
 
 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

Aquesta és una còpia de la versió author’s final draft d'un article 
publicat a la revista International journal of production economics. 

URL d'aquest document a UPCommons E-prints:  

http://upcommons.upc.edu/handle/2117/112241 

 
 

Article publicat / Published paper: 

Zhang, Y. Et al. Managing demand uncertainty: probabilistic selling 
versus inventory substitution. " International journal of production 
economics", Febrer 2018, vol. 196, p. 56-67, DOI: 
10.1016/j.ijpe.2017.10.001 
 
 
 
 
 

© 2017. Aquesta versió està disponible sota la llicència CC-BY-NCND 
3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/es/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/148621673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://upcommons.upc.edu/handle/2117/112241
http://creativecommons.org/licenses/by-nc-nd/3.0/es/


Managing demand uncertainty:

Probabilistic selling versus inventory substitution

Abstract

Demand variability is prevailing in the current rapidly changing business environment, which

makes it difficult for a retailer that sells multiple substitutable products to determine the optimal

inventory. To combat demand uncertainty, both strategies of inventory substitution and proba-

bilistic selling can be used. Although the two strategies differ in operation, we believe that they

share a common feature in combating demand uncertainty by encouraging some customers to give

up some specific demand for the product to enable demand substitution. It is interesting to explore

which strategy is more advantageous to the retailer. We endogenize the inventory decision and

demonstrate the efficiency of probabilistic selling through demand substitution. Then we analyze

some special cases without cannibalization, and computationally evaluate the profitability and in-

ventory decisions of the two strategies in a more general case to generate managerial insights. The

results show that the retailer should adjust inventory decisions depending on products’ substitution

possibility. The interesting computational result is that probabilistic selling is more profitable with

relatively lower product similarity and higher price-sensitive customers, while inventory substitu-

tion outperforms probabilistic selling with higher product similarity. Higher demand uncertainty

will increase the profitability advantage of probabilistic selling over inventory substitution.

Keywords: OR in marketing; probabilistic selling; opaque selling; inventory substitution; demand

uncertainty

1 Introduction

The prevailing variability of the business environment, rapidly evolving technologies, fierce com-

petition, and sophisticated customer demands are increasing the difficulty for firms to determine the

optimal inventory under demand uncertainty (Shen et al., 2016). For example, many retailers try to

capture market share and meet customers’ various demands by carrying a wide variety of products.

Usually the products are similar and may be substitutable, e.g., clothes in different colour, beverages
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with different flavours, and bags in different patterns. Although increasing product variety can in-

crease the retailer’s market size, it would also increase its total inventory, leading to longer inventory

cycles and higher safety stock (Rajagopalan, 2013). In addition, any mis-match between inventory

and demand, even for a single product, would reduce profit due to the inventory cost or stock-out

cost. Uncertain demand for multiple products makes it more arduous to match supply and demand for

improving inventory efficiency. Therefore, it is important to effectively manage demand uncertainty

when firms seek to benefit from market expansion through increasing product variety.

To address the problem of managing demand uncertainty with multiple substitutable products, the

retailer can consider two strategies, namely inventory substitution, which is well known in Operations

Research, and probabilistic selling, which is popular in Marketing. Being an effective tool to minimize

the mis-match between capacity and demand, inventory substitution uses substitute products to meet

demand when stock-out occurs (Mcgillivray and Silver, 1978; Parlar and Goyal, 1984; Ernst and Kou-

velis, 1999). Probabilistic selling means the retailer creates an additional probabilistic product with

hidden information using existing products (Fay and Xie, 2008). For instance, travel agencies offer

probabilistic service products (e.g. hotel rooms, air tickets, package tours etc.) with some informa-

tion concealed from customers until customers confirm their orders. Online retailers like Tmall.com,

Amazon.com, and AgonSwim.com (Fay and Xie, 2010) offer discounted probabilistic products with

some attributes, e.g., colour, style, brand etc, unknown to customers until they receive the products.

The price-sensitive customers who are indifferent to the attributes would choose to buy discounted

probabilistic products.

Although the two strategies are triggered by the need to address different problems in different

research fields, we see that both strategies share the same spirit of demand substitution. Specifically,

in applying inventory substitution, the retailer substitutes the remaining inventory of one product for

another. The customer whose required product is sold out can choose to accept the substitute or

not. In applying probabilistic selling, the retailer offers customers an additional lower-priced choice

to enhance the demand substitution of specific products with full information by the probabilistic

product. Inventory substitution induces insensitive customers and makes use of available inventory (of
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a substitute product) at the end stage of selling, while probabilistic selling induces insensitive customers

at the beginning stage and then uses available inventory (of either the requisite product or a substitute

product) during the selling stage. Consequently, the retailer can substitute products through the

demand of insensitive customers to minimize the mis-match between inventory and demand. Although

the two strategies differ in operation to hedge against demand uncertainty, they share a common

characteristic in combating demand uncertainty by encouraging some customers to give up some specific

demand, e.g., colour, pattern etc, for the product to enable demand substitution. Therefore, it is

interesting to explore which strategy is more advantageous for the retailer that sells substitutable

products with demand uncertainty.

However, despite the popularity of probabilistic selling in marketing research for the purposes of

market expansion and price discrimination (Fay and Xie, 2008, 2014), little is known about probabilistic

selling as an inventory tool. There is little research on using economic models to analyze the inventory

mechanism of probabilistic selling (Fay and Xie, 2011, 2014). The first study that endogenizes the

capacity decision is Wu and Wu (2015), which explores opaque selling as a strategy to induce demand

postponement. They considered the one-product scenario with stochastic demand from the perspective

of an intermediary. While we also study probabilistic selling in the newsvendor setting, we focus on

exploring the inventory ability of probabilistic selling from the perspective of a retailer that can manage

demand uncertainty through demand substitution.

In this paper we develop a single-period newsvendor model with three products to analyze prob-

abilistic selling with a view to generating insights into using probabilistic selling to manage demand

uncertainty. We then compare probabilistic selling with inventory substitution in the special cases

without cannibalization. To gain additional insights into the normal situation, we use computational

examples to compare the two strategies in terms of overall profit and inventory with considerations

of customer transition (reflected by the cannibalization index under probabilistic selling and by the

substitution fraction under inventory substitution) and demand uncertainty.

We make two main contributions under this paper: First, this is the first study that captures

the inventory decision in probabilistic selling considering the cannibalization effect. Second, this is
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the first paper that compares the performance of probabilistic selling and inventory substitution in

managing demand uncertainty through demand substitution. The results show that the retailer’s in-

ventory decisions depends on products’ substitution possibility. The comparison results show that

probabilistic selling outperforms inventory substitution with relatively lower product similarity and

higher price-sensitive customers, while inventory substitution is more profitable than probabilistic sell-

ing when product similarity is higher. Besides, higher demand uncertainty will increase the profitability

advantage of probabilistic selling over inventory substitution. Our work enriches the research about

probabilistic selling as an inventory management tool. The analytical approach and research findings

may help practitioners gain more insight on the capacity of probabilistic selling on combating demand

uncertainty, and facilitate their inventory related decision-making.

We organize the rest of this paper as follows: In Section 2 we briefly review the closely related

literature. In Section 3 we analyze the substitution patterns and formulate the model under inventory

substitution. In Section 4 we derive and analyze the optimality conditions of inventory decisions

under probabilistic selling. In Section 5 we compare probabilistic selling and inventory substitution in

terms of inventory decision and expected profit for some special cases. In Section 6 we computationally

compare the profitability and inventory of the two strategies with considerations of customer transition

and demand uncertainty. In Section 7 we conclude the paper, discuss the managerial implications of

the research findings, and suggest topics for future research.

2 Literature review

2.1 Probabilistic selling

Many literature consider probabilistic selling the same as opaque selling. The forms of opaque

selling include “NYOP (Name-Your-Own-Price)”, “opaque products”, or “variable opaque products”

(Fay and Xie, 2008; Post, 2010; Post and Spann, 2012; Spann et al., 2004). Fay and Xie (2008) first

defined and analyzed probabilistic selling strategy used by a multi-item retailer to explore the core

mechanism of opaque selling. The Marketing and Strategy literature on probabilistic selling focuses on
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customer preference heterogeneity (Fay and Xie, 2008, 2010), consumer bounded rationality (Huang

and Yu, 2014), price discrimination (Rice et al., 2014), market structure (Zhang et al., 2014) etc to

demonstrate the advantage of probabilistic selling over other selling strategies.

However, limited attention has been paid to examining the inventory mechanism of probabilistic

selling. Fay and Xie (2011) regarded probabilistic selling as a new mechanism for inventory management

in the presence of demand uncertainty despite that the seller is committed to buyers before it has the

opportunity to acquire more information. Focusing on the impact of the timing of the assignment

of the probabilistic product, Fay and Xie (2014) demonstrated the advantage of probabilistic selling

in improving inventory utilization. Nevertheless, the uncertainty in the above studies concerns the

probability that one product is more popular than another, and they use the “scenario-based” approach

to represent uncertainty (Gupta and Maranas, 2003) rather than the “distribution-based” approach.

Just as Rice et al. (2014) pointed out that little research has shown the effectiveness of probabilistic

selling when the seller is uncertain about the total category demand rather than the relative popularity

of a specific item.

Different from the above literature, we model the demand as normally distributed with a mean

and a standard deviation, which is widely used in OM research. Few studies have considered demand

uncertainty and recognized the benefit of probabilistic products in increasing inventory efficiency with

fixed capacity in the study field of revenue management (Gallego and Phillips, 2004; Gönsch and

Steinhardt, 2013). However, they don’t endogenize inventory decision in their research. Then Wu

and Wu (2015) considered stochastic demand in their single-product inventory model, and integrated

demand postponement and opaque selling from the perspective of a travel intermediary. They showed

that postponement of delivery allows the firm to use less safety stock to combat demand uncertainty.

Different from Wu and Wu (2015), we explore probabilistic selling as an inventory mechanism from the

perspective of a retailer selling multiple alternative products. We base the work of Zhang et al. (2016),

which used simulation to explore the demand substitution and demand reshaping effects of probabilistic

selling. Different from that, we characterize and analyze the optimal inventory decision in probabilistic

selling. Furthermore, we focus on comparing probabilistic selling and inventory substitution, both of
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which use demand substitution to hedge against demand uncertainty.

2.2 Inventory substitution

There is a large body of work on inventory management with substitutable demand. The sub-

stitution phenomenon has been widely investigated considering various substitution patterns. The

substitution can be led by the supplier, which is common in the airline industry (Vulcano et al., 2012).

It can also be led by the customer that is willing to buy a substitute product when their preferred

product is out of stock (Parlar and Goyal, 1984; Ernst and Kouvelis, 1999; Baris and Selcuk, 2013; Ye,

2014). The substitution scenarios considered in existing research include two products with one-way

or two-way substitution (Mcgillivray and Silver, 1978; Parlar and Goyal, 1984), three products with

partial substitution (Ernst and Kouvelis, 1999), and an arbitrary number of products with demand

substitution (Netessine and Rudi, 2003; Wang and Parlar, 1994). According to the probability of cus-

tomers willing to accept substitution, some research considers total substitution (i.e., the probability

is equal to 1) (Mcgillivray and Silver, 1978; Pasternack and Drezner, 1991) or constant substitution

(i.e., the probability is between 0 and 1) (Parlar and Goyal, 1984; Ernst and Kouvelis, 1999). Some

studies assume that the revenue received for a product is independent of the substitution, while others

assume that the substitution will incur a performance-related cost (Pasternack and Drezner, 1991).

Shah and Avittathur (2007) examined cannibalization considering the downward substitution pattern

with a standard product and its customized extensions. We consider partial substitution with cost as

Parlar and Goyal (1984) and Pasternack and Drezner (1991) in our paper.

3 Inventory decision under inventory substitution

3.1 Notation and Assumption

We consider a retailer that sells two specific products, indexed i, j=1,2 (it is assumed that i 6= j).

The retailer purchases a quantity Qti of product i and a quantity Qtj of product j at the same fixed

unit cost c > 0, and sells them at price p. The clearance price is s. The stock-out penalty is 0. We
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assume that the demand Di (Dj) is normally distributed with mean ui (uj) and standard deviation σi

(σj). Let f(xi) (f(xj)) and F (xi) (F (xj)) be the probability density function and cumulative density

function of Di (Dj), respectively. In addition, let f(xi, xj) be the joint probability density function

of the demand for the products. When the retailer adopts neither probabilistic selling nor inventory

substitution, the optimal inventory decision for each product is just the optimal inventory decision for

the single-product newsvendor model, i.e., the optimal order quantities Qs∗i and Qs∗j are determined

by the following equations:

F (Qt
∗
i ) =

p− c
p− s

, (1)

F (Qt
∗
j ) =

p− c
p− s

. (2)

Now we consider the case where the retailer adopts inventory substitution and assume that only

a fraction rs of the unsatisfied customers that face stock-out will accept the substitution (Parlar and

Goyal, 1984). Assume that substitution incurs a cost t per unit (Pasternack and Drezner, 1991). We

also suppose that p− t > s to make sure that the retailer can benefit from substitution. Substitution

occurs when the demand for product i (j) exceeds its supply while the demand for product j (i) is

less than its supply (i.e., the substitution paths in Figure 1). After substitution, the total demand for

product i may or may not be satisfied.

Figure 1: Substitution paths in adopting inventory substitution.

3.2 The optimal inventory solution

The expected profit is given in Eq.(3), which comprises the revenue, the savage cost, and the

acquisition cost. (Qsi , Q
s
j) are the two inventory decisions that jointly maximize the expected profit.

The demand for product i(j) comes from the original demand and the substitution demand when

demand of product j(i) excess its supply. Therefore, the revenue under inventory substitution comes
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from satisfying both the original demand (i.e. min(Dj , Q
s
j) and min(Di, Q

s
i ) and the substitution

demand (i.e. min
[
(Qsi −Di)

+, rs(Dj −Qsj)+
]
and min

[
rs(Di −Qsi )+, (Qsj −Dj)

+
]
).

E(Qsi , Q
s
j) = E



pmin(Di, Q
s
i ) + pmin(Dj , Q

s
j)− c(Qsi +Qsj)

+(p− t)min
[
(Qsi −Di)

+, rs(Dj −Qsj)+
]

+(p− t)min
[
rs(Di −Qsi )+, (Qsj −Dj)

+
]

+s
[
(Qsi −Di)

+ + (Qsj −Dj)
+ − rs(Di −Qsi )+ − rs(Dj −Qsj)+

]
.

(3)

Pasternack and Drezner (1991) have shown the concave property of the expected profit. So the

optimal inventory decisions can be determined by applying the first-order condition to the expected

total profit function. We characterize the optimal order quantities (Qs∗i , Q
s∗
j ) in Eq.(4), which is similar

to the results in Rudi et al. (2001).


F (Qs

∗
i ) =

p−c+(p−t−s)R(Qs∗
i ,Qs∗

j )

p−s

F (Qs
∗
j ) =

p−c+(p−t−s)T (Rs∗
i ,Qs∗

j )

p−s ,

(4)

where

R(Qs
∗
i , Q

s∗
j ) =

∫ Qs
i

0

∫ ∞
Qs∗

j +(Qs∗
i −Dt

i)/rs

f(xi, xj)dxjdxi − rs
∫ Qs∗

j

0

∫ Qs∗
i +(Qs∗

j −Dt
j)/rs

Qs∗
i

f(xi, xj)dxidxj ,

T (Qs
∗
i , Q

s∗
j ) =

∫ Qs∗
j

0

∫ ∞
Qs∗

i +(Qs∗
j −Dt

j)/rs

f(xi, xj)dxjdxi − rs
∫ Qs∗

i

0

∫ Qs∗
j +(Qs∗

i −Dt
i)/rs

Qs∗
j

f(xi, xj)dxidxj .

The first term of R(Qs∗i , Q
s∗
j ) raises Qsi due to the possibility that the excess inventory of product

i may not meet the substitution demand for product j, while the second term lowers Qsi because the

substitution demand for product Qsi can be satisfied with the excess inventory of product Qsj . The

same observation holds for T (Qs∗i , Q
s∗
j ).
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4 Inventory decision under probabilistic selling

4.1 Notation and assumption

Under probabilistic selling, the offer of the probabilistic product indexed k may cannibalize the

specific product market (Granados et al., 2010; Post and Spann, 2012). So, given the cannibalization

effect, the observed demand distribution needs to be revised as (Dp
i , D

p
j , D

p
k) in Section 4.2. As before,

the retailer has to purchase quantities Qdj , Q
d
i , and Q

d
k to meet the demands for the specific products

i, j, and the probabilistic product k, respectively. The quantity Qdk is a mix of products i and j. If we

assume that the proportion of product i in the mix is r, then the retailer has to order Qpi=Q
d
i+rQ

d
k of

product i and Qpj=Q
d
j+(1−r)Qdk of product j.

Following Fay and Xie (2014), Jerath et al. (2010), and Wu and Wu (2015) in operationalizing

probabilistic selling, we assume that probabilistic selling postpones the delivery of the probabilistic

product with regular price to meet the substitution demand for a specific product sold at a higher

price. The retailer obtains revenue p for each specific product and p0 (p > p0 > s) for each probabilistic

product sold. Since the consumer of the probabilistic product pays a lower price, they would accept

uncertainty about product availability and postponement of product delivery. Figure 2 shows the

sequence of events.

Figure 2: The sequence of events.

4.2 Revised demand distribution

We consider the cannibalization effect on the specific products, which means that the demand

for the probabilistic product Dp
k consists of two parts: the demand that switches from the specific
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products to the probabilistic product, and the new market expansion demand Dk induced by the low-

priced probabilistic product. We assume that Dk is normally distributed with mean uk and standard

deviation σk. The demand Di and Dj , and the demand Di(Dj) and the new market expansion demand

Dk are correlated with ρij and ρik(ρjk), respectively. Let ai (aj) be the cannibalization index of the

demand for the specific product i (j) (0 ≤ ai(aj) ≤ 1), which is independent of Dk. The observed

demand for the probabilistic product is given by Dp
k=aiDi+ajDj+Dk.

The observed demands Dp
i and D

p
j are different from the original demands Di and Dj in traditional

selling. It is important to define the demand relationships between traditional selling and probabilistic

selling, for we will compare the two selling strategies with respect to the inventory decision and ex-

pected profit. Following Eynan and Fouque (2003), and Hsieh (2011), we characterize the distribution

parameters of the observed demands Dp
i , D

p
j , and D

p
k under probabilistic selling as follows:

upi = (1− ai)ui,

upj = (1− aj)uj ,

σpi = (1− ai)σi,

σpj = (1− aj)σj ,

upk = aiui + ajuj + uk,

σpk =
√
a2iσ

2
i + a2jσ

2
j + σ2k + 2aiρikσiσk + 2ajρjkσjσk + 2aiajρijσiσj .

Because the demand for the probabilistic product includes a part of the original demands for the

specific products, the demand correlation after cannibalization should be updated as follows:

ρ∗ik =
aiσi+ajρijσj+ρikσk

σp
k

, (5)

ρ∗jk =
ajσj+aiρijσi+ρjkσjσk

σp
k

. (6)

So we define the joint probability density function of the demand for the products under proba-

bilistic selling f(xi, xj , xk) as f∗(xi, xj , xk) after cannibalization.
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4.3 Substitution pattern

Figure 3: The substitution pattern under probabilistic selling.

Probabilistic selling encourages substitution between the specific products and the probabilistic

product when stock-out occurs. As shown in Figure 3, different from inventory substitution, there is

no direct substitution between the specific products. The substitution between the specific products

occurs through the probabilistic product. Besides, the offer of probabilistic selling may increase total

product sales.

Furthermore, there are two stages of substitution owing to postponement of product delivery under

probabilistic selling. In the first stage of substitution, substitution occurs to meet the demands for

the higher-priced specific products. For instance, if the demand realization of either specific product

i (j) exceeds its available inventory Qdi (Qdj ), the retailer can select the popular product i (j) from

the probabilistic product inventory Qdk to meet the high-priced demand first. In the second stage of

substitution, if the demand for the probabilistic product exceeds its remaining inventory after the first

stage of substitution while the specific products are available, either of the specific products can serve

as a substitute. There is no possibility that both specific products i and j are out of stock when the

demand for the probabilistic product can be fully satisfied.

4.4 The optimal inventory decision

The decision variables in the inventory model are (Qpi , Q
p
j ) rather than (Qdi , Q

d
j , Q

k
j ). Thus it

suffices to characterize the second stage of substitution. Specifically, we present these cases and their

11



Table 1: Classification scheme for all the possible cases and their corresponding occurring probabilities

Case i j k Probability

1 Yes Yes Yes Pr(Dp
i < Qpi , D

p
j < Qpj , D

p
k < (Qpi +Qpj −D

p
i −D

p
j ))

2 Yes Yes No Pr(Dp
i < Qpi , D

p
j < Qpj , D

p
k > (Qpi +Qpj −D

p
i −D

p
j ))

3 Yes No Yes Pr(Dp
i < Qpi , D

p
j > Qpj , D

p
k < (Qpi −D

p
i ))

4 Yes No No Pr(Dp
i < Qpi , D

p
j > Qpj , D

p
k > (Qpi −D

p
i ))

5 No Yes Yes Pr(Dp
i > Qpi , D

p
j < Qpj , D

p
k < (Qpi −D

p
i ))

6 No Yes No Pr(Dp
i > Qpi , D

p
j < Qpj , D

p
k > (Qpi −D

p
i ))

7 No No No Pr(Dp
i > Qpi , D

p
j > Qpj , D

p
k > (Qpi −D

p
i ))

corresponding probabilities of occurrence in Table 1. For instance, Case 3 means that product j is

out of stock, while product i has excess inventory, and the excess inventory is sufficient to cover the

demand for the probabilistic product. The expected profit, which includes the revenue, the savage

cost, and the acquisition cost, is given as follows:

E(Qpi , Q
p
j ) = E



pmin(Dp
i , Q

p
i ) + pmin(Dp

j , Q
p
j )− c(Q

p
i +Qpj )

+p0min
[
Dk, [(Q

p
i −D

p
i )

+
+ (Qpj −D

p
j )

+
]
]

+s
[
(Qpi −D

p
i )

+
+ (Qpj −D

p
j )

+ −Dk

]+
.

(7)

Proposition 1. If the distribution function of the demand is continuous and differentiable, then

the expected profit function is concave in (Qpi , Q
p
j ).

Proof. See the Appendix.

It can be recognized from Eq.(7) and Table 1 that the modelling of product i and product j are

symmetrical. We just analyze the inventory decision of one product and the analysis of the other

product is similar. Differentiating the expected total profit once, we obtain the expected value of a

marginal unit of product i as follows:

∂E(Qp
i ,Q

p
j )

∂Qp
i

= p(1− Pr(Dp
i < Qpi ))

+p0[Pr(D
p
i < Qpi , D

p
j > Qpj , D

p
k > Qpi −D

p
i )

+Pr(Dp
i < Qpi , D

p
j < Qpj , D

p
k > Qpi +Qpj −D

p
i −D

p
j )]

+s[Pr(Dp
i < Qpi )− Pr(Dp

i < Qpi , D
p
j > Qpj , D

p
k > Qpi −D

p
i )

−Pr(Dp
i < Qpi , D

p
j < Qpj , D

p
k > Qpi +Qpj −D

p
i −D

p
j )]− c.

(8)
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The first term of Eq.(8) means that any additional inventory of product i will result in an incremen-

tal sales except when there is excess inventory of product i (Dp
i < Qpi ). The retailer can still benefit

from the marginal unit of product Qpi by satisfying the demand for the probabilistic product (which

may happen whenever the demand for product j can be satisfied), yielding p0. The third term means

that, if the inventory of product i exceeds its demand and the demand for the probabilistic product

can also be satisfied, the marginal unit of product i is only worth its salvage value s. To simplify the

notation, we re-arrange Eq.(8) and characterize the optimal order quantities.

Proposition 2. The optimal order quantities (Qp
∗

i , Q
p∗

j ) under probabilistic selling can be ex-

pressed as


F (Qpi

∗) =
p−c+(p0−s)G(Qp∗

i ,Qp∗
j )

p−s

F (Qp
∗

j ) =
p−c+(p0−s)N(Qp∗

i ,Qp∗
j )

p−s ,

(9)

where

G(Qp
∗

i , Q
p∗

j ) =

∫ Qp∗
i

0

∫ Qp∗
j

0

∫ ∞
Qp∗

i +Qp∗
j −D

p
i−D

p
j

f∗(xi, xj , xk)dxidxjdxk

+

∫ Qp∗
i

0

∫ ∞
Qp∗

j

∫ ∞
Qp∗

i −D
p
i

f∗(xi, xj , xk)dxidxjdxk,

N(Qpi
∗, Qpj

∗) =

∫ Qp∗
i

0

∫ Qp∗
j

0

∫ ∞
Qp∗

i +Qp∗
j −D

p
i−D

p
j

f∗(xi, xj , xk)dxidxjdxk

+

∫ ∞
Qp

i

∫ Qp∗
j

0

∫ ∞
Qp∗

j −D
p
j

f∗(xi, xj , xk)dxidxjdxk.

We see that the optimal order quantities are adjustments of the solution for the newsvendor model

given in Eq.(1) and Eq.(2). Specifically, G(Qp
∗

i , Q
p∗

j ) raises Qpi due to the possibility of substituting

for the probabilistic product. Substitution occurs in two cases: one is the case where product i has

excess inventory while product j is out of stock, the other is the case where both specific products i

and j have excess inventory, while the probabilistic product is out of stock. Similarly, N(Qp
∗

i , Q
p∗

j )
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raises Qpj due to the substitution ability of product j. The implication of this proposition is that the

retailer should hold more inventory of the products that have greater possibilities to substitute the

other products. Thus the retailer can make incremental profit from the substitute product.

Compared with inventory substitution, the inventory decision under probabilistic selling is influ-

enced by the price of the probabilistic product. Next, we analytically derive some properties of the

effect of p0 on the optimal inventory decision.

Proposition 3. When the price of the probabilistic product increases, the retailer should adjust

its inventory decision depending on the substitution possibility. Specifically,

a) The retailer should order more product j and less product i (∂E(Qp
i
∗)

∂p0
< 0,

∂E(Qp
j
∗)

∂p0
> 0) if the

substitution possibility of product i is sufficiently small (G < b∗

d∗N).

b) The retailer should order more product i and less product j (
∂E(Qp

i
∗)

∂p0
> 0,

∂E(Qp
j
∗)

∂p0
< 0) if the

substitution possibility of product i is sufficiently large (G > a∗

c∗N).

c) The retailer should order more of both products i and j (
∂E(Qp

i
∗)

∂p0
> 0,

∂E(Qp
j
∗)

∂p0
> 0) if the

substitution possibility is moderate ( b
∗

d∗N < G < a∗

c∗N),

where a∗, b∗, c∗, and d∗ denote the value of
∂E(Qp

i ,Q
p
j )

2

∂2Qp
i

,
∂E(Qp

i ,Q
p
j )

2

∂Qp
i ∂Q

p
j

,
∂E(Qp

i ,Q
p
j )

2

∂Qp
j∂Q

p
i

, and
∂E(Qp

i ,Q
p
j )

2

∂2Qp
j

at

(Qpi
∗,Qpj

∗), respectively. Besides, a
∗

c∗ > 1 and b∗

d∗ < 1.

Proof. See the Appendix.

In the classic single-product newsvendor model, the optimal inventory (i.e. Eq.(1) and Eq.(2))

increases with the price. However, when it comes to the two-product setting of probabilistic selling.

How does the retailer adjust the optimal inventory decision when the price of the probabilistic product

increases? Proposition 3 states that, if there is an increase in the price of the probabilistic product, the

retailer should order more of one product and less of the other when the difference of their substitution

possibilities is large (e.g. G < b∗

d∗N , G > a∗

c∗N). And, when the difference is not large, the retailer

should increase the inventory of both products (e.g. b∗

d∗N < G < a∗

c∗N). That means that the retailer

should always order more product with higher substitution possibility. However, whether increase the

inventory of product with lower substitution possibility or not depends on the difference of the two
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product’s substitution possibility.

5 Comparisons for some special cases

Comparing the two strategies is difficult when the substitution fraction rs, and the cannibalization

indices ai and aj are non-zero. Therefore, we first compare the two strategies under some special cases,

and then conduct computational studies in the next part to compare the two strategies in general. In

practice, the cannibalization index a in probabilistic selling may become zero when customers’ price

sensitivity is low or product differentiation is very large (Granados et al., 2010; Post and Spann, 2012).

The substitution fraction rs may become zero when product differentiation is very large.

Case 1: ai = aj = 0, Dk = 0 and rs=0. Inventory substitution is equivalent to probabilistic selling

as they have the same optimal order quantity and expected profit, and neither strategy can improve

the profit of the retailer.

This case may arises when the product differentiation is too large in a saturated market. In

this case, both inventory substitution and probabilistic selling fail to generate additional profit from

substitutable demand, and the introduction of low-priced products cannot attract new demand in this

market. Thus, both strategies reduce to the classical newsvendor model.

Case 2: ai = aj = 0, Dk 6= 0 and rs = 0. Probabilistic selling outperforms inventory substitution

as it yields a higher profit with a higher inventory level.

In this case, neither the customers in probabilistic selling nor in inventory substitution accept

a substitute when the product differentiation is too large. However, there are some new customers

enticed to buy discounted products under probabilistic selling. This case can be explained by similar

arguments in Post and Spann (2012), and Anderson (2009). Therefore, inventory substitution reduces

to the classical newsvendor model and probabilistic selling can increase the profit by market expansion.

However, the optimal inventory level under probabilistic selling is higher than that under inventory

substitution because both Qpi
∗> p−c

p−s and Qpj
∗> p−c

p−s when G(Qp
∗

i , Q
p∗

j ) > 0 and N(Qp
∗

i , Q
p∗

j ) > 0.
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Case 3: ai = aj = 0, Dk 6= 0 and rs 6= 0. Inventory substitution requires more customers willing to

accept the substitute product than probabilistic selling to achieve the same profit at the same marginal

profit from the substitute product.

In this case, the comparison of the two strategies depends on the demand and marginal profit

obtained from the substitute product. When the size of the new market expansion demand under

probabilistic selling is the same as the number of customers that face a stock-out situation and ac-

cept another product, the retailer has the same amount of discounted product sales under the two

selling strategies. However, probabilistic selling can increase the high-priced product sales through

substitution while inventory substitution cannot. Therefore, probabilistic selling outperforms inven-

tory substitution when it can attract an equal number of customers willing to accept a substitute.

Besides, because the retailer offers the probabilistic product in the first selling stage rather than the

second under inventory substitution, it has the potential to secure more demand for the low-priced

products.

6 Computational studies

In this section we consider a more general case where the cannibalization index ai = aj 6= 0 and

rs 6= 0. The main question that drives the design of the computational studies is under what conditions

probabilistic selling outperforms inventory substitution, and vice versa. Specifically, we explore the

effects of the customer transfer coefficient and demand uncertainty on the optimal profit and inventory

under both strategies. The customer transfer coefficient is reflected by the substitution fraction rs

under inventory substitution and the cannibalization index ai(aj) under probabilistic selling. The

difference is that one is positive transfer induced by price and the other is negative transfer forced by

the stock-out of products.

We assume that the original demands Dt
i and D

t
j are equal, which are normally distributed with

parameters that satisfy the assumptions: mean ui(uj) = 100, standard deivation σi(σj) = σ =

[20, 30, 40, 50], the initial correlation coefficient ρij = 0, p = 40, c = 20, s = 10, ai = aj = a ∈ [0, 1],
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t = 2, and rs ∈ [0, 1]. In order to focus on the substitution effect of the two strategies, we assume that

there is no new market expansion demand under probabilistic selling (e.g., Dk = 0 when the original

market is saturated). For simplicity, we use “PS” and “IS” to denote probabilistic selling and inventory

substitution, respectively.

6.1 The effect of the customer transfer coefficient

As shown in Figure 4, with different price discounts (i.e., 95%, 90%, and 85%), the results reveal the

same trend that probabilistic selling achieves the highest expected profit at a relatively small customer

transfer coefficient, while the expected profit under inventory substitution increases with the customer

transfer coefficient. These two observations are consistent with the results in Zhang et al. (2016) and

Rajaram and Tang (2001), respectively.

Figure 4: Expected profit of inventory substitution and probabilistic selling with different price dis-
counts.

The efficiency of demand substitution under probabilistic selling increases with a smaller customer

transfer coefficient (if the index is too small, the buffering effect of the probabilistic product for demand

substitution becomes insignificant), while being restricted at larger customer transfer coefficient. One
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reason is that profit decreases with demand correlation when demand is multivariate normal (Netessine

and Rudi, 2003). It can be obtained from Eqs 5-6 that the correlation between the newly revised

demand would increase as more customers switch from product i (j) to k. The positively correlated

demands of products i, j, and k result in high possibilities of large and small substitution demands

simultaneously. The probability that the retailer substitutes specific products for the probabilistic

product, or vice versa when stock-out occurs is relatively small. Another reason is that more customers

will switch to buying the probabilistic product that yields a lower profit margin, which can harm

the retailer’s profit. When the profit that demand substitution brings cannot offset the lower sales

of the specific products, profit improvement will decrease. Therefore, probabilistic selling is most

advantageous when the customer transfer coefficient is large enough to enable substitution, but not so

large that very few consumers will buy the high-priced products.

As shown in Figure 4, the expected profit under probabilistic selling with a fixed customer transfer

coefficient would decrease with price discount. This means that probabilistic selling requires some

customers that have high price sensitivity to be attracted by the product with a small discount.

Otherwise, when only few customers are attracted by a large discount, inventory substitution would

be more advantageous than probabilistic selling.

6.2 Comparison of the expected profit

In this section we compare the performance of the two strategies when customers are price-sensitive.

We take the fixed discount 95% as an example and define PSe − ISe as the difference in the optimal

expected profit under the two strategies. A positive value means that probabilistic selling is more

advantageous; otherwise, inventory substitution strategy is more advantageous. We draw a colour map

as shown in Figure 5 to facilitate analysis of strategy selection. We colour a positive value in red and

a negative one in blue. From the computational results, we make the following observations:

Observation 1: With a relatively small customer transfer coefficient under probabilistic selling and

inventory substitution, the former is more profitable. Inventory substitution outperforms probabilistic

selling when the transfer coefficients under the two strategies are very high.
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(a) σ=20 (b) σ=30

(c) σ=40 (d) σ=50

Figure 5: Expected profit comparison with respect to different initial demand uncertainty

Observation 2: Probabilistic selling is more advantageous than inventory substitution at higher

demand uncertainty.

From Figures 4 and 5, we see that probabilistic selling can greatly improve profit with a smaller

customer transfer coefficient than inventory substitution. For example, probabilistic selling can achieve

a higher profit with a = 0.1 when σ=20, while inventory substitution requires rs = 0.4 to achieve the

same profit. When σ=30, probabilistic selling can achieve a higher profit with a = 0.2, while inventory

substitution requires rs = 0.5. However, when the customer transfer coefficient is larger, the advantage

of probabilistic selling diminishes while inventory substitution can still bring more profit to the retailer.

The customer transfer coefficient a under probabilistic selling mainly depends on customers’ price

sensitivity and product differentiation. Probabilistic selling requires that some customers are sensitive

to price to be attracted to buy the probabilistic product (Zhang et al., 2016; Fay and Xie, 2008). At

the same time, product differentiation should be large enough to avoid too much transfer (Post, 2010).

Inventory substitution mainly depends on product differentiation. And the more customers that will
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accept another product are, the more sales the retailer can get in the second selling stage.

Therefore, lower product differentiation is necessary for inventory substitution to be advantageous.

Just as shown in Figure 5, when product differentiation is very low, and the customer transfer coef-

ficient a and rs are high, inventory substitution can bring more profit to the retailer. Therefore, the

implication for the retailer is as follows: Adopting a proper selling strategy to manage demand uncer-

tainty depends on customer characteristics and product differentiation. If the specific products have

great similarity, inventory substitution is more advantageous, while relatively lower product similarity

and higher price-sensitive customers can bring more profit to the retailer that adopts probabilistic

selling. This observation is consistent with reality that probabilistic selling is common in third-party

intermediary platforms which sells various products from different vendors, e.g., a seller may use in-

ventory substitution to sell double-bed rooms and twin-bed rooms in one specific hotel, and may use

probabilistic selling to sell rooms belonging to different hotels (e.g., Hotwire.com).

Observation 2 is obvious. The red-coloured area increases with demand uncertainty. The ap-

plication range for adopting probabilistic selling is much wider when demand uncertainty is larger.

Therefore, probabilistic selling is a more promising strategy to combat demand uncertainty.

6.3 Comparison of the optimal inventory decision

We define PSv − ISv as the difference between the optimal total inventory under the two strategies.

A negative value means that the retailer would hold less inventory when implementing probabilistic

selling. We draw a colour map as shown in Figure 6, in which we colour the positive values in red and

the negative values in blue. From the results, we make the following observation.

Observation 3: Probabilistic selling is more advantageous than inventory substitution in reducing

inventory under most circumstances.

As shown in Figure 6, the blue-coloured area is very large. The inventory level under probabilistic

selling is usually lower than that under inventory substitution. Combined with Figure 5, we find that

when probabilistic selling outperforms inventory substitution in terms of yielding a higher profit, its

optimal inventory is always lower than that under inventory substitution. The only exception is when
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(a) σ=20 (b) σ=30

(c) σ=40 (d) σ=50

Figure 6: Optimal inventory comparison with respect to different initial demand uncertainty

a = 0.1 and rs = 0.3 with σ=50. In contrast, when inventory substitution is more profitable, its

optimal inventory is usually higher than that under probabilistic selling. Therefore, if it is optimal for

the retailer to adopt probabilistic selling in a specific environment, it can usually obtain a higher profit

with lower inventory than inventory substitution.

7 Conclusions

By offering the low priced probabilistic product to induce some customers to buy a flexible product,

the retailer can substitute demand when stock out occurs to hedge against the demand uncertainty.

Both probabilistic selling and inventory substitution strategy share the common feature in combating

demand uncertainty through demand substitution. Therefore, our paper focuses on analyzing and

comparing the efficiency of the two strategies. In this paper we first develop a single-period newsvendor

model with three products to analyze probabilistic selling with a view to generating insights into
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using probabilistic selling to manage demand uncertainty. We then compare probabilistic selling with

inventory substitution in the special cases without cannibalization. To gain additional insights into

the normal situation, we use computational examples to compare the two strategies in terms of overall

profit and inventory with considerations of customer transition and demand uncertainty.

While both inventory substitution and probabilistic selling can induce demand from product-

insensitive customers to achieve demand substitution, they differ in that probabilistic selling allows

customers to accept uncertainty voluntarily at a discounted price rather than forcing them to ac-

cept another product like that under inventory substitution. The computational results show that

probabilistic selling will bring more profit to the retailer when selling products with relatively lower

similarity to higher price-sensitive customers, and it is more profitable to use inventory substitution

to sell products with high similarity. Besides, higher demand uncertainty increases the profitability of

probabilistic selling over inventory substitution.

The research of exploring the inventory mechanism of probabilistic selling compared with inven-

tory substitution has theoretical and practical significance. The paper enriches the research about

probabilistic selling as an inventory management tool to combat demand uncertainty. According to

the conclusions of this manuscript, the retailer can choose the efficient strategy considering product

differentiation, customer characteristics, and level of demand uncertainty. This has significant practical

implications for the retailer that sells multiple products as follows: First, under probabilistic selling,

the retailer should not be afraid of cannibalization because a proper degree of cannibalization can

benefit the retailer in terms of yielding a higher expected profit. When the price of the probabilistic

product increases, the retailer should always order more inventory of the product with higher substi-

tution possibility. Second, if the retailer sells the substitute product with lower product similarity to

price-sensitive customers, it is advised to use probabilistic selling to achieve a higher profit, and order

less inventory than inventory substitution in most cases. On the other hand, inventory substitution is

the better choice for the retailer when the product similarity is higher.

We assume in this study that the price of the probabilistic product is an exogenous variable.

Future research may extend our work by combining the pricing and inventory decisions. It is also
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worth considering PS in a supply chain setting (Shen et al., 2017; Minner, 2003). For example, it

is interesting to explore the conditions under which a retailer’s probabilistic selling will benefit the

supplier, the retailer, and both.
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Appendix. Proposition 1

The expected profit function is
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p
j , xk)dxidxk ≤ 0.

In addition,

∂E(Qpi , Q
p
j )

2

∂Qpi ∂Q
p
j

=
∂E(Qpi , Q

p
j )

2

∂Qpj∂Q
p
i

=

(s− p0)
∫ Qp

i

0

∫ Qp
j

0
f∗(xi, xj , Q

p
i +Qpj −D

p
i −D

p
j )dxidxjdxk

Therefore, the Hessian Matrix

∣∣∣∣∣∣∣∣
∂E(Qp

i ,Q
p
j )

2

∂2Qp
i

∂E(Qp
i ,Q

p
j )

2

∂Qp
i ∂Q

p
j

∂E(Qp
i ,Q

p
j )

2

∂Qp
j∂Q

p
i

∂E(Qp
i ,Q

p
j )

2

∂2Qp
j

∣∣∣∣∣∣∣∣ ≥ 0.

We have the result.
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Appendix. Proposition 3

The optimal order quantities must satisfy the following equations


∂E(Qp

i ,Q
p
j )

∂Qp
i

= p− (p− s)F (Qpi ∗) + (p0 − s)G(Qpi ∗, Q
p
j
∗)− c = 0,

∂E(Qp
i ,Q

p
j )

∂Qp
j

= p− (p− s)F (Qpj ∗) + (p0 − s)N(Qpi
∗, Qpj

∗)− c = 0.

Differentiating the above results with respect to p0 yields


a∗

∂E(Qp
i
∗)

∂p0
+ b∗

∂E(Qp
j
∗)

∂p0
= −G(Qpi ∗, Q

p
j
∗),

c∗
∂E(Qp

i
∗)

∂p0
+ d∗

∂E(Qp
j
∗)

∂p0
= −N(Qpi

∗, Qpj
∗).

where a∗, b∗, c∗, and d∗ denote the values of
∂E(Qp

i ,Q
p
j )

2

∂2Qp
i

,
∂E(Qp

i ,Q
p
j )

2

∂Qp
i ∂Q

p
j

,
∂E(Qp

i ,Q
p
j )

2

∂Qp
j∂Q

p
i

, and
∂E(Qp

i ,Q
p
j )

2

∂2Qp
j

at

(Qpi
∗,Qpj

∗), respectively.

Then we get 
∂E(Qp

i
∗)

∂p0
=

b∗N(Qp
i
∗,Qp

j
∗)−d∗G(Qp

i
∗,Qp

j
∗)

a∗d∗−b∗c∗ ,

∂E(Qp
j
∗)

∂p0
=

c∗G(Qp
i
∗,Qp

j
∗)−a∗N(Qp

i
∗,Qp

j
∗)

a∗d∗−b∗c∗ .

There are four cases to consider as follows:

Case 1 If {c∗G>a∗N & b∗N<d∗G}, then {G < a∗

c∗N & G < b∗

d∗N & a∗

c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that ∂E(Qp
i
∗)

∂p0
< 0 and

∂E(Qp
j
∗)

∂p0
> 0 with G < b∗

d∗N .

Case 2 If {c∗G<a∗N & b∗N>d∗G}, then {G > a∗

c∗N & G > b∗

d∗N & a∗

c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that ∂E(Qp
i
∗)

∂p0
> 0 and

∂E(Qp
j
∗)

∂p0
< 0 with G > a∗

c∗N .

Case 3 If {c∗G>a∗N & b∗N>d∗G}, then {G < a∗

c∗N & G > b∗

d∗N & a∗

c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that ∂E(Qp
i
∗)

∂p0
> 0 and

∂E(Qp
j
∗)

∂p0
> 0 with b∗

d∗N < G < a∗

c∗N .

Case 4 If {c∗G<a∗N & b∗N<d∗G}, then {G > a∗

c∗N & G < b∗

d∗N & a∗

c∗ > 1 & b∗

d∗ < 1}. There is no

intersection set. Therefore, we can deduce that ∂E(Qp
i
∗)

∂p0
< 0 and

∂E(Qp
j
∗)

∂p0
< 0 can not coexist.
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