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Exceptional zeros and L-invariants of Bianchi modular

forms

Daniel Barrera Salazar and Chris Williams

Abstract

Let f be a Bianchi modular form, that is, an automorphic form for GL2 over an
imaginary quadratic field F . In this paper, we prove an exceptional zero conjecture in
the case where f is new at a prime above p. More precisely, for each prime p of F
above p we prove the existence of an L-invariant Lp, depending only on p and f , such
that when the p-adic L-function of f has an exceptional zero at p, its derivative can be
related to the classical L-value multiplied by Lp. The proof uses cohomological methods
of Darmon and Orton, who proved similar results for GL2/Q. When p is not split and
f is the base-change of a classical modular form f̃ , we relate Lp to the L-invariant of f̃ ,
resolving a conjecture of Trifković in this case.

Introduction

There are a wealth of results and conjectures linking important arithmetic properties of
number-theoretic objects to special values of their L-functions. One way of attacking these
conjectures is through the theory of p-adic L-functions, whose study has facilitated signifi-
cant progress in examples such as the Birch and Swinnerton-Dyer conjecture. Such objects
are (p-adic) analytic functions that interpolate special values of classical L-functions.

The interpolation property that p-adic L-functions satisfy involves a scaling factor that can,
at exceptional values, vanish, forcing the p-adic L-function to vanish independently of the cor-
responding classical L-value. This happens, for example, at the value Lp(f, 0) if f is a weight
2 newform attached to an elliptic curve E/Q at which p has split multiplicative reduction. In
this example, the p-adic L-function may a priori have no meaningful relation to the central
special value L(f, 1) = L(E, 1) which plays the leading role in the Birch and Swinnerton-Dyer
conjecture. In the case of newforms for GL2 over Q, this phenomenon was first investigated
by Mazur, Tate and Teitelbaum in [MTT86], where they conjectured a relation between the
derivative of the p-adic L-function and the classical L-function at an exceptional value. Ex-
plicitly, if f ∈ Sk+2(Γ0(N)) is a newform with k even and p exactly dividing N , then the

p-adic L-function of f has an exceptional zero at the value (χw
k/2
Tm , k/2), where wTm is the

Teichmüller character and χ is any Dirichlet character with χ(p) = ω, where −ω is the Atkin-
Lehner eigenvalue of f at p. Mazur, Tate and Teitelbaum conjectured the existence of an
L-invariant Lp – depending only on f and p – such that

d

ds
Lp(f, χw

k/2
Tm , s)

∣∣
s=k/2

= LpK(χ, k/2)Λ(f, χ, k/2 + 1)/Ω±
f ,

where K(χ, k/2) is some explicit non-zero scalar, Ω±
f is the period of f , and Λ is the (nor-

malised) L-function of f .
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Since this conjecture was made, it has been widely studied and proved in many different ways,
whilst there are a number of equivalent descriptions of the L-invariant in terms of arithmetic
data. As an example, for weight 2 it was proved by Greenberg and Stevens in [GS93] and
in higher weights it has been proved independently by Kato–Kurihara–Tsuji, Stevens, and
Emerton using L-invariants defined by Fontaine–Mazur, Coleman, and Breuil respectively.
For a fuller description on previous work in this setting, see the introduction of [BDI10]. Of
particular interest for this paper are proofs of the conjecture by Darmon in [Dar01] (for weight
2) and Orton in [Ort04] (for higher weights) using the theory of Bruhat–Tits trees.

Despite the problem of exceptional zeros being well-studied for GL2 over Q, many of the
approaches mentioned above use deep arithmetic results and structures that do not neces-
sarily exist in the case of GL2 over more general number fields, and accordingly this case
has received considerably less attention. In particular, for GL2 over an imaginary quadratic
field, the symmetric space playing the role of the modular curve has no complex or algebraic
structure, making it much harder to attach Galois representations to automorphic forms. The
theory of p-adic variation of modular forms, which also plays a prominent role in the proof of
Greenberg and Stevens, is also comparatively badly behaved; for example, there are classical
Bianchi modular forms which do not vary in a p-adic family where the classical forms are
dense.

Over totally real fields, the conjecture has been proved in recent years for certain weight
2 Hilbert modular forms by Mok and Spieß (see [Mok09] and [Spi14]). The case of higher
weights has been addressed by the first author, Dimitrov and Jorza in [BSDJ17]. Until re-
cently, there were no analogous results over fields with complex embeddings. The first were
results of Deppe in [Dep16], where he showed that (again for certain ordinary weight 2 forms)
in the cases where exceptional zeros occur, they have (at least) the expected order of vanish-
ing. In this paper, we treat the case of arbitrary weight for GL2 over an imaginary quadratic
field using the methods of Darmon and Orton, which allows us to circumvent the need for
the deep arithmetic structure missing in this case. We do not require an ordinarity condition,
and we also make no assumption on the prime p. Our main result is summarised below in
Theorem B of the introduction.

Outline of method and plan of paper

Section 1 contains classical preliminaries. In particular, let F be an imaginary quadratic field
of class number 1.1 Let f be a cuspidal Bianchi modular form, that is, a cuspidal automorphic
form f for GL2 over F . Let f have level Γ0(n) ⊂ SL2(OF ), with (p) dividing n, and weight
(k, k) (since cuspidal Bianchi modular forms exist only at parallel weights).2 Let Λ denote
the (normalised) L-function of f . A construction of p-adic L-functions for such objects is
contained in [Wil17] in the case where the form is an eigenform satisfying a small slope
property at primes of F above p; a summary of the relevant results of [Wil17] is contained
in Section 3. In this setting, the interpolation property of the p-adic L-function involves an
exceptional factor for each prime p above p.

Fix such a prime p|p and let Tp be the Bruhat–Tits tree of GL2(Fp). In Section 2, we show

1This is not a serious restriction; see Section 11.1.
2We normalise the weight in such a way that a modular elliptic curve over F corresponds to a weight (0, 0)

form. In the literature, this is sometimes referred to as ‘weight 2’.
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how to vary f in a ‘family’ F over the edges of Tp. In particular, to f we associate a form

F : E(Tp) × GL2(AF ) −→ V2k+2(C),

where V2k+2(C) is the space of complex homogeneous polynomials of degree 2k + 2 in two
variables, in such a way that for any edge e, F(e, ·) is a Bianchi modular form of specified
level (depending on e) with the same weight as f . We further prove (in Theorem 2.7) that
this form is harmonic in the first variable Tp if and only if f is new at p.

In Section 4, we define modular symbols on Tp – or, rather, families of Bianchi modular
symbols indexed by E(Tp) – using the methods of Section 2, and define Hecke operators on
the space of such symbols. The study of Tp allows us to recover a classical result on the Hecke
eigenvalue at p of a p-new form as an easy corollary, and this result gives a systematic supply
of exceptional zeros at central values (see Corollary 4.9). In particular, we obtain:

Proposition 1. Suppose f is p-new, weight (k, k) and small slope at all the primes above p,
let −ω be the Atkin-Lehner eigenvalue of f at p, and let ϕ be a Hecke character for which
L(f, ϕ) is critical (in the sense of Deligne). Then the p-adic L-function of f has an exceptional
zero (for p) at ϕ precisely when k is even and ϕ = χ| · |k/2, where χ is a finite order Hecke
character with χ(p) = ω.

In Section 5, we utilise the overconvergent methods of [Wil17] to attach a family of distri-
butions on P1(Fp) to the form f . In particular, as for modular forms and modular symbols,
we vary the overconvergent modular symbol attached to f over the edges of Tp. In the case
of a modular elliptic curve E over F , this distribution has been studied before; in particular,
in [Tri06] Mak Trifkovic used it to construct Stark–Heegner points on E, whilst in the same
setting the method of construction given here has been implemented independently by Xevi
Guitart, Marc Masdeu and Haluk Sengun in [GMŞ15].

In Section 6, we use the distribution to define double integrals on Hp × H3 in the style of
Darmon. Drawing the previous sections together, we use this to define two group cohomology
classes lcf and ocf in H1(Γ,∆k,k) (see Definition 4.1 for the definition of Γ, and Section 6
for the definition of ∆k,k). These classes, which depend on the choice of a complex period
Ωf , are both eigenclasses for the Hecke action with the same eigenvalues as f . In Section 7,
they are related to L-values using invariants attached to embeddings F × F →֒ M2(F ). In
particular, we prove the following:

Theorem A. Let χ be a finite order Hecke character with χ(p) = ω. Then there exists a map
Evχ : H1(Γ,∆k,k) −→ Cp such that

Evχ(ocf ) = K(χ, k/2 + 1)Λ(f, χ, k/2 + 1)/Ωf

for some explicit (non-zero) factor K(χ, k/2 + 1), and
[∏

q

Zq

]
Evχ(lcf ) =

∂

∂sp
Lp(f, χw

k/2
Tm , s)

∣∣
s=k/2

,

where the product is over all q|p such that q 6= p, and where Zq is the exceptional factor at q.

In Section 8, we show that in fact, the Hecke eigenspace in which ocf and lcf both live is in
fact one-dimensional. In particular, after proving a non-vanishing result for ocf , we see that
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there exists some element Lp ∈ Cp such that lcf = Lpocf . Combined with the above, this is
enough to prove the following, which is the main result of this paper.

Theorem B. Let f be as above. Let χ be a finite order Hecke character with χ(p) = ω, so

that Lp(f, χw
k/2
Tm ,k/2) = 0 is an exceptional zero (where wTm is the Teichmüller character).

Then there exists an L-invariant Lp ∈ Cp, depending only on f and p, such that

∂

∂sp
Lp(f, χw

k/2
Tm , s)

∣∣
s=k/2

= Lp ·

[∏

q

Zq

]
K(χ, k/2 + 1)Λ(f, χ, k/2 + 1)/Ωf .

In Section 10, we discuss the case where f is the base-change of a classical modular form f̃ ,
and explicitly relate the L-invariants of f and f̃ . This is enough to resolve a conjecture of
Trifković in the base-change case. We conclude in Section 11 by discussing possible further
generalisations of these results; in particular, we discuss the case of higher class number (which
has been omitted in this paper for expositional and notational reasons), possible results on
the second derivative (to remove the remaining exceptional factor in the case where p is split),
and the conjectural form Lp might take in terms of arithmetic data, a question the authors
hope to address in future work.

Comparison to relevant literature

The results of this paper fit into a body of recent work in complimentary directions. The
work of Spieß (in [Spi14]) and the work of the first author, Dimitrov and Jorza (in [BSDJ17])
on the Hilbert case has been mentioned above, as has Deppe’s work (in [Dep16]) on the case
of weight 2 for general number fields. Exceptional zero phenomena have also been studied
in the anticyclotomic setting by Molina (in [Mol15], for GL2 in the totally real case) and
Bergunde (in [Ber17], for non-split quaternion algebras over general number fields). Finally,
the behaviour of L-invariants under abelian base-change, again in the case of weight 2 for
GL2, has recently also been studied in work of Gehrmann in [Geh17].
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1. Preliminaries

1.1. Basic notation

Let F be an imaginary quadratic field with ring of integers OF , different D and discriminant
−D. Let p be a rational prime. If p is a prime of F above p, write Fp for the completion of F

4
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at p, write Op for the ring of integers in Fp and fix a uniformiser π at p. We also write ep for
the ramification index of p over p. In the sequel, F will be taken to have class number 1, in
which case we assume π is an element of OF that generates p. Denote the adele ring of F by
AF = F∞ ×Af

F , where F∞ denotes the infinite adeles and Af
F the finite adeles. Furthermore,

define ÔF
..= OF ⊗Z Ẑ to be the finite integral adeles. Throughout, we’ll fix a prime p above

p and a level n = pm, where m is coprime to p and divisible by all the other primes above p.
For an ideal f ⊂ OF , let ClF (f) denote the ray class group of F modulo f.

Let k ≥ 0 be an integer, and for any ring R, let V2k+2(R) denote the ring of polynomials over
R of degree at most 2k + 2. We also define V0(R) = R. Note that V2k+2(C) is an irreducible
complex right representation of SU2(C), and denote the corresponding antihomomorphism
by ρ′ : SU2(C) → GL(V2k+2(C)). Finally, define an antihomomorphism ρ : SU2(C) × C× →
GL(V2k+2(C)) by ρ(u, z) = ρ′(u)|z|−k.

1.2. Bianchi modular forms

A Bianchi modular form is an automorphic form for GL2 over an imaginary quadratic field.
We will give only a very brief description of the theory; for a more detailed exposition of the
literature, see [Wil17]. First, we fix a level group.

Definition 1.1. Define Ω0(n) ..=

{(
a b
c d

)
∈ GL2(ÔF ) : c ∈ nÔF

}
.

Definition 1.2. We say a function f : GL2(AF ) → V2k+2(C) is a cusp form of weight (k, k)
and level Ω0(n) if it satisfies:

(i) f(zgu) = f(g)ρ(u, z) for u ∈ SU2(C) and z ∈ Z(GL2(C)) ∼= C×,

(ii) f is right-invariant under the group Ω0(n),

(iii) f is left-invariant under GL2(F ),

(iv) f is an eigenfunction of the operator ∂ with eigenvalue (k2/2 + k), where ∂/4 denotes a
component of the Casimir operator in the Lie algebra sl2(C) ⊗RC (see [Hid93b], section
1.3), and

(v) f satisfies the cuspidal condition that for all g ∈ GL2(AF ), we have

∫

F \AF

f(ug)du = 0,

where we consider AF to be embedded inside GL2(AF ) by the map sending u to ( 1 u
0 1 ),

and du is the Lebesgue measure on AF .

Denote the space of such functions by Sk,k(Ω0(n)).

Remark: Note that if f ∈ Sk,k(Ω0(n)), then f(gh) = f(g) for all h ∈ Z(GL2(Af
F )). Hence

we can consider f as a function on PGLf
2 (AF ) ..= GL2(F∞) × PGL2(Af

F ).

5
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1.3. The L-function of a Bianchi modular form

There is a good theory of Hecke operators (indexed by ideals of OF ) on Bianchi modular
forms. Let f be a cuspidal Bianchi modular form that is an eigenform for all of the Hecke
operators, and for any non-zero ideal I ⊂ OF , write f |TI = λIf.

Definition 1.3. The (normalised) L-function of f is the function

Λ(f, ϕ) ..=
Γ(q + 1)Γ(r + 1)

(2πi)q+r+2

∑

I⊂OF ,I 6=0

λIϕ(I)N(I)−1,

where ϕ is a Hecke character of infinity type (q, r) and Γ denotes the usual Γ-function.

The ‘critical’ values of this L-function can be controlled; in particular, we have the following:

Proposition 1.4. There exists a period Ωf ∈ C× and a number field E such that, if ϕ is a
Hecke character of infinity type 0 ≤ (q, r) ≤ (k, k), with q, r ∈ Z, we have

Λ(f, ϕ)

Ωf
∈ E(ϕ),

where E(ϕ) is the number field over E generated by the values of ϕ.

Proof. See [Hid94], Theorem 8.1.

In the case of newforms, as treated in the sequel, exceptional zeros occur at very specific
Hecke characters of the form χ| · |r, where χ is a finite order Hecke character and | · | is the
adelic norm. In this case, we will write

Λ(f, χ, r + 1) ..= Λ(f, χ| · |r)

for convenience and to ensure consistent notation in later sections.

2. Forms on the Bruhat–Tits tree

In this section, we develop the theory of Bianchi modular forms on the Bruhat–Tits tree.
We will give the theory in quite general terms, since it is not significantly more difficult to
describe the results in adelic language instead of classical language, and the more general
results may be of independent interest. In later sections, we will specialise to the case where
the class number is 1.

2.1. The Bruhat–Tits tree

Definition 2.1. Let p be a prime of F above p. We denote by Tp the Bruhat–Tits tree for
GL2(Fp), that is, the connected tree whose vertices are homothety classes of lattices in a
two-dimensional Fp-vector space V . Two vertices v and v′ are joined by an edge if and only
if there are representatives L and L′ respectively such that

πpL
′ ⊂ L ⊂ L′.

Each edge comes equipped with an orientation. Denote the set of (oriented) edges of Tp by
E(Tp) and the set of vertices by V(Tp).

6
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Define the standard vertex v∗ to be the vertex corresponding to the lattice Op ⊕ Op, and the
standard edge e∗ to be the edge joining v∗ to the vertex corresponding to Op ⊕ πpOp. There
is a natural notion of distance between two vertices v and v′, and we say a vertex v is even
(respectively odd) if the distance between v and v∗ is even (respectively odd). Each (oriented)
edge has a source and a target vertex, and we say such an edge is even if its source is. Write
V+(Tp) and E+(Tp) (respectively V−(Tp) and E−(Tp)) for the set of even (respectively odd)
vertices and edges respectively.

There is a natural transitive action of PGL2(Fp) on Tp. We can extend this action to a larger
group.

Definition 2.2. Let m be an ideal of OF coprime to p.

(i) For v a finite place of F , define

R0(m)v
..=

{(
a b
c d

)
∈ M2(Ov) : c ≡ 0 (mod m)

}
.

(ii) Let R = R0(m) ..=
{
γ ∈ M2

(
Af

F

)
: γv ∈ R0(m)v for v 6= p, γp ∈ M2(Fp)

}
.

(iii) Let Ω̃ denote the image of R× in PGL2

(
Af

F

)
.

(iv) Finally, let Ω ⊂ Ω̃ denote the intersection Ω ..= PGL+
2

(
Af

F

)
∩ Ω̃, where

PGL+
2

(
Af

F

)
..=
{
γ ∈ PGL2

(
Af

F

)
: vp(det(γp)) ≡ 0 (mod 2) for all p|p

}
.

These groups act on Tp via projection to PGL2(Fp).

Proposition 2.3. (i) The group Ω̃ acts transitively on the sets V(Tp) and E(Tp).

(ii) The group Ω acts transitively on the sets E±(Tp) and V±(Tp).

Proof. See [Ser80], Theorem 2 of Chapter II.1.4.

A key reason for introducing the Bruhat–Tits tree is the conceptually nice description it gives
of open sets in the projective line. We have a (left) action of PGL2(Fp) on P1(Fp) by

(
a b
c d

)
· x =

b+ dx

a+ cx
,

and then to e = γe∗ ∈ E(Tp), we attach the open set

U(e) ..= γ−1(Op) =
{
x ∈ P1(Fp) : γx ∈ Op

}
⊂ P1(Fp).

Remark: The authors apologise for the regrettable nature of this action, which has been
chosen to be consistent with [Wil17], whilst unavoidably differing from the more natural
definition of [Dar01] and [Ort04]. (In the sequel, GL2(F ) will act on the cusps P1(F ) in this
more natural way).

7
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Proposition 2.4. As e ranges over all edges in E(Tp), the sets U(e) form a basis of open sets
in P1(Fp).

In the sequel, we’ll use the theory of ‘modular symbols on the tree’ and this fact to construct
distributions on P1(Fp) that allow us to define analogues of Darmon’s double integrals in this
setting.

2.2. Bianchi forms on the tree

Modular forms on the Bruhat–Tits tree were first defined (for classical weight 2 modular
forms) in Chapter 1.1 of Darmon’s seminal paper [Dar01], and the concepts are thoroughly
motivated and explained in his account. The reader unfamiliar with these concepts is strongly
urged to read Darmon’s account, which is beautiful and well-written. In this section, we give
natural analogues of his results in the imaginary quadratic setting.

Let R, Ω̃ and Ω be as above.

Definition 2.5. We say a function f : E(Tp) → V2k+2(C) is harmonic if

f(e) = −f(e) ∀e ∈ E(Tp)

and if for all vertices v ∈ V(Tp), we have

∑

e:s(e)=v

f(e) =
∑

e:t(e)=v

f(e) = 0.

Recall the definition PGLf
2 (AF ) ..= GL2(C) × PGL2(Af

F ), and note that Ω acts on PGLf
2 (AF )

by right multiplication. We define Bianchi cusp forms on Tp as follows.

Definition 2.6. A cusp form on Tp × PGLf
2 (AF ) of weight (k, k) for Ω is a function

F : E(Tp) × PGLf
2 (AF ) −→ V2k+2(C),

such that:

(i) F(γe, gγ) = F(e, g) for all γ ∈ Ω.

(ii) F is harmonic as a function on E(Tp).

(iii) For each edge e ∈ E(Tp), the function

Fe(g) ..= F(e, g)

is a cusp form of weight (k, k) and level Ωe
..= StabΩ(e).

Denote the space of such forms by Sk,k(Ω, Tp).

It is natural to ask: for which f ∈ Sk,k(Ω0(pm)) does there exist some F ∈ Sk,k(Ω, Tp) such
that Fe∗

= f? The answer is:

Theorem 2.7. The association F 7→ Fe∗
defines an isomorphism

Sk,k(Ω, Tp) ∼= Sk,k(Ω0(pm))p−new.

8
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We prove this in the next section. In order to do so, we introduce the following auxiliary
spaces which are easier to work with, since their definition omits the harmonicity condition.

Definition 2.8. A cusp form on E(Tp) × PGLf
2 (AF ) of weight (k, k) for Ω̃ is a function

F : E(Tp) × PGLf
2 (AF ) −→ V2k+2(C)

such that:

(i) F(γe, gγ) = F(e, g) for all γ ∈ Ω̃.

(ii) For each e, the function Fe(g) ..= F(e, g) is a cusp form of weight (k, k) and level

Ω̃e
..= Stab

Ω̃
(e).

Denote the space of such forms by Sk,k(Ω̃, Ep).

Let f ∈ Sk,k(Ω0(pm)) be a Bianchi newform, and note that f gives rise to a form F on

E(Tp) × PGLf
2 (AF ) in a natural way. Indeed, since Ω̃ acts transitively on E(Tp), any form on

E(Tp) × PGLf
2 (AF ) is uniquely determined by its restriction to {e} × PGLf

2 (AF ), where e is
any element of E(Tp).

An explicit check shows that Stab
Ω̃

(e∗) = Ω0(pm). Hence, writing F(e∗, g) = f(z, t) and
extending F to all of E(Tp) using property (i), we get a well-defined map

Sk,k(Ω0(pm)) −→ Sk,k(Ω̃, Ep).

This map has a natural inverse given by F 7−→ Fe∗
. We see that we have proved:

Proposition 2.9. There is a natural isomorphism Sk,k(Ω̃, Ep) ∼= Sk,k(Ω0(pm)) given by F 7→
Fe∗

.

We also need the notion of degeneracy maps at a prime p. To define these, we use the following
spaces.

Definition 2.10. A cusp form on V(Tp) × PGLf
2 (AF ) of weight (k, k) for Ω̃ is a function

F : V(Tp) × PGLf
2 (AF ) −→ V2k+2(C)

such that:

(i) F(γv, gγ) = F(v, g) for all γ ∈ Ω̃.

(ii) For each v ∈ V(Tp), the function Fv(g) ..= F(v, g) is a cusp form of weight (k, k) and

level Ω̃v
..= Stab

Ω̃
(v).

Denote the space of such forms by Sk,k(Ω̃,Vp).

Using the same ideas as above, replacing e∗ with v∗ and noting that Stab
Ω̃

(v∗) = Ω0(m), we
get:

Proposition 2.11. There is a natural isomorphism Sk,k(Ω̃,Vp) ∼= Sk,k(Ω0(m)) given by F 7→
Fv∗

.

9
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2.3. Proof of Theorem 2.7

We now turn to the proof of Theorem 2.7, which we will prove by setting up two compatible
exact sequences; one at the level of forms on the tree, and one at the level of classical forms.
First, we focus on the tree.

Definition 2.12. Let α ∈ PGL2(Fp)\PSL2(Fp) be an element of the normaliser of R0(p)p,
so that αe∗ = e∗, and note that α switches the parity of the edges and vertices of Tp.

Definition 2.13. Define a homomorphism i : Sk,k(Ω, Tp) −→ Sk,k(Ω̃, Ep) by

i(F)(e, g) =

{
F(e, g) : e even,
F(αe, gα) : e odd.

Note that by definition we’ve extended the Ω-invariance to Ω̃-invariance and that i is injective
by the harmonicity condition.

Definition 2.14. Define two degeneracy maps πs, πt : Sk,k(Ω̃, Ep) −→ Sk,k(Ω̃,Vp) by setting

πs(F)(v, g) ..=
∑

e∈E(Tp):s(e)=v

F(e, g)

(and similarly for πt with t(e) replacing s(e)).

The kernel of πs ⊕ πt is precisely the image of Sk,k(Ω, Tp) under the map i. To see this, note
that Im(i) ⊂ Ker(πs ⊕ πt) from the definition of harmonicity; conversely, suppose f̃ is an
element of the kernel. We can directly construct f ∈ Sk,k(Ω, Tp) with i(f) = f̃ by defining
f(e, g) = f̃(e, g) for e even and extending to odd edges using harmonicity. We see that we
get an exact sequence

0 −→ Sk,k(Ω, Tp) −→ Sk,k(Ω̃, Ep)
πs⊕πt

−−−−−→ Sk,k(Ω̃,Vp) ⊕ Sk,k(Ω̃,Vp).

There are classical analogues of the degeneracy maps above. Write Ω0(m) =
∐

i∈Ip
Ω0(pm)γi

for a system of coset representatives γi ∈ Ω0(m). Then define:

Definition 2.15. Let ϕs and ϕt denote the degeneracy maps ϕs, ϕt : Sk,k(Ω0(pm)) −→
Sk,k (Ω0(m)) defined by

ϕs(f)(g) ..=
∑

i∈Ip

f(gγi),

ϕt(f)(g) ..=
∑

i∈Ip

f(gγiα).

Definition 2.16. The subspace of Sk,k(Ω0(pm)) of p-new forms is the kernel of the map

Sk,k(Ω0(pm))
ϕs⊕ϕt

−−−−−→ Sk,k(Ω0(m)) ⊕ Sk,k(Ω0(m)).

10
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2.3.1. Relating the exact sequences

Lemma 2.17. The following diagram of exact sequences commutes:

0 > Sk,k(Ω, Tp)
i
> Sk,k(Ω̃, Ep)

πs⊕πt
> Sk,k(Ω̃,Vp)2

0 > Sk,k(Ω0(pm))p−new
∨

> Sk,k(Ω0(pm))
∨

ϕs⊕ϕt
> Sk,k(Ω0(m))2

∨
,

where the vertical arrows are the maps of the form F 7→ Fe∗
(for the first two) and F 7→ Fv∗

(for the third).

Proof. We’ve already shown that the sequences are exact. The first square commutes by the
definition of i, since e∗ is even, and hence [i(F)]e∗

= Fe∗
. The second square commutes since

the sets
{γie∗ : i ∈ Ip} and {γiαe∗ : i ∈ Ip}

form a complete set of edges with source and target v∗ in Tp.

Theorem 2.7 now follows from the 5-lemma applied to this diagram in conjunction with
Propositions 2.9 and 2.11.

3. The p-adic L-function of a Bianchi modular form

We briefly recap the results of [Wil17], which will be used heavily in the sequel. For the
rest of the paper, we will make the following simplifying assumption (which was not made
in [Wil17]):

Assumption 3.1. The imaginary quadratic field F has class number 1.

3.1. Bianchi modular symbols

Define
Γ0(n) ..= SL2(F ) ∩ [GL2(C)Ω0(n)].

Definition 3.2. Let ∆0
..= Div0(P1(F )) denote the space of ‘paths between cusps’ in H3, and

let V be any right SL2(F )-module. For a subgroup Γ ⊂ SL2(F ), denote the space of V -valued
modular symbols for Γ to be the space

SymbΓ(V ) ..= HomΓ(∆0, V )

of functions satisfying the Γ-invariance property that

(φ|γ)(D) ..= φ(γD)|γ = φ(D) ∀D ∈ ∆0, γ ∈ Γ,

where Γ acts on the cusps by
(

a b
c d

)
· r = (ar + b)/(cr + d). For r, s ∈ P1(F ), to ease notation

we will henceforth write φ{r − s} for φ({r} − {s}).

Definition 3.3. For a ringR, let Vk,k(R) ..= Vk(R)⊗RVk(R). (We think of Vk,k as polynomials
on OF ⊗Z Zp that have degree at most k in each variable).

11
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This space has a natural left action of GL2(R)2 induced by the action of GL2(R) on each
factor by (

a b
c d

)
· P (z) =

(a+ cz)k

(ad− bc)k/2
P

(
b+ dz

a+ cz

)
,

which is well-defined since we took k to be even. This induces a right action on the dual space
Vk,k(R)∗ ..= Hom(Vk,k(R), R).

Remarks: (i) Note the factor of the determinant, which was not needed in [Wil17]; this
ensures that the centre of GL2(R) acts trivially. This difference means that the Hecke
operators we consider in this paper are scalar multiples of those in [Wil17].

(ii) We can see any subgroup of GL2(F ) as acting on Vk,k(C) via the natural embedding of
F →֒ C × C, where the first factor differs from the second by complex conjugation. In
particular, we obtain an action of Γ0(n) on Vk,k(C).

Definition 3.4. Choose βI to be a generator of the ideal I, then choose δI
j ∈ GL2(F )∩M2(OF )

such that

Γ0(n)

(
1 0
0 βI

)
Γ0(n) =

∐

j

Γ0(n)δI
j .

Then define the Hecke operator TI by

(φ|TI){r − s}(P ) ..= N(I)k/2
∑

j

φ{δI
j r − δI

j s}(δI
j · P ).

We write UI if I is not coprime to n. In the case I = p = (π), we can choose the representatives
to be ( 1 a

0 π ) as a ranges over classes (mod p).

Proposition 3.5. Let f ∈ Sk,k(Ω0(n)) be a cuspidal Bianchi modular form.

(i) To f , one can associate a canonical element φ̃f ∈ SymbΓ0(n)(Vk,k(C)∗) in a way that is
equivariant with respect to the action of Hecke operators.

(ii) The symbol φf
.

.= φ̃f/Ωf , for Ωf as in Proposition 1.4, takes values in Vk,k(E)∗ for
some number field E.

3.2. Modular symbols and L-values

There is an explicit link between critical L-values and modular symbols. Recall the notation
from Section 1. The following is a special case of Theorem 2.11 of [Wil17].

Theorem 3.6. Let f ∈ Sk,k(Ω0(n)) be a cuspidal Bianchi form with associated modular
symbol φf . Let χ be a finite order Hecke character of conductor (c) and let 0 ≤ r ≤ k. Then

Λ(f, χ, r + 1) =

[
(−1)k2Ωf

Dr+1τ(χ−1)|c|r#O×
F

] ∑

a∈(OF /c)×

χ(a)Cr(a/c), (1)

where
Cr(a/c) .

.= φf {a/c− ∞}((cz + a)r(cz + a)r).

Here τ(χ−1) is the Gauss sum attached to χ−1 (see [Wil17], Section 1.2.3).

12
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3.3. Overconvergent modular symbols

Part (ii) of Proposition 3.5 allows us to see the modular symbols φf as having values in
Vk,k(L)∗ for a sufficiently large p-adic field L. For suitable level groups, one can then replace
this space of polynomials with a space of p-adic distributions to obtain overconvergent modular
symbols.

Definition 3.7. Let A(L) denote the space of locally analytic functions on OF ⊗ZZp defined
over L. We equip this space with a weight (k, k)-action of the semigroup

Σ0(p) ..=

{(
a b
c d

)
∈ M2(OF ⊗Z Zp) : p|c, a ∈ (OF ⊗Z Zp)×, ad− bc 6= 0

}

by setting

γ · ζ(z) =
(a+ cz)k

(ad− bc)k/2
ζ

(
b + dz

a+ cz

)
.

Definition 3.8. Let Dk,k(L) ..= Homcts(A(L), L) denote the space of locally analytic distri-
butions on OF ⊗ZZp defined over L, equipped with a weight (k, k) right action of Σ0(p) given
by µ|γ(ζ) = µ(γ · ζ). For Γ ⊂ Σ0(p), define the space of overconvergent modular symbols of
weight (k, k) and level Γ to be SymbΓ(Dk,k(L)).

There is a natural map Dk,k(L) → Vk,k(L)∗ given by dualising the inclusion of Vk,k(L) into
A(L). This induces a specialisation map

ρ : SymbΓ0(n)(Dk,k(L)) −→ SymbΓ0(n)(Vk,k(L)∗),

noting that the source is well-defined since Γ0(n) ⊂ Σ0(p).

Theorem 3.9 (Control theorem). For each prime p above p, let λp ∈ L×. If v(λp) <
(k + 1)/ep for all p|p, then the restriction of the specialisation map

ρ : SymbΓ0(n)(Dk,k(L)){Up=λp:p|p} ∼−→ SymbΓ0(n)(Vk,k(L)∗){Up=λp:p|p}

to the simultaneous λp-eigenspaces of the Up operators is an isomorphism. Here recall that
ep is the ramification index of p|p.

Definition 3.10. If f ∈ Sk,k(Ω0(n)) is an eigenform with eigenvalues λI , we say f has small
slope if v(λp) < (k + 1)/ep for all p|p.

Thus if f is small slope, using the above control theorem, we get an associated overconvergent
modular symbol Ψf ∈ SymbΓ0(n)(Dk,k(L)) by lifting the corresponding classical modular
symbol.

3.4. The p-adic L-function of a Bianchi modular form

In [Wil17], the p-adic L-function of a Bianchi modular form f is defined as a locally analytic
distribution on ClF (p∞) that interpolates the classical L-values of f . For our purposes, it is
more convenient to use a different description in terms of analytic functions on OF ⊗Z Zp.

13
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First, we need a slight extension of the results of [Wil17]. Let g be any ideal coprime to (p).
An explicit study of ClF (gp∞) shows that

ClF (gp∞) =
[
(OF /g)× × (OF ⊗Z Zp)×

]
/O×

F .

Let f ∈ Sk,k(Ω0(n)) be a small slope Bianchi eigenform with associated overconvergent modu-
lar symbol Ψf . Define a distribution µ′

a (mod g) on {[a]}×(OF ⊗ZZp) ⊂ (OF /g)××(OF ⊗ZZp),
which we see as a copy of OF ⊗Z Zp, by setting

µ′
a (mod g)

..= (gg)k/2

[
Ψf

∣∣∣∣
(

1 b
0 g

)]
{0 − ∞},

where b ∈ OF is some lift of a (mod g) and g = gOF . This is easily seen to be independent
of the choices of b and g. Combining these for all a ∈ (OF /g)×, we get a distribution µp

on (OF /g)× × (OF ⊗Z Zp). Restricting to units in the second variable, and then restricting
to functions that are invariant under O×

F , we obtain a distribution on ClF (gp∞) which in an
abuse of notation we will also call µp.

Definition 3.11. For the rest of the paper, fix a choice of p-adic logarithm

logp : C×
p −→ Cp

with logp(p) = 0. Also, for p|p, let rp denote the smallest positive integer such that the usual
p-adic exponential map converges on prpOp. (Note that rp = 1 unless p = 2 or p is ramified).

(i) Let p|p and s ∈ Op, let 〈·〉 : O×
p → 1 + prpOp denote projection, and define

〈·〉s : O×
p −→ Cp,

z 7−→ exp(s · logp(〈z〉)),

which is well-defined by the definition of rp.

(ii) Similarly, for s = (sp)p|p ∈ OF ⊗Z Zp
∼=
∏

p|p Op define

〈·〉s ..=
∏

p|p

〈·〉sp : (OF ⊗Z Zp)× −→ Cp,

and note that this is invariant under O×
F , so that it induces a map 〈·〉s : ClF (p∞) → Cp.

(iii) Let χ be a finite order Hecke character of conductor gf, where g is coprime to (p) and
f|p∞ (so that χ can naturally be seen as a finite order character on ClF (gp∞)). Define
an analytic function on OF ⊗Z Zp by

Lp(f, χ, s) =

∫

ClF (gp∞)

〈zp〉sχ(z)dµp(z),

where s = (sp)p|p ∈ OF ⊗Z Zp, and zp = (zp)p|p is the projection of z to ClF (p∞).

(iv) Let wTm,p : O×
p → (Op/p

rp)× ⊂ O×
p denote the Teichmüller character at p, so that for

x ∈ O×
p , we have x = wTm,p(x)〈x〉. Also let wTm

..=
∏

p|p wTm,p be the corresponding

character of (OF ⊗Z Zp)×.

14
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Translated into this setting, the main result of [Wil17] was the following:

Theorem 3.12. For a finite order Hecke character χ with conductor gf = (c), where f|p∞,
and for 0 ≤ r ≤ k, we have

Lp(f, χwr
Tm, r) =


∏

p|p

Zp(χ, r)



[
Dr+1τ(χ−1)|c|r#O×

F

(−1)k2λfΩf

]
Λ(f, χ, r + 1),

where r = (r)p|p and

Zp(χ, r) .

.= 1 −
χ(p)N(p)r

λp

recalling that χ(p) is defined to be χ(πp) (for πp ∈ Op a uniformiser) if χ is unramified at p

and 0 otherwise (so that Zp = 1 if χ ramifies at p). We call Lp the p-adic L-function of f .

Proof. (Sketch). For g = 1, this is proved entirely in [Wil17], so we indicate briefly how the
more general result follows. Letting b be a unit (mod gf) and using the notation and arguments
op. cit., Section 7.1, we see that

µp(P r,r
b,gf) = (gg)k/2Ψf

∣∣∣∣
(

1 b
0 g

)
{0 − ∞}(P r,r

b,f )

= λ−1
f (gα)r(gα)rcr,r

(
b

gα

)
,

where f = (α). The rest of the proof proceeds as in [Wil17].

Remarks: (i) In [Wil17], this corresponds to the evaluation of µp at the character ϕp−fin,
where ϕ = χ|·|r. We need the Teichmüller character since ϕp−fin(z) = χ(z)[〈zp〉wTm(zp)]r.

(ii) There is a slight error in [Wil17], where the term Zp is incorrect in the case where
p ∤ f. This stems from a subtlety in the definition of Gauss sums. In particular, the
proof quotes results from [BSW16], and the Gauss sums in that paper are normalised
differently. The difference is the factor of ϕp−fin.

4. Modular symbols on the tree

4.1. Harmonic cocycles attached to Bianchi modular forms

Working with class number 1 allows us to work classically with forms on the upper half-space,
for which we’ll need a classical version of the (adelic) group Ω introduced in Definition 2.2.

Definition 4.1. Define
Γ ..= PGL2(F ) ∩ Ω.

The group Γ has an explicit description as the subgroup of PGL2(OF [p−1]) with lower left
entry contained in prm, for some (possibly negative) r ∈ Z, whose determinant is exactly
divisible by an even power of p.

15
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Let f ∈ Sk,k(Ω0(n)) be a Bianchi modular form that is new at p, and let F be the associated
form on the tree Tp. To F we can associate a ‘modular symbol’ κF on Tp by setting

κF{r − s}(e, P ) ..= φFe{r − s}(P ),

for e ∈ E(Tp), r, s ∈ P1(Fp) and P ∈ Vk,k(L), for L a suitably large finite extension of Qp.

Proposition 4.2. The symbol κF is harmonic on E(Tp), linear in r, s and P and Γ-invariant
in the sense that

κF{γr − γs}(γe, γ · P ) = κF{r − s}(e, P )

for all γ ∈ Γ.

Proof. (Sketch). These properties all follow from the corresponding properties of F and φFe .
The only one that is not obvious is the Γ-invariance property, which follows from a lengthy
technical calculation, of which we give a sketch. Firstly, one can obtain a more classical
definition of Bianchi modular forms on Tp as functions F : E(Tp) × H3 −→ V2k+2(C) such
that

F(γe, γ(z, t))

[(
X
Y

)]
= F(e, (z, t))

[
j(γ, (z, t))

(
X
Y

)]
,

for all γ =
(

a b
c d

)
∈ Γ, where we consider V2k+2(C) instead as homogeneous polynomials in

two variables X and Y and

j(γ, (z, t)) ..=

(
c 0
0 c

)(
z −t
t z

)
+

(
d 0

0 d

)
.

This is precisely the transformation property that classical Bianchi modular forms satisfy
under the corresponding level group. Then one examines the definition of the modular sym-
bol φFe , via a Vk,k(C)∗-valued harmonic differential δFe on H3 attached to Fe. In [Hid94],
Chapter 2.5, this differential is shown to be invariant under Γe. Define a differential on
E × H3 by δ(e, (z, t)) ..= δFe(z, t). Using exactly the same methods as in [Hid94], and the
classical transformation property above, this is seen to be invariant under Γ, in the sense that
δ(γe, γ(z, t)) = δ(e, (z, t)) for all γ ∈ Γ. Since by definition κF{r − s}(e, P ) is the integral of
δ(e, (z, t)) from r to s in H3, we then obtain the result by a simple transformation.

Definition 4.3. We call such a function a Γ-invariant harmonic cocycle on E(Tp) with values
in Hom(∆0, Vk,k(L)∗). We denote the space of such functions by
Char(Hom(∆0, Vk,k(L)∗)Γ.

We have a map

ρe∗
: Char(Hom(∆0, Vk,k(L)∗)Γ −→ SymbΓ0(n)(Vk,k(L)∗)

given by restriction to the standard edge e∗. We can implicitly define an inverse to this map
by using the tree. In fact, we can write this down explicitly without needing to refer to the
tree at all. Indeed, note that any even edge e can be written as e = γe∗ for some γ ∈ Γ.
Let φf ∈ SymbΓ0(n)(Vk,k(L)∗) be a modular symbol. If κF is a harmonic cocycle such that
ρe∗

(κF ) = φf , then by Γ-invariance we have

κF{r − s}(e, P ) = φf |γ−1{r − s}(P ).

It remains to determine the value of κF at odd edges, which we will do in the next subsection
using the Atkin–Lehner operators to describe the action of a larger group Γ̃.

16



Exceptional Zeros for Bianchi Modular Forms Daniel Barrera Salazar and Chris Williams

Remark: We have brushed over a slight subtlety here; we should really have defined κF in
terms of the complex symbols φ̃Fe , rather than the algebraic analogues φFe , each of which
depends on a choice of period ΩFe . However, the invariance property above shows that we
can use the same choice ΩFe = Ωf at each edge to obtain something algebraic on the tree.

4.2. Atkin–Lehner operators and the action of Γ̃

Let Γ̃ ..= PGL2(F ) ∩ Ω̃. Analogously to Γ, we see Γ̃ as the subgroup of PGL2(OF [p−1]) with
lower left entry contained in prm, for some (possibly negative) r ∈ Z.

Definition 4.4. Let α be any element of Γ̃\Γ normalising Γ0(n). The Atkin–Lehner operator
Wp on SymbΓ0(n)(Vk,k(L)∗) is defined by

φ|Wp
..= φ|α.

If f (and hence φf ) is an eigenform for the Hecke operators, then it is also an eigenform for
Wp. Denote the eigenvalue by −ω, which will be 1 or −1.

Proposition 4.5. For γ ∈ GL2(F ), define |γ| .

.= ordp(det(γ)), so that in particular |γ| (mod 2)
is well-defined on PGL2(F ). Then we have

κF{γr − γs}(γe, γ · P ) = ω|γ|κF{r − s}(e, P )

for all γ ∈ Γ̃.

Proof. If γ ∈ Γ, this is the invariance statement above. If γ /∈ Γ, then γ = γ′α for some
γ′ ∈ Γ, and then the Γ-invariance means we’re reduced to proving that

κf {αr − αs}(αe, α · P ) = ωκf {r − s}(e, P ).

This is a simple explicit calculation (compare [Dar01], Lemma 1.4).

4.3. Hecke operators

There are natural actions of Hecke operators away from n on the forms and symbols on the
tree, and all the associations we’ve made are equivariant with respect to these operators. In
particular, recall Definition 3.4 where for each ideal I, we picked a finite set of representatives
δI

j for the double coset corresponding to TI .

Definition 4.6. Define the Hecke operator TI on Char(Hom(∆0, Vk,k(L)∗)Γ by setting κ|TI
..=

N(I)k/2
∑

j κ|δI
j , or more concretely,

(κ|TI){r − s}(e, P ) ..= N(I)k/2
∑

j

κ{δI
j r − δI

j s}(δI
j e, δ

I
j · P ).

Proposition 4.7. The association of κF to f is equivariant with respect to the Hecke operators
TI for I coprime to n.

Proof. This follows immediately from the definitions and the fact that, if I is coprime to n,
we have δI

j e = e for all j and for any edge e.
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4.4. Hecke eigenvalues of newforms

As a corollary of the above results, we recover the following classical result, which also follows
from the theory of automorphic forms and the structure of Iwahori–Hecke algebras. The
authors thank Aurel Page for pointing out the previous existence of such a result, which we
were not able to find in the literature.

Corollary 4.8. Let f ∈ Sk,k(Ω0(n)) be an eigenform, with p|n. If f is new at p, then the
Hecke eigenvalue at p is ωN(p)k/2, where −ω is the eigenvalue at f of the Atkin–Lehner
operator Wp.

Proof. We’ve already shown that f is new at p if and only if the associated form F on the
tree is harmonic; suppose this is the case. It suffices to prove the result on modular symbols.
Recall that π is a generator of p, and for j ∈ OF , let δj

..=
(

1 j
0 π

)
. Then by definition, for any

r, s ∈ P1(F ) and P ∈ Vk,k(L),

(φf |Up){r − s}(P ) = N(p)k/2
∑

j (mod p)

κF{δjr − δjs}(e∗, δj · P )

= ωN(p)k/2
∑

j (mod p)

κF{r − s}(δ−1
j e∗, P ),

using the transformation property above. But by inspection, the set {δ−1
j e∗ : j (mod p)} is

precisely the set {e ∈ E(Tp) : t(e) = v∗, e 6= e∗}. Hence an easy calculation using harmonicity
shows that

(φf |Up){r − s}(P ) = ωN(p)k/2κf {r − s}(e∗, P ),

which completes the proof.

Whilst we have presented this in only the generality in which we require it, an argument of
this type generalises very easily to the case of arbitrary number fields and arbitrary class
number.

Corollary 4.9. Let f as above be new at p = (π). Suppose that f has small slope at all
primes above p, and let χ be a finite order Hecke character for F . Then the critical value
Lp(f, χwr

Tm, r) of the p-adic L-function has an exceptional zero at p precisely when k is even,
χ(π) = ω and r = k/2.

Proof. The exceptional factor Zp(χ, k/2) of Theorem 3.12 is zero if and only if these conditions
are satisfied.

5. Distributions attached to Bianchi modular forms

In the rational set-up, overconvergent modular symbols naturally take values in the space of
locally analytic distributions on Zp, and Darmon and Orton use the tree to extend these to
distributions on P1(Qp). In the Bianchi case, the values are distributions on OF ⊗Z Zp. In
this section we show how to extend such distributions to be ‘projective at p’. To do so in
general, we’ll need to work with the other primes above p, but to ease the exposition, we first
treat the case where there is a single prime above p.
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5.1. Distributions on P1
p: the case p inert or ramified

Suppose p is inert or ramified in F . To ensure consistent notation with the split case, let

P1
p

..= P1(Fp).

5.1.1. Polynomial distributions on P1
p

By Proposition 2.4, a basis of open sets in P1
p is given by {U(e) : e ∈ E(Tp)}. Let f ∈

Sk,k(Ω0(n))p−new be an eigenform with associated form F and modular symbol κF on Tp.
Let Vk,k(P1

p) be the space of functions P1
p → L that are locally polynomial of degree at most

k in each variable.

Definition 5.1. For each pair r, s ∈ P1(F ), define a locally polynomial distribution µpoly
F {r−

s} on P1
p by setting

∫

U(e)

P (t)dµpoly
F {r − s}(t) ..= κF{r − s}(e, P ),

where P is polynomial on U(e) of degree at most k in each variable, and extending linearly.
(Note that this is well-defined by harmonicity).

Recall that −ω is the eigenvalue of f at the Atkin–Lehner operator Wp. The transformation

property of Proposition 4.5 above then shows that if e = γe∗ with γ ∈ Γ̃, then

∫

U(e)

P (t)dµpoly
F {r − s}(t) = ω|γ|φf {γ−1r − γ−1s}(γ−1 · P ). (2)

In particular, we can express the distribution solely in terms of φf .

5.1.2. Locally analytic distributions on P1
p

By Corollary 4.8, f has eigenvalue ωN(p)k/2 = ωpk/ep at p, so f has small slope at p. Hence
we can use Theorem 3.9 to give a unique overconvergent lift Ψf ∈ SymbΓ(Dk,k(L)) of φf .

Definition 5.2. Let Ak,k(P1
p, L) denote the space of functions P1

p = P1(Fp) → L that are
locally analytic except perhaps for a pole at ∞ of order at most k.

Recall the action of PGL2(Fp) on P1
p by

(
a b
c d

)
· x = (b + dx)/(a + cx). We get an action of

PGL2(Fp) on Ak,k(P1
p, L) by

γ · ζ(x) ..=
(a+ cx)k(a+ cz)k

(ad− bc)k/2(ad− bc)k/2
ζ(γ · x),

directly extending the action of Σ0(p) on locally analytic functions on Op = OF ⊗Z Zp from
earlier.

Note that if e = γe∗, then γ−1 carries the set Op to U(e) = γ−1(Op) ⊂ P1
p. Hence if ζ

is supported on U(e), then γ−1 · ζ is supported on Op. This, along with equation (2),
motivates the following.
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Definition 5.3. Let e = γe∗ ∈ E(Tp).

(i) Let Ak,k(U(e), L) be the subspace of functions ζ ∈ Ak,k(P1
p, L) that are supported

on U(e), with the natural weight k action of γΣ0(p)γ−1, and let Dk,k(U(e), L) be its
continuous dual.

(ii) Define the overconvergent modular symbol at e associated to F , denoted by ΨFe , to be
the element of SymbΓe

(Dk,k(U(e), L)) defined by

ΨFe{r − s}(ζ) ..= ω|γ|Ψf{γ−1r − γ−1s}(γ−1 · ζ).

Here Γe
..= StabΓ(e) = γΓ0(n)γ−1.

Proposition 5.4. For each pair r, s ∈ P1(F ), we may define a distribution µF {r − s} on
Ak,k(P1

p, L) attached to F by setting

∫

U(e)

ζ(t)dµF {r − s}(t) .

.= ΨFe{r − s}(ζ)

and extending linearly.

Proof. Suppose p is inert (the case p ramified is essentially identical). We need only show
that µF {r − s} is distributive over open sets. Let e = γe∗ ∈ E(Tp) be an edge, with source

v ∈ V(T ), and let e, e1, ..., ep2 be the edges with target v, so that U(e) =
∐p2

i=1 U(ei). We
need to show that, for ζ locally analytic on U(e), we have

ΨFe{r − s}(ζ) =

p2∑

i=1

ΨFei
{r − s}(ζ|U(ei)).

For each j (mod p), recall that δj =
(

1 j
0 p

)
. By direct inspection of the tree, we see that

{ei : 1 ≤ i ≤ p2} = {δ−1
j γe∗ : j (mod p)} = {γδ−1

j e∗ : j (mod p)}. (We need not have

δ−1
j γe∗ = γδ−1

j e∗ for individual edges, but we do get an equality of sets). A calculation using

harmonicity and the fact that Ψf = ωp−kΨf |Up (from Corollary 4.8) shows that

p2∑

i=1

ΨFei
{r − s}(ζ|U(ei)) = ω|γ|Ψf {γ−1r − γ−1s}(γ−1 · ζ) = ΨFe{r − s}(ζ),

as required.

5.2. Distributions on P1
p: the case p split

Now suppose p is split as pp in F . The only additional complication in this case is that to
construct p-adic L-functions, we must also consider behaviour at p. Other than this, the
construction is closely analogous to the case p inert, and we will omit the details in this case.

Assumption 5.5. Henceforth, we will assume that f has small slope at p, that is, that
vp(ap) < k + 1, where ap is the Hecke eigenvalue at p. (Note that f automatically has small
slope at p since it is new, so in this case we obtain a canonical overconvergent symbol Ψf , as
before).
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Definition 5.6. (i) Let

P1
p

..= P1(Fp) × Op
∼= P1(Qp) × Zp ⊃ OF ⊗Z Zp.

(ii) Let Ak(P1(Fp), L) be the space of functions P1(Fp) → L that are locally analytic except
perhaps for a pole of order at most k at ∞, and let Ak(Op, L) be the space of locally
analytic functions Op → L. Define

Ak,k(P1
p, L) ..= Ak(P1(Fp), L)⊗̂LAk(Op, L).

Let U ′(e) ..= U(e) × Op ⊂ P1
p. Note that Γ̃ preserves Op, so if e = γe∗ for γ ∈ Γ̃, then

U ′(e) = γ−1(OF ⊗Z Zp). Hence the following definition makes sense.

Definition 5.7. Let e = γe∗ ∈ E(Tp).

(i) Let Ak,k(U ′(e), L) be the subspace of functions ζ ∈ Ak,k(P1
p, L) that are supported on

U ′(e) and let Dk,k(U ′(e), L) be its continuous dual.

(ii) Define the overconvergent modular symbol at e associated to F , denoted by ΨFe , to be
the element in SymbΓe

(Dk,k(U ′(e), L)) defined by

ΨFe{r − s}(ζ) ..= ω|γ|Ψf{γ−1r − γ−1s}(γ−1 · ζ).

In exactly the same manner as the inert case, we can then show that we may attach a
distribution µF{r − s} on Ak,k(P1

p, L) to F by defining it on basic open sets as

∫

U ′(e)

ζ(t)dµF {r − s}(t) ..= ΨFe{r − s}(ζ).

5.3. Properties of the distributions

Regardless of the splitting behaviour of p, we’ve constructed a family of distributions µF{r−s}
on P1

p attached to F . We have the following easy properties (see [Ort04], Lemma 3.2).

Proposition 5.8. (i) If P is any polynomial function over L, then for any r, s ∈ P1(F ) we
have ∫

P1
p

P (t)dµF {r − s}(t) = 0.

(ii) For γ ∈ Γ̃, we have
∫

U(γe)

(γ · ζ)(t)dµF {γr − γs}(t) = ω|γ|

∫

U(e)

ζ(t)dµF {r − s}(t).

(iii) The distributions ‘behave well under Hecke operators’ in the sense that for all I coprime
to n,

N(I)k/2
∑

j

∫

U(δI
j

e)

(δI
j · ζ)(t)dµ{δI

j r − δI
j s}(t) = λI

∫

U(e)

ζ(t)dµF {r − s}(t),

keeping the notation of Definition 3.4, and where λI is the Hecke eigenvalue of f at I.
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6. Double integrals and cohomology classes

In this section, we use the machinery constructed above to define double integrals in the man-
ner of Darmon, and then attach two cohomology classes lcf , ocf ∈ H1(Γ,Hom(∆0, Vk,k(Cp)∗))
to f . This closely follows the methods of [Ort04], which was motivated by the methods
of [Dar01]. Darmon defines a multiplicative double integral and a class cf attached to a
weight two modular form f , and then constructs classes logp(cf ) and ordp(cf ). In our setting,
this multiplicative integral doesn’t exist, and we instead define the analogues of logp(cf ) and
ordp(cf ) by exploiting their properties as given in [Dar01].

6.1. Double integrals

Let f ∈ Sk,k(Ω0(n))p−new with associated system of distributions µF {r− s} on P1
p, and recall

that we fixed a choice of p-adic logarithm logp : C×
p −→ Cp.

Definition 6.1. Let x, y in Hp, let P ∈ Vk,k(Cp) and let r, s ∈ P1(F ). Then define

∫ y

x

∫ s

r

(P ) ..=

∫

P1
p

logp

(
tp − x

tp − y

)
P (t)dµF {r − s}(t),

where tp is the projection of t ∈ P1
p to P1(Fp). (Note that this is well-defined since Hp

..=
P1(Cp)\P1(Fp), so that tp − x and tp − y cannot vanish and their quotient gives an element
of C×

p ).

The following (compare [Ort04], Lemma 4.1) follow from properties of logp and from Propo-
sition 5.8.

Proposition 6.2 (Properties of the double integral). (i) The double integral is additive in
x, y and r, s and is linear in P .

(ii) For γ ∈ Γ̃, ∫ γy

γx

∫ γs

γr

(γ · P ) = ω|γ|

∫ y

x

∫ s

r

(P ).

(iii) The double integral ‘behaves well under Hecke operators’ in the sense that for all I
coprime to n,

N(I)k/2
∑

j

∫ δI
ky

δI
j

x

∫ δI
j s

δI
j

r

(δI
k · P ) = λI

∫ y

x

∫ s

r

(P ),

for notation as in Proposition 5.8 (iii).

For ease of notation, let ∆k,k
..= Hom(∆0, Vk,k(Cp)∗). We define cohomology classes lcf and

ocf as follows.

Definition 6.3 (Definition of lcf ). Let τ ∈ Hp, and define a function Γ → ∆k,k by

l̃cf,τ (γ){r − s}(P ) ..=

∫ γτ

τ

∫ s

r

(P ).

From the properties of the double integral above, we see that this is a cocycle in Z1(Γ,∆k,k)
and its class lcf ∈ H1(Γ,∆k,k) is independent of τ .
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Definition 6.4 (Definition of ocf ). Let v ∈ V(Tp), and define a function Γ → ∆k,k by

õcf,v(γ){r − s}(P ) ..=
∑

e∈v→γv

κF{r − s}(e, P ),

where v → γv denotes the (unique) path from v to γv in the tree and where κF is the modular
symbol on the tree from Section 4. From the properties of κF in Proposition 4.2, we see that
this is a cocycle in Z1(Γ,∆k,k) and its class ocf ∈ H1(Γ,∆k,k) is independent of v.

We have natural actions of the Hecke operators on H1(Γ,∆k,k), as in [Hid93a], Chapter 6.3.
As in [Ort04], using Proposition 6.2 and Lemma 4.2, we have the following.

Proposition 6.5. Both ocf and lcf are eigensymbols for the Hecke operators away from
n with the same eigenvalues as f , that is, they are elements in the f -isotypic subspace of
H1(Γ,∆k,k).

7. Relating to L-values

7.1. Optimal embeddings

In both [Dar01] and [Ort04], one obtains a link between the cohomology classes defined above
and L-values of the form f at characters of conductor c by exploiting optimal embeddings
of conductor c, that is, certain embeddings F × F →֒ M2(F ). Heuristically, one should see
such an embedding as giving rise to a cycle in the symmetric space corresponding to our level
group, and hence it gives rise to a homology class that we can then pair our cohomology
classes against (see, for example, [GMŞ15] for details of this approach).

In practice we can work out the details of this rather more explicitly. In particular, each such
embedding gives rise to an infinite cyclic subgroup 〈γ〉 of Γ, which has precisely two fixed
points x, y in P1(Fp). One then writes down a polynomial P (t) that is invariant under the
action of γ, and evaluates cohomology classes in H1(Γ,Hom(∆0, Vk,k(Cp)∗)) at γ, x, y and P .
In this section, we bypass embeddings completely, and simply write down the corresponding
values of γ, x, y and P . Throughout, and for the remainder of the paper, we will assume k is
even (in lieu of Corollary 4.9).

Definition 7.1. Let c ∈ OF be prime to p = (π) and v ∈ OF prime to c.

(i) Define s′ ..= order of π in (OF /c)
×, and let s ..= 2 × (order of π2 in (OF /c)

×).

(ii) Define

γc,v
..=

(
π−s/2 (πs/2 − π−s/2)v

c

0 πs/2

)

(As c|(πs/2 −π−s/2), there is no problem with denominators). Note that the fixed points
of this in P1(Fp) are −v/c and ∞.

(iii) Let Mc,v(t) ..= ct+ v, a Möbius transformation taking −v/c to 0 and fixing ∞.

(iv) Let Pc,v(t) ..= (ct + v)k/2(ct + v)k/2, an element of Vk,k(L) that is invariant under the
action of γc,v.
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Remark: The actions of γc,v on the cusps and on P1(Fp) and Hp are different. In particular
γc,v fixes the cusps v/c and ∞, whilst for any τ ∈ Hp, we have limj→∞ γj

c,vτ = −v/c and

limj→∞ γ−j
c,vτ = ∞.

Proposition 7.2. (i) Let t ∈ P1(Fp). Then we have Mc,v(γc,vt) = πsMc,v(t).

(ii) There is a bijection between doubly infinite (non-repeating) paths in Tp and distinct pairs
of elements of P1(Fp). (Here by doubly infinite we mean that every vertex in the path
is connected to precisely two other vertices, that is, the path has no ‘end’).

(iii) Let path(−v/c,∞) denote the infinite path in Tp corresponding to the pair (−v/c,∞).
It is possible to index the vertices and edges of this path such that t(ej) = vj and

U(ej) = {t ∈ P1(Fp) : vp(Mc,v(t)) ≥ −j}.

(iv) Under the action of Γ on Tp, we have γc,vej = ej+s.

(v) Let U(vj) .

.= {t ∈ P1(Fp) : vp(Mc,v(t)) = −j}. Then

Fc,v
.

.=

s−1⋃

j=0

U(vj)

is a fundamental domain for the action of γc,v on P1(Fp)\{−v/c,∞}.

Proof. Part (i) is direct calculation. For part (ii), see [DT08]. Parts (iii) to (v) follow from
the same arguments as the corresponding statements in [Dar01] over Q, which are given in
equations (88) for part (iii), (90) for part (iv) and (87) for part (v).

7.2. Relating ocf to classical L-values

With the above given, we are in a position to compute a special value of the cocycle õcf,v.

Proposition 7.3. Let Jv denote the coset v〈π〉 ⊂ (OF /c)
×. For each a ∈ Jv, let j(a) be the

smallest non-negative integer such that a ≡ vπj(a) (mod c). We have

õcf,v(γc,v){v/c− ∞}(Pc,v) = β
∑

a∈Jv

ωj(a)φf {a/c− ∞}

[
(ct+ a)k/2(ct+ a)k/2

]
,

where

β =





1 : s = s′,
2 : ω = 1, s = 2s′,
0 : ω = −1, s = 2s′.

Proof. We compute directly that

õcf,v(γc,v){v/c− ∞}(Pc,v) =

s∑

j=1

κF{x− y}(ej, Pc,v).

Let u ∈ OF be any element such that u ≡ v/c (mod ps). Since U(ej) = {t ∈ P1(Fp) :
πj(ct+ v) ∈ Op} = {t ∈ P1(Fp) : πj(t+ u) ∈ Op} = U(γje∗), where

γj
..=

(
π−j u

0 1

)
∈ Γ̃, (3)
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we see that ej = γje∗. Hence κf {v/c− ∞}(ej, Pc,v) = ωjφf |γ−1
j {v/c− ∞}(Pc,v). Now direct

computation shows that

γ−1
j (v/c) =

πjv − cuπj

c
, γ−1

j ∞ = ∞,

and
γ−1

j · Pc,v(t) = (ct+ (πjv − cuπj))k/2(ct+ (πjv − cuπj))k/2.

As j ranges from 1 to s, the quantity a = πjv− cuπj ranges over Jv, once if s = s′ and twice
if s = 2s′. In the latter case, the signs ωj at each instance are both equal to 1 if ω = 1 and
are opposite if ω = −1. Finally, the result follows from the observation that if a, a′ ∈ OF

such that a ≡ a′ (mod c), then the action of
(

1 (a−a′)/c
0 1

)
∈ Γ0(n) shows that

φf {a/c− ∞}[(ct+ a)k/2(ct+ a)k/2)] = φf {a′/c− ∞}[(ct+ a′)k/2(ct+ a′)k/2)].

Henceforth we assume we are not in the case β = 0, which will be irrelevant to our results.
An immediate corollary is the following.

Corollary 7.4. Suppose χ is a finite order character of conductor c (that we naturally see as
a character on (OF /c)

×), and that χ(p) = ω. Then

∑

v∈(OF /c)×

χ(v)ocf (γc,v){v/c− ∞}(Pc,v) = s

[
Dr+1τ(χ−1)|c|r#O×

F

2Ωf

]
Λ(f, χ, k/2 + 1).

Proof. The corresponding result for the cocycle õcf,v follows from equation (1). In particular,
note that the condition on χ(π) means that χ(v)ωj(a) = χ(vπj(a)) = χ(a), whilst the sum
runs over all cosets v〈π〉 ⊂ (OF /c)

× for all v ∈ (OF /c)
×, which means that every element of

(OF /c)
× is hit s′ times. But βs′ = s.

To see that the result holds at the level of cohomology classes, let b ∈ B1(Γ,∆k,k) be a
coboundary. Then there exists φ ∈ ∆k,k = Hom(∆0, Vk,k(Cp)∗) such that b(γ){r − s}(P ) =
(φ|γ){r − s}(P ) − φ{r − s}(P ). But it follows directly that b(γc,v){v/c− ∞}(Pc,v) = 0 using
the γc,v-invariance of v/c,∞ and Pc,v.

7.3. Relating lcf to p-adic derivatives

In this section, we prove a formula analogous to the one above, this time relating special
values of the class lcf to the derivative of the p-adic L-function at the corresponding critical
value. For clarity, we will assume throughout this section that p is split; the cases where p
is inert or ramified are almost identical (and, in fact, slightly easier where they differ). We
freely use the notation of Section 7.2.

7.3.1. Rephrasing as an integral over the fundamental domain

Let c and v be as before. The following lemma will be useful in the sequel.

Lemma 7.5. We have
∫

Fc,v×O
p

Pc,v(t)dµF

{v
c

− ∞
}

(t) = 0.
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Proof. This is a direct calculation using the fact that Fc,v = U(es−1)\U(e−1) and U(es−1) =
γ−1

c,vU(e−1), combined with the invariance of Pc,v, c/v and ∞ under γc,v.

Recall the definition of l̃cf,τ (γc,v){v/c− ∞}(Pc,v) from Definition 6.3. We rephrase this in a
way that allows us to see p-adic L-values. To ease notation, we’ll henceforth write dµc,v

F for
dµF {v/c− ∞}.

Proposition 7.6. We have

l̃cf,τ (γc,v){v/c− ∞}(Pc,v) =

∫

Fc,v×O
p

logp(ct+ v)Pc,v(t)dµc,v
F (t).

The proof will require a lemma. We have a decomposition

P1
p =

(
U(e(n+1)s−1) ⊔ U(e−ns−1)

n⊔

i=−n

γi
c,vFc,v

)
× Op.

We break the integral up into sums over these components and let n tend to ∞.

Lemma 7.7. The integral over the ‘endpoints’ vanishes in the limit. More precisely, let

I(n) .

.=

∫

U ′(e(n+1)s−1)⊔U ′(e−ns−1)

logp

(
t− γc,vτ

t− τ

)
Pc,v(t)dµc,v

F (t).

Then limn→∞ I(n) = 0. In particular,

l̃cf,τ (γc,v){v/c− ∞}(Pc,v) = lim
n→∞

n∑

i=−n

∫

γi
c,v[Fc,v×O

p]
logp

(
t− γc,vτ

t− τ

)
Pc,v(t)dµc,v

F (t).

Proof. Since U ′(e(n+1)s−1) = γ−n−1
c,v U ′(e−1) and U ′(e−ns−1) = γn

c,vU
′(e−1), we can write

∫

U ′(e(n+1)s−1)

logp

(
t− γc,vτ

t− τ

)
Pc,v(t)dµc,v

F (t) =

−

∫

U ′(e−1)

logp

(
γn+1

c,v t− γc,vτ

γn+1
c,v t− τ

)
Pc,v(t)dµc,v

F (t)

using the invariance of Pc,v and dµc,v
F (and similarly for the integral over U ′(e−ns−1)). For

each fixed n, the expressions

γn+1
c,v t− γc,vτ

γn+1
c,v t− τ

,
t− γ−n

c,v τ

t− γ−n−1
c,v τ

are both Möbius transformations sending γ−n
c,v τ to zero and γ−n−1

c,v τ to ∞, hence one is a
constant scalar multiple of the other. A short calculation using Lemma 7.5 now shows that

I(n) =

∫

U(e−1)

logp

(
t− γ−n

c,v τ

t− γ−n−1
c,v τ

·
t− γn+1

c,v τ

t− γn
c,vτ

)
Pc,v(t)dµc,v

F (t).

In the limit, the expression in the logp becomes Mc,v(γc,vt)/Mc,v(t). But by Proposition 7.2,
this is equal to πs, and logp(πs) = 0. Hence the integrand tends to zero and the first result
follows. The second result is a direct consequence of this and the above decomposition.
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Proof. (Proposition 7.6).
We use the second part of Lemma 7.7. A general term of the sum is an integral over γi

c,v[Fc,v ×
Op], and using the transformation property, we can write it as an integral over Fc,v × Op. In
particular, using similar methods to the proof of Lemma 7.7, we see that

l̃cf,τ (γc,v)
{v
c

− ∞
}

(Pc,v) = lim
n→∞

n∑

i=−n

∫

Fc,v×O
p

logp

(
t− γi+1

c,v τ

t− γi
c,vτ

)
Pc,v(t)dµc,v

F (t).

This sum telescopes via the expression inside the logp, and in the limit, the resulting expression
tends to Mc,v(t) = ct+ v. This completes the proof.

7.3.2. Rephrasing using the overconvergent modular symbol

We can decompose the fundamental domain of Proposition 7.6 into a union of sets of the form
U(vj) × Op, and hence as

Fc,v × Op =
s−1⊔

j=0

γ−1
j

[
O×

p × Op

]
,

where γj is as defined in equation (3). Here we’ve used the fact that U(vj) = U(γjv∗) =
γ−1

j O×
p , which can be seen directly. Hence we have

l̃cf,τ (γc,v){v/c− ∞}(Pc,v) =

s−1∑

j=0

∫

γ−1
j

[O×

p ×O
p

]

logp(ct+ v)Pc,v(t)dµc,v
F (4)

=
s−1∑

j=0

ωj

∫

O×

p ×O
p

logp(ct+ aj)(ct+ aj)k/2(ct+ aj)k/2dµF {aj/c− ∞},

where aj = πjv − cuπj (using the calculations and notation of the previous section). Now a
short explicit calculation shows:

Lemma 7.8. Write c = gπr, for some r ≥ 0 and (g) coprime to (p). For any a ∈ OF , we
have

∫

O×

p ×O
p

logp(ct+ a)(ct+ a)k/2(ct+ a)k/2dµc,v
F (t)

= (gg)k/2λr
pΨf

∣∣∣∣
(

1 a
0 g

)
{0 − ∞}

(
logp(t)(tt)k/21a (mod p

r)

)

= λr
p

∫

{[a]}×O×

p ×
[

a+p
rO

p

] logp(zp)〈zp〉k/2dµp(z),

where Ψf is the overconvergent modular symbol attached to f , 1a (mod pr) is the indicator

function of the set O×
p × [a + p

rOp], and µp is the distribution on (OF /g)× × (OF ⊗Z Zp)
defined in Section 3.4.

Corollary 7.9. We have

lcf (γc,v){v/c− ∞}(Pc,v) =
∑

a∈Jv

ωj(a)λr
p

∫

{[a]}×O×

p ×
[

a+prO
p

] logp(zp)〈zp〉k/2dµp(z).
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Proof. This follows directly from equation (4), Lemma 7.8 and the fact that as j ranges from
0 to s − 1, aj ranges over the set Jv defined in the previous section with multiplicity β. As
in the previous section, this value depends only on the cohomology class, so we drop the
tilde.

7.3.3. Completing the calculation

Finally, we tie the above results together to relate lcf to derivatives of the p-adic L-function
attached to f . As in the last subsection we suppose that we are not in the case β = 0.

Corollary 7.10. Suppose χ is a finite order character of conductor c (that we naturally see
as a character on (OF /c)

×), and that χ(p) = ω. Write c = gπr. Then
[
1 −

χ(p)N(p)k/2

λp

] ∑

v∈(OF /c)×

χ(v)lcf (γc,v){v/c− ∞}(Pc,v) = sλr
p

d

dsp
Lp(f, χ, s) |s=k/2 .

Proof. Note that if z ∈ ClF (gp∞) satisfies z ≡ πjv (mod c) then χ(z) = ωjχ(v). We use
Corollary 7.9 and the fact that s = βs′. In particular, we see that

∑

v∈(OF /c)×

χ(v)lcf (γc,v){v/c− ∞}(Pc,v) =

sλr
p

∫

(OF /g)××[O×

p ×O
p

]

χ(z)logp(zp)〈zp〉k/2dµp(z).

We need an integral over the units in Op in order to descend to ClF (gp∞). To this end, note
that we can break the integral up as

∫

(OF /g)××[O×

p ×O
p

]

=

∫

(OF /g)××[O×

p ×O×

p
]

+

∫

(OF /g)××[O×

p ×pO
p

]

.

If p|c, then extend χ to Op by defining it to be zero on pOp (and correspondingly on the
larger space in the integral). Then

∫

(OF /g)××[O×

p ×pO
p

]

χ(z)logp(zp)〈zp〉k/2dµp(z)

= λ−1
p

∫

(OF /g)××[O×

p ×O
p

]

χ(πz)logp(πzp)〈πzp〉k/2dµp(z)

=
χ(π)N(p)k/2

λp

∫

(OF /g)××[O×

p ×O
p

]

χ(z)logp(zp)〈zp〉k/2dµp(z).

By collecting these terms together, and using the fact that the integrand is invariant under
units, we see that

[
1 −

χ(p)N(p)k/2

λp

] ∑

v∈(OF /c)×

χ(v)lcf (γc,v){v/c− ∞}(Pc,v)

= sλr
p

∫

ClF (gp∞)

χ(z)logp(zp)〈zp〉k/2dµp(z).

But the latter integral is precisely the derivative in the sp direction of the p-adic L-function (as
can be seen by differentiating the integrand in the definition). This completes the proof.
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8. The cohomology of Γ

We now prove that the f -isotypic component of H1(Γ,Hom(∆0, Vk,k(Cp)∗)), that is the sub-
space of classes ψ ∈ H1(Γ,Hom(∆0, Vk,k(Cp)∗)) such that TIψ = λIψ for all I coprime to n,
is one dimensional. We make use of the tree.

Proposition 8.1. Let ∆k,k
.

.= Hom(∆0, Vk,k(Cp)∗). There is an exact sequence

[
H0(Γ0(m),∆k,k) ⊕ H0(Γ′

0(m),∆k,k)
]

−→ H0(Γ0(n),∆k,k) −→ H1(Γ,∆k,k)

−→
[
H1(Γ0(m),∆k,k) ⊕ H1(Γ′

0(m),∆k,k))
]

where Γ′
0(m) .

.= αΓ0(m)α−1.

Proof. This is [Ser80], Chapter II.2.8, Proposition 13, applied to

M = Hom(∆0, Vk,k(Cp)∗)

and G = Γ, noting that StabΓ(e∗) = Γ0(n), StabΓ(s(e∗)) = Γ0(m), and StabΓ(t(e∗)) =
Γ′

0(m).

8.1. A cohomological lemma

We can relate these spaces to compactly supported cohomology using a trick of Ash and
Stevens (see [AS86], Proposition 4.2).

Lemma 8.2. For each i ≥ 0 there is a Hecke-equivariant isomorphism

Hi(Γ0(m),∆k,k)) ∼= Hi+1
c (Γ0(m)\H3, ˜Vk,k(Cp)∗),

where the tilde denotes the natural local system attached to the right Γ0(m)-module Vk,k(Cp)∗.
We have identical isomorphisms for Γ′

0(m) and Γ0(n).

In fact, this is a special case of a more general result. Recall first the following definition.

Definition 8.3. The Borel–Serre compactification of Γ0(m)\H3 is Γ0(m)\H3, where

H3 = H3 ⊔
⊔

x∈P1(F )

ex,

with each ex a copy of R2 (see the appendix of [Ser70] or [BS74] for details).

Let M be a GL2(F )-module.3 Restricting the action to Γ0(m), we obtain natural local systems
on the space Γ0(m)\H3, its compactification Γ0(m)\H3, and the boundary ∂(Γ0(m)\H3); in

an abuse of notation, we write M̃ for each of these local systems. For any i ≥ 0 we have the
following Hecke equivariant isomorphisms:

Hi

(
Γ0(m),H0

(
H3,M

))
∼= Hi

(
Γ0(m)\H3, M̃

)
; (5)

3More generally, we may replace GL2(F ) with a semigroup Λ ⊂ GL2(F ) containing Γ0(m) and the matrices
defining the Hecke operators.
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Hi

(
Γ0(m),H0

(
∂H3,M

))
∼= Hi

(
∂
[
Γ0(m)\H3

]
, M̃
)

; (6)

Hi

(
Γ0(m),H1

(
H3, ∂H3,M

))
∼= Hi+1

c

(
Γ0(m)\H3, M̃

)
. (7)

Lemma 8.4. For each i ≥ 0, the following diagram commutes:

// Hi(Γ0(m),Hom(∆0,M)) //

≀
��

Hi+1(Γ0(m),M) //

≀
��

Hi+1(Γ0(m),Hom(∆,M)) //

≀
��

// Hi+1
c (Γ0(m)\H3, M̃) // Hi+1(Γ0(m)\H3, M̃) // Hi+1(∂

(
Γ0(m)\H3

)
, M̃) // .

Here the vertical maps are isomorphisms, the horizontal sequences are exact, and each map
is Hecke equivariant. Moreover, we have analogous diagrams for Γ′

0(m) and Γ0(n).

Proof. The proof follows the same strategy as [AS86]. Let ∆ ..= Div(P1(F )). We know that
the variety H3 is contractible and its boundary, ∂H3, is a disjoint union of copies of R2 indexed
by P1(F ). Hence we have the following isomorphisms:

H0(H3,Z) ∼= Z and H0(∂H3,Z) ∼= ∆.

Additionally, the boundary map H1(H3, ∂H3,Z) → H0(∂H3,Z) induces an isomorphism
H1(H3, ∂H3,Z) ∼= ∆0. Moreover, all these isomorphisms are equivariant with respect to the
action of GL2(F ), and assemble into a commutative diagram

0 // H1(H3, ∂H3 Z) //

≀
��

H0(∂H3,Z) //

≀
��

H0(H3,Z) //

≀
��

0

0 // ∆0
// ∆ // Z // 0.

Taking Hom(•,M) in the diagram above we obtain the following commutative diagram where
the horizontal sequences are exact and the vertical arrows are isomorphisms:

0 // H0(H3,M) //

≀
��

H0(∂
(
H3

)
,M) //

≀
��

H1(H3, ∂H3,M) //

≀
��

0

0 // M // Hom(∆,M) // Hom(∆0,M) // 0.

(8)

The diagram above is compatible with the action of GL2(F ) on each term. Considering the
long exact sequence of the cohomology of Γ0(m) attached to each line in the diagram above
and using isomorphisms (5), (6) and (7) completes the proof. Since each diagram respects
the action of GL2(F ), the diagram of the lemma is Hecke equivariant.

8.2. Multiplicity one for group cohomology

Theorem 8.5 (Multiplicity one). Let f ∈ Sk,k(Ω0(n))p−new. Then the system of Hecke
eigenvalues corresponding to f appears in the cohomology groups

Hi
c(Γ0(n)\H3, ˜Vk,k(Cp)∗)

(only) for i = 1, 2, and the f -isotypic component of these spaces is one-dimensional. The
system of eigenvalues corresponding to f does not appear in the cohomology of Γ0(m)\H3 or
Γ′

0(m)\H3.
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Proof. For the first statment, see [Hid94], Proposition 3.1, which is given for cuspidal coho-
mology. The cuspidal cohomology can be viewed as a subspace of the compactly supported
cohomology, and cokernel of the inclusion is an Eisenstein subspace, that is, the f -isotypic
parts of Hi

cusp and Hi
c are the same (see [Har87], Section 3.2.5, or [Urb95], Theorem 3.2).

The second statement holds simply because f is new at p, so its system of eigenvalues cannot
appear at level m.

The main result of this section is the following:

Theorem 8.6. Let H be any space with an action of the Hecke operators TI for I coprime
to n, and let H(f) denote the f -isotypic component.

(i) We have Hi(Γ0(m),∆k,k)(f) = Hi(Γ′
0(m),∆k,k)(f) = 0, for i = 0, 1.

(ii) The space H0(Γ0(n),∆k,k)(f) is a one-dimensional Cp-vector space.

(iii) The space H1(Γ,∆k,k)(f) is a one-dimensional Cp-vector space.

Proof. Parts (i) and (ii) are immediate from Lemma 8.2 and Theorem 8.5. A direct calculation
shows that the maps in the long exact sequence of Proposition 8.1 are equivariant with respect
to the Hecke operators, and hence we get a corresponding exact sequence on the f -isotypic
parts. But from parts (i) and (ii), the end terms are zero whilst the second term is one-
dimensional. Part (iii) follows.

Remark: An identical proof would show that the f -isotypic component of H2(Γ,∆k,k) is also
one-dimensional.

9. Exceptional zeros of Bianchi modular forms

In this section, we draw our previous results together to prove statements about exceptional
zeros.

Lemma 9.1. The cohomology class ocf is non-zero.

Proof. We exploit a result of Rohrlich on the non-vanishing of L-values, namely the theorem
in the introduction of [Roh91]. If ocf vanishes, then by Corollary 7.4 so must the L-values
L(f, χ, k/2 + 1) for all Dirichlet characters χ with χ(π) = ω, and this contradicts Rohrlich’s
result.

Definition 9.2. Define Lp ∈ Cp to be the unique scalar such that

lcf = Lpocf ∈ H1(Γ,∆k,k)(f),

which is possible by Theorem 8.6.

The following is the main result of this paper.

Theorem 9.3. Let f ∈ Sk,k(Ω0(n)) be a Bianchi eigenform over an imaginary quadratic field
of class number 1, and suppose that f is new at p = (π) and has small slope at every other
prime above p. Let −ω be the eigenvalue of the Atkin–Lehner operator Wp, and let χ be a
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finite order Hecke character with χ(p) = ω. Let f be the p-part of the conductor of χ. Then
there is an exceptional zero Lp(f, χ,k/2) = 0, and there exists Lp ∈ Cp such that

d

dsp
Lp(f, χw

k/2
Tm , s)

∣∣
s=k/2

=

Lp



∏

q|p
q6=p

Zq(χ, k/2)



[
Dk/2+1τ(χ−1)|c|r#O×

F

Ωfλf

]
Λ(f, χ, k/2 + 1).

Moreover, Lp is independent of the choice of χ satisfying the above conditions.

Proof. The existence of an exceptional zero was Corollary 4.9. The result follows from Corol-
laries 7.4 and 7.10 and the definition of Lp.

10. An arithmetic description in the base-change case

Let f be a cuspidal Bianchi modular form of weight (k, k). In the case where f is the base-
change of a classical cusp form f̃ (of weight k + 2), new at p, then we are able to relate the
L-invariants at p of f and f̃ under a non-vanishing assumption. Indeed, Artin formalism says
that there is a relation

Λ(f, s) = Λ(f̃ , s)Λ(f̃ , χF/Q, s),

where χF/Q is the quadratic character associated to the extension F/Q. We can lift this to
the level of p-adic L-functions.

Proposition 10.1. Suppose f is the base-change to F of a classical modular form that has
small slope at p. Given periods Ω±

f̃
for f̃ , we may choose the period of f to be Ωf =

Ω+

f̃
Ω−

f̃
τ(χF/Q). The natural inclusion Zp →֒ OF ⊗Z Zp allows us to restrict the resulting

p-adic L-function of f to an analytic function on Zp (the cyclotomic variable). This restric-
tion factorises as

Lp(f, s) =
#O×

F

2
· Lp(f̃ , s) · Lp(f̃ , χF/Q, s)

for all s ∈ Zp.

Proof. The p-adic L-functions of f and f̃ are defined using canonical overconvergent modu-
lar symbols Ψf and Ψf̃ respectively, which give rise to locally analytic distributions µp on

ClF (p∞) and µ̃p on Z×
p respectively (see [PS11] for the classical case). We can restrict µp

to functions that factor through the norm map and hence consider it as a distribution on
Z×

p . Finally, define a locally analytic distribution µ̃
χF/Q

p on Z×
p as follows: use Ψf̃ to define a

distribution µ̃p,D′ on (Z/D′)× × Z×
p as in Section 3.4, where D′ is the prime to p part of D,

and define
µ̃

χF/Q

p (ζ) = µ̃p,D′

(
χF/Q · ζ

)
,

where we consider χF/Q · ζ as a function on (Z/D′)× × Z×
p in the natural way.
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The result follows if we can prove the (stronger) result that for any locally analytic function
ζ on Z×

p , we have

µp(ζ ◦NF/Q) =
#O×

F

2
· µ̃p(ζ) · µ̃

χF/Q

p (ζ).

For ζ of the form χ| · |r, for 0 ≤ r ≤ k and cond(χ)|p∞, it is a lengthy but elementary4

check that this holds by the respective interpolation formulae and the relation between the
classical L-functions of f and f̃ above. But both of these distributions are admissible of order
k < k + 1, and hence equality on this set of points forces equality everywhere, and the proof
is complete.

Now suppose that f is new (hence small slope) at p, so Lp(f, s) has an exceptional zero at
s = k/2, and that p is inert in F . In this case, χF/Q(p) = −1, and accordingly we see that

Lp(f̃ , s) has an exceptional zero at s = k/2 whilst Lp(f̃ , χF/Q, s) does not. Differentiating,
we see that

d

ds
Lp(f, s)

∣∣
s=k/2

=
#O×

F

2

[
d

ds
Lp(f̃ , s)

∣∣
s=k/2

]
Lp(f̃ , χF/Q, k/2).

Using the respective interpolation conditions (for the p-adic L-functions of both f and f̃),
we deduce the following:

Proposition 10.2. Suppose f is the base-change of a classical modular form f̃ to F , and
that p is inert in F . If Λ(f, k/2 + 1) 6= 0, we have

Lp = 2Lp(f̃),

where Lp(f̃) is the L-invariant of f̃ .

A similar argument shows that if p ramifies in F , then Lp = Lp(f̃) (the difference arising
when we consider the exceptional factor in the second classical term, which equals 2 in the
inert case and 1 in the ramified case). More generally, since the L-invariant is purely local,
similar methods show that these results also hold if there exists a Dirichlet character χ over
F , factoring through the norm to Q, such that Λ(f, χ, k/2 + 1) 6= 0.

Remarks: (i) In [Tri06], Trifković uses local methods to construct conjectural global points
on modular elliptic curves over imaginary quadratic fields. He associates a (conjectural)
weight (0, 0) Bianchi modular form f to such a curve and defines the points using double
integrals of the sort considered in this paper. His main conjecture is Conjecture 6, but
this is only well-defined given his previous Conjecture 5, which is the statement that a
value of the double integral generates a lattice commensurable with qZ (where q is the
Tate period of the elliptic curve). In the analogous case over Q, this is known via the
results of [GS93], but it remains open over imaginary quadratic fields in general. When
f is base-change and p is inert or ramified, the above proposition combined with [GS93]
gives a proof of Trifković’s Conjecture 5.

(ii) Results of a similar nature for abelian base-change in the case of certain weight 2
automorphic forms for GL2 were recently obtained by Gehrmann in [Geh17].

4The most difficult part of the calculation is to show that the respective Gauss sum terms agree when p is
inert; this is a characteristic zero analogue of the Hasse–Davenport identity.
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11. Further remarks

It is natural to expect exceptional zero results of the form above to exist in wider generality.
We conclude by commenting on possible extensions of the results of this paper.

11.1. Higher class number

The most obvious restriction we’ve assumed in the work above is that the class number of
F is 1. This is not a serious restriction to the method, but rather a choice made for ease of
exposition; indeed, the authors carried out a large portion of the work without assuming any
restriction on the class number at all, but found that the increase in technicalities made the
arguments much longer and harder to follow. To generalise whilst retaining classical methods,
one would need to consider functions on h copies of the tree, where h is the class number,
and find elements in the direct sum of h group cohomology groups, and the Hecke operators
permute these functions/classes.

11.2. Higher derivatives

In the case where p is split, it is possible that even (d/dsp)Lp(f, χ, s)|s=k/2 = 0 even when
the corresponding classical L-value is non-zero, since we are left with an exceptional factor
at the other prime p that could vanish. The most natural solution to this would be to
differentiate again, this time in the sp-direction. In considering this approach, the authors
(directly) constructed classes ocf , lcf ∈ H2(Γ,∆k,k) that again both live in a one-dimensional
eigenspace, and hoped to relate their special values to L-values. However, whilst it seemed
likely that such results would exist at the level of cocyles, there was a fundamental obstacle
to this approach in that these special values were no longer well-defined on the corresponding
cohomology classes. Results of this nature do exist, however, when the weight of f is 2
(parallel weight 0); over totally real fields, this was done by Spieß (see [Spi14]), and more
recently over arbitrary number fields by Deppe and Bergunde (see [Dep16] and [Ber17]).
Their approach, which whilst cohomological is quite different to that considered here, is to
construct higher cohomology classes by taking cup products of cycles in H1. It would be
interesting to generalise their results to arbitrary weights.

11.3. Arithmetic descriptions of Lp in general

We have already seen that it is possible to obtain an arithmetic description of the L-invariant
in the case that f is the base-change of a classical modular form. Evidently it is desirable
to obtain a similar description when f is not base-change. This case, however, appears far
harder. The difficulty arises from the absence of nice geometry, which is a fundamental block
to generalising classical methods of determining the L-invariant in arithmetic terms. One of
the most interesting cases to study is when the form is weight (0, 0) (also referred to as weight
2) and corresponds, via the (conjectural) imaginary quadratic version of modularity, to an
elliptic curve over F . In this situation, the elliptic curve will have multiplicative reduction at

p, so there is a Tate uniformiser q ∈ F×
p such that E(F p) ∼= F

×

p /q
Z. By analogy with the case

of Hilbert modular forms, one would expect that:
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Conjecture 11.1. Let Qp
.

.= NormFp/Qp
(q), and let fp .

.= [Op/p : Fp] denote the inertia
degree of p. Then we have

Lp = fp
logp(Qp)

ordp(Qp)
.

(Compare [Mok09], Theorem 8.2 and [?], Theorem 1.2). The computational results of Trifković
in [Tri06], and later of Guitart, Masdeu and Şengün in [GMŞ15], can be seen as providing
strong evidence for this conjecture. More generally, for a form f of arbitrary weight, let ρf

be the Galois representation attached to f by Taylor (see [Tay94]). A natural generalisation
of Conjecture 11.1 is:

Conjecture 11.2. The L-invariant Lp is the Benois–Greenberg L-invariant attached to ρf

(see [Ben11] and [Ros15]).

The authors hope to address these questions in future work.
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