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1. INTRODUCTION

Observability concerns the possibility of determining the initial
state of a dynamic system from the past inputs and outputs, and
is undoubtedly one of the most important properties of both
linear and non-linear systems (Antsaklis and Michel, 2007). In
fact, the constantly growing complexity of modern systems has
led to a situation where it is not possible anymore to assume
that the whole state is accessible through measurements. In such
situations, the problem of designing state observers, whose ex-
istence is strongly related to the satisfaction of the observability
property, becomes of paramount importance (Rajamani, 1998;
Korbicz et al., 2007; Darouach and Boutat-Baddas, 2008; Farza
et al., 2014; Witczak, 2014). For this reason, the last decades
have witnessed a strong effort of the control community to
assess the observability property (Gilbert, 1963; Zhirabok and
Shumsky, 2012; Luo et al., 2015; Levin and Narendra, 1996).

Linear time-varying (LTV) systems have attracted a lot of in-
terest, both as general models of linear system behavior and
as linearized models of non-linear systems along a given tra-
jectory (D’Angelo, 1970; Rugh, 1996; Schwaller et al., 2016).
Several different approaches have been reported in the literature
concerning the observer design problem for LTV systems, e.g.
the Kalman–Bucy filter (Kalman and Bucy, 1961), the matrix
differential Riccati equation approach (Kwakernaak and Sivan,
1972), the weighted observability Grammian approach (Rugh,
1996), the Luenberger observer (Lovass-Nagy et al., 1980) and
the least squares with covariance reset approach (Chen and Yen,
1999).

However, when it comes to the assessment of the observability
property in LTV systems, the results found in the literature
are mostly devoted to continuous-time systems. For example,
a thorough discussion of the observability concept from both
theoretical and practical viewpoint is provided in Kreindler
and Sarachik (1964). The observability characterized in terms
of known system coefficient matrices was investigated in Sil-
verman and Meadows (1967). An algebraic rank condition,
which relies on expanding the time varying structure matrix
in the generated Lie algebra, with respect to a basis was pro-
vided by Szigeti (1992). In particular, it is proven that, under
a differential-algebraic condition for the time-dependent coef-
ficients, observability is equivalent to a multivariable Kalman
condition. Necessary and sufficient conditions for observability
of LTV systems with coefficients in the form of time polyno-
mials were proposed by Starkov (2002). These conditions rely
on representing the solution of an LTV system as a product of
matrix exponentials using the Wei–Norman formula (Wei and
Norman, 1964). A necessary algebraic condition, which allows
determining that a given continuous-time LTV system is not
observable, is given by Leiva and Siegmund (2003).

However, one can verify that all works (Kreindler and Sarachik,
1964; Silverman and Meadows, 1967; Szigeti, 1992; Starkov,
2002; Wei and Norman, 1964; Leiva and Siegmund, 2003) deal
with continuous-time systems. In fact, to the best of the authors’
knowledge, the only works that deal with the assessment of
the observability property for discrete-time LTV systems are
Seo et al. (2005) and Reissig et al. (2014). However, the fo-
cus of both works is centered on the case where uncertainties
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are present in the model description. In particular, Seo et al.
(2005) derived sufficient conditions, which ensure observability
of discrete-time LTV systems subject to norm-bounded uncer-
tainties, by using the observability Gramians of these systems.
On the other hand, Reissig et al. (2014) studied the strong
structural observability, which corresponds to the case when
only the nonzero pattern of the system (i.e., the locations of the
nonzero entries in its coefficient matrices) is known.

From the literature review, it seems that at this point there is
a lack of a practical test capable of assessing the observability
property of discrete-time LTV systems, and with the relevant
feature of being not only a sufficient condition but a necessary
one, too. The goal of this paper is to fill this gap, by provid-
ing a necessary and sufficient condition for the observability
of a class of discrete-time LTV systems, i.e., those whose
time-varying state space matrices admit a polytopic represen-
tation through a convex combination of local linear submodel
matrices. This class of systems is quite wide, encompassing
representations that have received much attention in the last
decades, e.g., polytopic linear parameter-varying (LPV) sys-
tems (Mohammadpour and Scherer, 2012), Takagi–Sugeno (T-
S) fuzzy systems (Tanaka and Wang, 2001) and switched sys-
tems (Liberzon, 2003). The provided necessary and sufficient
condition is derived using the results on the rank characteri-
zation of convex combinations of matrices (Kolodziejczak and
Szulc, 1999), and involves checking whether or not a matrix is
a block P-one (Elsnerm and Szulc, 1998) with respect to some
partition of an appropriate set of integers. Illustrative examples
are used to show that the proposed condition is easy to check,
such that it constitutes a practical test for assessing the total
observability of discrete-time LTV systems.

This paper is organized as follows. Section 2 recalls some basic
notions and mathematical tools used throughout this paper.
Section 3 introduces the main theoretical result. Section 4
provides numerical examples, showing the effectiveness of the
proposed approach. Finally, Section 5 concludes the paper.

2. PRELIMINARIES

Before providing the main result of this paper, let us introduce
mathematical tools that will be used for the observability anal-
ysis of a class of systems that will be defined in the subsequent
part of this section.

2.1 LTV discrete-time systems and their observability

Let us consider a discrete-time LTV system
xk+1 = Akxk +Bkuk (1)

yk = Ckxk, (2)
where xk ∈ Rn stands for the state, yk ∈ Rm is the output, and
uk ∈ Rr denotes the nominal control input.

Since the class of systems is briefly portrayed, it is possible to
provide the following suitable observability definitions (Houpis
and Lamont, 1992)
Definition 1. The system (1)–(2) is completely observable if
and only if, for any initial time k0, any initial state xk0

can
be determined from the knowledge of output yk and input uk

for k0 ≤ k ≤ kN , where kN is some final finite time.
Definition 2. The system (1)–(2) is totally observable if and
only if it is completely observable for every k0 and kN > k0.

Like in the linear time-invariant (LTI) framework (Antsaklis
and Michel, 2007), the observability of (1)–(2) can be formu-
lated by the following condition

rank(Ok0) = n, (3)
where

Ok0 =

⎡
⎢⎢⎢⎢⎣

Ck0

Ck0+1Ak0

Ck0+2Ak0+1Ak0

...
Ck0+n−1Ak0+n−2 · . . . ·Ak0+1Ak0

⎤
⎥⎥⎥⎥⎦

(4)

is the observability matrix with kN = k0 + n− 1. If one wants
to verify the total observability of (1)–(2), then it is necessary
to check (3) for any k0, which is not a trivial task.

The main objective of this paper is to provide an easily check-
able necessary and sufficient condition for the total observabil-
ity of (1)–(2). Similarly as for Leiva and Siegmund (2003),
to achieve this goal the time-dependence of the matrices Ak,
Bk and Ck is separated from their linear time-independent
structure. However, this task is to be realised in the subsequent
section along with a new proposal for the total observability
test, but first the necessary mathematical tools have to be intro-
duced.

2.2 Brief introduction to real and block P-matrices

Real P-matrices are well known in matrix theory because they
play an important role in many applications (Elsner et al.,
2002). In Johnson and Tsatsomeros (1995), it was shown that
the P-property of a single matrix is equivalent to the nonsin-
gularity of all matrices in a certain convex matrix set. This
fact has motivated generalizing this notion, introducing block
P-matrices (Elsnerm and Szulc, 1998) later used to study the
Schur (Elsner and Szulc, 1998) and Hurwitz (Elsner and Szulc,
2000) stability of convex combinations of matrices.

In order to make the paper self-contained, let us recall some
essential definitions and concepts that will be exploited further
on. Let X ∈ Rn×n. The m × m submatrix of X formed by
deleting n −m columns and the same n −m rows from X is
called an m-th order principal submatrix of X .

The matrix X ∈ Rn×n is called a P-matrix if all its principal
minors are positive (Elsner et al., 2002). On the other hand,
a matrix X ∈ Rn×n is a block P-matrix with respect to a
partition N(λ) of N = {1, . . . , n} into λ ∈ [1, n] pair-wise
disjoint nonvoid subsets Ni of cardinality ni, i = 1, . . . , λ, if,
for any T ∈ T (λ)

n ,
det (TX + (I − T )) �= 0, (5)

where T λ
n is the set of all diagonal matrices T ∈ Rn×n such

that T [Ni] = ti, ti ∈ [0, 1], i = 1, . . . , λ, with T [Ni] being
the principal submatrix of T with row and column indices in Ni

(Elsner et al., 2002). A P-matrix is also a block P-matrix with
respect to any partition (Elsner et al., 2002).

Having a general description of P-matrices, it is possible to
remind the following lemmas (Kolodziejczak and Szulc, 1999),
which play an important role in the derivation of the main result
of this paper.
Lemma 1. Let M j ∈ Cnr×nc , j = 1, . . . , J , and let us define

Qj,j = M j
�
M j

�T
, j = 1, . . . , J (6)
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Qj,a = M j (Ma)
T
+Ma

�
M j

�T −
Ma (Ma)

T −M j
�
M j

�T
, j < a (7)

and the matrices Rj , j = 1, . . . , J ,

Rj = (Rj
a,b

)a,b∈[1,J] =

⎡
⎢⎢⎢⎣

Rj
1,1 Rj

1,2 . . . Rj
1,J

Rj
2,1 Rj

2,2 . . . Rj
2,J

...
...

. . .
...

Rj
J,1 Rj

J,2 . . . Rj
J,J

⎤
⎥⎥⎥⎦ , (8)

with the generic block entry Rj
a,b defined as

Rj
a,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qj,j if a = 1, b = 1
Qb−1,j if a = 1, b = 2, . . . , j
Inr if a = b, 1 < b ≤ J
−Inr if b = 1, a = j + 1
0nr otherwise.

(9)

Then, the following statements are equivalent:

(a) all convex combinations of matrices M j , j = 1, . . . , J , are
full row-rank;

(b) MJ (A.1) is full row-rank and the (J − 1)Jnr × (J −
1)Jnr matrix is a block P-matrix with respect to the partition
{F1, . . . , FJ−1} of
{1, . . . , (J − 1)Jnr}, with Fi = {(i− 1)Jnr + 1, . . . , iJnr},

i = 1, . . . , J − 1.

Proof : See Theorem 2 in Kolodziejczak and Szulc (1999). �

In the case of square matrices, the full row-rank condition
corresponds to nonsingularity, and the following lemma can be
used instead.
Lemma 2. Let M j ∈ Cn×n, j = 1, . . . , J . Then, the following
statements are equivalent:

(a) all convex combinations of matrices M j , j = 1, . . . , J , are
nonsingular;

(b) MJ is nonsingular and the (J − 1)n× (J − 1)n matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

M1(MJ)−1
�
M2 −M1

�
(MJ)−1

−In In

0n −In

...
...

0n 0n

0n 0n

· · ·
�
MJ−1 −MJ−2

�
(MJ)−1

· · · 0n

· · · 0n

. . .
...

· · · 0n

· · · In

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

is a block P-matrix with respect to the partition {F1, . . . , FJ−1}
of {1, . . . , (J − 1)n}, with Fi = {(i− 1)n+ 1, . . . , in},
i = 1, . . . , J − 1.

Proof : See Theorem 4 in Elsner and Szulc (1998). �

3. NEW OBSERVABILITY TEST

This section presents the main results of this paper. To achieve
this goal, the system (1)–(2) is expressed in the following form:

xk+1 =
M�
i=1

hi,k[A
ixk +Biuk], (11)

yk =

M�
i=1

hi,kC
ixk+1, (12)

where M stands for the number of local linear submodels, while
hi,k (i = 1, . . . ,M ) are time-varying parameters satisfying⎧⎪⎨

⎪⎩

M�
i=1

hi,k = 1,

0 � hi,k � 1, ∀i = 1, . . . ,M.

(13)

Note that there is no assumption about the knowledge of these
parameters, the only assumption is that they must satisfy the
constraint (13).
Theorem 1. Let us define indices lk ∈ {1, . . . ,M} (for k =
k0, . . . , k0 + n − 1) corresponding to k0, . . . , k0 + n − 1, and
let N = Mn denote the total number of possible combinations
of these indices. Moreover, let us define the following matrices:

Mj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

In 0 . . . . . . 0

−(Alk0+n−2 )T In . . . . . . 0
...

. . .
. . .

. . . . . .
...

. . .
. . .

. . . . . .
0 0 . . . . . . In

0 0 . . . . . . −(Alk0 )T

. . .

. . .

0 . . . . . . 0 (Clk0+n−1 )T

0 . . . . . . (Clk0+n−2 )T 0
...

. . .
. . .

...
...

...
. . .

. . .
...

...
0 . . . . . . 0 0

(Clk0 )T . . . . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

j = 1, . . . , N. (14)

The following statements are equivalent:

(a) the system (1)–(2), in the form (11)–(12), is totally observ-
able;

(b) MN has full row-rank and the (N − 1)Nn2-by-(N −
1)Nn2 block matrix V (A) with Rj defined by (8), is a
block P-matrix with respect to the partition {F1, . . . , FN−1}
of {1, . . . , (N − 1)Nn2}, with Fi = {(i − 1)Nn2 +
1, . . . , iNn2}, i = 1, . . . , N − 1.

Proof. The statement (a) is true if and only if the n2 × n(n +
m− 1) dimensional matrix

Sk =

⎡
⎢⎢⎢⎢⎢⎢⎣

In 0 . . . . . . 0

−A
T
k0+n−2 In . . . . . . 0

...
. . .

. . . . . . . . .

...
. . .

. . . . . . . . .

0 0 . . . . . . Ino

0 0 . . . . . . −A
T
k0

. . .

. . .

0 . . . . . . 0 C
T
k0+n−1

0 . . . . . . C
T
k0+n−2 0

. . .
. . .

. . . . . .
...

. . .
. . .

. . . . . .
...

0 . . . . . . 0 0

C
T
k0

. . . . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

754



 Marcin Witczak  et al. / IFAC PapersOnLine 50-1 (2017) 729–734 731

Qj,a = M j (Ma)
T
+Ma

�
M j

�T −
Ma (Ma)

T −M j
�
M j

�T
, j < a (7)

and the matrices Rj , j = 1, . . . , J ,

Rj = (Rj
a,b

)a,b∈[1,J] =

⎡
⎢⎢⎢⎣

Rj
1,1 Rj

1,2 . . . Rj
1,J

Rj
2,1 Rj

2,2 . . . Rj
2,J

...
...

. . .
...

Rj
J,1 Rj

J,2 . . . Rj
J,J

⎤
⎥⎥⎥⎦ , (8)

with the generic block entry Rj
a,b defined as

Rj
a,b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qj,j if a = 1, b = 1
Qb−1,j if a = 1, b = 2, . . . , j
Inr if a = b, 1 < b ≤ J
−Inr if b = 1, a = j + 1
0nr otherwise.

(9)

Then, the following statements are equivalent:

(a) all convex combinations of matrices M j , j = 1, . . . , J , are
full row-rank;

(b) MJ (A.1) is full row-rank and the (J − 1)Jnr × (J −
1)Jnr matrix is a block P-matrix with respect to the partition
{F1, . . . , FJ−1} of
{1, . . . , (J − 1)Jnr}, with Fi = {(i− 1)Jnr + 1, . . . , iJnr},

i = 1, . . . , J − 1.

Proof : See Theorem 2 in Kolodziejczak and Szulc (1999). �

In the case of square matrices, the full row-rank condition
corresponds to nonsingularity, and the following lemma can be
used instead.
Lemma 2. Let M j ∈ Cn×n, j = 1, . . . , J . Then, the following
statements are equivalent:

(a) all convex combinations of matrices M j , j = 1, . . . , J , are
nonsingular;

(b) MJ is nonsingular and the (J − 1)n× (J − 1)n matrix
⎡
⎢⎢⎢⎢⎢⎢⎣

M1(MJ)−1
�
M2 −M1

�
(MJ)−1

−In In

0n −In

...
...

0n 0n

0n 0n

· · ·
�
MJ−1 −MJ−2

�
(MJ)−1

· · · 0n

· · · 0n

. . .
...

· · · 0n

· · · In

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

is a block P-matrix with respect to the partition {F1, . . . , FJ−1}
of {1, . . . , (J − 1)n}, with Fi = {(i− 1)n+ 1, . . . , in},
i = 1, . . . , J − 1.

Proof : See Theorem 4 in Elsner and Szulc (1998). �

3. NEW OBSERVABILITY TEST

This section presents the main results of this paper. To achieve
this goal, the system (1)–(2) is expressed in the following form:

xk+1 =
M�
i=1

hi,k[A
ixk +Biuk], (11)

yk =

M�
i=1

hi,kC
ixk+1, (12)

where M stands for the number of local linear submodels, while
hi,k (i = 1, . . . ,M ) are time-varying parameters satisfying⎧⎪⎨

⎪⎩

M�
i=1

hi,k = 1,

0 � hi,k � 1, ∀i = 1, . . . ,M.

(13)

Note that there is no assumption about the knowledge of these
parameters, the only assumption is that they must satisfy the
constraint (13).
Theorem 1. Let us define indices lk ∈ {1, . . . ,M} (for k =
k0, . . . , k0 + n − 1) corresponding to k0, . . . , k0 + n − 1, and
let N = Mn denote the total number of possible combinations
of these indices. Moreover, let us define the following matrices:

Mj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

In 0 . . . . . . 0

−(Alk0+n−2 )T In . . . . . . 0
...

. . .
. . .

. . . . . .
...

. . .
. . .

. . . . . .
0 0 . . . . . . In

0 0 . . . . . . −(Alk0 )T

. . .

. . .

0 . . . . . . 0 (Clk0+n−1 )T

0 . . . . . . (Clk0+n−2 )T 0
...

. . .
. . .

...
...

...
. . .

. . .
...

...
0 . . . . . . 0 0

(Clk0 )T . . . . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

j = 1, . . . , N. (14)

The following statements are equivalent:

(a) the system (1)–(2), in the form (11)–(12), is totally observ-
able;

(b) MN has full row-rank and the (N − 1)Nn2-by-(N −
1)Nn2 block matrix V (A) with Rj defined by (8), is a
block P-matrix with respect to the partition {F1, . . . , FN−1}
of {1, . . . , (N − 1)Nn2}, with Fi = {(i − 1)Nn2 +
1, . . . , iNn2}, i = 1, . . . , N − 1.

Proof. The statement (a) is true if and only if the n2 × n(n +
m− 1) dimensional matrix

Sk =

⎡
⎢⎢⎢⎢⎢⎢⎣

In 0 . . . . . . 0

−A
T
k0+n−2 In . . . . . . 0

...
. . .

. . . . . . . . .

...
. . .

. . . . . . . . .

0 0 . . . . . . Ino

0 0 . . . . . . −A
T
k0

. . .

. . .

0 . . . . . . 0 C
T
k0+n−1

0 . . . . . . C
T
k0+n−2 0

. . .
. . .

. . . . . .
...

. . .
. . .

. . . . . .
...

0 . . . . . . 0 0

C
T
k0

. . . . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)
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has rank n2 for all k0. Indeed, the first block row of (15) can
be multiplied by AT

k0+n−2 and then the result is added to the
second one. Similarly, the procedure continues by multiplying
the second block row of the resulting matrix by AT

k0+n−3 and
then adding the result to the third one. Proceeding in a similar
way with the remaining rows gives (note that the procedure
resembles the one provided by Rosenbrock (1970) for the LTI
systems)

S
�
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

In 0 . . . . . . 0 0 . . .

0 In . . . . . . 0 0 . . .

. . . . . .
. . .

. . . . . .

.

.

.
.
.
.

. . . . . .
. . .

. . . . . .

.

.

.
.
.
.

0 0 . . . . . . In 0

.

.

.
0 0 . . . . . . 0 C

T
k0

A
T
k0

C
T
k0+1

. . .

. . .

. . . 0 C
T
k0+n−1

. . . C
T
k0+n−1 A

T
k0+n−2C

T
k0+n−1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

.

.

. A
T
k0+1 · . . . · AT

k0+n−2C
T
k0+n−1

. . . . . . A
T
k0

· . . . · AT
k0+n−2C

T
k0+n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

Thus, it is straightforward to see that (3) is satisfied if and only
if the matrix (16) has rank n2.

Subsequently, it can be noted the matrix Sk0
can be written in

an expanded form:

Sk0
=

M�
lk0

=1

hlk0

M�
lk0+1=1

hlk0+1
. . .

M�
lk0+n−1=1

hlk0+n−1
M lk0

,...,lk0+n−1 , (17)

where the N = Mn matrices M lk0
,...,lk0+n−1 are defined in the

same way as (14), with each j associated with N combinations
of lk0 , . . . , lk0+n−1. This means that Sk0 has rank n2 if and
only if (for all k0) all convex combinations of M j (j =
1, . . . , N ) have rank n2. Note that the full row-rank of M j ,
j = 1, . . . , N , corresponds to local observability condition of
(11)–(12), which clearly justifies the full row rank property
of MN indicated in the statement (b). Finally, by applying
Lemma 1, the statement (b) is obtained, which completes the
proof.

The computational procedure for checking the observability of
(1)–(2) can be summarized as follows:

(1) Obtain matrices M i, i = 1, . . . , N .
(2) Check if all matrices M i, i = 1, . . . , N , are full row-

rank. If not, the system (1)–(2) is not totally observable.
Otherwise, continue the algorithm.

(3) Calculate matrices Ri i = 1, . . . , N .
(4) Calculate matrix V according to (A.2).
(5) Calculate the principal minors of V .
(6) If all principal minors of V are positive, then the system

(1)–(2) is totally observable. Otherwise, continue the al-
gorithm.

(7) Find T with T
�
(i− 1)Nn2 + 1, . . . , iNn2

�
= ti, i =

1, . . . , N − 1, such that

det (TV + (I − T )) = 0. (18)

If there exists a solution for (18), such that ti ∈ [0, 1] ∀i =
1, . . . , N − 1, the system (1)–(2) is not totally observable.
Otherwise, it is totally observable.

Remark 1. The proposed strategy can be employed for a gen-
eral class of multi-input multi-output systems, but when a
multi-input single-output system is considered, then the above
computational procedure can be simplified significantly. In-
deed, in this case the matrices M i are square ones, and hence
we can formulate an alternative procedure to tackle this special
case.
Theorem 2. The following statements are equivalent:

(a) the system (1)–(2), in the form (11)–(12), is totally observ-
able;

(b) MN is nonsingular and the (N − 1)n2-by-(N − 1)n2

matrix W (A.3) is a block P-matrix (Kolodziejczak and
Szulc, 1999) with respect to the partition {F1, . . . , FN−1}
of {1, . . . , (N − 1)n2}, with Fi = {(i− 1)n2 +1, . . . , in2},
i = 1, . . . , N − 1.

Proof. The proof can be derived by the same reasoning as the
one used in the proof of Theorem 1. The only exception is the
fact that Lemma 2 should be used instead of Lemma 1.

The design procedure is also almost the same. The only excep-
tion is that the matrix V should be replaced by W calculated
with (A.3).

4. ILLUSTRATIVE EXAMPLES

The objective of this section is to provide numerical examples,
that will clearly and step-by-step illustrate the proposed strat-
egy. It should be pointed out that for the sake of space limits
and due to the possibly large size of matrices (A.2) (for large
n), the selected examples concern single output second order
systems, for which a simplified procedure can be applied that is
based on Theorem 2. The selected examples correspond to the
totally observable and unobservable case, respectively.

4.1 Example 1: the totally observable case

Let us consider the system (1)–(2) for M = 2 and with

A1 =

�
0 0.9293

0.2435 0.35

�
, A2 =

�
0 0.616

0.2511 0.4733

�
, (19)

C1 = [0.9 0] , C2 = [1.1 0] . (20)
Following the computational scheme given in the previous
section, the square matrices M i, i = 1, . . . , 4, are obtained:

M1 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ , (21)

M2 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2511 1.1 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (22)

M3 =

⎡
⎢⎣

1 0 0 1.1
0 1 0 0
0 −0.2511 1.1 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (23)
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M4 =

⎡
⎢⎣

1 0 0 1.1
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ . (24)

It can be easily verified that each of the matrices M i, i =
1, . . . , 4, has rank n2 = 4, which means that the system
considered is locally observable. Finally, it can be verified that
all principal minors are positive, which means that the system
considered is totally observable, i.e., the condition (3) holds for
all k0, and hence for all values of hi,k satisfying (13).

4.2 Example 2: the unobservable case

Let us now consider a system (1)–(2) for M = 2 and with the
following parameters:

A1 =

�
0 0.9293

0.2435 0.35

�
, A2 =

�
0 0.616

0.2511 0.4733

�
, (25)

C1 = [0.9 0] , C2 = [−0.9 0] . (26)

In this case, the matrices M i, i = 1, . . . , 4, are obtained as

M1 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ , (27)

M2 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2511 −0.9 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (28)

M3 =

⎡
⎢⎣

1 0 0 −0.9
0 1 0 0
0 −0.2511 −0.9 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (29)

M4 =

⎡
⎢⎣

1 0 0 −0.9
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ . (30)

Similarly as in the previous section, it can be easily verified that
each of the square matrices M i, i = 1, . . . , 4, has rank n2 = 4,
which means that the system considered is locally observable.
It can be easily verified that some principal minors are negative.
This means that the following equation has to be solved:

det (TW + (I − T )) = 0, (31)
with T

�
(i− 1)n2 + 1, . . . , in2

�
= ti, i = 1, . . . , N − 1,

which leads to

det (TW + (I − T )) = 1.0− 2t1 + 4.674t2t1
2−

1.348t2
2t1

3 − 2.337t2t1 + 0.674t2
2t1

2+

2t2t3t1 − 4.674t2
2t1

2t3 + 1.348t2
3t31t3 = 0. (32)

One of the possible solutions of (32) is
t1 = 0.5, t2 = 1, t3 = t3,

where t3 = t3 means that t3 may have an arbitrary value.
The above result indicates that the system considered is not
observable, due to the fact that it is a solution such that ti ∈
[0, 1] ∀i = 1, 2, 3. Indeed, for all k, when h1,k = h2,k = 0.5,
the matrix Ck+1 in (2) becomes

Ck+1 = h1,kC
1 + h2,kC

2 = [0 0] , (33)
which clearly corresponds to an operating condition for which
the system (1)–(2) is not observable.

5. CONCLUSIONS

In this paper, the problem of developing a practical observ-
ability test for time-varying linear systems has been tackled.
The proposed solution is based on checking if all principal
minors associated to an appropriate matrix are positive definite.
If this condition holds, then the rank of the observability matrix
associated to the LTV system is full, and thus the system is
totally observable. On the other hand, if this condition is not
satisfied, then a symbolic computation test is applied in order
to conclude about the non-observability of the LTV system.
The application of the proposed observability test has been
demonstrated through two illustrative examples, which clearly
exhibit its performance.
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M4 =

⎡
⎢⎣

1 0 0 1.1
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ . (24)

It can be easily verified that each of the matrices M i, i =
1, . . . , 4, has rank n2 = 4, which means that the system
considered is locally observable. Finally, it can be verified that
all principal minors are positive, which means that the system
considered is totally observable, i.e., the condition (3) holds for
all k0, and hence for all values of hi,k satisfying (13).

4.2 Example 2: the unobservable case

Let us now consider a system (1)–(2) for M = 2 and with the
following parameters:

A1 =

�
0 0.9293

0.2435 0.35

�
, A2 =

�
0 0.616

0.2511 0.4733

�
, (25)

C1 = [0.9 0] , C2 = [−0.9 0] . (26)

In this case, the matrices M i, i = 1, . . . , 4, are obtained as

M1 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ , (27)

M2 =

⎡
⎢⎣

1 0 0 0.9
0 1 0 0
0 −0.2511 −0.9 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (28)

M3 =

⎡
⎢⎣

1 0 0 −0.9
0 1 0 0
0 −0.2511 −0.9 0

−0.616 −0.4733 0 0

⎤
⎥⎦ , (29)

M4 =

⎡
⎢⎣

1 0 0 −0.9
0 1 0 0
0 −0.2435 0.9 0

−0.9293 −0.35 0 0

⎤
⎥⎦ . (30)

Similarly as in the previous section, it can be easily verified that
each of the square matrices M i, i = 1, . . . , 4, has rank n2 = 4,
which means that the system considered is locally observable.
It can be easily verified that some principal minors are negative.
This means that the following equation has to be solved:

det (TW + (I − T )) = 0, (31)
with T

�
(i− 1)n2 + 1, . . . , in2

�
= ti, i = 1, . . . , N − 1,

which leads to

det (TW + (I − T )) = 1.0− 2t1 + 4.674t2t1
2−

1.348t2
2t1

3 − 2.337t2t1 + 0.674t2
2t1

2+

2t2t3t1 − 4.674t2
2t1

2t3 + 1.348t2
3t31t3 = 0. (32)

One of the possible solutions of (32) is
t1 = 0.5, t2 = 1, t3 = t3,

where t3 = t3 means that t3 may have an arbitrary value.
The above result indicates that the system considered is not
observable, due to the fact that it is a solution such that ti ∈
[0, 1] ∀i = 1, 2, 3. Indeed, for all k, when h1,k = h2,k = 0.5,
the matrix Ck+1 in (2) becomes

Ck+1 = h1,kC
1 + h2,kC

2 = [0 0] , (33)
which clearly corresponds to an operating condition for which
the system (1)–(2) is not observable.

5. CONCLUSIONS

In this paper, the problem of developing a practical observ-
ability test for time-varying linear systems has been tackled.
The proposed solution is based on checking if all principal
minors associated to an appropriate matrix are positive definite.
If this condition holds, then the rank of the observability matrix
associated to the LTV system is full, and thus the system is
totally observable. On the other hand, if this condition is not
satisfied, then a symbolic computation test is applied in order
to conclude about the non-observability of the LTV system.
The application of the proposed observability test has been
demonstrated through two illustrative examples, which clearly
exhibit its performance.
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Appendix A. LARGE MATRICES

Here are placed all matrices used in the paper, which due to
their size did not fit to two-column style

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1R
−1
J (R2 −R1)R

−1
J · · · (RJ−2 −RJ−3)R

−1
J (RJ−1 −RJ−2)R

−1
J

−IJnr IJnr · · · 0Jnr 0Jnr

0Jnr −IJnr · · · 0Jnr 0Jnr

...
...

. . .
...

...
0Jnr

0Jnr
· · · IJnr

0Jnr

0Jnr
0Jnr

· · · −IJnr
IJnr

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.1)

V =

⎡
⎢⎢⎢⎣

R1R
−1
N (R2 −R1)R

−1
N (R3 −R2)R

−1
N . . . (RN−1 −RN−2)R

−1
N

−INn INn 0Nn . . . 0Nn

0Nn −INn INn . . . 0Nn

. . . . . . . . . . . . . . .
0Nn . . . 0Nn −INn INn

⎤
⎥⎥⎥⎦ , (A.2)

W =

⎡
⎢⎢⎢⎣

M1(MN )−1 (M2 −M1)(MN )−1 (M3 −M2)(MN )−1 . . . (MN−1 −MN−2)(MN )−1

−In2 In2 0n2 . . . 0n2

0n2 −In2 In2 . . . 0n2

. . . . . . . . . . . . . . .
0n2 . . . 0n2 −In2 In2

⎤
⎥⎥⎥⎦ (A.3)
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