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Abstract. According to the sensorimotor approach, cognition is constituted by reg-
ularities in the perceptual experiences of an active and situated agent. This perspec-
tive rejects traditional inner representational models, stressing instead patterns of
sensorimotor dependencies. Those relations are called sensorimotor contingencies
(SMC). Many research areas and accounts are working on and related with it. In
particular, four distinct kinds of SMCs have been previously introduced for envi-
ronment, habitat, coordination and strategy using dynamical models from a psycho-
logical perspective. As dynamical systems, in this paper we analyze SMCs, for the
very first time, from a modern control engineering perspective. We provide equa-
tions and block diagrams translating the psychological proposal to control engi-
neering. We also analyze the original toy example proposed from the psychological
domain into the modern control engineering point of view, as well as we propose a
first approach to this toy example coming from the control engineering domain.

Keywords. sensorimotor contingencies, dynamical systems, modern control
engineering

1. Introduction

The phenomenal character of a perceptual experience was stated in [1], namely that pat-
terns of sensorimotor dependencies (or ‘sensorimotor contingencies’) can be defined as
the regularities in how sensory stimulation depends on the activity of the perceiver. This
perspective rejects traditional inner representational models [2], stressing instead pat-
terns of sensorimotor dependencies. The sensorimotor approach to cognition has brought
together research from several disciplines over the last decade such as ecological psy-
chology [3,4], enactivism [5,6], cybernetics [7] or developmental robotics [8,9], among
others.

In [10], attention is payed to the notion of SMCs itself, appealing to the few attempts
to formally define it. Some of the few existing models are rather abstract and focus almost
exclusively on the problem of extracting the proper dimensionality of the interaction
space of an agent [11]. Others focus more directly on robotic applications and assume a
probabilistic, discrete-time interpretation of SMCs [12].
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In the remaining of this work the notions of SMCs are treated as dynamical systems
according to the psychological proposal in [10]. Taking advantage of the definition of
SMCs as dynamical systems and for the very first time, we analyze SMCs from a mod-
ern control engineering perspective. We provide equations and block diagrams translat-
ing the psychological proposal to control engineering for the easiest assumptions, linear
time-invariant single input single output (LTI SISO) systems. Then, we express the orig-
inal toy example proposed from the psychological domain using the control engineering
approach, as well as we propose a variation to this toy example fitting the LTI SISO
assumptions. Further research and conclusions are finally displayed.

2. Notions of SMCs

According to the approached discipline, not a unique definition of the SMC term exists,
providing a range of useful interpretations. Hence, different notions based on lawful
structures can be identified in agent-environment interaction and other specific forms of
sensorimotor coordination that are strategically deployed by the agent.

Choosing different lawful structures, four distinct kinds of SMCs are identified in
[10]: sensorimotor environment, sensorimotor habitat, sensorimotor coordination, and
sensorimotor strategies. The sensorimotor coupling of an agent with the environment is
formalized using a dynamical systems approach. The coupled agent-environment world
is partitioned into components describing the dynamics of the environment (e) and the
agent in bodily configuration (p), sensory (z) and motor instances (m) as well as its
internal state (a). In general, such a system could be described by the set of equations:

Environment information. Corresponds to the environment evolution depending on the
agent’s pose and the past state of the environment,

ė = E(e,p) (1)

Agent contingencies. Corresponds to the dynamics of the agent,

• Sensory dynamics: agent’s sensory depends on the environment and agent’s in-
ternal state, but not on past values of the agent’s sensory,

ż = Z(e,a) (2)

• Internal dynamics: agent’s internal state evolves depending on the sensed envi-
ronment and the past internal state; agent’s motors work based only on agent’s
internal state,

ȧ = A(a, z) (3)

ṁ = M(a) (4)

• Body dynamics: agent’s pose changes accordingly to agent’s motors and envi-
ronment,

ṗ = P (m, e) (5)

Summing-up, only the environment and the agent’s internal state introduces feed-
back, that is, they are storing self information.



3. The Control Engineering Approach

Our objective is to describe the coupled dynamical equations (1)-(5) using a modern
control engineering approach. For the sake of clarity, we formulate equations for linear
time-invariant (LTI) systems with a single input and a single output (SISO). We consider
all initial conditions null. Further, we describe the kinds of SMCs using block diagrams
from the original completed coupled agent-environment world. Several conclusions can
be obtained from this new approach.

Starting by considering LTI systems with null initial conditions, equations (1)-(5)
can be described following the standard space-state notation, ẋ = A · x + Bu, for
dynamical systems:

ė = AE · e + BE · p (6)

ż = AZ · 0 +
[
B1ZB2Z

]
·
[
e
a

]
(7)

ȧ = AA · a + BA · z (8)

ṁ = AM · 0 + BM · a (9)

ṗ = AP · 0 +
[
B1PB2P

]
·
[
m
e

]
(10)

For any ‘agent-environment’ coupled system some variables can be considered as
describing the environment and some others as describing the agent. In the same sense,
some of them can be considered as input to the system, but all of them can be also
considered as well as system states, avoiding the inclusion of exogenous inputs, resulting
in the alternative description:

ė
ż
ȧ
ṁ
ṗ

 =


AE 0 0 0 BE

B1Z 0 B2Z 0 0
0 BA AA 0 0
0 0 BM 0 0

B2P 0 0 B1P 0

 ·

e
z
a
m
p

 (11)

Hence, with this formulation we are describing the agent-environment couple as a whole.
Simplifying now to the proposed SISO approach and using the Laplace transforma-

tion, equations of the coupled system result in:

• How the environment changes from a past state depending on the current agent’s
pose,

E(s)

P (s)
=

bE
s− aE

(12)

• What the agent senses depends on what is captured from the environment, but
also on the agent’s internal state,

sZ(s) = b1ZE(s) + b2ZA(s) (13)

Recurrence is not considered in this approach for the agent’s sensor.
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Figure 1. Block diagram representing the closed-loop sensorimotor trajectories linked to the sensorimotor
habitat. Pose P (s) and Environment E(s) are the usual variables considered by an external observer.
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Figure 2. This block diagram represents the open-loop motor-induced sensory variations linked to the senso-
rimotor environment.

• How the agent’s internal state evolves depending on the sensed environment and
the past value of the internal sate,

A(s)

Z(s)
=

bA
s− aA

(14)

• How agent’s motor works based on agent’s internal states,

M(s)

A(s)
=

1

s
bM (15)

• How agent’s body changes according to agent’s motor commands and environ-
ment evolution,

sP (s) = b1PM(s) + b2PE(s) (16)

These equations lead to the block diagram in Figure 1. This block diagram represents the
closed loop sensorimotor trajectories linked to the sensorimotor habitat according to its
definition in [10].

4. Analyzing Two Kinds of SMCs

Depending on the degree of agent-centredness, four kinds of sensorimotor contingencies
have been distinguished in Section 2. In this initial work we will focus on the two first
levels of SMCs: SM Environment and SM Habitat.



4.1. The Sensorimotor Environment, z = g(m)

This sensorimotor dependency describes how sensory input z changes with induced mo-
tor activity m in an open-loop form. This evolution depends on the embodiment of the
agent p and the environment e only, not on the agent state a. Unlike our approach, most
examples of SMCs in the literature refer to the instantaneous sensory consequences of
arbitrary changes in perspective or movements in general, without considering how the
movements themselves are related to sensory feedback.

This kind of SMCs can be captured by considering how an agent’s sensor values
z change in relation to given motor states assuming that the motor command m varies
freely – in other words, m is taken as an independent variable, decoupled from the
agent’s variables a. The global sensorimotor loop depicted in Figure 1 is opened by re-
moving (4), that is, using the modern control engineering approach, removing (9), or (15)
for the SISO case.

From now, since motor commands m vary freely, they can be considered as inputs
to the system, hence the resulting alternative description, after removing (4), is:

ė
ż
ȧ
ṗ

 =


AE 0 0 BE

B1Z 0 B2Z 0
0 BA AA 0

B2P 0 0 0

 ·

e
z
a
p

+


0
0
0

B1P

 ·m (17)

Equivalently, we remove the associated component in the block diagram of Figure 1.
Now, M(s) is considered as input and Z(s) as output, z = (0 1 0 0) · (e z a p)>, in
the agent-environment coupled dynamical system. so we arrive to the block diagram in
Figure 2.

Two main relationships can be distinguished in this open-loop system:

1. from the motor command M(s) to the environment E(s), where the body pose
is intrinsically considered,

E(s)

M(s)
=

bEb1P
s(s− aE)− bEb2P

(18)

and,
2. from the environment E(s) to the sensor values Z(s), where agent’s states are

implicit,

Z(s)

E(s)
=

b1Z(s− aA)

s(s− aA)− b2ZbA
(19)

4.2. Some Remarks about the Pose in the Sensorimotor Environment

It is claimed in [10] that relevant aspects of the relationship between motor commands
and sensor variables could be captured, whenever possible and at least locally, by the
partial derivative ∂z/∂m, that is by analysing changes in sensor values z resulting from
changes in the independent variable m while all the remaining variables are held con-
stant. However, since
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Figure 3. This block diagram represents the simplified open-loop motor-induced sensory variations linked to
the sensorimotor environment.

∂z

∂m
=

dz/dt

dm/dt
=
b2Z
bm

+
b1Ze(t)

bMa(t)
(20)

a constant value can be considered for the agent and the environment variables to per-
form the local study, but this is not the case for the pose, which is not included in this
expression. A study about pose variations for similar motor commands can be found in
[13], which indicate that further work is needed about this claim on constant body pose.

Authors in [10], in order to justify the claimed simplification, consider ‘constant’
the feedback loop, that is, the same closed-loop, around the body pose for agents with
the same bodies in a given environment. Our proposal, by analysing the latter equations,
differs: the agent’s feedback around A(s) can be simplified to a constant KA, usually
easily skipped, KA = 1. However, the feedback loop around the body pose can not so
easily be defined like a constant. Hence, the complete system simplifies in the block
diagram depicted in Figure 3. In an equivalent form, for the space states representation
results in: 

ė
ż
ȧ
ṗ

 =


AE 0 0 BE

B1Z 0 B2Z 0
0 0 0 0

B2P 0 0 0

 ·

e
z
a
p

+


0
0
0

B1P

 ·m (21)

4.3. The Sensorimotor Habitat

The sensorimotor habitat is the set of all sensorimotor trajectories that can be generated
by the closed-loop system in Figure 1. This relation looks at co-variations obtained once
the loop is closed by taking into account the agent’s internal activity and responsiveness
to sensory changes, i.e. we close the loop again and take into account the agent’s internal
state and its influence on the effectors.

Information about the SM habitat, i.e. how the SM environment is ‘inhabited’, can be
captured using the full set of equations, where m is not longer considered an independent
variable (input). The “laws” of the SM environment constrain but do not fully determine
the regularities of the SM habitat.

5. One Toy Example, Two Different Approaches

A minimal model is depicted in [10] to illustrate the different kinds of SMCs proposed.
In this example, the task to be solved by the agent is a continuous version of the discrete
task proposed in [12]: the agent, moving along a one-dimensional environment, will
discriminate between two bell-shapes with wide and narrow widths. The agent can sense
these shapes via a single distance sensor. The time-derivative of the sensor signal serves



as input to a small dynamic neural network (CTRNN) that delivers continuous motor
commands controlling the agent’s velocity. The task to be solved by the agent is the
discrimination between wide and narrow shapes, requiring it to move away from the
former, and approach the peak of the latter.

5.1. The Original Approach

The proposed set of equations for the couple agent-environment system can be translated
in this example to:

• The environment are two bell-shaped curves of different widths w, height h, and
peak position c, defined as,

ė = E(e,p) ⇒ e = E(p) ⇒ e(t) = h · exp
(p(t)− c)2

2w2
(22)

that is, a static environment (ė = 0) without recurrent behaviour; it only depends
on the pose of the agent, p(t).

• The sensor measures the proximity of the Gaussian shape to the agent’s position,

ż = Z(e,a) ⇒ z = Z(e) ⇒ z(t) = − 1

dmax
· e(t) (23)

again defined in a static form. The approximation to the time derivative of the
sensor signal, ż(t) ≈ ∆z(t), will serve as input to the agent.

• The agent represents to control the whole system using a small (2-node)
continuous-time recurrent neural network (CTRNN). Each node in this network
is governed by the equation

τiẏi(t) = −yi(t) +

n∑
j=1

wjiσ(yj(t) + θj) (24)

where yi(t) is the activation node i, τi its time constant, wji the associated
weights, θj a bias term, and σ(·) the logistic activation function. One of the nodes
receives ∆z(t) as an additional term in the equation,

τ1ȧ1(t) = −a1(t) +

2∑
j=1

wj1σ(yj(t) + θj) + ∆z(t) (25)

and the other node delivers continuous commands,

τ2ȧ2(t) = −a2(t) +

2∑
j=1

wj2σ(yj(t) + θj) ; m(t) = a2(t) (26)

Hence, the agent’s internal state a corresponds to the vector representing the ac-
tivity of the neural network’s hidden node and motor neuron,

ȧ = A(a, z) ⇒ ȧ = A(a,∆z) (27)

ṁ = M(a) ⇒ m(t) = a2(t) (28)



• Finally, the motor command m(t) is remapped to the range m̄(t) ∈ [−1, 1] and
specifies directly the velocity of the agent,

ṗ = P (m, e) ⇒ ṗ = P (m̄) ⇒ p(tk) = p(tk−1) + m̄(tk) ·∆t (29)

As it can be checked, the example in the original approach is merging continuous-
time with discrete-time equations, so discrete-time equations are used everywhere when
simulating for the problem. Our approach will be constrained to the original form of the
proposed equations and, initially, will consider only linear dynamical systems.

5.2. Our LTI SISO Approach

Since it is unable the use nonlinear dynamical systems from our introduced starting study,
we will approach the toy example with simpler assumptions with respect to the original
one. Hence, again, the agent is moving along a one-dimensional environment. However,
it has an easier task, to move to the center of the environment. The agent can sense the
distance to this center via a single distance sensor.

The set of equations defining the system are proposed as follows,

• The environment variable e(t) is the same that the robot pose p(t), the robot
position (let us name it x(t)) and it is static (ė = 0), that is,

ė = E(e,p) ⇒ e = E(p) ⇒ e(t) = p(t) = x(t) (30)

In general, for the linear dynamical system case, since ė = 0, it could be written,

ė = AE · e + BE · p ⇒ e(t) = − bE
aE
· p(t) = x(t) (31)

with bE = −aE . Similarly to the original approach to the toy example, we are
not expressing this equation in a dynamical form.

• The sensor measures the proximity of the robot position to the center. Now, we
will consider the dynamic definition for this equation,

ż = AZ · 0 +
[
B1ZB2Z

]
·
[
e
a

]
⇒ ż(t) = b1Z · e(t) + b2Z · a(t) (32)

but, like in the original approach, we will obviate the dependence on the agent’s
state a(t), that is,

ż(t) = b1Z · e(t) = b1Z · p(t) = b1Z · x(t) (33)

which leads to the solution,

z(t) =
b1Z
2
· x2(t) (34)

considering the constant term from the integral, C = 0. The sensor measure can
be considered as a 2-norm distance to the center.



• The agent variables represent to control the whole system. In the original ap-
proach, a CTRNN is considered. In our case, we will start with an easier linear
nonrecurrent dynamical law for the controller,

ȧ = AA · a + BA · z ⇒ ȧ(t) = bA · z(t) (35)

leading to the solution,

a(t) =
b1Z · bA

6
· x3(t) (36)

considering the constant term from the integral, C = 0. It can be observed that
b1Z · bA < 0 is not ensuring an stable control law.

• The motor command m(t), following the same reasoning, can be defined

ṁ = AM · 0 + BM · a(t) ⇒ ṁ(t) = bM · a(t) (37)

which corresponds to

m(t) =
b1Z · bA · bM

24
· x4(t) (38)

considering the constant term from the integral, C = 0. The motor command
holds the same sign for positions on the left and on the right of the center. Hence,
it gives an idea about power in the movement, but not about its direction.

• Finally, following the same simple reasoning about how variables are defined,

ṗ = AP · 0 +
[
B1PB2P

]
·
[
m
e

]
⇒ ṗ(t) = b1P ·m(t) + b2P · e(t) (39)

but, like in the original approach, we will obviate the dependence on the environ-
ment, that is,

ṗ(t) = b1P ·m(t) (40)

which leads to the solution,

p(t) =
b1Z · bA · bM · b1P

120
· x5(t) (41)

considering the constant term from the integral, C = 0.

In matrix form, our system can be written as,
ż
ȧ
ṁ
ṗ

 =


0 0 0 b1Z
bA 0 0 0
0 bM 0 0
0 0 b1P 0

 ·

z
a
m
p

 ; e =
[
0 0 0 1

]
·


z
a
m
p

 (42)



6. Conclusions

The notions of SMCs are firstly introduced according to the psychological proposal in
[10]. As dynamical systems, we analyze SMCs, for the very first time, from a modern
control engineering perspective. We provide equations and block diagrams translating the
psychological proposal to control engineering for the easiest case, linear time-invariant
single input single output (LTI SISO) systems. Then, we analyze the original toy example
proposed from the psychological domain into the modern control engineering point of
view, as well as we propose a first example coming from the control engineering domain.

Our study determines strengths and some weakness in the original notions of SMCs,
related with some simplifications for the sensorimotor environment definition. Future
research lines are pointed out. The provided original toy example is easily translated to
the control engineering domain. As only the LTI SISO is considered in this work, many
points of extension and improvement can be considered in the near future.
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