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 LOMA, UMR 5798, CNRS, Université de Bordeaux, F-33400 Talence, France 

 

 

(*) Corresponding author: pol.lloveras@upc.edu 

Phone: +34 934010824 

 

Keywords: High pressure, polymorphism, two-component system 

 

Abstract  
The temperature-composition phase diagram of the two-component system 1-Br-

adamantane and 1-Cl-adamantane has been determined by means of thermal analysis 

techniques and X-ray powder diffraction from the low-temperature phase to the liquid state.  

The crossed isopolymorphism formalism has been applied to the two-component system to 

infer the normal pressure properties of the orthorhombic metastable phase of 1-Cl-

adamantane at normal pressure. The experimental pressure-temperature phase diagrams for 

the involved compounds are related to the two-phase equilibria determined at normal 

pressure and inferences about the monotropic behavior of the aforementioned orthorhombic 

phase are discussed. 
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1. Introduction 

 

One of the major challenges of the solid-state field is not only the understanding of the 

structural and thermodynamic factors ruling the polymorphism but also the ability to 

predict the crystalline phases of molecular materials for both large technological systems as 

well as for fundamental thermodynamics. The classical understanding of polymorphism has 

been commonly restricted to the phase stability of a material as a function of temperature, 

but strictly speaking stability should be accounted within the pressure-temperature space 

obtained from the classical Gibbs thermodynamics. Many of the physical and chemical 

properties for simple or complex systems are known at or near atmospheric pressure while 

effects of the high pressures remain still unexplored. In particular, although high-pressure 

studies have become of great interest for metal, semiconductor or, in general, mineral 

systems, molecular compounds with increasing complexity remain to be understood under 

pressure and in this particular field, polymorphism concept refers usually to the ability of a 

substance to adopt more than one crystalline form in the solid state without any comment 

about the pressure variable.  

Even more, the field of phase diagrams involving at least two chemical species, the 

temperature-composition (T-X) phase diagrams, is generally decoupled from the field of the 

polymorphic behavior at high pressure. Nevertheless, thermodynamics imposes an univocal 

relation between the controlled pressure and temperature conditions at which a polymorph 

should exist and the physical properties derived at normal pressure and, hence, the 

properties that can be extracted from a temperature-composition phase diagram [1-15]. The 

other way around also holds, properties derived for stable or metastable phases emerging in 

the temperature-composition phase diagrams can provide information about the nature of 

high-pressure phases even when they do not exist as stable phases at normal pressure. 

This work concerns the experimental determination of the pressure-temperature phase 

diagrams of 1-Br-adamantane and 1-Cl-adamantane and their two-component system, as 

well as the connection between these rarely combined fields. 

The adamantane molecule (C10H16) is formed by a 10-carbon cage made of four 

cyclohexane rings in chair conformation. The adamantane compound is known to display a 

wide temperature range of the plastic phase (from 208 to 543 K) [16] due to the molecular 

spherical shape (Td symmetry). The plastic phases are orientationally disordered (OD) 

phases in which the molecules perform reorientations more or less freely among a set of 

distinguishable number of equilibrium orientations displaying usually a high space-group 

symmetry lattice (hexagonal or cubic). By the replacement of one or more hydrogen atoms 

in the adamantane molecule by a substituent X (X = OH, F, Cl, I, etc.) the symmetry of the 

molecule, and thus intermolecular interactions and steric effects change. By a single 

substitution on a tertiary carbon, the series of 1-X-adamanane, with C3v point-group 

symmetry, is derived. 

The phase behavior of the 1-X-adamantane compounds varies according to the substituent. 

Most of these derivatives show up an OD phase prior to melting, for example, 1-

chloroadamantane (1-ClA, hereinafter), 1-bromoadamantane (1-BrA) and 1-

cyanoadamantane [17-24]. These compounds may also have one or several solid−solid 

transitions, as for 1-BrA, which exhibits three solid-solid phase transitions, one of them 

being at very low temperature (31.0 K), which will not be considered in this work. Table 1 

shows the thermodynamic properties of 1-ClA and 1-BrA. As for 1-ClA, the low-
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temperature monoclinic (space group P21/c) phase transforms to the OD phase (space group 

Fm-3m) at ca. 249 K which melts at 439 K [25]. As for 1-BrA, the lowest temperature 

phase, isostructural to the monoclinic P21/c phase of 1-ClA [26], transforms to an 

intermediate orthorhombic (space group Pmcn) phase at ca. 311 K [27]. On further heating, 

such phase transforms to the high-temperature OD (Fm-3m) phase [28] which melts at 392 

K. 

Concerning 2-X-adamantane (with C2v molecular symmetry) obtained from the substitution 

through at a secondary carbon, much less reactive, the rich polymorphic behavior has 

recently been revealed for X = Cl, Br and O [17,18,29].  

 

 

Table 1. Transition temperatures T and enthalpy (H) and entropy changes (S) derived 

from DSC calorimetric measurements, volume changes determined from X-ray powder 

diffraction measurements (v
XR

), slope of the pressure-temperature two-phase equilibria 

derived from the experimental pressure-temperature phase diagram (dT/dP)
exp

 and from the 

application of the Clapeyron equation (dT/dP)
C
. M refers to the low-temperature 

monoclinic (P21/c) phase, O to the intermediate orthorhombic phase (Pmcn) and FCC for 

the face-centered cubic (Fm-3m) orientationally disordered (OD) phase. The superscript S 

and m refer to stable and metastable phases, respectively. Numbers in italic refer to 

metastable phases. 
 

 1-Br-adamantane  

Property M
S 
 O

S
 M

S
 FCC

m
 O

S
  FCC

S
 FCC

S
  L

S
 Ref. 

T / K 282.2  0.1  309.9  0.1 391.8  0.2 [30] 

 279
 

 310.5
 

396.5
 

[32] 

 282.6  1.0 308.2  1.5
£
 310.8  1.0 392.0  1.5

 
 This work 

H / kJ mol
-1

 1.387 0.012  7.51  0.15 3.97  0.80 [30] 

 0.88
 

 6.93
 

3.83
 

[32] 

 1.26  0.06 7.84  0.55
£
 6.69  0.35 3.25

 
 0.20 This work 

S / J mol
-1

 K
-1

 4.92  0.04  24.2  0.5 10.1  0.2 [30] 

 4.46  0.22 25.43  2.0£ 21.54
 
 1.1 8.27

 
 0.51 This work 

v
XR

 (P = 0.1MPa) / cm
3
 mol

-1
 1.26  0.10 9.70  0.16 8.56  0.03 - This work 

(dT/dP)
C 

 / K MPa
-1

 0.281  0.036 0.381  0.040 0.397  0.022 - This work 

(dT/dP)
exp

 / K MPa
-1

 0.251  0.015  0.336  0.006 0.268  0.019 This work 

 1-Cl-adamantane  

Property M
S 
 O

m
 M

S
 FCC

S
  O

m
 FCC

s
  FCC

S
  L

S
  Ref. 

T / K  248.6  0.1  439.7  0.1 [31] 

  246
 

 442.5
 

[32] 

 269.6  1.5
£
 249.5  1.0 246.8  1.5

£ 
438.6  1.5 This work 

H / kJ mol
-1

  4.30  0.02
 
  5.53  0.01 [31] 

  6.01
 

 4.87
 

[32] 

 0.76  0.08
£
 5.96  0.30 5.44  0.56

£
 4.22  0.25 This work 
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S / J mol
-1

 K
-1

  17.3  0.01  17.3  0.1 [31] 

 2.83  0.30 £ 23.88 1.20 22.06  2.27£ 9.61  0.57 This work 

v
XR

 (P = 0.1MPa) / cm
3
 mol

-1
 2.12  0.30# 7.95  0.51 6.09  0.91# - This work 

(dT/dP)
C
 / K MPa

-1
 0.71  0.21 0.33  0.04 0.28  0.08 - This work 

(dT/dP)
exp

 /   K MPa
-1

 - 0.270  0.005 - - This work 

£
 Extrapolated from the two-component system assessment. 

# 
From the X-ray diffraction measurements as a function of the composition. 

 

2. Experimental 

 

2.1. Materials 

 

1-BrA and 1-ClA were purchased from Aldrich with purity of 99% and 98% (as 

summarized in the Supplementary Material in Table S1), respectively, and used as 

received since the measured phase transition and melting points agreed well with those 

previously reported [30,31]. Two-component mixtures were prepared from the melt of the 

materials in the selected proportions and fast cooling to room temperature.  

 

2.2 Thermal analysis 

 

Differential Thermal Analysis (DTA) at normal pressure. Thermal properties of the phase 

transitions (temperatures and enthalpy changes) were determined by means of a Q100 from 

TA Instruments using heating and cooling scanning rates of 2 K min
-1

. Sample masses 

about 10 mg were weighted using a microbalance sensitive to 0.01 mg and were 

hermetically sealed into aluminum crucibles under a controlled N2 atmosphere. 

 

High-Pressure (HP) Differential Thermal Analysis. Measurements were carried out at 2 K 

min
-1

 heating rate by means of an in-house built high-pressure differential thermal analyzer 

similar to Würflinger’s apparatus [33]. Temperature and pressure ranges were between 200 

and 450 K and 0 and 300 MPa, respectively. Samples were mixed with inert perfluorinated 

liquid (Galden, Bioblock Scientifics, France) before the high-pressure Sn pans were 

hermetically closed to make sure that in-pan volumes were free of air. DTA runs at normal 

pressure using the Q100 under ordinary conditions were performed prior to the high-

pressure differential thermal analyses in order to verify that perfluorinated liquid was 

chemically inactive when mixed with both compounds.  

 

2.3. X-ray powder diffraction 

 

High-resolution X-ray powder diffraction measurements using the Debye–Scherrer 

geometry and transmission mode were performed with a horizontally mounted INEL 

cylindrical position-sensitive detector (CPS-120) made of 4096 channels (0.029
o
 2-

angular step) [34]. Monochromatic Cu-K1 ( = 1.54056 Å) radiation was selected by 

means of an asymmetrically focusing incident-beam curved germanium monochromator. 

The generator power was set to 40 kV and 25 mA. Measurements as a function of 
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temperature were performed using a liquid nitrogen 700 series Cryostream Cooler from 

Oxford Cryosystems.  

External calibration was performed by means of cubic phase Na2Ca3Al2F4. The peak 

positions were determined by pseudo-Voigt fittings. Powder samples were introduced into 

0.5 mm diameter Lindemann capillaries which were rotated around their axes during data 

collection to improve averaging of the crystallites. The acquisition times were of at least 

120 min for the low-temperature ordered phases and 60 min for the high-temperature OD 

FCC phases. Stabilization times of at least 10 min at each temperature before the data 

acquisition were preset. 

Indexing of the X-ray powder diffraction patterns, structure solutions, and Pawley and 

Rietveld refinements were performed using Materials Studio Program [35]. 

 

 

3. Results 

 

3.1 Characterization of materials 

 

3.1.1. 1-Br-adamantane (C10H15Br) 

The crystal structure of the low-temperature phase determined by means of a single crystal 

study as monoclinic (M) space group P21/c [26] with Z = 4 was checked by X-ray powder 

diffraction. At 282 K it transforms to an orthorhombic (O) phase, the details of this 

structure will be given in a later work. At 309.9 K such phase transforms to the 

orientationally disordered (OD) face-centered cubic (FCC) phase, which remains up to the 

melting point at ca. 392 K.  

X-ray powder diffraction experiments as a function of temperature were carried out from 

90 K up to the liquid state. Lattice parameters of the low-temperature M and O ordered 

phases were refined by applying Rietveld profile refinements by means of the Materials 

Studio Program [35] on the basis of the proposed structure for the M structure [26] and by 

using a rigid molecule approach for the O phase. The experimental and calculated profiles 

together with the difference between them for both phases are shown in in the 

Supplementary Material in Fig. S1. The M lattice parameters agree quite well with those 

previously published [26]. At 210.0 K they have been determined to be a = 10.1125(5) Å, b 

= 6.8485(3) Å, c = 13.2388(6) Å and  = 90.246(3)°, rendering V/Z = 229.21(2) Å
3
. As for 

the O phase the space group was determined as Pmcn and lattice parameters at 290 K were 

found to be a = 10.119(7) Å, b = 6.8936(5) Å and c = 13.6043(8) Å, rendering V/Z = 

237.25 (2) Å
3
.  

 

The refined lattice parameters were fitted as a function of the temperature using standard 

least squares methods for each parameter. The agreement between the calculated and 

experimental values has been accounted by the reliability factor, defined as 

  22 /)( cco yyyR , where yo and yc stand for the measured and calculated lattice 

parameters, respectively. Table 2 gathers the coefficients of the polynomial equations and 

Fig. 1 depicts both experimental values and polynomials for the monoclinic phase. 
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Fig. 1. Lattice parameters of 1-BrA for the low-temperature monoclinic and orthorhombic 

(a and b) and for OD FCC (c) phases as a function of temperature. 

 

Through HP DTA experiments the M-O, O-FCC and FCC-L two-phase equilibria as a 

function of pressure were determined. The so-obtained pressure-temperature phase diagram 

is displayed in Fig. 2(a) (for the numerical values see Table S2 in the Supplementary 
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Material). Although the temperature range of the OD phase usually increases with pressure 

[36-38], the OD phase for 1-BrA has an opposite behavior. 

 

 
Fig. 2. Pressure−temperature phase diagram of 1-BrA (a) and 1-ClA (b) obtained from 

high-pressure differential thermal analysis.  

 

3.1.2. 1-Cl-adamantane (C10H15Cl) 

The polymorphism of 1-ClA is simpler than that of 1-BrA. It reveals the existence of a 

monoclinic low-temperature phase, with a space group P21/c, so isostructural to the low-

temperature monoclinic phase of 1-BrA as revealed by Foulon et al. [25]. The authors also 

concluded that the size of the molecule, i.e., of the halogen substituent, controls the lattice 

dimension and, as a consequence, the lattice parameters. At 249.5 K the monoclinic phase 

transforms to an OD FCC phase which melts at 438.6 K. The OD FCC phase was also 

found to be isostructural (Fm-3m) to the high-temperature OD phase of 1-BrA. The result 

of the Rietveld refinement of the monoclinic phase of 1-ClA is shown in the 

Supplementary Material in Fig. S2. Lattice parameters were fitted as a function of the 

temperature and they are displayed in Fig. 3. Table 2 gathers the coefficients of the 

polynomial equations for the variation of the lattice parameters as a function of 

temperature. 

 

The pressure-temperature phase diagram for the M-FCC equilibrium [Fig. 2(b)] was 

determined by means of HP DTA. As for the melting of 1-ClA, the temperature domain 

was beyond the available temperature range of the experimental device. 
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Fig. 3. Lattice parameters of 1-ClA for the low-temperature monoclinic (a and b) and for 

OD FCC (c) phases as a function of temperature.  

 

Table 2. Polynomial equations p=po+p1T+p2T
2
 (T in K and p in Å or in 

o
 for  parameter) 

to which the lattice parameters were fitted as a function of temperature. R is the reliability 

factor.  

 

Phase Temperature 

range (K) 

Parameter po 

 

p1·10
3
 p2·10

5 
R·10

5
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1-Br-adamantane 

 
M (P21/c) 90-280 K a 9.991(8) 0.68(9) -0.05(2) 8.2 

  b 6.773(3) 2.01 (4) 0.07(9) 6.3 

  c 13.238(3) -1.79(6) 0.86 (2) 4.0 

   90.27(3) 1.36(3) -0.71(2) 0.2 

       

O (Pmcn) 285-310 K a 10.914(18) -5.97(1) 1.11(2) 0.9 

  b 6.676(4) 0.75(1)  0.008 

  c 10.314(5) 19.4(4) -2.79(6) 0.5 

       

FCC 315-370 K a 9.255(11) 2.54(3)  0.01 

 

 

1-Cl-adamantane 

 
M (P21/c)  90-240 K a 9.888(9) 0.86(11) -0.14(3) 0.03 

  b 6.754(1) 0.17(2) 0.08(4) 0.001 

  c 13.010(17) -0.28(22) 0.49 (6) 0.02 

  (&)
 89.78(15) 8.18(31) -6(2) 0.007 

       

FCC 250-440 K a 9.308(5) 2.52(3) -0.12(4) 14 

       
(&)

For the  angle of M phase of 1-ClA the polynomial is third-order, with third-order coefficient 1.4(4)·10
-7

. 
 

3.2. Two-component system 

 

3.2.1 Thermal Analysis 

Solid-solid transition and melting temperatures together with the associated enthalpy 

changes were determined by means of DTA at normal pressure. The resulting temperature-

composition phase diagram is represented by Fig. 4. The two-component system displays a 

metatectoid three-phase equilibrium at 274.5  1.0 K sharing M (XM = 0.585), O (XO = 

0.60) and FCC (XFCC = 0.71) phases. It clearly appears that the M and the FCC phases for 

both components form continuous solid solutions (see crystallographic characterization). 
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Fig. 4. 1-BrA + 1-ClA phase diagram at normal pressure. Symbols correspond to 

experimental data. Empty squares (□) denote T
 [M+O]-FCC

. Filled squares (■) denote T
 M-[M+O]

. 

Empty triangles (Δ) denote T
 [M+FCC]-FCC

. Filled triangles (▲) denote T
 M-[M+FCC]

. Empty 

diamonds (◊) denote T
 [O+FCC]-FCC

. Filled diamonds (♦) denote T
 O-[O+FCC]

. In panel (a), the 

metastable temperatures T
 M-FCC

 (large ▲) for pure 1-BrA and T
 M-O

 (large ■) and T
 O-FCC

 

(large ♦) for pure 1-ClA are shown. Lines in (a) are fits to the data whereas lines in (b) 

correspond to the calculated phase diagram by means of the common tangent construction 

method as described in Sec. 3.2.3. 

 

The enthalpy changes involved in the solid-solid transitions and the melting process 

derived from the thermal measurements are depicted in Fig. 5. 
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Fig. 5. Experimental (full symbols) enthalpies of solid-solid transitions and melting of the 

FCC phase as a function of the mole fraction. Empty symbols at X = 0 and X = 1 

correspond to the extrapolated values for transitions involving at least one metastable 

phase, whereas empty triangles are calculated according to eq. (6) (see text). 

 

3.2.2. Crystallographic characterization 

Monoclinic mixed crystals. The monoclinic phases for both 1-BrA and 1-ClA compounds 

have been found isostructural (P21/c) and the continuous formation of mixed crystals, as 

revealed by the thermal analysis (Figs 4 and 5), as a function of composition has been 

verified at 225 K. Fig. 6 shows the continuous variation of the monoclinic lattice 

parameters as a function of mole fraction. 

 

Orthorhombic mixed crystals. The miscibility for the orthorhombic phase is truncated by 

the emergence of the [O+FCC] two-phase equilibrium (see Fig. 4). Lattice parameters were 

determined at 290 K (see Fig. 7) for the composition range comprised between X = 0 and X 

= 0.4. 
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Fig. 6. Monoclinic (lower panels) and FCC (top panel) lattice parameters at 225 and 348 K, 

respectively, as a function of mole fraction. 

 

 

 
Fig. 7. Orthorhombic lattice parameters and volume per molecule at 290 K as a function of 

mole fraction. The empty symbols correspond to the parameters values of the metastable 

orthorhombic phase of 1-ClA compound. 
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Face-centered cubic mixed crystals. To account for the existence of complete miscibility of 

the FCC phases, X-ray powder diffraction was conducted at 348 K. Lattice parameters for 

such a domain are depicted in Fig. 6 (top panel). The continuity of the variation of the 

lattice parameter together with the T-X loop found through thermal analysis ensure the 

isomorphism relationship between the FCC phases of the pure components. 

 

3.2.3. Thermodynamic assessment 

The thermodynamic analysis has been based on the crossed isopolymorphism [3,6,7,11,13] 

and the Equal-Gibbs-Curve concepts [39]. We briefly describe both concepts for the sake of 

completeness. 

The crossed isopolymorphism is sketched in Fig. 8 for this case. The form M is stable for 

component A and for component B, while the form O is only stable for component A (O is 

metastable for B), FCC being stable for both components. The “stable” phase diagram can 

be looked upon as the stable result of three, each other crossing, two-phase loops. The three 

crossing loops imply a stable three-phase equilibrium (M+O+FCC), which, in the case of 

Fig. 8, is a metatectoid, as for the phase diagram (see Fig. 4) of the present study. 

Any phase  we consider in which (1 - X) mole of component A mixes with X mole of 

component B, is characterized by its own Gibbs function 

      ),()1ln()1()ln()()1(, ,*,*, XTGXXXXRTTXTXXTG E

BA

            (1) 

where T stands for the temperature, R the gas constant, )(*, Tk

  , k = A, B denote the molar 

Gibbs energies of the components, and ),(, XTGE   the excess Gibbs energy which 

accounts for the deviation of the mixture in the  phase from ideal-mixing behavior 

produced by interactions between molecular species A and B with regard to the interactions 

between molecules of the same species (A-A and B-B). 
 

 
Fig. 8. Solid and dashed curves represent stable and metastable behavior, respectively. 

Filled and empty circles represent the stable and metastable transition points, respectively. 

 

To determine the two-phase equilibrium region between two phases ( and ), i.e., the 

concentration limits of the loop for the coexisting phases, the well-known equilibrium rule 

minimizing the Gibbs energy of the mixed crystal A1-XBX at each temperature, which 

consists on the common tangent to both Gibbs energies characterizing the phases of the 

corresponding equilibrium, G

(T,X) and G


(T,X), must be determined. For this task, the 

molar Gibbs energies of the pure compounds A and B as well as the excess properties for 
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each phase are required. Because of the lack of data on *,
k , k = A, B, the simplified 

treatment of the equal-Gibbs curve (EGC) method will be used [39]. 

To do so, the difference between the Gibbs energies of phases  and  is written as  

),()()()1(),(),(GX)G(T, XTGTXTXXTGXT E

BA











                 (2) 

where )(Tk

   is   ,,   kk  (k = A, B) and ),( XTGE
  is the excess Gibbs energy 

difference between the considered phases, i.e., ),(),( ,, XTGXTG EE   . 

The existence of equilibrium at a given temperature implies necessarily that the Gibbs 

functions of the  and  phases intersect, and thus the locus of the points of intersection in 

the TX plane (the EGC) will be the result of equation: 

0),(G  XTEGC


                                                                                                                  (3) 

)(* Tk  can be approximately written as )(S* TTkk  
 , neglecting the heat capacities 

differences between both phases, being 

kT the temperature of the  transition for the 

component k, the EGC temperature can be deduced from eq. (3) as: 















BA

E
EGC

BA

BA

SXSX

XG

SXSX

HXHX
T






















)1(

)(

)1(

)1(
EGC                   (4) 

where *

kH

 and *

kS

  are the enthalpy and entropy changes of the     transition for the 

component k. The first term of the right side of eq. (4) represents the EGC temperature for 

the [+] equilibrium when 0),(  XTG E
  and is only pure component-dependent and thus 

can be obtained from pure component data. Nevertheless, some of the metastable properties 

as heats of transition and transition points must be obtained in an indirect manner when a 

crossed-isomorphism is considered.  

A first estimation of the EGC curve can be done from the experimental data of the two-

phase equilibrium. By an iterative procedure performed by means of the LIQFIT program 

[40] based on Oonk’s method enables one to obtain the values of the excess Gibbs energy 

differences at the EGC temperature by means of eq. (4). More details on the computational 

procedure can be found in ref. [39]. Because of the lack of the thermodynamic excess 

properties of any phase, only excess Gibbs energy differences ( EG

 ) have been 

determined. 

The description of the difference of the excess magnitudes has been done through a two 

temperature-independent parameter Redlich–Kister polynomial function: 

 )21()1()( 21 XFFXXXF E  






                          (5) 

which in the lack of strong local anomalies is fairly adequate and physically 

understandable: 1F
  expresses the magnitude of the excess property difference at the 

equimolar composition and 2F
 , gives account for the asymmetry of such a function with 

respect to X = 0.5. 

 

[FCC+L] two-phase equilibria. As for the [FCC+L] equilibrium the evidence of the 

isomorphism relationship between the stable FCC phases of 1-BrA and 1-ClA as 

demonstrated by the continuity of the (T,X) loop as well as by the lattice cubic parameter 

(continuous formation of mixed crystals), thermodynamic assessment can be easily done 
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[Fig. 4(b)] by applying eq. (2) for  = FCC and  = L. The experimental temperature and 

enthalpy and entropy changes of the pure compounds can be found in Table 1. 

 

Crossed isopolymorphism: [M+FCC], [O+FCC] and [M+O] two-phase equilibria. The 

crossed isopolymorphism concept entails for each phase of component A (or B) the 

existence of an isomorphous (stable or metastable) phase for compound B (or A). Thus, 

extension of the [M+O] and [O+FCC] loops at X = 1 and the [M+FCC] at X = 0 provide the 

metastable phase transitions M to O and O to FCC for 1-ClA and, similarly, from M to 

FCC for 1-BrA. These extrapolations concerning temperatures are indicated in Fig. 4(a). 

Fortunately, the stable two-phase equilibria extend over the ca. 50% of the mole 

composition, so the extrapolation entails reasonable errors.  

 

 

Assuming that heat capacity values for the different phases are close and owing to the 

closeness of the transition (stable or metastable) temperatures, the associated enthalpy 

changes (Fig. 5) can be combined by: 

FCCOOMFCCM HHH                                (6) 

which enables to expand experimental data and makes possible and physically coherent to 

extrapolate enthalpy changes for the metastable phase transitions. Table 1 gathers 

experimental and extrapolated (italic) values for the phase transitions of pure compounds. 

Figure 4 evidences the perfect agreement between experimental and calculated phase 

diagram (experimental temperature points may deviate from the mean trend to a maximum 

of about 1.5 K for the melting and [FCC+L] equilibrium while and no more than about 2 K 

for the equilibria involving the low-temperature phases), which in turns enhances the 

validity of the extrapolated phase transition properties of pure compounds. 

 

The obtained excess Gibbs energy differences in the form of Redlich-Kister polynomial 

coefficients are compiled in Table 3. 

 

Table 3.- 
 111 FFF   and 

 222 FFF   parameters of the Redlich-Kister 

polynomial (see eq. 5) for the excess Gibbs energy (F  G) difference and for the excess 

Enthalpy (F  H) difference between the involved phases in the 1-BrA+1-ClA two-

component system together with the equimolar Equal-Gibbs temperature [TEGC (X = 0.5)] 

for each of the assessed equilibria across the  →  transition.  
 

 

Equilibrium   1G
  

J mol
-1 

2G
  

J mol
-1

 

TEGC (X = 0.5) 

K 

[FCC+L] FCC L -203.1 76.1 411.4 

[O+FCC] O FCC 488.6 -442.0 284.1 

[M+FCC] M FCC 469.3 -442.0  

[M+O] M O -19.3 0  

Equilibrium   1H
  

J mol
-1 

2H
  

J mol
-1
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[FCC+L] FCC L -1133.0 442.7  

[O+FCC] O FCC -2638.8 222.3  

[M+FCC] M FCC -1517.9 -1278.3  

 

 

4. Discussion 

 

The thermodynamic assessment enables us the knowledge of the excess (difference) 

properties of the involved phases. Excess thermodynamic functions for any phase of the 

mixtures 1-BrA+1-ClA are unknown. Thus, strictly only excess Gibbs energy and enthalpy 

differences between phases can be obtained. 

For the 1-BrA+1-ClA system, whatever the  and  phases are involved, 1H
 are negative, 

which means that on going from the high-temperature liquid phase to FCC, O and the 

lowest-temperature phase M, the excess enthalpy always increases. This can be considered 

as the usual behavior, because the energy interactions produced by substituting a molecule 

of B into the liquid phase of A would be lower than into the OD FCC phase and much 

lower than in the orientationally ordered O and M phases [41-43]. As can be seen in Fig. 

9(a), the smallest excess enthalpy difference corresponds to the [FCC+L] equilibrium. 

The excess energy H
E,
reflects the energetic interaction between the molecules A and B of 

the two components. It will be zero if this interaction is neutral, i.e., the mean of the 

interaction between A and A and between B and B molecules. Instead, it will be negative if 

there is a net attraction between A and B molecules, and positive in the case of a net 

repulsion. If in our case we reasonably assume an ideal liquid mixture, i.e., H
E,L 

= 0, then 

the excess energy of the mixture will be positive for all solid phases, becoming larger as 

lower-temperature phases are reached (H
E,M

 > H
E,O

 > H
E,FCC

). Hence, it would mean that 

there exists a repulsion between A and B components. 

On the other hand, it should be mentioned here that concerning the two factors ruling the 

miscibility in the solid state, namely, the steric factor and the molecular symmetry factor, 

only the first one must be considered here owing to the fact of the identical molecular 

symmetry of the involved compounds, C3v, as well as the same space group for the 

monoclinic and OD FCC phases and for the superimposed isostructural orthorhombic 

phase. Thus, the lattice parameters for the ordered monoclinic and OD FCC phases as a 

function of composition slightly deviate from the Vegard’s law (see Fig. 6) and 

consequently mixed crystals are purely governed by steric effects.   

The relatively large excess enthalpy difference for the [FCC+L] equilibrium is contrasting 

with the excess Gibbs energy difference, which is quite small. In fact, as can be seen in the 

top panel of Fig. 4, the [FCC+L] two-phase region bends only slightly downwards. It 

means that there is a small negative value of EL
FCCG  and subsequently, as 

EL
FCC

EL
FCC

EL
FCC STHG  · , it follows that, according to the negative excess enthalpy 

difference EL
FCCH depicted in Fig. 9(a), the entropy factor EL

FCCS  contributing to the 

excess Gibbs energy difference, is greatly negative. In other words, a kind of order is 

provided for the OD mixed crystals with respect to the liquid state. 

As far as the [M+FCC] and [O+FCC] mixed crystals, the excess enthalpy differences [see 

Fig. 9(a)] are quite negative, whereas the [M+FCC] and [O+FCC] two-phase regions (see 

Fig. 4) are slightly upward, as the positive excess Gibbs energy differences [Fig. 9(b)] 
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clearly show. Consequently, the entropic term of the excess Gibbs energy difference, 



,, · EFCCEEFCC STHG   for  = M, O, for such equilibria must compensate by means of a 

large negative value, even larger than for the [FCC+L] equilibrium. This means that 
,, ·· EFCCE STST  for both  = M and  = O. Such an inequality should be attributed to the 

easiness of formation of mixed crystals into an orientationally disordered phase, as it was 

shown previously in many other two-component systems involving such phases [1-7]. 

 

 
Fig. 9. Excess enthalpy differences, 


,,)( EEE HHXH   (a) and excess Gibbs differences 




,,)( EEE GGXG   (b), for the [M+FCC] (empty squares), [O+FCC] (empty circles) and 

[FCC+L] (full circles) equilibria at their Equal-Gibbs-Curve temperatures. 

 

 

As we have demonstrated, despite of the similarity of the 1-BrA and 1-ClA molecules, the 

polymorphic behavior at normal pressure, i.e., in equilibrium with its vapor, is found to be 

quite different. In particular, the orthorhombic phase for the 1-ClA does not appear at 

normal pressure, thus being metastable (monotropic) with respect to both FCC and M 

phases. The question that emerges is if this orthorhombic phase has an overall monotropic 

behavior, i.e., if the metastable character remains whatever the pressure or if it behaves 

enantiotropically at high pressure, at least at pressures higher than those experimentally 

studied [0-300 MPa, see Fig. 2(b)]. To find out such stability relationships between the 

solid phases, the topological temperature-pressure (P-T) phase diagram must be calculated 

[44-50]. A topological P-T phase diagram accounts for the phase relationships between all 

the polymorphs and the vapor and liquid phases and it is a consequence of the basis of 

thermodynamics established by Gibbs. For such a task, two-phase equilibria in the P-T 

phase diagram can be represented by straight lines calculated through the Clapeyron 

equation: 

  

H

vT

S

v

dP

dT









                                      (7) 
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As for the case study here, due to the known stability domains of the monoclinic, at low-

temperature, and the FCC, at high-temperature, phases, there are only two possibilities 

concerning the slopes of the solid-solid equilibria involving the M, O and FCC solid 

phases: 
OMFCCMFCCO

dP

dT

dP

dT

dP

dT




























                  (8a) 

 
FCCOFCCMOM

dP

dT

dP

dT

dP

dT




























                (8b) 

 

These two possible scenarios are represented in Figs 10(a) and 10(b), respectively.  

 

To elucidate the complete polymorphic behavior of 1-ClA compound, we can make use of 

the thermodynamic properties derived from the two-phase equilibria (as transition 

temperatures and enthalpy changes) as well as by the volumes derived from X-ray 

diffraction by extrapolating as a function of the mole fraction to the pure compounds for 

which the involved transitions do not exist at normal pressure. 

 

The transition temperatures and enthalpy changes have been derived from the 

thermodynamic assessment and they are gathered in Table 1. As for the volume changes, 

Fig. 7 provides the volume of the metastable orthorhombic phase of 1-ClA from simple 

extrapolation. Assuming that the thermal expansion of this O phase would be similar to the 

O stable phase of 1-BrA, as it happens for the monoclinic phases of both compounds (see 

Fig. 11 where molar volumes are represented as a function of temperature for both 

compounds), values of the metastable O phase for 1-ClA can be obtained [see Fig. 11(b)]. 

It should be mentioned here that owing to the narrow temperature range of the O phase, the 

assumption of virtually the same thermal expansion is irrelevant as far as the obtained 

volume changes for the O to FCC and M to O metastable transitions for 1-ClA.  

According to the obtained molar volume for the O phase of 1-ClA, the volume changes 

v
MO

 and v
OFCC

 can be determined. They are represented in Fig. 11(b) and gathered in 

Table 1.  

 

Once the thermodynamic data have been obtained, the subsequent step is tracing the 

equilibrium lines using the Clapeyron eq. (7). At the intersections of the equilibrium lines, 

the positions of the triple points can be found, which make up the framework of a 

topological P-T phase diagram. As can be seen from the obtained values for the calculated 

slopes in Table 1: 
OMFCCMFCCO

dP

dT

dP

dT

dP

dT




























, [i.e., (0.280.08) K MPa

-1 
< (0.33  

0.04) K MPa
-1 

< (0.710.21) K MPa
-1

]. The high value of the slope 
OM

dP

dT










, much 

beyond the error, makes clear that the topological phase diagram for 1-ClA corresponds 

without any doubt to that depicted in Fig. 11(a), which indicates that the O phase of 1-ClA 

displays overall monotropy, i.e., it is metastable whatever the pressure, in agreement with 

the experimental phase diagram shown in Fig. 2(b). As a consequence, the triple point 
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[M+O+FCC] between the three involved solid phases appears at negative pressures. That 

the O phase for 1-ClA appears as metastable whatever the pressure is, as established by 

Bridgman, a consequence of the larger volume of the metastable phase with respect to the 

M phase, in such a way that application of pressure will only increase the relative 

metastability of the metastable form [51]. 

 

 
 

Fig. 10. Possible topological pressure-temperature phase diagrams of 1-ClA concerning the 

solid phases M, O and FCC for the overall monotropy of the O phase (a) and for the 

monotropic behavior of O phase at normal pressure and enantiotropic behavior at high 

pressure (b). 

 
 

 

 
 

Fig. 11. Molar volume of 1-BrA (a) and 1-ClA (b) as a function of temperature derived 

from X-ray diffraction experiments for the solid phases. Filled symbols correspond to 

values previously published for the M [26]
 
and FCC [27] phases of 1-BrA and for the M 

[25] and FCC
 
[25]

 
phases of 1-ClA. Half filled circles in (b) represent the extrapolated 

values from X-ray diffraction as a function of the mole fraction for the orthorhombic 

metastable phase of 1-ClA. 
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5. Conclusions 

 

By combining different experimental techniques as well as basic thermodynamics, we have 

provided information not only about the stable experimentally available phases as a 

function of temperature and pressure but also on the non-experimentally available 

properties and transitions of metastable phases. In particular, we have accounted for the 

polymorphic behavior of 1-Br-adamantane and 1-Cl-adamantane from the low temperature 

monoclinic phase through the liquid state and as a function of pressure. Whatever the 

pressure, the phase sequence on increasing temperature for 1-Br-adamantane is found to be 

monoclinic, orthorhombic, face-centered cubic and liquid. As for 1-Cl-adamantane, the 

sequence is similar, with the exception of the orthorhombic phase, which does not appear. 

The two-component system [1-Br-adamantane+1-Cl-adamantane] here studied enables us, 

on the basis of the crossed isopolymorphism concept, a straightforward method to 

determine the metastable transition points and phase properties at normal pressure for non-

experimentally available phases. These properties are used to infer the topological pressure-

temperature phase diagram, which demonstrates that, for 1-Cl-adamantane, the 

orthorhombic phase displays overall monotropy, i.e., it is metastable with respect to the 

monoclinic and to the face-centered cubic phases whatever the pressure. 

 

We have shown that the low-temperature monoclinic and the high-temperature 

orientationally disordered face-centered cubic phases of these 1-X-adamantane derivatives 

are isomorphous and form continuous series of mixed crystals, being both excess enthalpy 

differences EL
FCCH  and EFCC

M H  negative. The formation of orthorhombic mixed crystals 

for a noticeable domain of composition also indicates a negative excess enthalpy difference 
EFCC

O H . This negative sign for EH
  in all cases entails that the excess enthalpy EH  

always increases when going to a lower-temperature phase. Assuming an ideal behavior for 

the liquid phase results in positive excess energy EH  for all kind of mixed crystals, which 

means that there is a net repulsion between the molecular entities A and B with respect to 

the ideal mixture. 
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