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Abstract 

Mathematical and simulation models of systems lay at the core of many decision support systems, and their role becomes more 
critical when the system is more complex. The decision process usually involves optimizing some utility function that evaluates 
the performance indicators measuring the impacts of the decisions. The complexity of the system directly increases the difficulty 
when the associated function to be optimized is a non-analytical, non-differentiable, non-linear function that can only be 
evaluated by simulation. Simulation-optimization techniques are especially suited to these cases, and its use is becoming 
increasingly used with traffic models, which represent an archetypal case of complex, dynamic systems that exhibit highly 
stochastic characteristics. In this approach, simulation is used to evaluate the objective function, and it is combined with a non-
differentiable optimization technique for solving the associated optimization problem. Of these techniques, one of the most 
commonly used is Stochastic Perturbation Stochastic Approximation (SPSA). 
 
This paper analyses, discusses and presents the computational results from applying this technique in the calibration of traffic 
simulation models. This study uses variants of the SPSA by replacing the usual gradient approach with a combination of 
projected gradient and trust region methods. A special approach has also been analyzed for parameter calibration cases in which 
each variable has a different magnitude. 
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1. Introduction 

Modeling techniques aim to represent systems in terms of formal descriptions that are suitable for computer 
implementation with a variety of objectives that range from gaining a better theoretical understanding of a system’s 
nature and operations, to their practical use as engines of Decision Support Systems, to helping operators make more 
rational decisions for analyzed systems. 

 
As a representation of reality, a model is a simplified approximation of that reality, i.e., the system being 

modeled. Thus, using the model immediately raises questions about the validity and reliability of the decisions it 
supports. Box’s assertion that “all models are wrong” is quite frequently quoted, yet the second part of that quote is 
more frequently forgotten, namely: “but some are useful”. The correct use of a model therefore implies posing the 
question “What makes a model useful?” This question can be answered in terms of model calibration. Models are 
usually formulated in terms of parameters whose value must be estimated. Calibration can be defined as the process 
of estimating the most appropriate values of the parameters that will allow the model to accurately reproduce the 
studied system. The calibration problem can be formulated, (Rouphail and Sacks, 2003) in terms of finding the 
parameter values that reduce the probable distance between “reality” and the model prediction to less than 𝑑 – which 
is a tolerable expression of the model’s proximity to reality – and that the level of assurance is greater than 𝑎 – that 
is, the index of significance for how certain we are. Stating it in mathematical terms: 

 
                                           𝑃 reality − 𝑚𝑜𝑑𝑒𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 < 𝑑 > 𝑎                                                       (1) 

 
Assuming that the knowledge about “reality” is expressed in terms of the measured values of a set ℛ  of 

observable variables, and that the prediction of the model M is expressed in terms of the estimated values of these 
variables, 𝒮 𝑷 , which are a function of the set of model parameters 𝑷 = 𝑝6, … 𝑝9  whose values have to be 
calibrated, the formal definition of calibration can be re-stated in terms of the optimization problem: 
 

                                      min ℱ ℛ, 𝒮 𝑷
𝑠.		𝑡. 𝑷 ∈ Ω ⊆ ℝ9                                                                     (2) 

 
where ℱ ℛ, 𝒮 𝑷  is an error, i.e., a distance function between real observations; ℛ and 𝒮 are the corresponding 
simulated data; and Ω is the open set of ℝ9 in which the parameter values are feasible. The resulting optimization 
problem is non-convex and non-linear, and the function ℱ ℛ, 𝒮 𝑷  cannot be represented analytically as a function 
of the parameters 𝑷 = 𝑝6, … 𝑝9 . Therefore, it is non-differentiable with respect to the parameters. Furthermore, the 
function ℱ ℛ, 𝒮 𝑷   cannot be computed analytically and, consequently, it must usually be numerically evaluated 
by simulation, which makes the problem a natural candidate for simulation-based optimization methods (Osorio and 
Chong, 2015). This prompts resorting to non-differentiable optimization methods such as SNOBFIT, Genetic 
Algorithms, SPSA and others. This paper uses the optimization procedure SPSA, which was originally designed 
(Spall, 1998a) to solve the non-differentiable simulation-based optimization problems that are typical in simulation 
applications. It is therefore a natural candidate for solving problem (2). SPSA is even more appealing than other 
candidates since all non-differentiable methods strongly rely on evaluations of the objective function, which are 
computationally expensive in simulations, and SPSA requires fewer evaluations than other approaches. 

2. Calibration and Validation of Traffic Simulation Models 

The most currently used conventional methodological approach is FHWA (2004), which splits the calibration 
process into two major steps: 

 
• Calibration of the supply 
• Calibration of the demand  

 
Very recent trends propose new approaches (Lu et al, 2015) that consider calibration as a single process for 

calibrating supply and demand simultaneously. However, in certain cases such as linear structures, the calibration of 
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the supply becomes the main concern. Such would be the case for freeways and motorways, where route choice is 
not an issue because for each entry ramp there is only one path to every exit ramp, with each route being unique. 
This is the case addressed in this paper. Calibrating the supply is namely a problem of finding the appropriate values 
for both the car-following and lane-changing parameters. Car-following models aim to reproduce traffic flows by 
reproducing the dynamics of car pairs (i.e., leaders and followers) and describing how each follower adapts its 
behavior to changes in its leader’s behavior. In essence a car-following model is composed of a binomial: a 
mechanical entity, the car (with certain physical characteristics, e.g., maximum acceleration/deceleration 
capabilities, vehicle length, etc.); and a human driver whose behavioral characteristics are described by parameters 
such as desired speed, minimum headway, sensitivity to a stimulus, etc. From a formal point of view, car-following 
models can be formulated as instances of a follower’s acceleration law, (Wilson and Ward, 2010): 

 
                𝑎DE6 𝑡 = 		𝔣 𝑠DE6 𝑡 , ∆𝑣DE6 𝑡 , 𝑣DE6 𝑡                    (3) 

 

in which the response of the following vehicle 𝑛 + 1	at time 𝑡	is defined in terms of its acceleration 𝑎DE6 𝑡  as a 
function of 𝑠DE6 𝑡 , the spacing between the lead vehicle 𝑛 and the following vehicle 𝑛 + 1 at time 𝑡, the relative 
speed between follower and leader ∆𝑣DE6 𝑡  at time 𝑡, and the current speed of the follower 𝑣DE6 𝑡  at time 𝑡. A 
wide variety of car-following models can be derived, depending on the postulated form of the function 𝔣 · . 

 
In our work, we consider the function resulting from the safety-to-stop distance modeling hypothesis (Gerlough 

and Huber, 1975), which leads to the deceleration component of Gipps model (Gipps 1981), whose acceleration 
component is based on an empirical analysis of recorded data: 

 

                   𝑣DE6 𝑡 + 𝜏 = min
𝑣DE6 𝑡 + 2.5𝑎DE6𝜏 1 − OPQR S

TPQR
0.025 + OPQR S

TPQR

𝑏DE6𝜏 + 𝑏DE6𝜏 W-𝑏DE6 2 𝑥D 𝑡 -𝑠D-𝑥DE6 𝑡 -𝑣DE6 𝑡 𝜏-
OP S Z

[
	
																	    (4) 

 
where 𝑎DE6, 𝑏DE6 are the maximum acceleration and braking (𝑚/𝑠W) that the driver of the following vehicle can 
apply, 𝑏 is the estimated maximum breaking that the lead vehicle applies, 𝑠D = 𝐿D + ∆D is the “safety distance” (the 
length of the lead vehicle 𝐿D  plus a safety gap ∆D ), 𝑉DE6  is the maximum desired speed of the follower, and 
𝑥DE6 𝑡 , 	𝑥D 𝑡 , 	𝑣DE6 𝑡 , 𝑣D 𝑡 	 are, respectively, the current locations and speeds of follower and leader at time 𝑡. 

 
To avoid vehicles in the simulation model becoming behaviorally identical, the car-following models usually 

implemented in all simulation software assumes that the parameters describing the driver population have random 
variations, which are described by the probability distributions from which they are sampled. Taking this into 
account, the parameters chosen for the calibration exercise are: 

 
1) Maximum Desired Speed (Mean): The maximum speed applied to a vehicle class that models a driver 

type where no speed restriction is active in sections along the path, because either the speed limit is over the 
desired speed or no congestion effects are present. This is measured in km/h.   

2) Maximum Desired Speed (Standard Deviation): The Standard Deviation of the Maximum Desired Speed 
distribution. Measured in km/h. 

3) Speed Acceptance (Mean): This quantifies how much the driver accepts the speed limit of the road. It is a non-
negative parameter around 1 with the following values: below 1 means that she or he will obey the limits 
while above 1 means the driver will not respect the limit. It is a dimensionless measure. 

4) Speed Acceptance (Standard Deviation): The Standard Deviation of the Speed Acceptance distribution. 
5) Clearance (Mean): The distance a vehicle maintains between itself and the preceding vehicle when stopped. It is 

measured in meters. 
6) Clearance (Standard Deviation): The Standard Deviation of the Clearance distribution. Measured in meters. 
7) Reaction Time: The time it takes a driver to react to the speed changes of the preceding vehicle. Measured in 

seconds. 
8) Reaction Time at Stop: The time it takes a stopped vehicle to react to the acceleration of the vehicle in front. 
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9) Margin for Overtaking Maneuver (Mean): The safety time gap between the overtaking car and the oncoming 
car. Measured in seconds. 

10) Margin for Overtaking Maneuver (Standard Deviation): The Standard Deviation of the Margin for 
Overtaking Maneuver distribution. Measured in seconds. 

11) Gap (Mean): The distance between the follower and the leader. Measured in meters. 
12) Gap (Standard Deviation): The Standard Deviation of the Gap distribution. Measured in meters. 

 
The objective function ℱ ℛ, 𝒮 𝑷  in our calibration process is formulated in terms of the traffic variables 

measured at the test site, which are obtained from the radar and Bluetooth antenna technologies equipping the site:  
	
• Flow: (veh/h) The number of vehicles crossing the radar sensor per hour. 
• Speed: (km/h) The average speed of the vehicles crossing the radar sensor. 
• Travel Time: (seconds) The average time needed for a sample of vehicles to travel between two Bluetooth 

antennas. 
 

ℱ ℛ, 𝒮 𝑃 = 𝑓 𝑞6,bR, … . , 𝑞Dc,bd; 𝑞6,bR, … . , 𝑞Dc,bd + 𝑓O 𝑣6,bR, … . , 𝑣Dc,bd; 𝑣6,bR, … . , 𝑣Dc,bd +
𝑓S 𝑡6,bR, … . , 𝑡Df,bd; 𝑡6,bR, … . , 𝑡Df,bd 			 	 	 	 	 	 	 (5) 

 
Where 𝑞g,bh, 𝑣g,bh	, ∀𝑖 = 1, … , 𝑛j, 𝑗 = 1, … , 𝑇  stand for measured flows and speeds for each of the 𝑛j  radar 

stations and 𝑇 time intervals, and 𝑡g,bh, ∀𝑖 = 1, … , 𝑛m, 𝑗 = 1, … , 𝑇 for measured travel times between each of the 𝑛m 
pairs of Bluetooth antennas for each time interval. The same notation with “hats” denotes the corresponding 
simulated values. To avoid possible scale effects arising from each term of the objective function (5) corresponding 
to a different magnitude and measurement unit, the terms in the formulation of (5) are expressed as Normalized Root 
Mean Square Errors (NMRSE), defined as: 

 

𝑁𝑅𝑀𝑆𝐸 𝒙, 𝒙 =

𝑥g − 𝑥g WD
gt6

𝑛
max 𝑥 − min 𝑥 	

 

	
Then the normalized error function in optimization problem (2), in terms of flows 𝒒, speeds 𝒗 and travel times 𝒕, 

is: 
ℱ ℛ, 𝒮 𝑷 = 𝑁𝑅𝑀𝑆𝐸 𝒒, 𝒒 + 𝑁𝑅𝑀𝑆𝐸 𝒗, 𝒗 + 𝑁𝑅𝑀𝑆𝐸 𝒕, 𝒕 	

3. Site Description 

The selected site is a nearly 7.5 km section of a Swedish highway, which connects Stockholm with its most 
important airport, Arlanda. The selected section is near the city of Solna, to the north of the Swedish capital, and it is 
intensively used daily by downtown workers commuting from the outskirts of Stockholm. This site was chosen first 
because it is an important section of the highway serving as one of the main entrances to Stockholm and, second, 
because it is adequately equipped with a sensor network that provides a large amount of data, which is essential for 
calibrating a simulated model. The network consists of 12 Radar and 8 Bluetooth sensors that are well distributed 
along the studied section and which provided measures of flows, average speeds and travel times during March, 
April and May 2015, aggregated to five-minute intervals. 

 
The selected site runs nearly straight throughout and ends at the entrance of a tunnel, where it turns significantly 

to the right. This 7.5 km section alternates between 3 and 4 lanes, with 5 entry lanes and 3 exit lanes where vehicles 
can get on or off the highway, respectively. A microscopic model of the described site was built in July 2015 and 
was used in this work. The site traffic simulation model was built with Aimsun, whose traffic demand inputs were 
defined in terms of input flows at entry ramps and turning proportions at exit ramps. Aimsun provides default values 
for the behavioral parameters defined above; thus, the calibration process consists of finding suitable values for the 
site. 
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4. SPSA and Innovations 

Spall (1998a) presents a basic implementation of the Simultaneous Perturbation Stochastic Approximation 
(SPSA) algorithm, which is an iterative algorithm for minimizing problems such as (2) while actually running fewer 
evaluations of the cost function. The SPSA procedure is a recursive method which starts with an initial combination 
of parameter values 𝑷𝟎 = (𝑝6|, … , 𝑝9| 	), with the next points being generated by: 

 

                                                               𝑷~E6 = 𝑷~ − 𝑎~ · 	𝒈~ 𝑷~                                                                        (6) 
 

where 𝑎~ is a decreasing sequence of positive numbers and 𝒈~ 𝑷~  is the approximation to the gradient. This 
gradient approximation in (6) is a variation of the finite differences method, which requires only 2 evaluations of the 
cost function: 

 

𝒈~ 𝑷~ =
ℱ ℛ, 𝒮 𝑷~ + 𝑐~ · ∆~ − 	ℱ ℛ, 𝒮 𝑷~ − 𝑐~ · ∆~

2𝑐~
· ∆~�6 

 
where 𝑐~  is another decreasing sequence of positive numbers and ∆~∈ ℝ9  is a vector of independent and 

identically distributed random variables with certain properties fully described in Spall (1998a). Typically used 
sequences are 𝑎~ = 𝑎/ 𝐴 + 𝑘 + 1 �, 𝑐~ = 𝑐/ 𝑘 + 1 � and ∆	~	𝐵𝑒(1/2, ±1, 𝑁), which stands for an 𝑁-dimensional 
i.i.d. Bernoulli vector of ±1 with probability 1/2. The parameters in the algorithm are adjusted by following the 
procedure described in Spall (1998b). The classical means for incorporating the Trust Region of feasible values for 
the problem in (2) is to orthogonally project the parameter vector onto the boundary of Ω ⊂ ℝ9 in cases where 
vector 𝑷 ∉ Ω. In calibration problems, Trust Region is usually a Cartesian product of intervals, Ω = 𝑎6, 𝑏6 ×…×
[𝑎9, 𝑏9], which are the feasibility limits of the parameters. Note that this procedure updates all the parameters by 
subtracting the same value from all the parameters, due to the way in which the gradient approximation is computed 
with only two evaluations. This could be a drawback in calibration problems with different magnitude parameters – 
as in the case presented in this work – because large magnitude parameters vary slightly after the update while other 
parameters of lower magnitude can oscillate widely. In these cases, adjusting neither the method nor the parameters 
can solve it because it can lead to slow convergences. 

 
Two different solutions to this problem are proposed in this work. The first solution relies on the fact that the 

Trust Region is a rectangle of ℝ9  and can be transformed into a cube of the same space by normalizing the 
magnitude of all the parameters. The second solution is inspired by Wang et al. (2008) and consists of keeping the 
problem free from constraints and adding a penalty term to the cost function. 

4.1. Normalization of the parameters 

The homogenization of the parameter magnitudes was done using linear interpolations such as: 
 

𝜑g: 𝑎g, 𝑏g ⟶ 0,10  
																																				𝑝g ⟼ 				𝑝g = 10

𝑝g − 𝑎g
𝑏g − 𝑎g

 

Therefore, letting 𝚽 = (𝜑6, … , 𝜑9) and its inverse be the correspondent functions from Ω to Ω = 0,10 9, the 
problem (2) can be written as  

                                                                               
min ℱ ℛ, 𝒮 𝑷

𝑠.		𝑡𝑜 𝑷 ∈ Ω = 0,10 �                                                             (7) 

 
Where ℱ ℛ, 𝒮 𝑷 = 	ℱ ∘ 𝚽 and the minimum of problem (7), 𝑷∗, can be translated to the minimum of problem 

(2) by undoing the transformation, that is 𝑷∗ = 𝚽(𝑷∗) . In problem (7), the changes affect each parameter 
proportionally to its magnitude. 
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4.2. Penalized Objective Function 

The alternative penalty-function approach consists of transforming the constrained minimizing problem to a free 
minimizing problem by modifying the objective function in a more formal way: 

                                                                            min ℱ ℛ, 𝒮 𝑷 + 𝑟 · 𝑃(𝑷)
𝑠.		𝑡𝑜 	𝑷 ∈ ℝ�																												                                                      (8) 

 
where 𝑃(𝑷) 	≥ 	0 is a penalty function that penalizes those 𝑥	 < 	Ω,	and 𝑟 is a positive real number such that the 

minimum of the new problem (8) is the same as in the original problem (2). The penalty functions are functions that 
increase the objective cost when the parameters do not belong to the Trust Region. Defining the set Ω ∶= {𝑞� 𝑷 	≤
0} as a set of constraints, 𝑃(𝑷) is usually chosen as a different function different to 0 if and only if 𝑞� 𝑷 >0 for any 
one of the constraints. In this paper, a quadratic penalization is chosen, that is 𝑃 𝑷 = 𝛼� · max 𝑞� 𝑷 , 0 W

� , 
where 𝛼� are factors for adjusting the importance of each constraint. In this second incorporation, the step of the 
recursive method described in (6) is modified by adding the corresponding derivative of the penalizing function: 

 

∇[ℱ 𝑷 + 𝑟 · 𝑃 𝑷 ] = ∇ℱ 𝑷 + 𝑟 · ∇𝑃 𝑷 = 	∇ℱ 𝑷 + 𝑟 𝛼� · max 𝑞� 𝑷 , 0 · ∇𝑞�(𝑷)
�

	 

Therefore, the parameters of our SPSA proposal evolve iteration by iteration using the following iterative 
equation, where 𝑟~ = 𝑟/𝑘|.6, as proposed in Wang et al. (2008). 

 

                                    	𝑷~E6 = 𝑷~ − 𝑎~{	𝒈~ 𝑷~ + 𝑟~ 𝛼� · max 𝑞� 𝑷𝒌 , 0 · ∇𝑞�(𝑷~)�  }                                     (9) 

5. Experimental Results 

The results of this work were obtained by combining both proposals described in Section 4, first by normalizing 
parameters and then using the penalized SPSA. The 12 behavioral parameters for the model of the described site 
were calibrated using the values for the SPSA algorithm parameters: 𝑎 = 2.2, 𝑐 = 0.6, 𝐴 = 6, 𝑟 = 1  and 𝛼 =
0.602, 𝛾 = 0.101, following the parameter lines of Spall (1998b).  

 

Fig. 1. (a) Objective function evolution of SPSA performance; (b) P¢ − P∗ W
 evolution. 

 
The real observed data selected for the calibration was a subset of 1 hour on 19 March 2015, from 10:30AM to 

11:30AM, aggregated at the 5minute level for computational reasons. The algorithm stopped after 254 iterations, 
using as stopping criteria the relative differences between consecutive iterations of less than 10�£ . Figure (1a) 
shows the evolution of the cost function while progressing to the solution. Note that it decreases while reaching the 
minimum at iteration 179, denoted by 𝐏∗. Then, the sequence remains oscillating around the neighborhood of this 
local optimum oscillating, as can be seen in Figure (1b), where the Euclidean distance is plotted between the 
minimum 𝐏∗and the vector of parameters at each iteration, 𝐏¢. 
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Table 1. Results of the Calibration Procedure. 

Behavioral Parameters Values [units] 
Max. Desired Speed (Mean, Std Dev) (102.173, 8.540) [km/h] 
Speed Acceptance (Mean, Std Dev) (0.688, 0.329) [u] 
Clearance (Mean, Std Dev) (1.368, 0.474) [m] 
Reaction Time 1.077 [s] 
Reaction Time at Stop 1.133 [s] 
Margin for Overtaking Man. (Mean, Std Dev) (5.530, 3.491) [s] 
Gap (Mean, Std Dev) (0.584, 0.247) [m] 

 

 Fig. 2. Top: Simulated vs. Real in Calibration dataset (a) Flows; (b) Speeds; (c) Travel Times. Below: Simulated vs. Real in Validation dataset 
(a) Flows; (b) Speeds; (c) Travel Times 

 
The estimated parameters that converge at iteration 179 are in Table 8.1. These values are accepted as the optimal 
values for reaching the minimum objective function, which is denoted as 𝐏∗ = Φ�6(𝐏∗). A quick analysis of these 
parameters shows the particularities of Swedish drivers on a highway. For instance, notice they completely accept 
speed limits of 90 km/h and their maximum desired speed is around 100 km/h. Both Reaction Time and Reaction 
Time at Stop are quite similar, which is coherent with the fact that the site is a highway with no severe congestion 
present during the simulated interval and there are no flow interruptions from signalized intersections, as occurs in 
urban networks. 
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5.1. Calibration and Validation Results 

Figure (2-top) shows the comparison of observed and simulated data at convergence for the calibration dataset 
(colors indicate different measuring objects, and shapes different time intervals within the contemplated period). 
Figure (2-below) shows the same graphics for the validation dataset. The correlation between the three measures and 
their corresponding simulated values is very high. Note in Figure (2a-top) that the flow measure has a significant 
bias – because the model is simulating fewer vehicles – and that discrepancies between the flow values increase 
remarkably as one moves forward in the section. Figure (2a-top) depicts two clear clusters for section flows: the first 
belongs to exit lanes (bottom-left area) and shows low flows; while the second cluster contains the main sections 
where observed flows are slightly greater than simulated flows, thus leading to simulated speeds that are greater than 
those that were observed, as can be seen in Figure (2b-top). NRMSE for flow, speed and travel times is about 0.11, 
and overall Theil coefficients are less than 0.05 for speeds and travel times but close to 0.09 for flows in the 
calibration dataset. Validation results are only slightly worse. Flow, speed and travel times also fit satisfactorily to 
the validation dataset in Figure (2-below).  

6. Conclusions and Future Research 

The results of this work suggest that SPSA-based calibration of microscopic traffic models is promising and 
should be extended to assisting users in the simultaneous short-term calibration of microscopic car-following and 
route-choice parameters for network models. Further research will investigate the application of the procedure to 
other car-following models and further study the effect of congestion on the stability and convergence of the 
proposed procedure. An extended line of research could consider time-series models that would actually aim at 
predicting the evolution of these parameters in discrete time-sliced intervals. Correlation between parameters can 
also be considered in future research or heterogeneity of behavior according to driver segmentation based on 
knowledge of the network and of the presence of an on-board navigation system. Finally, demand calibration for 
time-sliced Origin-Destination demand matrices could lead to extended suitable SPSA-based procedures for dealing 
with the simultaneous calibration of supply and demand, which is needed in non-linear models where several 
alternative paths are available for each OD pair. 
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