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Static structural system identification for beam-like structures using 21 

compatibility conditions 22 

Abstract:  23 

Due to the inevitable noise existing in the measured responses, Structural System Identification is 24 

often a challenging task in terms of the accuracy of the estimations. Structural System Identification 25 

by the observability method, which is characterized by the analysis of null spaces, is a powerful tool 26 

to determine the observability of structural parameters. However, it did not cope well with 27 

measurement errors so far. In this paper, for the first time, functional relations among displacements, 28 

denoted by the term compatibility conditions, in beam-like structures are derived by the 29 

observability method. Then compatibility conditions are imposed in an optimization procedure to 30 

minimize the discrepancy between the measured response and the compatible one. The compatible 31 

response obtained by the optimization is used to obtain the final estimations of the parameters. In a 32 

simply supported bridge example, the proposed method is thoroughly evaluated regarding the 33 

number of measurements, error levels and load cases. In an example of a continuous bridge, 34 

different load cases are used to estimate the bending stiffnesses of different zones. The accuracy and 35 

the efficacy of the proposed method are verified by the numerical results. 36 

Keyword: static; observability; compatibility conditions; measurement errors; null space; 37 

redundant set; beam-like; 38 

1.Introduction 39 

Research interest in Structural System Identification (SSI) has been increasing over the years due to 40 

the strengthened computation power and the rapid development of various algorithms. Any SSI can 41 

be summarized as structural parameter estimation using discrete measurements of real-life structural 42 

response. A comprehensive description and the associated categories of SSI are provided in the 43 

technical report of ASCE
[1]
. These categories include static

[2–7]
 and dynamic excitations

[8–14]
, 44 

parametric
[3,5]

 and non-parametric models
[8,15–17]

, deterministic
[2,4–6,9,18,19]

 and probabilistic 45 

approaches
[10,20–24]

. For both static and dynamic SSI methods, structural responses have to be 46 

measured to provide the necessary information. However, in dynamic methods, the knowledge of 47 

the mass and the damping is also required unless full sets of modes are known or the mass scaling 48 

factor can be determined by experimental means
[14]

, which is not necessary for static SSI. In 49 

addition, dynamic methods require an adequate control of excitation including the elimination of 50 

spurious excitation which was essential for precise model-shape measurement, and the resolution of 51 

measurements for dynamic response was lower than that for static response
[6]
. In certain 52 

circumstances, static loading might be more economical than dynamic loading
[5]
. Hence, when only 53 

stiffness identification is required, static SSI might be more attractive than dynamic SSI. Based on 54 

the physical interpretability, SSI methods can be classified as parametric or non-parametric. In 55 

parametric methods, parameters correspond with the physical parameters (e.g. elastic moduli, areas, 56 

bending/torsional inertias), as they are used in finite element models (FEM). Non-parametric 57 

methods use basis functions to regress the response of the structure, e.g. autoregressive models
[15,25]

 58 

or rational fractional polynomials
[16]

. 59 

Concerning probabilistic SSI methods, mainly the Bayesian approach, posterior distributions of 60 

parameters are obtained by updating the assumed distributions of those parameters with the 61 

measured response. The estimations of the parameters can be obtained by point estimation (e.g. 62 

mean, median) or interval estimation (confidence interval) based on these posterior distributions. 63 

On the contrary, certainty is assumed for the parameters in deterministic SSI. Generally, 64 

deterministic methods try to pinpoint a unique solution of the problem. In both probabilistic and 65 

deterministic methods, optimization technique is closely involved. The objective of the optimization 66 

might be minimizing the discrepancy between the measured response and the predicted response, 67 
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e.g. displacements
[4,5]

, strains
[2,5]

, loads vector
[5,6]

, acceleration
[18]

, mode shapes and frequencies
[9]
, or 68 

maximizing the sensitivity of the frequency response functions
[19]

. 69 

Observability Method (OM) is a mathematical tool dealing with the observability, i.e. the existence 70 

and the uniqueness, of the solution of a system of equations (or a subset of it)
[26]

. It has been applied 71 

to many engineering fields, e.g. water distribution systems
[27]

, power systems
[28]

, traffic networks
[29]

. 72 

An algebraic technique to analyze the observability of the solution of a linear system is checking the 73 

null space of the coefficient matrix
[26]

. This technique can be applied to the identification of 74 

parameters in physical and engineering problems in which the final systems are in the form of 75 

monomial ratio equations
[30]

. The application of OM has to be tailor-made due to the different 76 

characteristics of problems in different fields. The applicability of OM in SSI was verified in a 77 

cable-stayed bridge when investigating the measurement set to identify its mechanical properties
[31]

. 78 

At that time, the method was carried out in a symbolical approach to determine the observability of 79 

the parameters and estimations of those observable parameters were lacking. Later, a numerical 80 

development of this method was provided to determine the values of those observable parameters
[4]
. 81 

The observability problem in power system
[28]

 considers a system with n parameters and m potential 82 

measurements. For the sake of economy and identifiability of the system, it is always desirable to 83 

know the least number of sensors required to identify these n parameters. In this context, the term 84 

essential sets relates to the measurement sets that ensure the identifiability of all n parameters while 85 

the drop of any measurement fails to do so. In the essential sets, the number of measurements is 86 

always the same as the number of parameters in the system. To address the issue of essential set in 87 

SSI by OM, observability tree method was proposed to analyze the identification sequence of the 88 

parameters
[32]

. It was shown that not all measurement sets could lead to global identifiability. 89 

In SSI, there exist three sources of errors
[33]

: (1) Errors in measurements. (2) Errors in modeling. (3) 90 

Errors in parameter estimation. In most cases, measurement errors are assumed to follow the normal 91 

distribution with zero mean
[6,34]

. One way to mitigate the adverse effect of measurement errors is to 92 

use weight factors
[5]
. Each displacement was measured repeatedly and the variance in those 93 

measured values was calculated. Lower weight factors were assigned to displacements having high 94 

variances. This idea is similar to the weighted least square method
[28]

. Another way to deal with 95 

measurement errors is to implement SSI under a Bayesian probabilistic framework. In these 96 

methods, many sets of parameters are sampled from prior (assumed) distributions. For each set of 97 

sampled parameters, the posterior probability of obtaining the measured response with this 98 

parameter set being real is obtained. The final estimations of the parameters are determined by their 99 

posterior (updated) distributions using point or interval estimations. The main drawback of this 100 

method is that the intensity of the storage and the computation increase exponentially with the 101 

number of parameters. The effect of errors from measurements and parameter estimations was also 102 

investigated in SSI by OM for essential sets
[35]

. In the analytical expression of the identified 103 

bending stiffness, which is a quotient, it was found that measurement errors might render the sign of 104 

the denominator wrong. As a result, the estimations of the parameters might have no physical 105 

meaning and their variances are quite high. To deal with measurement errors, an intuitive idea is to 106 

measure more displacements. The term redundant sets is related with the case when redundant 107 

measurements are used in addition to essential sets
[28]

. These redundant measurements not only 108 

maintain the identifiability of the parameters in case of malfunction of sensors but also improve the 109 

accuracy of the estimations. However, using redundant measurements can be ineffective for SSI by 110 

OM because the denominator of the estimations might well be still close to zero or have a wrong 111 

sign. In order to fill this gap, the functional relations among the measured displacements, which are 112 

referred as the compatibility conditions, are derived algebraicaly in beam-like structures using OM 113 

for the first time. Then the incompatibility in measured displacements, which is caused by 114 

measurement errors, is reduced by an optimization routine with the compatibility conditions 115 

imposed. SSI is carried out using the compatible displacements eventually.  116 
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In the remaining part of this paper, section 2 introduces the general idea of SSI by OM. In section 3, 117 

the algorithm of SSI using compatibility conditions is proposed. Each step is detailed by the 118 

analysis on a simply supported beam bridge. In section 4, the accuracy of SSI by OM using 119 

redundant sets is provided first to emphasize the necessity of compatibility conditions. Then the 120 

performance of the proposed method is investigated regarding the effects of the number of 121 

measurements, error levels and load cases. In addition, the applicability of this method is verified by 122 

a continuous bridge example. Finally, some conclusions are drawn. 123 

2.Structural System Identification by Observability Method  124 

In SSI by OM
[3]
, the FEM of the structure has to be defined first. Subsequently, the nodal 125 

equilibrium equations are obtained by direct analysis and then transformed into a system of 126 

monomial ratio equations. For illustration, assume that we have the following system of equations 127 � ⋅ � = � (1) 

In Eq. (1), K, δ and f, respectively, represent the global stiffness matrix, the nodal displacements 128 

and the nodal forces. For 2D models with beam elements, the global stiffness matrix K is composed 129 

of the characteristics of the beam elements (i.e. length �, elastic moduli �, area � and inertia 	). 130 

Displacement vector δ includes horizontal displacements 
 , vertical deflection �  and rotation � 131 

whereas force vector � includes horizontal forces , vertical forces � and moments �.  132 

In direct analysis, every element in the matrix K and in the force vector f is assumed as known. The 133 

displacement vector δ is solved by Eq. (1). In SSI by OM, which is an inverse analysis, the matrix K 134 

is partially known. Parameters appearing in the matrix K are {E, A, I, L}. It is generally assumed 135 

that the length � is known while elastic moduli,	�, areas, �, inertias, 	 are unknown. Since the main 136 

objective of SSI is to assess the condition of the structure, the estimations of axial stiffnesses EA 137 

and bending stiffnesses EI are of primary importance. To reduce unknowns, EA and EI, instead of 138 

being regarded as the product of two unknowns, are treated as one unknown each.  139 

Once the unknowns in the matrix K, boundary conditions and measurements are determined, to 140 

solve Eq. (1) in a linearized form, it can be rearranged as: 141 �∗ ⋅ �∗ = � (2) 

The operations to linearize Eq. (1) include: (1) the separation of the columns of matrix K, where 142 

some entries are the sum of different variables, into several single columns related with different 143 

variables, (2) the elimination of duplicated variables, (3) the merge of associated columns and (4) 144 

the extraction of the measured displacements from associated products and (5) the multiplication of 145 

them with the associated columns in the matrix K
*[3]

. The modified matrix K
*
 has different 146 

dimensions from the matrix K. The linearized variables in the modified displacement vector δ∗ 147 

might be non-linear products of the bending or axial stiffnesses and displacements, e.g. EAu, EIu, 148 

EIw and EIv, as well as single variables, e.g. EA, EI or nodal displacements. The variables in �∗ and 149 

f can be clustered into groups of known quantities, indicated by subscript 1, and unknown quantities, 150 

indicated by subscript 0, as shown in Eq. (3). ��∗  includes variables associated with measured 151 

displacements or boundary conditions while ��∗  includes variables containing the unknown 152 

displacements. Meanwhile, f1 includes the external loads from the controlled static test while f0 153 

includes the reactions at the boundary conditions. The modified matrix K
*
 is partitioned accordingly. 154 

����∗ ���∗���∗ ���∗ �	���
∗��∗� = ������ (3) 

In order to join the unknowns, Eq. (3) is transformed into Eq. (4).  155 

� ⋅ � = ���� 0��� −	� ���∗�� 	� = ��� − �����∗−�����∗ � = � 
 (4) 

In Eq. (4), unknown variables are of two types: (1) Variables containing displacements (u, v or w), 156 

or stiffnesses (EA or EI), or the products of both, (EAu, EAv, EAw, EIu, EIv or EIw); or (2) 157 
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Reactions at the boundaries, H, V and M. The coefficient matrix B is composed of the measured 158 

displacements and the length of elements. Meanwhile, the right-hand side vector D is composed of 159 

the external loads f1 and the equivalent nodal forces (K11δ1 or K01δ1). In short, the transformation 160 

from Eq. (3) to Eq. (4) collects all unknowns in �, and renders both B and D known. 161 

As the observability of the solution of Eq. (4) are closely related with the concept of null space, its 162 

definition is given first. For a matrix �, its null space is the vector space whose vectors v always 163 

satisfy Eq. (5). 164 � ⋅ � = 0 (5) 

From linear algebra, vector v is always a linear combination of basis vectors of the null space of the 165 

matrix �. Then the null space matrix N is defined as the matrix whose columns are these basis 166 

vectors, this is to say, the columns of the null space matrix N form the basis of the null space. For 167 

Eq. (4) to have a solution, it is sufficient to check that the product of the transpose of the right-hand 168 

side vector, D
T
, and the null space matrix N

*
 of the transpose of the matrix B, is a null (zero) vector, 169 

i.e. D
T
·N

*
=0. If this holds, the solution of Eq. (4) has the structure: 170 

� = �! + �# = ���∗���! + $ ⋅ % 
(6) 

where zp is a particular solution of Eq. (4). It can be obtained by Moore-Penrose pseudoinverse or 171 

least squares methods. zh is a vector from the null space of matrix B, which is a linear combination 172 

of basis vectors of this null space. The columns of the null space matrix N correspond with these 173 

basis vectors while the vector ρ is composed of the coefficients of the linear combination. 174 

Furthermore, null rows in the matrix N render associated elements of N· ρ null. As a result, in the 175 

general solution, the variables related to these null rows are equal to their values in the particular 176 

solution. In this case, these variables are determined and unique, i.e. observable. This is to say, the 177 

inspection of the matrix N and the identification of its null rows lead to the identification of the 178 

observable variables. When the product of the transpose of the right-hand side vector, D
T
, and the 179 

null space matrix N
*
 of the transpose of the matrix B, is not null , i.e. D

T
·N

*
≠0, then Eq. (4) is not 180 

compatible and no solution exists
[26]

.  181 

When the observability of unknown variables is determined, the values of those observable 182 

variables are determined by the particular solution zp of Eq. (4). It is to highlight that in SSI by OM, 183 

if any deflection, force or structural parameter is observed, this information might help to observe 184 

new parameters in the adjacent beam elements through a recursive process. In this analysis, the 185 

observed information is successively introduced as new input data in the observability analysis. The 186 

peculiarity of this method is illustrated by a detailed step-by-step example in previous studies
[3,31]

. 187 

3. SSI for beam-like structures using compatibility conditions  188 

Measurement errors always arise in real life due to uncontrollable factors, e.g. the change in 189 

temperature, ambient vibration due to wind. Measured displacements might not be compatible due 190 

to these errors. In this section, in order to smooth away the incompatibility among measured 191 

displacements, SSI for beam-like structures using compatibility conditions is proposed. The 192 

derivation of compatibility conditions among displacements and the procedures for incorporating 193 

these conditions into an optimization are illustrated by a simply supported bridge example. A 194 

summary of the proposed method is presented at the end. 195 

3.1 Example 1  196 

In this section, a simply supported bridge is analyzed. The nine steps required to carry out SSI for 197 

beam-like structures using compatibility conditions are exemplified by this structure. 198 

Multi-span simply supported bridges (Figure 1.a) are one of the most popular bridge types in 199 

practice. Example 1 (Figures 1.b) corresponds with an 18 m span of this arrangement. The cross 200 
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section of the structure is constant and the bending stiffness is 2.3×10
9
N·m

2
. A 350kN vertical load 201 

is applied at one-third point of the span. In this example, the targeted parameters are the bending 202 

stiffnesses, since the axial behavior is not activated by this load case. 203 

Step 1: Introduce the geometry, as well as the known mechanical and geometrical properties 204 

and measured node forces to establish a FEM for the beam-like structure.  205 

The FEM associated with Example 1 is shown in Figure 1.c. It is composed of 18 one-meter long 206 

elements. The bending stiffnesses for elements 1~6, 7~12 and 13~18 are assumed as EI1, EI2 and 207 

EI3, respectively. Their real values are 2.3×10
9
N·m

2
, i.e. EI1,r=EI2,r=EI3,r=2.3×10

9
N·m

2
. An external 208 

load is applied at node 7, i.e. V7=-350kN. 209 

Step 2: Choose three nodal displacements belonging to elements with the same structural 210 

parameter and build Eq. (4) using these displacements. 211 

Relations among nodal displacements that belong to the elements of the same bending stiffness can 212 

be found using OM. For instance, some relations among v7~v13 and w7~w13 exist since elements 7 to 213 

12 have the same bending stiffness EI2. Without loss of generality, the derivation of these relations 214 

is exemplified by the measurement set {w7, v10, w13}. It is to highlight that a different set (e.g. {v7, 215 

w8, v11} or {v9, v12, v13}) does not affect the result. The general equations (Eq. (4) ) corresponding 216 

with this FEM and {w7, v10, w13} is obtained first (not shown here for the sake of brevity). In this 217 

equation, the coefficient matrix, the unknown vector and the right-hand side vector are denoted by 218 

B1, z1 and D1, respectively.  219 

Step 3: Check the null space matrix N of coefficient matrix B of Eq. (4) to obtain the 220 

observable unknowns. 221 

The null space matrix N1 of the coefficient matrix B1 is provided in Eq. (7).  222 

$� =	

&
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
''
(
1 �*⁄ 01 02 03 04 05 06 01 01 01 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 0⋅ ⋅⋅ ⋅⋅ ⋅0 00 01

22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
3
⋯ �	�⋯ �	��5⋯ �	��6⋯ �	��7⋯ �	��8⋯ �	��9⋯ �	��*⋯ �	���⋯ �	��5⋯ �	��6⋯ �	��7⋯ �	��8⋯ �	��9⋯ �	5⋯ �	5�*⋯ �	5�:⋯ �	5�;⋯ �	5���⋯ �	5��5⋯ �	5��6⋯ �	5�:⋯ �	5�;⋯ �	5���⋯ �	5���⋯ �	5��5⋯ ⋅⋯ ⋅⋯ ⋅⋯ ��⋯ ��;

 

(7) 
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It is seen that all the rows related with EI2, EI2v7~EI2v13 and EI2w8~EI2w12 are zeros. Hence, EI2, 223 

EI2v7~EI2v13 and EI2w8~EI2w12 are observable. Also, reactions, V1 and V19 are observable since this is 224 

a statically determinate structure. However, for any row related with EI1 or associated products (e.g. 225 

EI1v2, EI1w1), at least one element of that row is nonzero. Hence, these unknowns are not observable. 226 

Specifically, due to insufficient information of the displacements of nodes 1~7, the first column of 227 

N1 implies a rigid body motion of rotation. This is, the rotations indicated by EI1w1~EI1w6 are the 228 

same while the deflections of these nodes can be calculated by the product of this rotation and the 229 

distance between the current node and node 1.  230 

Step 4: Derive the compatibility conditions and analytical expression for the i
th
 structural 231 

parameter from those observable unknowns. 232 

Once the observable unknowns are detected, their estimations are specified by the associated values 233 

of the particular solution. For instance, the particular solutions for EI2 and EI2v7 are provided in Eqs. 234 

(8) and (9). 235 

�	5< = 18�*�(�* − ��6)�
 

 

(8) 

�	5�*@ =−3�*�6(25�* − 12��� + 11��6)2(�* − ��6)  
 

(9) 

The hat, ^, denotes an estimation of the unknown. The physical meaning of the analytical 236 

expression of EI2, Eq. (8), can be interpreted as the quotient of a moment expressed by the product 237 

of force and length and a curvature expressed by the displacements within elements of EI2.  238 

Rearranging the quotient between Eqs. (9) and (8) leads to the compatibility condition among 239 

{v7,v10,w7,w13}, as presented in Eq. (10)  240 12�* − 12��� + 25�* 	+ 	11��6 = 0 (10) 

The compatibility conditions linking {w7, v10 and w13} and each of {v7~v13 and w8~w12} are found in 241 

the same way for elements of EI2. It should be pointed out that regardless of the selected 242 

measurement set, the derivation of compatibility conditions always leads to identical mathematical 243 

equations.   244 

Step 5: Repeat steps 2~4, until compatibility conditions and analytical expressions have been 245 

obtained for all parameters  246 

Similarly, compatibility conditions among {v2~v7,w1~w7} for EI1 and those among {v13~v18,w13~w19} 247 

for EI2 as well as the analytical expressions for EI1 and EI2 are obtained. 248 

It is pointed out that for one given bending stiffness, the functional relations among the nodal 249 

displacements belonging to elements with this stiffness are obtained by the repetition of steps 2~4. 250 

Step 6: Form an underdetermined system by combining all compatibility conditions 251 

It is seen that displacements for beam elements with the same stiffness (EI1, EI2 or EI3) are 252 

dependent on three displacements within these elements (being aware that boundary conditions can 253 

reduce this number). In a more general case, a set of 7(=2+3+2) adequate displacements is needed 254 

to specify every displacement in this structure. Assume {w1, w3}, {w8, v9, w11} and {w15, w19} are 255 

chosen for EI1~EI3, respectively. Note that the displacements of joint nodes for elements with 256 

different parameters, e.g. v7 for EI1 and EI2, determined by different compatibility conditions should 257 

be equal to each other. Hence, 4 more equations can be imposed, i.e. v7(w1, w3) =v7(w8, v9, w11), 258 

w7(w1, w3) =w7(w8, w11), v13(w8, v9, w11) =v13(w15, w19) and w13(w8, w11) =w13(w15, w19). This forms an 259 

underdetermined system with 4 equations and 7 unknowns ({w1, w3, w8, v9, w11, w15 and w19}). 260 

Hence, 3 out of the 7 adequate displacements are independent due to the 4 additional equations.  261 
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It is pointed out that all the compatibility conditions are related together by the displacements of 262 

those joint nodes between elements with different stiffnesses. From the resulting underdetermined 263 

system, a set of independent displacements can be obtained 264 

Step 7: Choose a set of independent displacements in Step 6 as a condensed set ABC. Express all 265 

compatible displacements AB and structural parameters θ as functions of ABC. That is, derive the 266 

functional relations ABD = ED(ABC) and FG = HG(ABC). 267 

After steps 5 and 6, the relations among the nodal displacements belonging to elements with same 268 

stiffnesses as well as those associated with different stiffnesses are obtained. The displacements 269 

satisfy all these relations are referred as the compatible ones, �I. Note that all these displacements �I 270 

are functions of a condensed set �IC (the independent displacements obtained in step 6). Specifically, 271 �J(�IK) is the functional form of the i
th
 compatible displacement �IJ  while LM(�IK) is the functional 272 

form of the j
th
 parameter NM. 273 

Without loss of generality,	�IK is selected as {w1, v9 and w19} since three displacements among {w1, 274 

w3, w8, v9, w11, w15 and w19} are independent (step 6). In this case, the functional relations �J(�IK) for 275 

{w3,w8,w11 and w15} are presented in Eqs. (11)~(14).  276 

Regarding the functional form for bending stiffness, for instance, �	<5 can be determined by w7 and 277 

w13 from Eq. (8). As these two rotations are functions of �KB ,  the functional form for �	<5 in terms of 278 �IK is also available. 279 

Step 8: Find the optimal ABC by minimizing the square sum of the proportional deviation of the 280 

compatible displacements, AB, from the measured displacements, AO, as indicated by Eq. (15). 281 

To smooth away the incompatibility in the measured displacements, the square sum of the 282 

proportional deviation of the i
th
 compatible displacement, �IJ, from the i

th
 measured displacement, �PJ, 283 

is minimized, as indicated by Eq. (15). 284 

Q(�IK) =RS�IJ�PJ − 1T
5UV

JW�
=RS�J(�KB )�PJ − 1T5UV

JW�
 

(15) 

in which Nm is the number of measured displacements.  285 

Step 9: Evaluate the structural parameters by providing the optimal ABC to SSI by OM. 286 

The best estimations of the bending stiffnesses are determined by providing the optimal �IK to SSI 287 

by OM.  288 

3.2 Algorithm for SSI using compatibility conditions 289 

All the necessary procedures to implement SSI for beam-like structures using compatibility 290 

conditions are presented in Figure 2 and summarized as follows. 291 

Step 1: Introduce the geometry, as well as the known mechanical and geometrical properties and 292 

measured node forces to establish a FEM for the beam-like structure.  293 

Step 2: Choose three nodal displacements belonging to elements with the same structural parameter 294 

and build Eq. (4) using these displacements. 295 

Step 3: Check the null space matrix N of coefficient matrix B of Eq. (4) to obtain the observable 296 

unknowns. 297 

�6 = 2(54�; + 	1189���	 + 	17��;�) 3123�⁄  (11) �: = −(2356���	 − 	519�; + 	280��;�) 2776�⁄  (12) 

��� = −2(21�; 	+ 	19���	 + 	103��;�)/(347�) (13) 

��8 = (352���	 − 	378�; + 575��;�)/3123� (14) 

Page 8 of 22

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Step 4: Derive the compatibility conditions and analytical expression for the i
th
 structural parameter 298 

from those observable unknowns. 299 

Step 5: Repeat steps 2~4, until compatibility conditions and analytical expressions have been 300 

obtained for all parameters  301 

Step 6: Form an underdetermined system by combining all compatibility conditions 302 

Step 7: Choose a set of independent displacements in Step 6 as a condensed set �IK. Express all 303 

compatible displacements �I  and structural parameters θ as functions of �IK . That is, derive the 304 

functional relations �IJ = �J(�IK) and NM = LM(�IK). 305 

Step 8: Find the optimal �IK  by minimizing the square sum of the proportional deviation of the 306 

compatible displacements, �I, from the measured displacements, �P, as indicated by Eq. (15). 307 

Step 9: Evaluate the structural parameters by providing the optimal �IK to SSI by OM. 308 

4. Application of the compatibility conditions  309 

In this section, the accuracy of SSI by OM using redundant measurements without imposing 310 

compatibility conditions is presented first. Then the performance of the proposed method is 311 

investigated in a simply supported beam with respect to the number of measurements, Nm, error 312 

levels, Elevel, and load cases. At the end of this section, the applicability of this method is verified in 313 

a continuous beam. 314 

4.1 Example 1 without compatibility conditions 315 

The redundant set {v3, v5, v7, v9, v11, v13, v15, v17}(Nm=8) is studied first. The measured displacements, 316 �P, are simulated by adding proportional noise to the real displacements, �[, as presented in Eq. (16). 317 

This proportional noise is the product of a specified error level, Elevel, and a random number, χ. This 318 

random number ] follows a normal distribution with zero mean and standard deviation of 0.5, and it 319 

is truncated by the interval [-1,1]. 320 

�P = �[ ⋅ (1 + �^_`_^ ⋅ χ),  (16) 

2000 numerical simulations of the identification of bending stiffnesses using error levels from 1% 321 

to 8% were carried out without imposing compatibility conditions
[4]
. As the number of equations 322 

exceeds the number of unknowns, the ill-posed problem was solved using the Penrose inverse 323 

subroutine provided by Matlab. To normalize the estimations, all the estimations are divided by 324 

their real values, which are denoted by a hat and the subscript r, i.e. ^r. This normalization is 325 

followed in the rest of the paper. Unless otherwise stated, estimations always refer to those 326 

normalized ones.  327 

Without imposing some restrictions to the estimations, the method is useless due to the existence of 328 

extreme values
[35]

. Thus, the average is taken for those estimations falling into the range of [0.5, 329 

1.5]. Table 1 presents the mean of the estimations of associated parameters under different error 330 

levels using 8 measurements.  331 

From this table, it can be concluded that, when compatibility conditions are not imposed: (1) 332 

Regardless of the error level, great bias exists despite redundant measurements are used; (2) The 333 

bias is sensitive to the error levels; (3) Using redundant measurements fails to improve the accuracy 334 

of the estimation via SSI by OM. 335 

4.2 Example 1 with compatibility conditions: Effect of the number of 336 

measurements 337 

To investigate the effect of the number of measurements, three measurement sets are studied here. 338 

Apart from the set Nm=8 in section 4.1, the other two sets are {v3~v5, v7, v9~v11, v13, v15~v17} (Nm=11) 339 

and {v2~v18} (Nm=17). Note that the locations of measurements in both sets, set Nm=8 and set Nm=11, 340 
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are included in the locations of measurements in set Nm=17. 2000 samples of measured 341 

displacements associated with set Nm=17 are generated with an error level of 4%. Then the samples 342 

for sets Nm=8 and Nm=11 are generated by taking the corresponding measurements in set Nm=17. 343 

Figure 3 compares the accuracy of the estimations using these three sets. The accuracy of the 344 

proposed method is evaluated by the mean of the estimations while the robustness and confidence 345 

of the method are evaluated by the coefficient of variation (COV) in the estimations. Small COV of 346 

the estimations indicates a low dispersion. 347 

In Figures 3.a and 3.b, it is seen that 8 measurements are sufficient to estimate �	<�,[  and �	<5,[ 348 

accurately with a low dispersion of the estimations. In the case of �	<6,[, a slight overestimation of 349 

1.3% is observed, which is acceptable. However, the COV of the estimations in �	<6,[  is 0.112, 350 

which might not be negligible. When the number of measurements increases, the mean and the 351 

COVs of the estimations of the stiffnesses get closer to one and decrease, respectively. In addition, 352 

the improvement in �	<6,[  is relatively large when compared with the improvements in �	<�,[  and 353 �	<5,[. In Figure 3.b, the drop of COV for �	<6,[ is roughly twice the drop of COV in �	<�,[ and �	<5,[ 354 

when the number of measurements increases. However, despite the fact that using more 355 

measurements reduces the extent of dispersion, the COV of the estimations of �	<6,[  using 17 356 

measurements is still higher than the COV of the estimations of �	<�,[ or �	<5,[ using 8 measurements. 357 

The improvements of the results can be noticed when compared with those in Table 1, where for 8 358 

measurements and a 4% error the results were far from acceptable. The worse accuracy observed in 359 �	<6,[ compared with those results of �	<�,[ and �	<5,[ are in accordance with a previous study[35]. In 360 

fact, for a given load test, the lowest the curvature in a given area of the structure, the worst the 361 

accuracy of the estimated parameters in that zone.  362 

The analysis of the effect of the number of measurements shows that: (1) For zones where curvature 363 

is excited, small number of measurements is sufficient to achieve reasonable accuracy. (2) The 364 

more the measurements, the less the deviation and the dispersion of the estimations. (3) Greater 365 

improvement in the accuracy of the estimations is seen for parameters in low curvature zones than 366 

those in high curvature zones. (4) The curvature level is more important than the number of 367 

measurements. 368 

4.3 Example 1 with compatibility conditions: Effect of error levels  369 

The effect of error levels is investigated here using the set Nm=8. The studied error levels range 370 

from 1% to 8%. For each error level, 2000 samples are generated by Eq. (16). The mean and COV 371 

of the estimations under different error levels are summarized in Figure 4. In Figure 4.a, the mean 372 

of the estimations increases slightly with the error level. However, the sensitivity of the structural 373 

parameters to the error levels is quite different. When Elevel increases from 1% to 8%, the changes in 374 

the mean of �	<5,[ and �	<�,[ are 1.06% and 1.96% respectively, which are negligible. However, in 375 

the case of �	<6,[ , the associated change is 5.26%, which is comparatively large. The order of 376 

sensitivity to error levels for these parameters is �	<6,[ > �	<�,[>	�	<5,[. In addition, overestimation 377 

can be observed for all parameters. The extent of the overestimation follows the same order. In 378 

Figure 4.b, COV for all parameters grows linearly with the error levels. Again, the COV of �	<6,[ is 379 

much higher than those of �	<�,[ and �	<5,[.  380 

Hence, it can be concluded that: (1) For zones where curvature is excited, the deviation in the mean 381 

of the estimation is not sensitive to the error levels; (2) The level of dispersion (COV) increases 382 

linearly with the error levels; (3) The increase of deviation and dispersion is much faster in low 383 

curvature zones. 384 
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4.4 Example 1 with compatibility conditions: Effect of load cases 385 

In section 4.2 and 4.3, slight overestimation and large dispersion are observed in low curvature 386 

zones. To investigate the influence of curvature, the external load is moved from the left support 387 

(node 2) to the center of the structure (node 10), which adds up to 9 load cases, as indicated in 388 

Figure 5.a. The measurement set Nm=8 (indicated by double arrows) is used here. 2000 samples are 389 

generated for both error levels of 4% and 8% by Eq. (16). Mean and COV of the estimations of 390 

bending stiffnesses under different load cases and different error levels are summarized in Figure 391 

5.b and Figure 5.c.  392 

When the load is applied at node 2, the bending behavior of elements of EI1, i.e. elements 1~6, is 393 

quite activated. The associated mean for �	<�,[ is 1.003 (Elevel=4%) and 1.009 (Elevel=8%), which is 394 

insensitive to errors. However, in the case of EI3, a higher overestimation can be observed when 395 

higher errors exist in the measurements. The associated mean for �	<6,[  is 1.017 (Elevel=4%) and 396 

1.069 (Elevel=8%).  397 

When the load moves from node 2 to node 10, the curvature of the elements of EI1 decreases while 398 

the curvature of the elements of EI3 increases. Correspondingly, an overestimation of �	<�,[  arises 399 

and escalates while the overestimation of �	<6,[  becomes less severe. Similar variation is found in the 400 

COV of �	<�,[ and �	<6,[. In a symmetric load case (V10), the mean of �	<�,[ and �	<6,[ are the same, 401 

marked by the intersection P1 and P2 (Figure 5.b). This is the same case for associated COV, 402 

marked by the intersection P3 and P4 (Figure 5.c). Note that the bending behavior for elements of 403 

EI2 is quite activated under each load case. When the load moves from node 2 to node 10, the 404 

curvature of these elements becomes even higher. As a result, a small but perceptible improvement 405 

is seen in both the mean and the COV of �	<5,[.  406 

The analysis of Figure 5 implies that: (1) In the same load case, the deviation and the dispersion of 407 

the estimations are much higher in zones of lower curvature. (2) When the curvature increases due 408 

to the change of load case, the deviation and dispersion of the estimations decrease 409 

correspondingly.(3) it is advisable to apply different load cases to study different zones of the beam. 410 

For instance, to identify EI1, the location of the load at node 2 is the best choice. 411 

4.5 Example 2: Continuous beam bridge 412 

This section illustrates the application of SSI using compatibility conditions to a 30 m+30 m 413 

continuous bridge and the applicability of using different load cases to study different zones of this 414 

structure.  415 

The variation of the sectional properties is simulated by different values of the bending stiffnesses 416 

in different zones. The FEM for this structure and the structural parameters are depicted in Figure 417 

6.a. It is assumed that EI1,r=EI8,r=1.5×10
6
 kN·m

2
, EI2,r=EI7,r=1.8×10

6
 kN·m

2
, EI3,r=EI6,r=2.1×10

6
 418 

kN·m
2
, EI4,r=EI5,r=2.5×10

6
 kN·m

2
. In this study, {v2~v12 and v14~v24} are measured and a point load 419 

is positioned along the deck to provide different static load cases. For each load case, measurements 420 

are generated 2000 times by Eq. (16) using an error level of 4%. The mean and COV of the 421 

estimations are summarized in Figures 6.b and 6.c. Due to the symmetry of the structure, only the 422 

results for half of the structure is provided.  423 

In Figure 6.b, the bias in the mean of the estimations is generally within 2%. The largest bias is seen 424 

in �	<6,[ and �	<7,[ with a magnitude of around 5% when the load case is V5. When the load is applied 425 

at zones associated with EI3 and EI4, i.e. from V7 to V12, associated bias decreases greatly, In Figure 426 

6.c, when the load is moved from V2 to V10, the curvatures of zones related with EI1 and EI2 always 427 

decrease. Consequently, the COVs for �	<�,[and �	<5,[ generally increase. In the case of �	<6,[  and 428 �	<7,[, their COVs decrease first due to the increase of curvatures in associated zones. However, 429 

when the load is quite close to the middle support, a high proportion of the load is borne by the 430 
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middle support and insignificant bending behavior is induced in the structure. As a result, a sharp 431 

increase of COV is observed in Figure 6.c when the load cases vary from V10 to V12. 432 

Since the mean of the estimations is generally around one, the best load case for a targeted bending 433 

stiffness is selected as the load case leading to the lowest dispersion of associated estimations. 434 

Figure 6.c shows that the variation of COV largely depends on the load cases. The lowest COVs for 435 

EI1 and EI2 are 0.044 (V2) and 0.058 (V5), respectively. They increases to 0.182 and 0.154, 436 

respectively, when the load is positioned at V12. The best load case for estimating EI3 seems to be 437 

V11. However, note that the COV curve for �	<9,[ is always lower than the COV curve for �	<6,[ in all 438 

load cases. Due to the symmetry of the structure, the estimation of EI6 using a load in the first span 439 

is the same as the estimation of EI3 using the associated symmetric load in the second span. Hence, 440 

the optimal load case for estimating EI3 is symmetric to the load case having the lowest COV of 441 �	<9,[  (i.e. V10). Due to the symmetry between V10 and V16, the load case V16 yields the best 442 

estimation of EI3. The associated COVs for EI3 are 0.070 (V11) and 0.095 (V16), indicating a 443 

decrease of 26.3%. Similarly, the lowest COV of �	<8,[  occurs at V9. Concerning the symmetry 444 

between EI4 and EI5 as well as the symmetry between V9 and V17, the load case V17 yields the best 445 

estimation of EI4. The best mean, COVs and the load locations for �	<�,[~�	<7,[  are listed in Table 2. 446 

Due to the symmetry, the results for �	<8,[~�	<:,[  are not included. 447 

It should be mentioned that, Maxwell-Betti reciprocal theorem can be exploited to reduce the 448 

number of sensors while still getting dense measurements
[7,36]

, providing that the response induced 449 

by the excitation is still in elastic range. When one sensor is fixed and a point load is positioned at 450 

different locations, the readings of the sensor represent the deflections of the structure at the various 451 

locations of the load when applying the load at the location of the sensor. This is to say, when the 452 

load is positioned at different locations, the placement of one sensor is the same as adding one load 453 

case. This can be achieved by positioning a truck with calibrated weight at various locations along 454 

the bridges
[37]

. Hence, in order to get accurate and robust estimations of EI1~EI8, it is recommended 455 

to place sensors at nodes 2, 5, 16, 17, 9, 10, 21 and 24 together with a load positioned at various 456 

locations on the structure.  457 

This example shows the applicability of using different load cases to obtain reliable estimations of 458 

the bending stiffnesses for different zones in a continuous beam. The best load case for a targeted 459 

bending stiffness is selected as the one leading to the lowest dispersion of associated estimations.  460 

5: Conclusions 461 

This paper proposes a novel approach for identifying compatibility conditions, the relations among 462 

displacements, in beam-like structure using observability method. By solving an underdetermined 463 

system of equations formulated by compatibility conditions, it is shown that all displacements in a 464 

beam-like structure are functions of a subset of these displacements. Then an optimization 465 

procedure is introduced to reduce the measurement errors by minimizing the square sum of the 466 

proportional deviation of the measured displacements and those compatible displacements. In the 467 

numerical simulation, it is shown that when compatibility conditions are not imposed: (1) 468 

Regardless of the error level, great bias exists in the estimations though redundant measurements 469 

are used. (2) The bias is sensitive to the error levels. (3) Using redundant measurements fails to 470 

improve the accuracy of the estimation via SSI by OM. After the imposition of compatibility 471 

conditions by optimization, the performance of the proposed method is investigated regarding the 472 

number of measurements, error levels and load cases. It is concluded that: (1) The accuracy and 473 

robustness of the estimations are significantly improved when compatibility conditions are imposed. 474 

(2) The curvature of the zones where parameters are estimated is of vital importance: In the same 475 

load case, the deviation and dispersion of the estimations are much higher in zones of lower 476 

curvature. Also, the deviation and dispersion of the estimations increase faster with error levels in 477 

these zones than in zones of higher curvature. (3) The improvement of the estimation due to the 478 
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increase of measurements is more significant in low curvature zone. (4) For zones where curvature 479 

is excited, small number of measurements is sufficient to achieve reasonable accuracy. In addition, 480 

the deviation in the mean of the estimation is not sensitive to the error levels in these zones. (5) 481 

Different load cases can be applied to achieve reliable estimations of parameters for different zones. 482 

The overall performance of the proposed algorithm illustrates its potential application in the SSI for 483 

beam-like structures. However, a possible direction of the future research could be the optimal 484 

sensor placement for various types of structures and the experimental verification for the proposed 485 

method.  486 
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Table 1. Mean of the estimations for different bending stiffnesses by SSI by OM without 545 

compatibility conditions 546 

Error 

level �	<�,[ �	<5,[ �	<6,[ 

1% 0.85 0.79 0.88 

2% 0.76 0.70 0.80 

3% 0.73 0.68 0.76 

4% 0.72 0.67 0.72 

5% 0.72 0.68 0.71 

6% 0.74 0.65 0.68 

7% 0.70 0.62 0.64 

8% 0.70 0.62 0.66 

 547 
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Table 2. The best mean, COVs and the associated load cases for the estimations, �	<�,[~�	<7,[  549 

 �	<�,[ �	<5,[ �	<6,[ �	<7,[ 
Mean 0.996 1.006 0.998 1.005 

COV 0.044 0.058 0.070 0.104 

Best load case  V2 V5 V16 V17 

 550 
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Figure 1. (a) Engineering practice of a multi-span simply supported beam; (b) Elevation of 18 m span of a 
simply supported bridge; (c) 19-node beam model for the structure in (b).  
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Figure 2. Flowchart for SSI for beam-like structures using compatibility conditions  
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Figure 3. Using Nm=8,11,17 measurements under error level of 4%: (a) Mean of the estimations. (b) The 
coefficients of variation (COV) of the estimations  
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Figure 4. Using Nm=8 measurements under error levels of 1%~8%: (a) Mean of the estimations. (b) The 
coefficients of variation (COV) of the estimations  
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Figure 5. (a) Different load cases (V2~V10) and measurements (indicated by double arrows); (b) Mean of the 
estimations under different load cases with Error=4% and 8%; (c) The coefficients of variation (COV) of the 

estimations under different load cases with Error=4% and 8%;  
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Figure 6. (a) Different load cases (V2~V12) and measured deflections(v2~v12,v14~v24); (b) Mean of the 
estimations under different load cases with Error=4%;(c) The coefficients of variation (COV) of the 

estimations under different load cases with Error=4%  
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