one, being followed by a decrease on the
difference as the amount of services increase.

In order to analyze the resource utilization in the third
F2C layer, Fig. 3 presents the allocation of primary slots in
the cloud. For sake of comparison, we included also the
results obtained by exclusive cloud allocation, i.e., the usage
of a traditional cloud computing system with no fog layers,
showing that the distributed allocation strategy envisioned
by F2C enables an average load reduction in cloud resources
as high as 50%. In this figure, we do not show the protection
allocation in cloud commodities since we assume that the
cloud servers implement their own protection techniques as
previously pointed out in this paper. Moreover, it is worth
mentioning that one of the benefits of the employed
horizontal protection strategy is that the fog layers are not
tied to the cloud regarding the protection allocation.

An analysis of the presented results shows that both
proactive and reactive failure recovery are feasible on F2C
architectures, albeit the higher underutilization of edge
resources perceived in proactive strategies shall hinder the
full employment of these strategies in scenarios with large
amounts of services requests, such as Smart Transportation,

(a)

(b)

Fig. 2. Delay in evaluated strategies: (a) absolute and (b) relative

comparison.

Fig. 3. Primary resource allocation in the Cloud.

where reactive strategies may be preferred. Future lines of
work include the study of the tradeoff between network and
computing resources in proactive recovery strategies in F2C
computing systems. Indeed, proactive strategies may enable
a desirable redundancy on sensitive services requiring real-
time fault-tolerant execution. Nevertheless, this redundancy
may drain the already scarce energy resources in devices at
the edge of the network. On the other hand, their allocation
as primary and backup computing resources requires the
continuous transmission of the service execution state in
order to allow the backup execution to take place with
minimum impairment in an eventual failure occurrence.

VI. CONCLUSION

The dynamicity of IoT scenarios imposes several
challenges for the management of resources at the edge of
the network and fault-tolerant service execution
architectures such as F2C computing. In this work, we
discuss two strategies for resource failure recovery. In order
to evaluate the employment of the discussed strategies, we
model the failure recovery problem as a MKP aiming at
minimizing both the service transmission delay and the
protection cost, taking into account the recovery latency and
optimal protection resources distribution. The presented
results showed that the employed strategy has a big impact
on the service transmission and recovery performance.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of
Economy under contract TEC2015-66220-R, by the Catalan
Government under contract 2014SGR371 and by the H2020

EU mF2C project. Vitor Barbosa Souza is supported by
CAPES Foundation, Ministry of Education of Brazil, Proc.
No.11888/13-0.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi. Internet of
things for smart cities. In: IEEE Internet of Things journal, 1(1), pp.
22-32, February 2014.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
Computing and Its Role in the Internet of Things”. In:
Proceedings of 1st MCC Workshop on Mobile Cloud Computing, ser.
MCC ’12. New York, NY, USA: ACM, pp. 13–16, August 2012.

[3] X. Masip-Bruin, E. Marin-Tordera, A. Jukan, G. J. Ren, G.
Tashakor. Foggy clouds and cloudy fogs: a real need for coordinated
management of fog-to-cloud (F2C) computing systems. In: IEEE
Wireless Communications Magazine, 23(5), pp. 120-128, October
2016.

[4] V.B.Souza, X.Masip-Bruin, E.Marín-Tordera, W.Ramírez. Towards
Distributed Service Allocation in Fog-to-Cloud (F2C) Scenarios. In:
IEEE Global Communications Conference, Globecom 2016.

[5] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou. Research
challenges for traffic engineering in software defined networks. In:
IEEE Network, 30(3), pp. 52-58, 2016.

[6] M. Younis, I. F. Senturk, K. Akkaya, S. Lee, F. Senel. Topology
management techniques for tolerating node failures in wireless
sensor networks: A survey. Computer Networks, 58, pp. 254-283,
2014.

[7] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, P. Castoldi.
OpenFlow-based segment protection in Ethernet networks. In:
Journal of Optical Communications and Networking, 5(9), pp. 1066-
1075, 2013.

[8] Y. W. Kwon, E. Tilevich. Energy-efficient and fault-tolerant
distributed mobile execution. In: IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 586-
595, IEEE, 2012.

[9] I. B. B. Harter, D. A. Schupke, M. Hoffmann, G. Carle, Network
virtualization for disaster resilience of cloud services. In: IEEE
Communications Magazine, vol. 52, no. 12, pp. 88-95, December
2014. doi: 10.1109/MCOM.2014.6979957.

[10] C. Natalino et al., “Dimensioning optical clouds with shared-path
shared-computing (SPSC) protection”. In: 2015 IEEE 16th
International Conference on High Performance Switching and
Routing (HPSR), Budapest, 2015, pp. 1-6.

[11] D. Satria, D. Park, M. Jo, “Recovery for Overloaded Mobile Edge
Computing”, In: Future Generation Computer Systems, 2016.

[12] Optimization With PuLP. Available: http://www.coin-or.org/PuLP/

[13] Gurobi Optimization. [Online]. Avaliable: http://www.gurobi.com/

