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Abstract The increasing demand and the globaliza-

tion of the market are leading to increasing levels of

quality in production processes, and thus, nowadays

multiple product characteristics must be tested because

they are considered critical. In this context, decision

makers are forced to interpret a huge amount of qual-

ity indicators, when monitoring production processes.

This fact leads to a misunderstanding as a result of in-

formation overload. The aim of this paper is to help

practitioners when monitoring the capability of pro-

cesses with a huge amount of product characteristics.

We propose a methodology that reduces the amount of

data in capability analysis by structuring hierarchically

the multiple quality indicators obtained in the quality

tests. The proposed methodology may help practition-

ers and decision makers of the industry in three aspects

of statistical process monitoring: To identify the part of

a complex production process that presents capability

problems; to detect worsening over the time in multi-

variate production processes; and to compare similar

production processes. Some illustrative examples based

on di�erent kinds of production processes are discussed

in order to illustrate the methodology. A case of study

based on a real production process of the automotive

industry is analyzed using the proposed methodology.

We conclude that the proposed methodology reduces

the necessary amount of data in capability analysis; and

thus, that it provides an added value of great interest

for managers and decision makers.
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1 Introduction

Statistical Process Monitoring (SPM) is rated as an im-

portant part of process control and management be-

cause of its crucial role while ensuring agility in manu-

facturing systems [1]. In particular, SPM is an impor-

tant component in the long-term reliable operation of

any automated controlled system [2].

In industrial manufacturing processes, SPM also plays

an important role when considering economic produc-

tivity. Thanks to SPM, it is possible to detect produc-

tion system failures such as collision, overload, break-

down, and tool wear [3]; and thus, it is contributing to

saving costs in manufacturing [4]. In this sense, SPM

can increase the competitiveness of a machining pro-

cess by increasing the utilized tool life and decreasing

instances of part damage from excessive tool wear or

tool breakage [5]. For all these reasons, industries are in-

terested in measuring their product characteristics [6].

In SPM we can distinguish between univariate and

multivariate SPM. Univariate SPM deals with the case

in which only one product characteristic must be mon-

itored. However, in practice, many manufacturing pro-

cesses are multivariate production processes [7]. For this

reason, in the industry, there are many situations in

which the simultaneous monitoring or control of two or

more related process characteristics is necessary [8] [9].

In the literature, SPM of multiple variables is collec-

tively known as multivariate SPM [8].

Practitioners using SPM are forced to interpret a

huge amount of quality indicators related to each prod-
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uct characteristic and thus, they encounter di�culties

when monitoring multivariate production processes be-

cause monitoring all quality characteristics independently

can be very misleading [8].

Process capability indices (PCIs) are one of the mon-

itoring tools widely accepted in the industry [10] to

describe and to evaluate the capability of production

processes. PCIs describe the ability of a process to pro-

duce outputs within a lower (LSL) and an upper (USL)

speci�cation limit. This ability is named capability of

a process. Originally, univariate PCIs were useful to

describe the capability of processes because only one

product characteristic was checked in the quality tests.

The need to deal with the multivariate case has led

to the introduction of multivariate PCIs in the liter-

ature. Thanks to multivariate PCIs, the capability of

multivariate processes can be described in a global way.

However, most of the multivariate PCIs introduced in

the literature have not been extensively adopted by the

industry.

Sullivan [11] introduces in the literature the uni-

variate PCIs Cp, CPU, CPL, k and Cpk. Further on,

Kane [12] introduces some applications of these indices

and discusses how to evaluate univariate production

processes using these indicators. Other univariate PCIs

were also introduced in the literature [13] [14] [15] [16]

[17] [18] [19] [20] but only the Cp and the Cpk indices

are widely adopted by the industry. Several multivariate

PCIs have been recently introduced in the literature to

describe the capability of multivariate production pro-

cesses in a global way [21] [22] [23] [24] [25] [26] [27]

[28] [29] [10] [30] [31] but have not been already widely

adopted by the industry.

Taking a look at the existing literature in the �eld

of process capability analysis we can see that many au-

thors are introducing new multivariate PCIs in the lit-

erature [33], but there is a lack of research on the ben-

e�ts of using multivariate PCIs in the industry. In this

article we introduce arguments to extend the usage of

multivariate PCIs in capability analysis in the industry.

The purpose of this paper is to help practitioners in

SPM of processes with a huge amount of product char-

acteristics. We propose a methodology that reduces the

amount of data in capability analysis by structuring

hierarchically the multiple quality indicators obtained

in the quality tests. We present three application cases

in which the proposed methodology may help practi-

tioners and decision makers of the industry to identify

the part of a complex production process that presents

capability problems; to anticipate the loss of capabil-

ity of production processes by identifying worsening of

the process; and to compare similar production pro-

cesses. In all application cases we apply a methodology

based on multivariate PCIs. As a consequence, this arti-

cle gives arguments in favor of the usage of multivariate

PCIs to monitor high complex production processes.

This contribution has the following structure. In sec-

tion 2, we introduce a methodology based on multivari-

ate PCIs. In section 3 we discuss the methodology with

three application cases. A case of study based on a real

multivariate production process of the automotive in-

dustry is presented in section 4 in order to discuss the

methodology introduced in section 2. This article con-

cludes in section 5.

2 Methodology to reduce the amount of data in

capability analysis.

In this section we propose a methodology based on PCIs

that reduces the amount of data in capability analysis

by structuring the multiple quality indicators obtained

in the quality tests.

The key point of the methodology is to select the

appropriate univariate and multivariate PCIs to carry

out the SPM analysis. As we will point out later, it is

not necessary to distinguish whether the PCIs used in

the SPM analysis are univariate or multivariate. What

is necessary to know is the dimension of the PCIs; or in

other words, the number of product characteristics used

to calculate the PCI. For this reason we refer to the uni-

variate and multivariate PCIs used in SPM analysis as

PCI(n), where n is the dimension of the PCI. PCI(1)

(PCIs of dimension one) are univariate PCIs. PCI(n)

(PCIs of dimension n) are multivariate PCIs. PCI(1)

are calculated from the measures of one product char-

acteristic, since they are functions of the mean value (�)

and the variance (�) of the sample of each product char-

acteristic; i.e., PCI(1) = f(�;�;LSL;USL). PCI(n)

are calculated from the measures of n product charac-

teristics, since they are functions of � and �, respec-

tively the mean vector of dimension n and the variance-

covariance matrix of dimension n� n of the multivari-

ate sample; i.e., PCI(n) = f(�;�;LSL;USL) where

LSL and USL are vectors of dimension n that include

all LSLs and USLs, respectively.

In �gure 1 we illustrate this fact for the case with

two product characteristics. In �gure 1 we can see the

measures of two product characteristics for k products

of a given process. Using univariate PCIs it is possible

to obtain a capability indicator for each product char-

acteristic individually. If the measures of both product

characteristics are used together, a multivariate PCI

can be obtained without calculating the univariate PCIs

of each product characteristic. In the case of �gure 1 we

are using a multivariate PCI with n = 2 (PCI(2)).
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Fig. 1 Measures of two product characteristics of a sample
of k products. From the measures of this sample, univariate
and multivariate PCIs can be calculated.

The proposed methodology consists of four steps:

{ Step 1: Identify the properties that the family of

PCIs must satisfy in order to realize the monitor-

ing analysis. Not all PCIs from the literature will

be valid to reduce the amount of data in capabil-

ity analysis. Depending on the monitoring analysis,

PCIs must satisfy di�erent types of properties. For

example, in the following section we present some

cases in which the cascading and the detection of

modi�cations properties must be satis�ed by the

PCIs. Both properties will be de�ned and explained

as far as needed.

{ Step 2: Select the appropriate family of PCIs com-

plying with the properties identi�ed in the previous

step.

{ Step 3: Group product characteristics in di�erent

sets of product characteristics and in di�erent levels

generating a hierarchical structure.

{ Step 4: Ongoing analysis.

In the following section we apply the proposed method-

ology in three application cases in which we want to

reduce the amount of data.

3 Application cases of the methodology

Hereafter we apply the proposed methodology in three

application cases in which we want to reduce the amount

of data: First, identifying capability problems; second,

anticipating capability problems; third, comparing sim-

ilar production processes.

Before introducing the three application cases, it is

necessary to de�ne the capability criteria that are go-

ing to be used hereafter. If the PCI(n) index is big-

ger than 1, the process is de�ned as capable. How-

ever, many companies are specifying PCI goals of 1.33

[34]. Thus, the following criteria are used in this article:

PCI(n) values lower than 1.00 are represented in red;

PCI(n) between 1.00 and 1.33 are represented in yellow;

and PCI(n) values higher than 1.33 are represented in

green.

3.1 Identifying capability problems

The increasing number of product characteristics that

are monitored in the quality tests in multivariate pro-

duction processes requires developing control panels that

provide a huge amount of information for capability

analysis. This fact can lead to information overload

when identifying which part of the process presents ca-

pability problems. Taking it into account, in this section

we suggest using the proposed methodology to reduce

the amount of data in capability analysis as follows.

{ Step 1: We identify that the family of PCIs must

satisfy the cascading property de�ned as follow:

The cascading property: Let S1 be a set of m prod-

uct characteristics of a given production process and

letM1 be the value of them dimensional PCI (PCI(m))

of the characteristics of S1. Let S2 be a set of n
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product characteristics of the same production pro-

cess and let M2 be the value of the n dimensional

PCI (PCI(n)) of the characteristics of S2. We say

that PCI(m) and PCI(n) comply with the cascad-

ing property if and only if S2 � S1 )M1 6M2.

{ Step 2: We select a family of PCIs that satisfy the

cascading property. It must be worth noting that

some PCIs found in the literature such as [31] com-

ply with the cascading property. In Appendix A

the reader can �nd the proof that the PCI in [31]

complies with the cascading property. Similarly, a

PCI(n) de�ned as the minimal PCI(1) of the set

of n product characteristics also complies with the

cascading property. However, many PCIs from the

literature do not comply with this property; e.g.,

[23] and [26].

{ Step 3: We group the product characteristics of the

process. We suggest de�ning the upper level of the

hierarchical structure as a set that includes all prod-

uct characteristics. The following levels include a

number of subsets of the immediate upper level.

{ Step 4 will be applied depending on each particular

case.

Hereafter we explain with a �ctitious example how

to use the proposed methodology to identify capability

problems.

Example 1: A machining plant for two engine compo-

nents.

We can take as an example a machining plant in

which two engine components are machined (e.g. the

crankcases and the cylinder heads). Once the machin-

ing processes have been �nished, the quality of the out-

puts is checked in the quality tests in order to ensure

that the critical product characteristics are within the

speci�cation limits. In this machining plant 100 prod-

uct characteristics are checked for the crankcases and

150 for the cylinder heads. The capability evaluation

of both processes may need 250 indicators in a con-

trol panel in which PCIs of dimension one (PCI(1)) are

monitored for each product characteristic. This huge

amount of information may make it di�cult to identify

the part of the process with capability problems and

can lead to problems in decision making.

Applying the proposed methodology, in step 1 we

identify the cascading property. In step 2 we select

a PCI that satis�es the cascading property, namely

PCI(n). As it can be seen in �gure 2, in step 3 we de-

�ne four hierarchical levels. In the �rst level (Plant)

we �nd a set that includes 250 product characteris-

tics. In the second level, we �nd two sets of product

characteristics: one set with 150 product characteristics

(Machining Cylinder head), and the other set with 100

product characteristics (Machining Crankcase). In the

third level, Machining Cylinder head has several sons

(HoleA, HoleB , etc.). Finally, the fourth level includes

250 sets of single product characteristics. In step 4 of

the methodology, we suggest the following procedure:

First, the decision maker has to look at the PCI of the

upper level of the hierarchical structure (left hand of

�gure 2). If this index suggests that the whole plant

is capable, he or she does not need to continue with

the analysis because the values of the PCIs of the sub-

ordinated sub-processes, features and product charac-

teristics will be always higher (or equal) than the PCI

of the plant (see cascading property). If the index sug-

gests that the plant is not capable (which is the case

of �gure 2), he or she needs to go one level deeper and

analyze the capability of both sub-processes. In one re-

spect, since the machining of cylinder heads is described

as capable, he or she can stop the capability analysis of

this sub-process in this level. On the other hand, since

the machining of the crankcases is not capable, he or

she has to continue with the capability analysis and

go one level deeper (feature). The third level (feature)

suggests that the machining process is not capable for

HoleA and that the process is critical (PCI(4) between

1 and 1.33) for HoleC . Now, the decision maker has

to go one level deeper for both sets of product char-

acteristics in order to �nd the origin of the capability

problems. For HoleA he or she can see that the origin

of the capability problems is the feature Depth; and

thus, he or she has to re-calibrate the machine respon-

sible for this product characteristic in order to solve

this capability problem. For HoleC , he or she �nds an

example of the case in which all single product charac-

teristics have PCI(1) values higher than 1.33, although

the value of the PCI of the set is between 1 and 1.33.

Thus, he or she has to re-calibrate the machine respon-

sible for this set of product characteristics in order to

solve this capability problem.

Using this structured analysis to describe the ca-

pability of the plant, decision makers do not need to

analyze 250 indicators but only 16 (marked with an as-

terisk in �gure 2) in order to identify which part of the

process needs to be rearranged in order to make the

plant capable. With this structured analysis the origin

of the capability problems can be identi�ed easily.
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Fig. 2 Hierarchical structure of product characteristic in a control panel. The capability regarding each single product char-
acteristic is described by a generic univariate PCI (PCI(1)). The capability of each set of product characteristics is described
with a generic multivariate PCI for di�erent sets of n product characteristics (PCI(n)) that complies with the cascading
property.

3.2 Anticipating capability problems

One important aspect in process management is the

ability of taking preventive decisions to anticipate up-

coming events. In this sense, we explain hereafter how

to use the proposed methodology based on PCIs to re-

duce the amount of data in capability analysis to detect

process worsening. The main goal is to be able to de-

tect if the process is stable or is su�ering worsening over

time. Taking it into account, in this section we suggest

using the methodology to reduce the amount of data in

capability analysis as follows.

{ Step 1: We identify that the family of PCIs must

satisfy the detection of modi�cations property de-

�ned as follow:

The detection of modi�cations property: Given a mul-

tivariate production process, whose product charac-

teristics are continuously measured along the time

and follow a probability distribution that evolves
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over the time, we say that a multivariate PCI de-

tects modi�cations of the production process if the

value of the multivariate PCI varies when the prob-

ability distribution changes.

It must be pointed out that depending on the mon-

itoring case, it can be interesting to structure the

data hierarchically. In these cases, it should be also

necessary to satisfy the cascading property.

{ Step 2: We select a family of PCIs that satisfy the

detection of modi�cations property. It must be worth

noting that some PCIs found in the literature such

us [31] comply with the detection of modi�cations

property. In Appendix A the reader can �nd the

proof that [31] complies with the detection of mod-

i�cations property. However, many PCIs from the

literature do not comply with this property; e.g.,

[28], [25] and [26]. As it has been stated, if needed,

the family of PCIs must also satisfy the cascading

property.

{ Step 3: If we need to structure the information hi-

erarchically, we can proceed as in subsection 3.1.

{ Step 4 will be applied depending on each particular

case.

Hereafter, we explain with two �ctitious examples

how to use the proposed methodology to detect pro-

cess worsening. First (example 2) we discuss the case

of univariate processes; and second (example 3) we ex-

tend the explanation to the multivariate case. In the

�rst example, we illustrate how to anticipate capability

problems using PCIs but not how to reduce the amount

of data in capability analysis. This will be shown in the

second example.

Example 2: Monitoring a production process with one

product characteristic.

In this example we monitor the behavior of a pro-

duction process with one product characteristic; i.e., a

univariate production process. We start (�rst calendar

week) with a really good initial state in which all the

outputs are within the speci�cation region (SR) and

the process is centered within the SR. Given the fact

that the measures of the product characteristic of the

outputs follow a normal distribution, it is possible to

calculate univariate PCIs (PCI(1)). If we take a look

to �gure 3, we can see that in the second week all the

outputs are still within the SR. However, the process is

not centered on the middle of the SR now and thus, it is

worse than during the �rst week. In the third calendar

week, the process continues to worsen and the measures

LSL USLWeek 1

Week 2

Week 3

Week 4

Fig. 3 Representation of the worsening in the univariate pro-
duction processes of example 2.

of the product characteristic are displaced almost to the

USL. However, all of them are still within the SR. The

bad tendency of the process follows and in the fourth

calendar week there are some outputs outside the SR.

Applying the methodology proposed to detect as

soon as possible that the process is worsening, in step

1 we identify the detection of modi�cations property.

In step 2 we select one family of PCIs that complies

with the detection of modi�cations property. In step 3

we do not need to make sets of product characteristics

because the process of this example is univariate. Thus,

we have only one level in the hierarchical structure. In

step 4 we proceed as follows: It is really easy to point

out that the person in charge of the production process

may realize that the process is getting worse if he or she

monitors PCIs that comply with the detection of modi-

�cations property. The decision maker does not have to

wait until calendar week number four (moment in which

the process is generating outputs outside the speci�ca-

tions), but he or she can identify in advance the bad

tendency of the process and thus, he or she can try to

solve the problem (e.g. by recalibrating the production

machines) before having nonconforming parts. Thanks

to PCIs, decisions can be made in advance, which means

that errors and defects can be predicted and additional

production costs can be avoided.

Hereafter, we want to go a step further and try to

apply the same logic in multivariate production pro-

cesses where we need to reduce the amount of data by

using the following example.
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Example 3: Monitoring the evolution of a multivariate

production process.

In this example we monitor the capability of a pro-

duction process with six product characteristics (see �g-

ure 4).

Applying the proposed methodology, in step 1 we

identify the detection of modi�cations property as well

as the cascading property. In step 2 we select one fam-

ily of PCIs that complies with both properties. In step

3 we have two hierarchical levels: The upper level in-

cludes a set with all six product characteristics. The

lower level includes six sets of single product charac-

teristics. In step 4, we proceed as follows: Looking at

the evolution of the PCI of the upper level (PCI(6))

is enough to detect that the capability of the process

is worsening from week to week (i.e., week 2 is worse

than week 1, week 3 is worse than week 2). Thus, we

suggest monitoring the PCI of the upper level of the

hierarchical structure. Only when a detailed capabil-

ity analysis is required (for example when the decision

maker realizes that the process is worsening, and wants

to identify the origin of the worsening), he or she may

decide to go one step forward and to analyze the sec-

ond level of the hierarchical structure. As it can be seen

in �gure 4, the evolution over the time of the analyzed

process can be easily identi�ed if the PCI of the upper

level of the hierarchical structure is monitored. If deci-

sion makers monitor only PCIs of dimension one, he or

she may have problems to describe the evolution of the

process over the time. Imagine the case with hundreds

or thousands of relevant product characteristics. The

capability analysis would be really misleading.

With this example we have illustrated that using

the proposed methodology based on PCIs that com-

ply with both cascading and detection of modi�cations

properties helps the person in charge of the plant to

detect modi�cations of the production process over the

time. Thus, multivariate PCIs must be key indicators

when monitoring multivariate production processes in

the industry.

3.3 Comparing similar production processes

Managers and decision makers in production plants are

regularly forced to take decisions about issues such as

identifying production standards, selecting suppliers or

planning the opening of new plants. In this sense, they

are forced to use and to interpret the available informa-

tion in order to compare di�erent plants or processes.

The problem arises when the decision maker has too

much available data of the plants that he or she needs

to compare. One way to tackle the problem is reducing

the amount of data by using the proposed methodology.

Week 
1

Week 
2

Week 
3

Week 
4

Week 
5

PCI 1 PCI 2 PCI 3 PCI 4

PCI 5 PCI 6 PCI 

2.0

1.8

1.6

1.4

1.2

1.0

P
CI

s

(1) (1) (1) (1)

(1) (1) (6)

Fig. 4 Identi�cation of the bad tendency of the multivariate
production processes in example 3. The capability regarding
each single product characteristic is described by a generic
univariate PCI (PCI(1)). The capability of the set of six
product characteristics is described with a generic multivari-
ate PCI for sets of six product characteristics (PCI(6)) that
complies with both the cascading and the detection of modi-
�cations properties.

{ Step 1: We identify that the family of PCIs must

satisfy the cascading property.

{ Step 2: We select a family of PCIs that complies

with the cascading property.

{ Step 3: We suggest proceeding as in subsection 3.1.

{ Step 4 will be applied depending on each particular

case.

Hereafter, we suggest using the proposed methodol-

ogy in this paper for this application case with a new

example.

Example 4: Comparing three assembly plants.

We can take as an example an automotive company

that has three production plants for the assembly of its

cars. In each plant six product characteristics are de-

�ned as critical and must be checked in the quality tests

at the end of the lines before the cars are delivered to

the �nal consumers. Due to the increasing demand of

the market, the company wants to open a new produc-

tion plant based on one of the already existing ones. For

this reason, managers would like to have an overview of



8 David de-Felipe, Ernest Benedito

the performance of the actual plants in order to know

which plant must be used as a reference. In this context,

decision makers need a criterion to order the capability

of the three existing plants from high to low.

In step 1 we identify the cascading property. In step

2 we select a family of PCIs that complies with the

cascading property. In step 3 we suggest having a hier-

archical structure with two levels. The upper level is a

set including all product characteristics, and the lowest

level includes six sets of single product characteristics

as it can be seen in table 1. In step 4 we suggest pro-

ceeding as follows: The decision maker has to look at

the value of the PCIs of the upper level of the hierarchi-

cal structure (PCI(6)) for the three plants. Doing this,

he or she will �nd that plant A presents the better ca-

pability, followed by plants B and C. If he or she wants

to go deeper into the topic, he or she can use the values

of the PCIs in the lowest level of the hierarchical struc-

ture. In this way, decision makers can have an overview

of the capability of the three plants and they only need

to compare one PCI for each plant. This fact reduces

the necessary amount of data in decision making.

Table 1 Capability analysis between plants of example 4.
The capability regarding each single product characteristic is
described by a generic univariate PCI (PCI(1)). The capabil-
ity of the set of six product characteristics is described with a
generic multivariate PCI for sets of six product characteristics
(PCI(6)) that complies the cascading property.

PCI Plant A Plant B Plant C

PCI
(1)
1 1.82 1.92 0.98

PCI
(1)
2 1.43 1.29 2.56

PCI
(1)
3 1.93 1.86 1.93

PCI
(1)
4 2.73 1.74 1.93

PCI
(1)
5 1.39 2.61 1.67

PCI
(1)
6 1.88 1.19 1.88

PCI(6) 1.38 1.12 0.97

4 Case of study

Once several application cases with �ctitious examples

have been introduced in section 3, a case of study based

on a real multivariate production process of the auto-

motive industry is presented. The BMW Group is rec-

ognized worldwide for being one of the top producers

of petrol engines of the world. The assembly process

of petrol engines at the BMW Group consists of sev-

eral manual and automated processes of mechanical,

hydraulic and electrical components that are highly in-

uenced. In order to ensure the quality of the assembled

engines, a quality test is done at the end of the assem-

bly line, in which eight critical product characteristics

are analyzed. All engines described as nonconforming

are reworked before they are delivered to the �nal con-

sumers.

In this example we discuss the methodology based

on PCIs from section 2. In step 1 we identify the cas-

cading and the detection of modi�cations properties. In

step 2 we select the MCpk index in [31]. In appendix

A the proof that the MCpk index in [31] complies with

both properties can be found. By de�nition, the MCpk
index in [31] for the case with n = 1 is equivalent as the

Cpk index in [12]. Thus, for the present case of study we

use the Cpk index in [12] as PCI(1). In step 3 we group

the product characteristics and we generate a hierarchi-

cal structure with two levels. In the upper level we �nd

a set of eight product characteristics. On the lower level

we �nd eight sets of single product characteristics. We

discuss step 4 using �gure 5 and tables 2 and 3 . To be

more illustrative, in this example we are also monitoring

the direct quote (DQ) of the process. The direct quote

(DQ) represents the proportion of outputs described as

conforming in the quality tests; or in other words, the

proportion of outputs whose measures of each product

characteristic are within the speci�cation limits.

Table 2 shows the capability analysis obtained in

the quality tests of the assembly lines of the engines in

a plant named A. The measures of the product charac-

teristics have been extracted from the database of the

BMW Group regarding the activity of twelve months.

The values of the Cpk in [12] and the MCpk in [31] are

tabulated in table 3 and describe the capability of the

process for each month.

The capability indices from table 2 are monitored in

�gure 5. In this �gure it is possible to see that looking

at the temporary evolution of the MCpk index, it is re-

ally easy to realize that the process had a bad tendency.

As it can be seen looking at the evolution of the direct

quote, a reduction in performance of the process was de-

tected in November and the problem was already solved

in December. If the decision maker had monitored the

process using the MCpk index, he or she could have

detect the bad tendency before (maybe in September).

Thanks to an early detection of the bad tendency of

the process, the recalibration of the assembling stations

could be carried out at the right moment: before the

produced outputs are outside the speci�cations. This

fact would reduce additional production costs such as

rework costs and would guarantee the quality of the

process.

Following with this example, the petrol engines are

assembled in several plants and in di�erent countries.

Now, we want to compare the capability during the
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Table 2 Capability analysis in plant A. The capability regarding each single product characteritic is described by the Cpk
index in [12]. The capability of the set of eight product characteristics is described with the MCpk in [31] of dimension eight.

PCI / DQ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cpk1 1.73 1.60 1.65 1.81 1.69 1.36 1.47 1.37 1.31 1.26 1.12 1.65
Cpk2 2.44 2.08 1.91 2.5 2.34 1.88 2.12 2.13 1.93 2.01 2.02 2.06
Cpk3 2.49 2.36 2.09 2.43 2.43 2.23 2.16 2.23 2.11 2.03 1.96 2.09
Cpk4 2.36 1.78 1.99 2.19 2.23 1.73 1.91 1.65 1.55 1.45 1.31 1.85
Cpk5 2.45 2.19 2.05 2.30 2.36 1.81 2.00 1.81 1.77 1.59 1.33 2.13
Cpk6 3.15 2.40 2.38 2.69 2.62 2.45 2.72 2.48 2.41 2.32 2.2 2.22
Cpk7 3.26 2.91 2.55 2.55 2.49 2.47 2.24 2.39 2.62 2.22 2.00 2.07
Cpk8 1.91 2.04 2.01 2.36 2.52 1.98 1.98 1.77 1.82 1.48 1.27 1.94
DQ 100.00 100.00 100.00 100.00 100.00 99.87 100.00 100.00 99.92 99.71 99.18 99.97

MCpk 1.72 1.59 1.65 1.81 1.69 1.36 1.47 1.37 1.31 1.25 1.10 1.64
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Fig. 5 Monitoring the engine assembly process in the case of study. The capability regarding each single product characteritic
is described by the Cpk index in [12]. The capability of the set of eight product characteristics is described with the MCpk
index in [31] of dimension eight.

month of May of plant A and a plant named B. Ta-

ble 3 shows the capability analysis obtained during this

month in both plants. Thanks to the multivariate PCI,

it is really easy to see that the production in plant A

is better (more capable) than in plant B. Furthermore,

in this example we �nd a case in which all single prod-

uct characteristics are capable (Cpk indices higher than

1.33) although the process is globally critical (MCpk
index between 1.0 and 1.33).

5 Conclusions and Outlook

Although the usage of multivariate PCIs is not extended

in the industry, these indices can help decision makers

and can simplify the monitoring of multivariate pro-

duction processes. Multivariate PCIs complying with

the cascading and the detection of modi�cations prop-

erties can be used in the industry to simplify decision-

making. In this article we introduced a methodology

based on multivariate PCIs that may help decision mak-

ing in three monitoring aspects: a) to identify capa-
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Table 3 Capability Analysis between plants of example 4.
The capability regarding each single product characteritic is
described by the Cpk index in [12]. The capability of the set
of eight product characteristics is described with the MCpk
index in [31] of dimension eight.

PCI Plant A Plant B

Cpk1 1.69 1.56
Cpk2 2.34 1.82
Cpk3 2.43 2.35
Cpk4 2.23 1.41
Cpk5 2.36 1.53
Cpk6 2.62 1.99
Cpk7 2.49 2.45
Cpk8 2.52 1.34
MCpk 1.69 1.29

bility problems; b) to anticipate capability problems;

and c) to compare the performance of multivariate pro-

duction processes. In this paper it has been illustrated

with some application cases that using the proposed

methodology based on multivariate PCIs provides an

added value of great interest for managers and deci-

sion makers because the necessary amount of data for

decision making can be reduced. The proposed method-

ology is applied in an example based on a real case of

the industry. Once managers and decision makers are

convinced to use multivariate PCIs as key indicators

in process monitoring, the next challenge is to �nd the

best way to introduce them in online processes; as well

as the de�nition of acceptable and unacceptable val-

ues and tendencies of the multivariate PCIs. This may

help decision makers to identify easily bad behaviors of

multivariate processes. Another challenge could be the

detection of uctuations of the multivariate PCI values

due to the variability of the measured data.
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A Proof that the multivariate PCI in [31]

complies with the cascading and the detection

of modi�cations properties

As it has been stated in section sections 3 and 4, the MCpk
index in [31] complies with both cascading and detection of
modi�cations properties. Hereafter we proof that the MCpk
index in [31] complies with both properties. With this aim, it
is necessary to know how to calculate the value of the MCpk
index in [31] from the measures of a multivariate production
process. For the convenience of the reader, we explain how to
calculate the value of the MCpk index in [31] in Appendix B.

The cascading property

In [31], the region de�ned by the nonconforming parts
in the most critical direction for each single product char-
acteristic i of S1 is RcritS1;i = f(x1; :::; xi; :::; xm) 2 <m j
�1 < xi < LSLig if �i � (LSLi+USLi)=2 and RcritS1;i =
f(x1; :::; xi; :::; xm) 2 <m j USLi < xi < +1g if �i >
(LSLi + USLi)=2. Then, the region de�ned by the noncon-
forming parts in the most critical direction for the set S1 is
RcritS1

= RcritS1;1 [ : : : [RcritS1;m. Then, the proportion
of nonconforming parts in the most critical direction of S1
is NCPcrit;S1

= p(x 2 RcritS1
) where x are the measures

of the product characteristics in S1. Analogously, for S2 we
have RcritS2;i, RcritS2

and NCPcrit;S2
. As S2 � S1, then

NCPcrit;S2
� NCPcrit;S1

.
From (1) the MCpk is a non-increasing continuous func-

tion of NCPcrit; and then, M1 = �1
3
��1(NCPcrit;S1

) �

�1
3
��1(NCPcrit;S2

) =M2.

The detection of modi�cations property

MCpk (1) is a continuous function as it is the composi-
tion of continuous functions. By de�nition, the MCpk index
is a function that depends on the mean vector � and the
variance-covariance matrix �. Thus, given a mean vector �
and a variance-covariance matrix �, the MCpk index can be
obtained.

Variations of production factors lead to modi�cations of
the mean vector and the variance covariance matrix described
by the measures. Consequently, variations of the production
factors lead to variations in the value of the MCpk index.

B The multivariate PCI in [31]

The MCpk index (1) in [31] can be calculated by obtain-
ing the expected total proportion of nonconforming parts in
the most critical direction of a Set S of v product charac-
teristics (NCPcrit;S) and transforming it into a multivariate
PCI through the cumulative distribution function (�) of the
standard normal distribution N(0,1):

MCpk = �
1

3
��1(NCPcrit;S) (1)

According to [31], given a set S of v product character-
istics of a given production process, the region de�ned by
the nonconforming parts in the most critical direction for
each single product characteristic i (i 2 N; i 2 [1; v]) of S is
RcritS;i = f(x1; :::; xi; :::; xv) 2 <v j �1 < xi < LSLig if
�i � (LSLi + USLi)=2 and RcritS;i = f(x1; :::; xi; :::; xv) 2
<v j USLi < xi < +1g if �i > (LSLi+USLi)=2. Then, the
region de�ned by the nonconforming parts in the most critical
direction for the set S is RcritS = RcritS;1 [ : : : [RcritS;v.
Then, the proportion of nonconforming parts in the most crit-
ical direction of S is NCPcrit;S = p(x 2 RcritS) where x are
the measures of the product characteristics in S.

As it has been seen, the value of theMCpk index in [31] is
related with the expected proportion of nonconforming parts
of the analysed production process through equation (1). This
relation is the same as the one proposed in [32] when study-
ing the Cpk index in [12]. For this reason, when analysing
the capability of univariate production processes (i.e. pro-
duction processes with a single product characteristic) using
the MCpk index in [31] with v = 1, the MCpk index will
have exactly the same value as the Cpk index in [12].


