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SUMMARY

In this paper, we present a new method for inserting several triangulated surfaces into an existing tetrahedral
mesh generated by the meccano method. The result is a conformal mesh where each inserted surface is
approximated by a set of faces of the final tetrahedral mesh. First, the tetrahedral mesh is refined around
the inserted surfaces to capture their geometric features. Second, each immersed surface is approximated by
a set of faces from the tetrahedral mesh. Third, following a novel approach the nodes of the approximated
surfaces are mapped to the corresponding immersed surface. Fourth, we untangle and smooth the mesh by
optimizing a regularized shape distortion measure for tetrahedral elements in which we move all the nodes of
the mesh, restricting the movement of the edge and surface nodes along the corresponding entity they belong
to. The refining process allows approximating the immersed surface for any initial meccano tetrahedral mesh.
Moreover, the proposed projection method avoids computational expensive geometric projections. Finally,
the applied simultaneous untangling and smoothing process delivers a high-quality mesh and ensures that the
immersed surfaces are interpolated. Several examples are presented to assess the properties of the proposed
method.

KEY WORDS: Surface Insertion; Meccano Method; Tetrahedral Mesh Generation; Mesh Untan-
gling and Smoothing; Surface Parameterization; Volume Parameterization

1. INTRODUCTION

In most of the computational simulations in applied sciences and engineering, the geometry,
delimited by outer surfaces and probably including inner surfaces, is usually a given data. However,
in a wide range of applications, it is not possible to generate a priori a mesh that contains the inner
surfaces, since it may be an unknown of the problem. This is the case of immiscible multi-fluid
problems in which the interface between fluids evolves in time, and its location depends on the
physics of the problem. Another situation is that the exact location of the surface may be known
in advance nevertheless it changes over time. In this case, a new mesh for each time step has to
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be generated. For instance, in computational fluid dynamics, the motion of a rotating propeller is
prescribed, and the surface position is known at each time step. Moreover, during an advanced
stage of a design process, a new geometric feature can be added to an already discretized model.
The additional surfaces impose the generation of a new discretized model that reproduces the new
surfaces. For example, a new fault has to be inserted in an already meshed oil reservoir.

Several numerical strategies can be adopted to deal with this problem. It is possible to design
sophisticated solvers to track the new or moving surfaces. For example, the phase-field approach
consists of adding new unknown fields in the governing equations of the physical problem.
The surfaces are defined as the zero level set of the additional field unknowns [1, 2, 3]. The
extended finite element method (X-FEM) formulation [4, 5, 6] adds new shape functions to include
discontinuities in the solution. Thus, the surface to be added is defined using these discontinuities.

Nevertheless, it is not always possible to modify the solver to include these techniques. Therefore,
it is necessary to modify the mesh in order to approximate the additional or moving surfaces using
the triangles of the tetrahedral mesh. A straightforward solution is to generate an entirely new mesh
for the geometric model. However, this is a costly operation, especially if it has to be performed
in all the time steps of a transient problem. Thus, other approaches have been developed to reduce
the computational cost of generating a new mesh. On the one hand, it is possible to approximate
the surface by performing a mesh moving technique, see [7, 8, 9]. First, it is selected a set of
triangles to approximate the surface. Then, these triangles are moved onto the surface while keeping
valid elements. To perform this process, the size of the tetrahedral mesh has to be small enough to
reproduce the geometric features of the immersed surface. On the other hand, the tetrahedral mesh
can be locally remeshed in order to approximate the given surface, see [10, 11, 12]. First, a triangular
mesh on the surface is generated, and the tetrahedral elements that are near the surface are removed.
Then, the created cavity is remeshed to generate a conformal mesh that includes the surface. Note
that the cavity has to be large enough to accommodate the new elements, and small enough to keep
the number of modified elements as small as possible.

In this work we propose a novel approach to insert a given triangulated surface into an existing
tetrahedral mesh generated using the meccano method [13, 14, 15, 16]. It combines the benefits
of local refinement processes and mesh moving techniques. First, we locally refine the tetrahedral
mesh around the surface until the tetrahedral mesh captures the geometric features of the surface.
Specifically, we use the Kossaczký method [17] that delivers a fast and robust process, since it does
not depend on geometric predicates. Second, we select a set of triangles of the tetrahedral mesh to
approximate the surface. To this end, we use a set of rules to ensure that a high-quality mesh can
be obtained. Third, we propose a new projection algorithm based on the Floater parameterization
[18] of the immersed and approximating surfaces. We highlight that we use the same parametric
space for both surfaces. Therefore, we can define a mapping from the approximating surface onto
the immersed one. We use this mapping to ensure that the projected nodes lie on the immersed
surface. The projection step introduces inverted and low-quality elements. Thus, in the fourth step,
we optimize the quality of the final mesh by using a robust untangling and smoothing process
based on an optimization of a single distortion measure [19]. Specifically, we optimize a regularized
version of the shape distortion measure for tetrahedral elements in which we move all the nodes of
the mesh, restricting the movement of the edge and surface nodes along the corresponding entity
they belong to [20]. This is achieved by expressing the coordinates of these nodes in terms of their
parametric coordinates during the optimization process. Although the target of the optimization
process is the distortion of the tetrahedra, the method also improves the quality of the triangles that
approximate the surfaces of the model since we allow moving the surface nodes.

The proposed method has several advantages. It is independent of the initial mesh because of
the refinement process that adapts the mesh to the features of the immersed surface. Moreover, we
propose a fast and robust projection process that involves solving two linear problems: one for all
the nodes of the immersed surface, and another one for all the nodes of the approximating surface.
In this way, we avoid solving the non-linear problem involved in the geometric projection to the
immersed surface of each node of the approximating surface. Finally, the applied untangling and
smoothing process ensures a valid and high-quality mesh that interpolates the immersed surface.
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The rest of the paper is structured as follows. In Section 2 we overview the meccano method.
In Section 3 we detail the proposed algorithm to insert a given surface in a tetrahedral meccano
mesh. Finally, in Section 4, we present three examples, both academic and realistic, illustrating the
capabilities of the proposed method.

2. MECCANO OVERVIEW

The meccano method [13, 14, 15, 16] is an automatic tetrahedral mesh generator for complex genus-
zero solids. The method requires a surface triangulation of the solid boundaries and a computational
domain that coarsely approximates the solid. This computational domain is called meccano. The
procedure builds an adaptive tetrahedral mesh in the meccano and deforms it to match the physical
domain. For this purpose, the method combines several procedures: an automatic mapping from
the boundary of the meccano to the boundary of the solid, a 3-D local refinement algorithm, and a
simultaneous mesh untangling and smoothing. It is important to point out that this method also
provides a continuous element-wise linear volumetric parameterization from the computational
domain to the solid.

The construction of the meccano (the computational domain) is not automatic for complex solids
(genus bigger than zero) and requires user intervention. We are now working on a procedure based
on octree meshes that will automatically provide the meccano for more complex solids. Another
alternative could be to use a polycube of the solid as the meccano. A method for its automatic
construction has been recently proposed in [21, 22].

The main steps of the meccano tetrahedral mesh generation algorithm are summarized in
Algorithm 1. The input data is a solid, Ω, defined by its boundary representation (surface
triangulation or CAD model), and a given precision to approximate its boundary, ε.

The first step of the procedure, Line 2, is to construct a meccano, D, that approximates the solid,
by connecting polyhedral pieces. Then, in Line 3, a discrete mapping, Π, between the boundary of
the meccano and the boundary of the solid is computed using a procedure based on the mean value
parametrization proposed by Floater in [18]. Note that this parameterization is a continuous and
element-wise linear mapping. In Line 4, an initial coarse mesh of the meccano is generated, and the
boundary nodes are located on the solid boundary using the mapping Π. In Lines 5–9, we obtain a
mesh that approximates the solid boundary with the given tolerance ε. Specifically, in Line 6, we get
the list of triangles that do not correctly approximate the boundary of the solid, and then, in Line 7,
we refine those triangles by dividing their adjacent tetrahedra using the Kossaczký method [17]. In
Line 8, we project the new nodes onto the boundary of the solid using the mapping Π. We iterate
this process until there are no triangles to refine. Note that when the nodes are mapped onto the
solid boundary, low-quality and inverted elements may appear. Thus, a simultaneous untangling and
smoothing procedure [19, 23] is applied in order to obtain a valid and high-quality tetrahedral mesh.
As commented before, the meccano method automatically provides a volumetric parameterization
from the computational domain to the solid. From now on, abusing of notation, we denote this
mapping as Π.

The meccano method and polycube-map have some similarities. In fact, both use a coarse
approximation of the domain as a computational space. However, they are different algorithms.
On the one hand, the term polycube (a solid formed from a union of cubes) was first introduced
by Tarini, et al. in [24], where they built a mapping from the boundary of an input object to the
surface of a manually constructed polycube. Then, some volumetric polycube parameterizations
were proposed, e.g. [25, 26]. As consequence, adaptive all-hex meshes of the input domain are
produced [26]. In the last years, an effort has been done to construct automatically the polycube
and to produce low distortion mapping; among others [21, 22]. On the other hand, the meccano
method was first proposed in [27], and then developed in [13, 14, 15, 16]. This algorithm, as we
commented before, requires a coarse computational domain, then builds a surface parameterization
and combines refinement and a mesh optimization to produce an adaptive tetrahedral mesh of the
input domain. As a result, a piecewise linear volumetric parameterization is obtained (Π).
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Algorithm 1 Meccano tetrahedral mesh generation.

1: function MeccanoMesher(Solid Ω, Real ε)
2: Meccano D ← getMeccano(Ω)
3: Mapping Π← getBoundaryMapping(D, Ω)
4: MeshM← getInitialMesh(D, Π)
5: while distance(∂M, ∂Ω) > ε do
6: TriangleList τ ← getTrianglesToRefine(M, Ω, ε)
7: TriangleList τ ′ ←refineTriangles(τ )
8: projectNewNodesToBoundary(τ ′, Π)
9: end while

10: qualityOptimization(M)
11: end function

(a) (b)

Figure 1. Initial meccano mesh and immersed polyline S (thick line). (a) Physical mesh; and (b)
computational mesh.

3. SURFACE INSERTION ALGORITHM

In this section, we detail the proposed algorithm to insert a surface into an existing tetrahedral
mesh generated using the meccano method. Although we describe the algorithm inserting a single
surface, it can be extended to the insertion of several surfaces. To illustrate the process, we show a
2D analogy.

3.1. Problem Statement

Our input data is a tetrahedral mesh M generated by the meccano method, composed of M
tetrahedra, and an immersed triangular mesh S, containing N triangles, such that dist(∂M,S) > 0.
We assume that S is simply connected, single oriented, and has a boundary. Figure 1 shows the
initial meccano mesh for a two-dimensional geometry, and a polyline S to be inserted in the mesh.

Our target is to construct a surface SM composed of triangles, edges, and vertices belonging to a
conformal tetrahedral mesh, obtained by refiningM, which approximates S with a given tolerance.

3.2. Volumetric Approximation

We define T as the set of tetrahedra ofM that intersect the inserted surface, S. Then, we recursively
update the set T by refining those tetrahedra E ∈ T such that

rE ≥ lc, E ∈ T (1)

where rE is the length of the longest edge of the element E, and lc is a characteristic length
determined by the geometric features of S, and verifying lc < dist(∂M,S). That is, lc represents
an element size small enough to capture the geometric features of the surface S. Thus we refine
the tetrahedra that are larger than the desired element size. To refine the tetrahedra, we apply the
Kossaczký method. The original tetrahedra are removed from T , and the refined ones that intersect
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(a) (b)

Figure 2. Refined meccano mesh around the immersed polyline S. (a) Physical mesh; and (b) computational
mesh.

(a) (b)

Figure 3. Extension of T to be topologically equivalent to a sphere. (a) Physical mesh; and (b) computational
mesh.

S are added. This process is iterated until there is no tetrahedron in T that verifies Equation (1).
Figure 2 shows the refinement process of the meshM and the triangles that intersect S.

3.3. Volumetric Approximation Healing

In order to obtain a high-quality mesh, we need to impose the following constraints to the set of
tetrahedra T . First, we add elements to T until its boundary is topologically equivalent to a sphere.
To this end, we ensure that all the nodes that belong to the boundary of T define a local disk. That
is, the Euler characteristic, χ, of each node on the boundary T verifies:

χ := nE − nF + nC = 1, (2)

where nE , nF and nC are, respectively, the number of edges, faces, and cells of T that are adjacent
to the node. Thus, we add the elements adjacent to the nodes that do not verify Equation (2). Figure 3
shows this process; the two locations–nodes in this case–where the boundary of T is not equivalent
to a sphere are highlighted, as well as the triangles added to T .

Then, we enforce that the counterpart of the boundary faces and edges in the computational space
are parallel to a coordinate plane or axis, respectively, Figure 4. This is accomplished by adding
additional tetrahedra into the set T . First, we identify the faces in the computational domain that are
not parallel to a coordinate plane. Then, we refine the adjacent tetrahedra to the same refinement
level. Finally, we add the new tetrahedra into T . This process ensures that we minimize the number
of added tetrahedra into T .

3.4. Surface Extraction

The set of tetrahedra T contains the given surface S completely in its interior. We will obtain SM,
the approximation of S, from the boundary faces of T . The main idea is to select the faces of the
boundary of T that are at one side of the inserted surface, S, and are not adjacent to any other
surfaces of the model. We first classify the boundary nodes of T according to the side of S they are
located. Figure 5a depicts the nodal classification of the boundary nodes of T using black and white
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(a) (b)

Figure 4. Extension of T to get boundary edges parallel to the computational axis. (a) Physical mesh; and
(b) computational mesh.

(a) (b)

Figure 5. Initial selection of SM. (a) Physical mesh and classification of boundary nodes of T according the
side of S they are located; and (b) computational mesh.

circles. Then, we select the boundary triangles of T that have all the nodes classified in the same
side of S and are not adjacent to any other surface of the model.

3.5. Surface Healing

To increase the quality of the final mesh and avoid unresolvable degenerated elements, we apply the
following steps to SM.

1. Remove thin protrusions at the boundary of SM. We define thin protrusions as pairs of
connected triangles of SM with three edges at the boundary of SM. Thin protrusions at
the boundary of SM may induce low-quality elements in the tetrahedral mesh. Thus, we
recursively remove all thin protrusions in the surface approximation, see Figure 6a.

2. Remove high-connectivity nodes at the boundary of SM. Nodes at the boundary of SM that
are adjacent to five or more triangles in SM may induce low-quality elements in the final
mesh. To solve this issue, we add the adjacent face to SM, see Figure 6b. The two edges of
the boundary of SM adjacent to the node, define a plane in the computational domain. We
add to SM the faces of the boundary of T that belong to this plane and are adjacent to the
boundary edges.

3. Refine tetrahedra of M with more than one face on SM. In order to avoid degenerated
tetrahedra, we impose that each tetrahedron contributes with only one face on the
approximation SM. Thus, we refine all tetrahedra with two faces on SM, see Figure 6c. Note
that the resulting elements have only one face on SM, since we have imposed that the faces
in SM are parallel to the coordinate planes in the computational space, and we are using the
Kossaczký refinement.

4. Refine faces of M with more than one edge at the boundary of SM. In order to avoid
degenerated faces at the boundary of SM, we impose that each face contributes to the
boundary of SM with only one edge. To solve this issue, we refine such faces, see Figure 6d.

5. Refine interior edges of SM with the end nodes on the boundary of SM. Inner edges of the
inserted surface with end nodes on its boundary may induce low quality tetrahedral elements.
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(a) Case 1: marked triangles of SM to be recursively deleted. (b) Case 2: marked triangles to be added.

(c) Case 3: tetrahedron to be refined. (d) Case 4: marked triangles of SM are refined.

(e) Case 5: edge of SM, with two end nodes on its boundary,
to be refined.

(f) Case 6: marked edges are refined.

Figure 6. Illustration of the six different cases of the surface healing process.

To avoid this, we divide those edges by refining the adjacent elements. Thus, a new node is
introduced on the edge providing more flexibility to the mesh optimization procedure, see
Figure 6e.

6. Refine edges with nodes on different surfaces. When the nodes of an edge belong to different
surfaces (immersed or boundary surface), it may be difficult to optimize the quality of the
mesh and obtain high-quality elements. Hence, we refine such edges of the mesh to give more
freedom to the optimization process, see Figure 6f.

If the value of lc is small enough the previous conditions are achieved as a consequence of: 1)
SM has parallel faces to the coordinate planes in the computational domain, and 2) the properties
and structure of the Kossaczký refinement.

3.6. Surface Projection

The next step consists on projecting the nodes of SM onto S. At the end of this step, all of the nodes
in SM will be located on the target surface S.

First, we compute the Floater parameterizations [18] of S and SM, denoted by ϕ and ϕM,
respectively, as

ϕ : U → S, ϕM : U → SM, (3)
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Figure 7. Surface projection diagram.

where U = [0, 1]× [0, 1] is a common parametric space for both surfaces, see Figure 7. Then, each
node of SM, xi, is moved to the new position, x′i, according to:

x′i = ϕ ◦ϕ−1M (xi). (4)

The mapping obtained in Equation (4) is bijective due to cases 4 and 5. Specifically, we avoid
triangles with three nodes at the boundary of SM and inner edges of the surface with both nodes at its
boundary. Note that this projection procedure has several advantages. We avoid to solve a non-linear
projection problem for each node to be projected. Instead, we solve two linear problems to compute
the mappings of SM and S. Moreover, we obtain the parametric coordinates of the projected nodes
on S. This information is necessary to perform the untangling and smoothing process, detailed in
the next section.

3.7. Mesh Optimization

After the projection process, inverted and low-quality elements may appear. Thus, to obtain a valid
and high-quality mesh, we apply an optimization procedure based on the simultaneous untangling
and smoothing technique proposed in [19, 23]. Moreover, we add the capability to optimize the
mesh quality by moving the location of inner, edge and surface nodes, according to [20]. Note
that the result of the optimization problem defines a high-quality volumetric mapping between the
computational domain and the physical domain in which the inserted surfaces are interpolated.

3.7.1. Regularized Shape Distortion Measure According to [28], the shape distortion measure is
defined as

ηE(Jφ) =
‖Jφ‖2

3|σ(Jφ)| 23
, (5)

where φ is the affine mapping between the ideal element EI and the physical element, EP , Jφ
is the Jacobian matrix of φ, ‖·‖ is the Frobenius norm, and σ is the determinant. In the meccano
method, the ideal element of a physical tetrahedron EP

i is the rectangular tetrahedron that is its
counterpart in the computational space EI

i . Thus, in our case φ = Π, and therefore

EP
i = Π(EI

i ). (6)

This distortion measure is invariant to translation, rotation, and scale [28]. It takes values in the
range [1,∞), being η = 1 when the physical and ideal element only differ in the invariants, and
η =∞when the physical element is degenerated. The quality of an element is defined as the inverse
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of the distortion

q =
1

η
. (7)

Thus, it takes values between 0 (degenerated element) and 1 (ideal element).
The shape distortion measure presents asymptotes when σ(Jφ) = 0, and this prevents its use in a

continuous minimization process when inverted elements are present. To overcome this drawback,
we use the regularized distortion measure introduced in [29, 19] for linear elements, in which σ is
replaced by

h(σ) =
1

2

(
σ +

√
σ2 + 4δ2

)
, (8)

where δ is a small parameter that depends on the problem and can be calculated according to
[23, 30]. This regularization is also used for optimizing curved high-order meshes [30, 31, 20].

3.7.2. Objective Function The simultaneous untangling and smoothing algorithm is based on the
optimization of an objective function defined in terms of the regularized distortion measure of the
elements adjacent to a node. Let x be the location of the node to be moved, and m the number of
adjacent tetrahedra. Then, we define the objective function as

f(x) =

m∑
j=1

ηEj
(Jφ), (9)

where Ej is the jth element adjacent to the node. The derivatives of the objective function are
evaluated analytically according to [32].

3.7.3. Objective Function for Surface and Edge Nodes We need to ensure that edge and surface
nodes in the optimized mesh are located on the corresponding entities they belong to. Therefore,
we define a new objective function that evaluates the regularized distortion measure of the adjacent
tetrahedra in terms of the parametric coordinates of the node, see [20].

For surface nodes, the corresponding objective function becomes

fϕ(u) = f ◦ϕ(u), (10)

where ϕ and u are the parameterization and the parametric coordinates of surface S.
Each edge of the model is parameterized using the arc-length parameter, γ(s). Thus the objective

function for edge nodes is expressed using the parameterization γ(s) as

fγ(s) = f ◦ γ(s). (11)

Note that, the derivatives involved in the optimization process for surface and edge nodes are
computed numerically due to the linear piece-wise definition of ϕ and γ.

We highlight that in the proposed approach, we do not use a distortion measure for the surface
triangles, instead we only take into account the quality of the tetrahedral elements. That is, we
are computing a valid and high-quality volumetric mapping between the computational domain
and the physical domain, such that the surface and edge nodes are constrained to move along the
corresponding entities.

3.7.4. Optimization Approach The optimization approach is devised as a Gauss-Seidel iterative
process moving one node at a time. That is, for each node we modify its position while keeping fixed
the position of all the other nodes. The new position is computed by optimizing the corresponding
objective function of the node. This optimization is performed using a line-search method in which
the search direction is computed using Newton’s method, and the step length is computed using
the strong Wolfe conditions, see details in [33]. Algorithm 2 details the proposed untangling and
smoothing process.
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Algorithm 2 Procedure to optimize a mesh,M.

1: function optimizeMesh(MeshM, Real maxDisp)
2: Boolean isConverged← false
3: while not isConverged do
4: Real disp← 0
5: for each free node, n do
6: Function g ← getObjectiveFuncion(n) . get edge, surface or

. inner objective function
7: Real nodeDisp← smoothNode(n,g)
8: disp← max{disp, nodeDisp}
9: end for

10: isConverged← (disp ≤ maxDisp)
11: end while
12: end function

4. EXAMPLES

In this section the presented method is applied to three different geometries. The first geometry is
an academic example where a curved surface is inserted in a cube. The two last examples are taken
from realistic cases where the insertion of the surface in the mesh is needed. In all the examples, we
colour the elements according to their shape quality, see Equation (7). In addition, for all of them,
we present a table that summarizes the shape quality statistics of the mesh elements. Specifically, we
provide the number of tangled elements, and the minimum, maximum, mean and standard deviation
of the element quality. We highlight that in all cases the final mesh is a valid high-quality mesh,
where the insertion of the surfaces has not drastically decreased the quality of the initial mesh.

4.1. Simple Cube

The first example deals with the insertion of a sinusoidal surface inside a tetrahedral mesh for a
cube,M, see Figure 8a. Figure 8b shows the refined tetrahedral mesh and the initial approximating
surface, SM, extracted from triangles of M. Note that at this stage, the candidate triangles to
approximate the surface are parallel to the coordinate planes of the computational domain. Then, the
nodes of SM are projected onto the immersed surface, S, see Figure 8c. Low-quality and inverted
elements appear near the projected surface, due to the movement of the nodes. Finally, the whole
mesh is optimized using the presented optimization method in order to repair the tangled elements
and improve the overall mesh quality, see Figure 8d. It is important to remark that the smoother
moves all the interior nodes of the mesh, including the ones that are located on SM. In this case,
such nodes are able to slide along the surface S. This is a key point in order to obtain a valid
and high-quality tetrahedral mesh, specially around the high-curvature areas of the inserted surface,
where the feasible region is small.

Figures 9a, 9b, and 9c present the distribution of the elements according to their shape quality for
the mesh before inserting the surface (Figure 8a), the mesh once the nodes are projected onto the
surface (Figure 8c), and the mesh after applying the proposed smoother (Figure 8d). In this example,
all the elements before inserting the surface have a quality of 1.0. The projection of nodes introduces
low-quality and inverted elements. Then, the smoothing process increases the overall mesh quality.
Table I details the mesh quality statistics. As it has been pointed out, all the elements of the initial
mesh are of the highest quality. The projection process has introduced 58 inverted elements and
therefore, the minimum quality is 0. Although the maximum quality is 1, this mesh is not valid for
any simulation process. Once the mesh is optimized, there are not any inverted elements, and the
minimum and mean quality are increased to 0.35 and 0.92, respectively. The maximum quality is
decreased to 0.99 in order to accommodate the displacement of the nodes during the optimization
process. Also, the standard deviation is decreased by a factor of 3. The final mesh contains elements
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(a) (b)

(c) (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
shape quality

Figure 8. Approximation of an immersed sinusoidal surface, S, in a tetrahedral mesh for a cube: (a) initial
tetrahedral mesh and surface to be inserted; (b) refined tetrahedral mesh and initial SM extracted from

triangular faces of M; (c) nodes of SM projected onto S; and (d) smoothed final mesh.

with lower quality than the initial mesh. In this example, this is expected since the initial mesh is
entirely composed of ideal elements.

4.2. Faults Insertion

The second example deals with the insertion of fault surfaces into a discretized sub-soil model, see
Figure 10. The tetrahedra of the mesh are not able to resolve the geometric features of the inserted
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Figure 9. Mesh quality histogram for the approximation of an immersed sinusoidal surface: (a) initial
mesh; (b) mesh with immersed surfaces before optimization; and (c) mesh with immersed surfaces after

optimization.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
shape quality

Figure 10. Initial tetrahedral mesh for a sub-soil model, elements coloured according their quality, and the
four faults to be inserted.

surface. This example shows that the proposed method does not depend on the element size of the
initial mesh. Figure 11 shows the different stages of the insertion surface algorithm for the last
inserted fault (red surface in Figure 10). First, we refine the mesh and select the candidate triangles
to approximate the surface, Figure 11a. Then, we apply the proposed projection algorithm to map
the selected nodes onto the inserted surface, Figure 11b. This step generates inverted and low-quality
elements. Thus, we apply the presented untangling and smoothing algorithm to repair the inverted
elements and increase the overall mesh quality, see Figure 11c.

Figures 12a, 12b, and 12c show the quality histogram of the mesh before inserting the surface
(Figure 11a), the mesh once the nodes are projected onto the surface (Figure 11b), and the mesh
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Figure 11. Approximation of the fourth immersed faults, S, in a tetrahedral mesh for a sub-soil model: (a)
refined tetrahedral mesh and initial SM extracted from triangular faces of M; (b) nodes of SM projected

onto S; and (c) smoothed final mesh.

after applying the proposed smoother (Figure 11c). The histogram is similar for the first and third
meshes where the number of elements increase with the quality, being the more frequent qualities
the highest interval. The main differences is the dispersion of the qualities. The qualities in the
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Figure 12. Mesh quality histogram for the approximation of the fourth immersed faults: (a) initial mesh; (b)
mesh with immersed surfaces before optimization; and (c) mesh with immersed surfaces after optimization.

initial mesh are more concentrated towards the highest values whilst the qualities in the final mesh
are more dispersed. Figure 12b shows the quality decay due to the projection process where some
elements are not valid. Nevertheless, the applied smoother increases the overall mesh quality. These
remarks can be observed quantitatively in Table I. Comparing the initial and final mesh quality
statistics, both the minimum and mean qualities have decreased—from 0.26 to 0.13, and from 0.92
to 0.81 respectively—and the standard deviation has increased—from 0.09 to 0.14. These results
agree with the qualitative observations. The optimization improvement is clear from comparing the
projected and final statistics; the minimum and mean quality have increased from 0 to 0.13, and
from 0.77 to 0.81, respectively, and the standard deviation has decreased from 0.21 to 0.14.

4.3. Atmospheric Layer Insertion

In several atmospheric applications it is usual to create a base mesh and then adapt it to each specific
simulation. In this example, we will use a given tetrahedral mesh of the East zone of the Gran
Canaria island (Spain) to simulate the transport and reaction of pollutants in the atmosphere. In
particular, we are interested in the distribution of pollutant concentration on two surfaces that are an
extrusion of the orography of the terrain. Therefore, we will use the proposed method to insert them
and we will show that the resulting mesh is valid for simulation purposes.

4.3.1. Mesh generation Figure 13 shows the orography of the considered area in the East part of
Gran Canaria island and the immersed surfaces. They are located at 1000 and 2000 meters above the
terrain. Similar to the previous examples, Figure 14 illustrates the different stages of the insertion
surface algorithm. In this figure, the inserted surface is the highest one (red in Figure 13). Figure 14a
shows the refinement and selection step, Figure 14b presents the projection of the selected mesh onto
the inserted surface where low-quality and tangled elements appear; and finally the resulting mesh,
after the untangling and smoothing algorithm, see Figure 14c.

Figure 15 shows the quality histogram of the mesh before inserting the second surface, once
the nodes are projected onto the second surface (Figure 14b), and after applying the proposed
smoother (Figure 14c). In this case, comparing the initial and final meshes, the dispersion of the
qualities has increased and the minimum quality has decreased. This observation agrees with the
faults insertion example, although in this case the differences are smaller. Regarding the projected
and final meshes, we highlight that the optimization process has repaired all the tangled elements,
and the minimum quality has improved. The main statistical values of the mesh quality are detailed
in Table I. Comparing the initial (before inserting any surface) and final meshes, we observe that
the minimum quality has decreased from 0.58 to 0.32, that the maximum and mean qualities have
detracted slightly from 1 to 0.99 and from 0.97 to 0.95 respectively, and that the standard deviation
has increased from 0.03 to 0.08. As in the previous examples, the optimization process has improved
the quality repairing 6585 non-valid elements, increasing the minimum and mean quality from 0 to
0.32 and from 0.89 to 0.95 respectively; and decreasing the standard deviation from 0.22 to 0.08.
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Figure 13. East zone of Gran Canaria island and the two surfaces to be inserted.

4.3.2. Transport and reaction of pollutants Once the mesh with the surfaces is generated we
simulate the transport and reaction of pollutants. In this case, we assume that a pollutant leak from
a ship in the sea is transported into the island by a wind field. We know that the general direction
of the wind field is from East to West (from sea to the island). To generate a more realistic wind
field we use a mass-consistent wind model [34, 35] that assumes constant density and verifies the
continuity equation (mass conservation) in the domain and impermeability on the terrain.

Using the resulting wind field, we simulate the transport and reaction of pollutants. A finite
element model designed to simulate the microscale [36, 37] is used in this example. This model uses
a finite element method stabilized with least squares [38] to prevent the numerical oscillations that
arise with the classical Galerkin formulation. The resulting linear system has a symmetric matrix
and we solve it using the conjugate gradient method preconditioned with an incomplete Cholesky
factorization density type [39, 40].

The prescribed boundary conditions for the pollutant concentration are the following: a Dirichlet
condition of 0.5 g m−3 at a region of the sea boundary, a null Dirichlet condition in the inflow
boundary—we assume that the air outside the area of interest is clean, a natural Neumann condition
on the outflow boundaries, and a dry deposition velocity of 0.5 m s−1 in the terrain. We use typical
diffusion values with a horizontal diffusion of 10 m2 s−1 and a vertical of 5 m2 s−1.

Figure 16 shows the resulting wind field and the isosurfaces of pollutant concentration after
5 min, 30 min and 60 min. Note that the impermeability condition in the terrain channels the wind
field into the valleys and circle the mountains. Looking at the pollutant concentrations, we observe
that the front of the plume is transported along the domain and the smaller concentrations flow
up to the valleys when the pollutant plume evolves. To highlight the properties of the surface
insertion algorithm, we have not applied an automatic mesh refinement to capture the plume front
as suggested in [41].

The output of interest is the distribution of the pollutant on the inserted surfaces. Figure 17a
shows the concentration after 30 minutes—it corresponds to Figure 16b. At this moment, the front
of the 0.5 g m−3 concentration is crossing the bottom surface. Note that the pollutant concentration
is smaller on the top layer. Figure 17b shows the distribution after one hour when the plume has
developed completely—it corresponds to Figure 16c. At this stage, we observe that the distribution
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Figure 14. Approximation of the second immersed surface in the atmospheric simulation, S, in a tetrahedral
mesh for an air quality model: (a) refined tetrahedral mesh and initial SM extracted from triangular faces of

M; (b) nodes of SM projected onto S; and (c) smoothed final mesh.
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Figure 15. Mesh quality histogram for the approximation of two immersed surfaces in the atmospheric
simulation: (a) initial mesh; (b) mesh with immersed surfaces before optimization; and (c) mesh with

immersed surfaces after optimization.

Table I. Element quality statistics of the presented high-order meshes.

sinusoidal sub-soil fault atmospheric layer

original projected smoothed original projected smoothed original projected smoothed

inverted 0 58 0 0 1 0 0 6585 0
min 1 0 0.35 0.26 0 0.13 0.58 0 0.32
max 1 1 0.99 0.99 0.99 0.99 1.00 0.99 0.99
mean 1 0.74 0.92 0.92 0.77 0.81 0.97 0.89 0.95
std dev 0 0.33 0.10 0.09 0.21 0.14 0.03 0.22 0.08

on both surfaces is similar, although the concentration values are smaller on the top surface due to
the distance to the centre of the plume and wind direction.

This example has shown the applicability of the proposed surface insertion method where the
quantity of interest is on the immersed surface.

5. CONCLUSIONS

In this work, we propose a novel approach to insert several triangulated surfaces into an existing
tetrahedral meccano mesh. The inserted surfaces are approximated using triangles extracted from
the tetrahedral mesh. To properly approximate the geometric features of each inserted surface, we
propose to apply a refinement process to the tetrahedral mesh. Thus, we avoid the dependence of the
proposed algorithm on the element size of the initial tetrahedral mesh. Then, we select the candidate
triangles and project them onto each surface using a novel projection algorithm based on the Floater
parameterization. The key idea is to parameterize the initial surface and the approximating surface
with the same parametric space. Finally, an untangling and smoothing technique is applied to repair
the tangled elements and improve the overall mesh quality. We move the nodes on the edges and
surfaces (immersed and boundary surfaces) taking into account only the quality of the tetrahedral
elements. To this end, we express the objective function in terms of the parametric coordinates of the
moving edge and surface nodes. We have shown that the proposed method generates high-quality
meshes that can be used in numerical simulations.

The implementation of the untangling and smoothing process is performed by updating the
position of one node at a time. That is, we use a Gauss-Seidel iterative process to simplify the
implementation and reduce the memory footprint of the optimization process. However, it could
potentially take a high number of iterations to converge in a large mesh. To solve this issue, it is
possible to implement a parallel version of the untangling and smoothing process in which several
nodes of the mesh are moved at the same time [42]. Nevertheless, it is needed to ensure that the
nodes that are moved simultaneously are not in the same elements to avoid using information that
is being updated. Although we do not have a proof of the convergence of the proposed method, in
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Figure 16. Slice of the isosurfaces of pollutant concentration after (a) five minutes; (b) thirty minutes; and
(c) one hour.
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Figure 17. Pollutant concentration distribution in the inserted surfaces after (a) thirty minutes; and (b) one
hour.

all the cases that we have tested the optimization-based untangling and smoother, we have obtained
a valid mesh of high-quality elements.

The proposed technique to introduce a surface in a tetrahedral mesh can be applied to any mesh
generated by an algorithm that satisfies the following requisites. First, it is needed a structured
hexahedral mesh, subdivided into tetrahedra. Second, the tetrahedra can be refined to adapt the mesh
by using the Kossaczký process. Third, a volumetric parameterization is needed. Nevertheless, in
the future work, we will reduce the requirements to introduce a given surface.

Moreover, while the presented algorithm has been developed for inserting triangulated surfaces,
it can deal with parameterized surfaces coming from a CAD model. The only restriction at the
current version of the method is that the CAD surface has to be simply-connected (no holes) and
non-trimmed, in order to define a quadrilateral parametric domain.

Several aspects of the presented method can be improved in the next future in order to deal
with more complex situations. First, the proposed algorithm does not deal with the insertion of
intersecting surfaces, because we do not prescribe the approximation of the intersection between
these surfaces. Moreover, since we are using a square parametric domain to perform the projection
and smoothing process, we require that the surfaces to be inserted have to be simply-connected
surfaces with boundary. Nevertheless, one possible solution is to divide the initial surfaces into
simply-connected patches with boundary.
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23. José Marı́a Escobar, Eduardo Rodrı́guez, Rafael Montenegro, Gustavo Montero, and José Marı́a González-Yuste.
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untangling and smoothing of quadrilateral and hexahedral meshes using an object-oriented framework. Advances
in Engineering Software, 80:12–24, 2015.

http://www.dca.iusiani.ulpgc.es/SUScode
http://www.dca.iusiani.ulpgc.es/SUScode


INSERTION OF TRIANGULATED SURFACES INTO A MECCANO DISCRETIZATION 21

33. J. E. Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. Society for Industrial & Applied Mathematics (SIAM), Jan. 1996.

34. Luis Ferragut, Rafael Montenegro, Gustavo Montero, Eduardo Rodrı́guez, M.L. Asensio, and José Marı́a Escobar.
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