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Abstract—The increasing number of end user devices at 

the edge of the network, along with their ever increasing 

computing capacity, as well as the advances in Data Center 

technologies, paved the way for the generation of Internet of 

Things (IoT). Several IoT services have been deployed 

leveraging Cloud Computing and, more recently, Fog 

Computing. In order to enable efficient control of cloud and 

fog premises, Fog-to-Cloud (F2C)  has been recently proposed 

as a distributed architecture for coordinated management of 

both fog and cloud resources. Certainly, many challenges 

remain unsolved in combined Fog-to-Cloud systems, mostly 

driven by the dynamicity and volatility imposed by edge 

devices, such as the recovery of failures at the edge of the 

network. Indeed, possible failures in computing commodities 

may be prohibitive for the achievement of the envisioned 

performance in F2C systems. In this work, we assess proactive 

and reactive strategies for failure recovery of network 

elements by modelling them as a Multidimensional Knapsack 

Problem (MKP) and study the impact of each one on several 

aspects such as service allocation time, recovery delay and 

computing resources load. The obtained results show the 

effect each strategy brings, thus concluding with some analysis 

on the recovery strategy best suiting distinct IoT scenarios. 

Keywords— Cloud computing, Fog computing, combined 

Fog-to-Cloud, Internet of Things, Failure recovery 

I.  INTRODUCTION 

The Internet of Things (IoT) envisions a massive, 
heterogeneous set of devices demanding connectivity 
anywhere, anyhow, by any means, which has coined new 
concepts for the Future Internet such as Smart Home or 
Smart Cities [1], to name a few. These concepts leverage 
advances in Data Center (DC) technologies as well as in the 
Cloud Computing paradigm, which has, with no doubt been 
positioned as the key enabler for IoT applications 
development. This assessment is rooted on the fact that the 
huge computational capacity offered by cloud premises 
enables the deployment of IoT services with high 
requirements, including Video-on-demand or DC backup 
solutions.  

More recently, the high end-to-end latency observed in 
cloud applications—due to the large distance separating 
end-user devices and cloud—has driven the need for a new 
paradigm, so-called fog computing [2], particularly 
addressed to support the highly demanding requirements of 

real-time IoT services, such as Smart Transportation or e-
Health. In short, Fog Computing inherits the main concepts 
of Cloud Computing, but move them to the edge of the 
network. The main idea is to bring remote processing closer 
to end-user devices, enforcing locality, imposing low 
response time, low network load and less energy 
consumption. Since fog computing is not competing but 
complementing cloud computing, the next evolution in the 
cloud arena will be built upon considering both cloud and 
fog resources on a coordinated way to efficiently execute a 
wide range of services. 

However, such a coordinated scenario, requires new 
management policies in place responsible for controlling 
and managing the large set of heterogeneous and volatile 
resources brough by combining fog and cloud. To that end a 
combined Fog-to-Cloud (F2C) management architecture has 
been recently proposed in [3]. F2C is intended to provide a 
coordinated fog and cloud resources allocation, thus 
enabling the distributed execution of IoT services in fog, 
cloud, or both, while simultaneously leveraging the 
heterogeneity perceived on the combination of Fog and 
Cloud Computing systems. As shown in Fig. 1, distinct 
resources in F2C are hierarchically organized into layers 
enabling IoT services to make the most out of the 
heterogeneous and distributed resources. 

Albeit works such as [4] have assessed service allocation 
in F2C, several open issues are not addressed yet. For 
instance, the high dynamicity perceived at edge devices 
requires novel mechanisms for failure recovery, specifically 
designed for distributed scenarios. In fact, although distinct 
strategies have been successfully employed in Cloud 
Computing for protection of data and network resources, 
this is yet an open challenge in Fog computing, further 
inherited by F2C systems. It must be remarked that a key 
design aspect of such protection strategy is to enable service 
protection with low service allocation time and protection 
cost, i.e., the amount of computing resources devoted for 
service protection as well as the recovery delay. 

In this paper, we introduce, model and analyze the 
service protection in F2C, taking into account two failure 
recovery strategies: i) the so-called proactive protection, 
where protection resources (or secondary) are pre-allocated 
and used in case of primary resource failure; and ii) the 



reactive protection, where the secondary resources are not 
allocated until a failure occurs. 

The rest of this paper is organized as follows. Section II 
introduces the related work in recovery strategies. Section 
III describes in a comprehensive manner the F2C 
architectural model. Afterwards, Section IV introduces the 
recovery strategies used in this work as well as presents the 
failure recovery problem formulation. Then, Section V 
provides numerical results regarding the implemented 
strategies. Finally, Section VI provides the final 
conclusions. 

II. RELATED WORK 

In this section, we highlight the main research studies 
dealing with resilience in Cloud and Fog Computing, as well 
as existing contributions dealing with proactive and reactive 
recovery strategies. Both, proactive and reactive recovery 
techniques, are commonly used in distinct scenarios, 
including those making use of plenty of reliable computing 
and network resources, such as data centers [5], and those 
with unreliable and reduced amount of resources, such as 
wireless sensor networks [6]. The work presented in [7] 
utilizes a proactive strategy to recover from network failures 
by defining backup paths with distinct priorities in network 
switches, not requiring the controller participation on the 
recovery process. On the fog computing side, authors in [8] 
replicate the service execution between the edge device and 
a remote server. Albeit protection is not the main focus of 
that contribution, the proposed proactive strategy yields a 
fault-tolerant service execution.  

Among the studies dealing with reactive protection in 
Cloud scenarios, the work available in [9] may be 

mentioned from a networking perspective. In that work 
Cloud resilience is achieved by means of network 
virtualization. Other works, such as [10], consider a Cloud 
scenario based on an optical network core, where an 
analogous technique to shared-protection, so-called shared-
path shared-computing (SPSC) protection is used against a 
single link or node failure. Regarding resilience in Fog 
scenarios, the work in [11] addresses recovering from 
Mobile Edge Computing (MEC) failures. The strategy 
presented by the authors is based on workload offloading to 
neighboring resources aiming at the recovery for overloaded 
or broken MEC. Nevertheless, the availability of 
neighboring resources are not guaranteed by a protection 
strategy. 

Despite the wealth of available studies related to Cloud 
computing resilience, to the best of our knowledge, there are 
still several open challenges dealing with the negative 
effects stemmed from the lack of Fog commodities 
availability. In an attempt to address these challenges, in this 
paper, we formalize, by means of linear programming, 
proactive and reactive protection strategies against 
commodity failures. Our goal is to provide enough 
computing resources to withstand single commodities 
failures. To that end, we assume a F2C scenario where only 
failures at the Fog infrastructure are possible.  The rationale 
driving this assumption is to show the vulnerability of Fog 
nodes and its impact on service transmission performance 
and protection cost.  

III. THE COMBINED F2C ECOSYSTEM 

In the F2C architecture considered in this work, F2C 
resources are split into three hierarchical layers, consisting 
in one cloud layer and two fog layers. In a bottom-up 
perspective, the first layer is the fog layer 1, or Fog-1, which 
comprises edge devices located at a 1-hop distance from the 
end-user. Therefore, it is mostly composed of resource-
constrained devices embracing the ones presenting high 
dynamicity, such as moving vehicles, wearables or 
smartphones, as well as static devices, such as sensors. The 
second layer is the fog layer 2, or Fog-2, which embraces 
edge devices presenting lower mobility, higher resource 
availability and higher distance from the end-user, if 
compared to the ones in fog layer 1. Vehicles in a parking 
lot or fog premises deployed in public buildings are 
examples of Fog-2 resources. Finally, the third layer is the 
cloud layer, or simply cloud, handled by traditional cloud 
service providers relying on data centers premises, with high 
computing capacity and availability as a tradeoff with the 
high end-user communication latency. 

The total capacity of each fog and cloud as well as the 
capacity demanded by the services are measured in terms of 
slot units. Therefore, an slot is the minimum unit for 
resource allocation, i.e., the amount of slots required by one 
single service is static and their allocation may be done 
either in one single F2C node—i.e., fog or cloud—, offering 
the required amount of slots, or in a distributed fashion, 
where service slots may be allocated in distinct F2C nodes 
and even in distinct F2C layers. In addition, for the sake of 
simplicity, we consider the allocation of just one resource 

 
Fig. 1. Fog-to-Cloud (F2C) architecture. 



type, i.e., we abstract the type of resource slot being 
requested by services and offered by F2C nodes. This 
assumption aims at the simplification of the problem 
modeling, allowing this work to focus on the description and 
comparison of the protection strategies. 

Finally, also for the sake of simplicity, we consider the 
failure of one single fog node, that is to say, only one fog 
may become inaccessible on the first or second fog layers. 
Moreover, we assume that cloud service providers can 
withstand with internal failures through their own protection 
schemes, i.e., we consider that the cloud resources are 
always available.  

IV. FAILURE RECOVERY IN F2C 

In this section, we introduce the failure recovery 
strategies assessed in this work, presenting main 
particularities as well as a formal description. 

A. Failure Recovery Strategies 

In this subsection, we go deep into the proactive and the 
reactive failure recovery strategies modeled in this paper. It 
is worth mentioning that, in both strategies, the allocation of 
protection resources is done in a horizontal fashion. This 
means that the protection is allocated at the same fog layer 
in the architecture, i.e., the protection resources for a fog in 
Fog-1 are located in a fog also at Fog-1, and so on. 
Horizontal allocation may ease the allocation of resources 
with similar characteristics, respecting SLA even after 
failure events. The assessed strategies work as follows. 

 Proactive recovery: in this strategy, protection resources 
are pre-allocated for each primary resource allocation. If 
the primary resource becomes unavailable, the protection 
may be used with no extra allocation delay.  

 Reactive recovery: in this strategy, the protection 
resources are not allocated until failure occurrence. 
Indeed, a set of protection resources may be selected to 
react to a failure, but they are not allocated until the 
failure takes place. This strategy allows a set of 
protection resources to be shared among primary 
resources allocated in distinct fogs, diminishing the 
resource underutilization whilst delaying the protection 
allocation. 

B. Problem Model 

In this section, we provide a formal description of the 
protection strategies assessed in this work by modeling the 
failure recovery problem as a Multidimensional Knapsack 
Problem (MKP) whose objective is twofold: 1) decrease the 
delay for transmission of each service; and 2) decrease the 
protection cost –by reducing the slots consumed for 
protection–, and diminish the recovery latency –by 
provisioning low-delay protection slots using resources 
located in lower F2C layers. Therefore, the objective 
function, as described in (1), minimizes the sum of delays 
for the allocation of each service in the set S (first problem 
objective) and the sum of the cost for accessing each 
protection slot in the F2C resources in the set R (second 
problem objective). All symbols used in the presented 
model are defined on Table I. 

Min: ∑ 𝐷𝑖𝑖∈𝑆 + ∑ 𝑃𝑟𝑟∈𝑅   

In order to represent the primary and secondary slot 
allocation into the available F2C resources, the respective 
linear programming integer variables Y and X were defined 
as follows. 

𝑌𝑖,𝑟,𝑘 = {
1, if service 𝑖 is allocated in resource 𝑟 

consuming slot 𝑘 
0, otherwise

 

𝑋𝑟,𝑘 = {
1, if resource 𝑟 has its slot 𝑘 reserved as

a secondary slot (protection) 
0, otherwise

 

TABLE I.  MODEL SYMBOLS DEFINITION 

Symbol Definition 

Di 
Delay for the transmission of the service i (all primary slots 

required by the service) 

Pr Recovery delay offered by resource r 

S Set of services to be executed 

Ui Total number of slots required to execute service i  

R 
Set of F2C resources, i.e., set of distinct cloud and fog 

nodes 

Kr 
Set of slots provided by F2C resource r for both primary 
and secondary use 

Ln Set of fogs available at fog layer n 

Fr Set of fog nodes in the same fog layer of fog r  

Tr 
Allocation delay of a slot in F2C resource r, according to 
its F2C layer 

 

Moreover, the objective function is subject to a set of 
constraints, as described in the following lines.  

 ∑ ∑ 𝑌𝑖,𝑟,𝑘 ∗ 𝑇𝑟𝑘∈𝐾𝑟𝑟∈𝑅 =  𝐷𝑖  , ∀𝑖 ∈ 𝑆 

 ∑ 𝑋𝑟,𝑘 ∗ 𝑇𝑟𝑘∈𝐾𝑟
=  𝑃𝑟  , ∀𝑟 ∈ 𝑅 

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑟∈𝑅𝑠
= 𝑈𝑖  , ∀𝑖 ∈ 𝑆 

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑖∈𝑆 + ∑ 𝑋𝑟,𝑘𝑘∈𝐾𝑟
≤ |𝐾𝑟| , ∀𝑟 ∈ 𝑅 

 ∑ 𝑌𝑖,𝑟,k𝑖∈𝑆 + 𝑋𝑟,k  ≤ 1 , ∀𝑟 ∈ 𝑅 ∧  ∀𝑘 ∈ 𝐾𝑟  

The sum of the allocation delay of each service (Di) is 
given by (2), whilst the sum of the recovery delay 
introduced by the transmission latency on each node Pr, is 
defined by (3). The overall protection cost of each node is 
defined as the number of slots consumed for protection 
multiplied by the delay of a single transmission to this node. 
Notice that the protection cost in the model may be reduced 
by diminishing the amount of protection slots allocation X 
or by using resources with lower transmission delay T. On 
the other hand, the primary allocation delay can only be 
reduced through the selection of resources offering lower 
delay T, since the amount of primary slots allocation cannot 
be decreased. This constraint is defined by (4). 

Jointly with (4), equations (5) and (6) are responsible for 
the coordinated allocation of primary and secondary slots 



according to the service requirements and the resources 
availability. Therefore, constraint (4) aims at ensuring the 
allocation of the required amount of primary slots for each 
service in S. In addition, this constraint enables the 
distributed service allocation into distinct F2C resources and 
layers, as envisioned by F2C. The constraint imposed by (5) 
guarantees that each resource capacity, in term of slots, is 
not surpassed. This is achieved by considering the capacity 
of each F2C node and its allocation of both primary slots 
demanded by distinct services and secondary slots required 
by protection strategies. Furthermore, (6) is responsible for 
constraining the capacity of each slot to, at maximum, one 
allocation. That is to say, it ensures that each consumed slot 
is allocated as either one primary or one secondary slot. 
 In order to cope with the distinct protection strategies 
analyzed in this work, two strategy-specific constraints are 
introduced. Equation (7) ensures the protection allocation 
for the proactive strategy, whilst (8) guarantees the reactive 
recovery strategy. The horizontal strategy defined for the 
proposed recovery mechanisms is also ensured by both 
equations. Therefore, on each primary slot allocated in one 
layer, (7) enforces the reservation of a protection slot in the 
same layer. On the other hand, the goal of (8) is 
accomplished by granting the number of protection slots on 
each fog layer do not be lower than the amount of primary 
slots allocated in any individual fog located in the same 
layer.  

 ∑ ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑟∈𝐿𝑛𝑖∈𝑆 =  ∑ ∑ 𝑋𝑞,𝑘𝑘∈𝐾𝑞𝑞∈𝐿𝑛
 ,    

∀𝑛 ∈ {1,2}

 ∑ ∑ 𝑌𝑖,𝑟,𝑘𝑘∈𝐾𝑟𝑖∈𝑆  ≤  ∑ ∑ 𝑋𝑞,𝑘𝑘∈𝐾𝑞𝑞∈𝐹𝑟−{𝑟}  ,    

∀𝑟 ∈ 𝐿1 + 𝐿2 

V. PRELIMINARY RESULTS 

In this section, we evaluate the impact of the presented 
protection strategies on the overall service transmission 
delay, failure recovery delay, and F2C resources load. To 
that end we use PuLP [12] and Gurobi Optimizer [13]. The 
simulation results were obtained taking into account the 
service parameters and resource parameters shown, 
respectively, in Table II and Table III. 

TABLE II.  SIMULATION PARAMETERS: SERVICES 

Parameter Value 

Number of requested services From 10 to 150 

Ratio between amount of service types:  

low consuming / high consuming services 

90 (low) /  

10 (high) 

Slots demanded by low consuming services 2 

Slots demanded by high consuming services 20 

TABLE III.  SIMULATION PARAMETERS: F2C RESOURCES 

Parameter 
Fog layer 

1 

Fog layer 

2 
Cloud 

Number of F2C nodes per 
layer 

8 fogs 4 fogs 1 cloud 

Available resources per node 10 100 Unlimited 

Allocation delay per F2C 

layer  
1 ms 2 ms 10 ms 

In this work, we assumed that, for each service, the 
resource allocation in distinct F2C nodes is performed in a 
parallel fashion. Therefore, the overall time demanded for 
the allocation of each service corresponds to the time for 
allocation of the resource with the highest delay.  

The impact in terms of delay perceived on both failure 
recovery strategies is illustrated by Fig. 2(a). Notice that this 
figure presents the delay for service transmission in reactive 
and proactive recovery, evidencing the lower delay for the 
former. Nevertheless, this single results confrontation is 
unfair since proactive schemes consume more resources in 
lower layers for protection purposes leading to a premature 
primary allocation in higher layers, with higher latency. To 
cope with this situation, we also calculate the overall delay 
for reactive strategies considering both the service 
transmission to the primary resource and delay added by the 
service allocation after one eventual fail. Albeit the delay for 
the service request transmission in reactive strategies cannot 
be overlooked, proactive strategies offer seamless recovery, 
hence recovery latency is not applicable, as previously 
exposed in this paper. Also shown in Fig. 2(a), the so-called 
reactive+RD consists in the overall delay for reactive 
strategy including the fail recovery delay. Therefore, a more 
realistic comparison, confronting the delays for proactive 
and reactive+RD results, reveals that, in failure scenarios, 
each strategy may present better performance in distinct 
cases according to the number or services to be executed. 
The fast delay increase observed in this figure can be 
explained by the shift on the service allocations from fog to 
cloud due the lack of available resources in lower layers. 
Consequently, even taking into account one eventual 
reactive recovery, the early depletion of fog layer resources, 
perceived in proactive strategies, results in a higher delay of 
this strategy under medium load. As can be observed in Fig. 
2(b), a direct comparison between proactive and 
reactive+RD yields an increase from 50% lower to 100% 
higher delay of proactive recovery in comparison with the 
reactive+RD one, being followed by a decrease on the 
difference as the amount of services increase. 

In order to analyze the resource utilization in the third 
F2C layer, Fig. 3 presents the allocation of primary slots in 
the cloud. For sake of comparison, we included also the 
results obtained by exclusive cloud allocation, i.e., the usage 
of a traditional cloud computing system with no fog layers, 
showing that the distributed allocation strategy envisioned 
by F2C enables an average load reduction in cloud resources 
as high as 50%. In this figure, we do not show the protection 
allocation in cloud commodities since we assume that the 
cloud servers implement their own protection techniques as 
previously pointed out in this paper. Moreover, it is worth 
mentioning that one of the benefits of the employed 
horizontal protection strategy is that the fog layers are not 
tied to the cloud regarding the protection allocation.  

An analysis of the presented results shows that both 
proactive and reactive failure recovery are feasible on F2C 
architectures, albeit the higher underutilization of edge 
resources perceived in proactive strategies shall hinder the 
full employment of these strategies in scenarios with large 
amounts of services requests, such as Smart Transportation, 



 
(a) 

 

 
(b) 

Fig. 2. Delay in evaluated strategies: (a) absolute and (b) relative 

comparison. 

 
Fig. 3. Primary resource allocation in the Cloud. 

where reactive strategies may be preferred. Future lines of 
work include the study of the tradeoff between network and 
computing resources in proactive recovery strategies in F2C 
computing systems. Indeed, proactive strategies may enable 
a desirable redundancy on sensitive services requiring real-
time fault-tolerant execution. Nevertheless, this redundancy 
may drain the already scarce energy resources in devices at 
the edge of the network. On the other hand, their allocation 
as primary and backup computing resources requires the 
continuous transmission of the service execution state in 
order to allow the backup execution to take place with 
minimum impairment in an eventual failure occurrence.  

VI. CONCLUSION 

The dynamicity of IoT scenarios imposes several 
challenges for the management of resources at the edge of 
the network and fault-tolerant service execution 
architectures such as F2C computing. In this work, we 
discuss two strategies for resource failure recovery. In order 
to evaluate the employment of the discussed strategies, we 
model the failure recovery problem as a MKP aiming at 
minimizing both the service transmission delay and the 
protection cost, taking into account the recovery latency and 
optimal protection resources distribution. The presented 
results showed that the employed strategy has a big impact 
on the service transmission and recovery performance. 
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