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Abstract
Due to the limitations of instruction-level parallelism,

thread-level parallelism has become a popular way to

improve processor performance. One example is the

IBM POWER5TM processor, a two-context simultaneous-

multithreaded dual-core chip. In each SMT core, the IBM

POWER5 features two levels of thread resource balancing

and prioritization. The first level provides automatic in-

hardware resource balancing, while the second level is a

software-controlled priority mechanism that presents eight

levels of thread priorities. Currently, software-controlled

prioritization is only used in limited number of cases in the

software platforms due to lack of performance characteri-

zation of the effects of this mechanism.

In this work, we characterize the effects of the software-

based prioritization on several different workloads. We

show that the impact of the prioritization significantly de-

pends on the workloads coscheduled on a core. By priori-

tizing the right task, it is possible to obtain more than two

times of throughput improvement for synthetic workloads

compared to the baseline. We also present two application

case studies targeting two different performance metrics:

the first case study improves overall throughput by 23.7%

and the second case study reduces the total execution time

by 9.3%. In addition, we show the circumstances when a

background thread can be run transparently without effect-

ing the performance of the foreground thread.

1 Introduction

The limitations imposed by the Instruction Level Paral-

lelism (ILP) have motivated the use of Thread-level par-

allelism (TLP) as a common strategy to improve pro-

cessor performance. Common TLP paradigms are Si-

multaneous Multi-Threading (SMT) [20][23], Chip-Multi-

Processor (CMP) [1][13], or combinations of both [21].

The IBM POWER5 is a dual-core processor, where each

core runs two threads. Threads share many resources such

as the Global Completion Table (GCT or reorder buffer), the

Branch History Table (BHT) and the Translation Lookaside

Buffer (TLB). It is well known that higher performance is

realized when resources are appropriately balanced across

threads [16][17][21]. An IBM POWER5 system appropri-

ately balances the usage of resources across threads with

mechanisms in hardware [10][16]. Moreover, POWER5

employs a mechanism, through software/hardware co-

design, that controls the instruction decode rate with eight

priority levels. Its main motivation is to address instances

where unbalanced thread priority is desirable. Several ex-

amples can be enumerated such as idle thread, thread wait-

ing on a spin-lock, software determined non-uniform bal-

ance and power management [17][21]. Software-controlled

priority1 can significantly improve both throughput and ex-

ecution time depending on the application type.

In the literature, a wide range of mechanisms has been

proposed on dynamically balancing of resources to improve

SMT performance. Most of these proposals focus on the

instruction fetch policy as the means to obtain such balanc-

ing [8][22]. In addition to the instruction fetch policy, other

mechanisms explicitly prioritize shared resources among

threads to improve throughput, fairness [2][6] and Quality

of Service [4]. While these studies do not correspond to the

software prioritization mechanism of POWER5, they could

justify the use of the mechanism.

Nevertheless, the prioritization mechanism provided by

POWER5 is rarely used among the software community

and, even in these rare cases, the prioritization mechanism

is mainly used for lowering the priority of a thread. For in-

stance, the current Linux kernel (version 2.6.23) exploits the

software-controlled priorities in few cases to reduce the pri-

ority of a processor that is not performing any useful com-

putation. Moreover, Linux makes the assumption that the

software-controlled priority mechanism is not used by the

programmer and resets the priority to the default value at

every interrupt or exception handling point.

Currently, the lack of quantitative studies on software-

controlled priority limit their use in real world applications.

In this paper, we provide the first quantitative study of the

1POWER5 software-controlled priorities are independent of the oper-

ating systems concept of process or task priorities.
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POWER5 prioritization mechanism. We show that the ef-

fect of thread prioritization depends on the characteristics

of a given thread and the other thread it is coscheduled with.

Our results show that, if used properly, software-controlled

priorities may increase overall system performance, de-

pending on the metric of interest. Furthermore, this study

helps Linux and other software communities to tune the

performance of their software by exploiting the software-

controlled priority mechanism of the POWER5 processor.

The main contributions of this paper are:

1. We provide a detailed analysis of the effect of the

POWER5 prioritization mechanism on execution time of

applications with a set of selected micro-benchmarks that

stress specific workload characteristics. We show that:

• Threads executing long-latency operations (i.e.,

threads with a lot of misses in the caches) are less

effected by priorities than threads executing short-

latency operations (i.e. cpu-bound threads). For

example, we observe that increasing the priority of

a cpu-bound thread could reduce its execution time

by 2.5x over the baseline. Increasing the priority

of memory-bound threads causes an execution time

reduction of 1.7x when they are run with other

memory-bound threads.

• By reducing the priority of a cpu-bound thread, its per-

formance can decrease up to 42x when running with

a memory-bound thread and up to 20x when running

with another cpu-bound thread. In general, improving

the performance of one thread involves a higher per-

formance loss on the other thread, sometimes by an

order of magnitude. However, decreasing the priority

of a long-latency thread has less effect on its execution

time compared to a cpu-bound thread. For example,

decreasing the priority of a memory-bound thread in-

creases its execution time by 22x when running with

another memory-bound thread, while increases less

than 2.5x when running with the other benchmarks. In

Section 5.3 we show how to exploit this to improve the

overall performance.

• For the micro-benchmarks used in this paper, the IPC

throughput of the POWER5 improves up to 2x by us-

ing software-controlled priorities.

• We also show that a thread can run transparently, with

almost no impact on the performance of a higher-

priority thread. In general, foreground threads with

lower IPC are less sensitive to a transparent thread.

2. We present two application case studies that show how

priorities in POWER5 can be used to improve two different

metrics: aggregated IPC and execution time.

• In the case of a batch application where the main

metric is throughput, the performance improves up to

23.7%.

• In the case of an unbalanced MPI parallel application,

execution time reduces up to 9.3% by using priorities

to re-balance its resources.

To our knowledge, this is the first quantitative

study showing how software-controlled prioritization of

POWER5 effects performance on a real system. Since other

processors like the IBM POWER6TM [12] present a simi-

lar prioritization mechanism, this study can be significantly

useful for the software community.

This paper is organized as follows: Section 2 presents

the related work. Section 3 describes the POWER5 resource

balancing in hardware and the software-controlled priority

mechanisms. Section 4 presents our evaluation environ-

ment, and Section 5 shows our results and their analysis.

Finally, Section 6 concludes this work.

2 Related Work

In the literature a wide range of mechanisms have been

proposed to prioritize the execution of a thread in a SMT

processor. Many of these proposals focus on the instruction-

fetch policy to improve performance and fairness in SMT

processors, while other focus on explicitly assigning pro-

cessor resources to threads.

Instruction Fetch Policies: An instruction fetch (I-

fetch) policy decides how instructions are fetched from the

threads, thereby implicitly determining the way processor

resources, like rename registers or issue queue entries, are

allocated to the threads. Many existing fetch policies at-

tempt to maximize throughput and fairness by reducing the

priority, stalling, or flushing threads that experience long la-

tency memory operations [2][22]. Some other fetch policies

focus on reducing the effects of mis-speculation by stalling

on hard-to-predict branches [18][19].

Explicit Resource Allocation: Some of the mecha-

nisms explicitly allocate shared processor resources target-

ing throughput improvements [2][6]. Other resource allo-

cation mechanisms provide better QoS guarantees for the

execution time by ensuring a minimum performance for the

time critical threads [3][4].

3 The POWER5 Processor

IBM POWER5 [15] processor is a dual-core chip where

each core runs two threads [17]. POWER5 employs two

levels of control among threads, through resource balanc-

ing in hardware (Section 3.1), as well as software-controlled

prioritization (Section 3.2).
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3.1 Dynamic hardware resource balancing

POWER5 provides a dynamic resource-balancing mech-

anism that monitors processor resources to determine

whether one thread is potentially blocking the other thread

execution. Under that condition, the progress of the offend-

ing thread is throttled back, allowing the sibling thread to

progress. POWER5 considers that there is an unbalanced

use of resources when a thread reaches a threshold of L2

cache or TLB misses, or when a thread uses too many GCT

(reorder buffer) entries.

POWER5 employs one of the following mechanisms to

re-balance resources among threads: 1) It stops instruction

decoding of the offending thread until the congestion clears

(Stall). 2) It flushes all of the instructions of the offending

thread that are waiting for dispatch and stopping the thread

from decoding additional instructions until the congestion

clears (Flush). Moreover, the hardware may temporarily

adjust the decode rate of a thread to throttle its execution.

3.2 Software-controlled priorities

The number of decode cycles assigned to each thread de-

pends on the software-controlled priority. The enforcement

of these software-controlled priorities is carried by hard-

ware in the decode stage. In general, the higher the pri-

ority, the higher the number of decode cycles assigned to

the thread.

Let us assume that two threads, a primary thread

(PThread) and a secondary thread (SThread), are running

on one of the two cores of the POWER5 with priorities

PrioP and PrioS, respectively. Based on the priorities, the

decode slots are allocated using the following formula:

R = 2
|PrioP−PrioS|+1 (1)

Notice that R is computed using the difference of pri-

orities of PThread and SThread, PrioP-PrioS. At any given

moment, the thread with higher priority receives R-1 decode

slots, while the lower priority thread receives the remaining

slot. For instance, assuming that PThread has priority 6 and

SThread has priority 2, R would be 32, so the core decodes

31 times from PThread and once from SThread (more de-

tails on the hardware implementation are provided in [10]).

The performance of the process running as PThread in-

creases to the detriment of the one running as SThread. On

the special case where both threads have the same priority,

R = 2, and therefore, each thread receives one slot, alter-

nately.

In POWER5, the software-controlled priorities range

from 0 to 7, where 0 means the thread is switched off and

7 means the thread is running in Single Thread (ST) mode

(i.e., the other thread is off). The supervisor or operating

system can set six of the eight priorities ranging from 1 to

6, while user software can only set priority 2, 3 and 4. The

Hypervisor can always use the whole range of priorities.

As described in [10] and [15], the priorities can be set by

issuing an or instruction in the form of or X,X,X, where

X is a specific register number. This operation only changes

the thread priority and performs no other operation. If it

is not supported (when running on previous POWER pro-

cessors) or not permitted due to insufficient privileges, the

instruction is simply treated as a nop. Table 1 shows the

priorities, the privilege level required to set each priority

and how to change priority using this interface.

Table 1. Software-controlled thread priorities

in the IBM POWER5 processor.

Priority Priority level Privilege level or-nop inst.

0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User/Supervisor or 1,1,1

3 Medium-Low User/Supervisor or 6,6,6

4 Medium User/Supervisor or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

The behavior of the software-controlled thread prioriti-

zation mechanism is different when one of the threads has

priorities 0 or 1 as shown in [10][15]. For instance, when

both threads have priority one, instead of being considered

as difference 0 and perform as having no prioritization, the

processor runs in low-power mode, decoding only one in-

struction every 32 cycles.

4 Evaluation Methodology

In order to explore the capabilities of the software-

controlled priority mechanism in the POWER5 processor,

we performed a detailed set of experiments. Our approach

consists of analyzing the processor as a black-box, observ-

ing how the performance of a workload changes as we in-

crease or reduce the priority of threads.

In a SMT processor the performance of one process not

only depends on the processor architecture but also on the

other processes running at the same time on the same core

and their specific program phases. Under such conditions,

evaluating all the possible programs and all their phase com-

binations is simply not feasible. Moreover, when it comes

to a real system evaluation, with the several layers of the

running software, the OS interferences and all the asyn-

chronous I/O services, the problem becomes even worse.

For this reason, we use a set of micro-benchmarks that

stresses a particular processor characteristic. While this sce-

nario is not typical with real applications, this is one of the

best ways to understand the mechanism under evaluation. It
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Figure 1. Example of application of the FAME methodology. In this example Micro-Benchmark 1
takes longer than Micro-Benchmark 2.

provides a uniform characterization based on specific pro-

gram characteristics that can be mapped into real applica-

tions. With real applications it would be impossible to at-

tribute fine-grain performance gain/loss to the prioritization

mechanism due to applications own variability.

4.1 Running the experiments

This paper uses the FAME (FAirly MEasuring Multi-

threaded Architectures) methodology [24][25]. In [24] the

authors state that the average accumulated IPC of a program

is representative if it is similar to the IPC of that program

when the workload reaches a steady state. The problem

is that, as shown in [24][25], the workload has to run for

a long time to reach this steady state. FAME determines

how many times each benchmark in a multi-threaded work-

load has to be executed so that the difference between the

obtained average IPC and the steady state IPC is below a

particular threshold. This threshold is called MAIV (Max-

imum Allowable IPC Variation). The execution of the en-

tire workload stops when all benchmarks have executed as

many times as needed to accomplish a given MAIV value.

For the experimental setup and micro-benchmarks used

in this paper, in order to accomplish a MAIV of 1%, each

micro-benchmark must be repeated at least 10 times. In our

experiments we run two workloads, hence each experiment

ends when both threads re-execute at least 10 times. Note

that, at this point the fastest thread might already execute

more than 10 times. Figure 1 shows an example where the

second benchmark is faster than the first. In this example,

while the MB1 (MicroBenchmark1) executes 10 times,

MB2 executes 14 times. It is important to note that the ex-

ecution time difference is not constant. For instance, if we

change the software-controlled priorities, MB2 may exe-

cute faster or slower, and therefore we must guarantee that

both threads execute a minimum number of repetitions. In

our experiments, the average execution time for a thread is

estimated as the total accounted execution time divided by

the number of complete repetitions. For example, in Fig-

ure 1, the total execution time of MB2 is measured until it

completes the 14th iteration and the time for the remaining

incomplete iteration is discarded.

Furthermore, as previously shown [9][11], normal soft-

ware environment can insert significant noise into perfor-

mance measurements. To minimize such noise, both single-

thread and multithreaded experiments were performed on

the second core of the POWER5. All user-land processes

and interrupt requests (IRQ) were isolated on the first one,

leaving the second core as free as possible from noise.

4.2 Micro-benchmark

In a multi-threaded architecture, the performance of one

process tightly depends on the other process that it is run-

ning with. Moreover, the effect of the software-controlled

priorities depends on the characteristics of the benchmarks

under study. In order to build a basic knowledge of these ef-

fects, we developed a set of 15 synthetic micro-benchmarks,

each of them stressing a specific processor characteristic.

This methodology allows us to isolate independent behav-

iors of the platform. Furthermore, micro-benchmarks pro-

vide higher flexibility due to their simplicity.

We classify the micro-benchmarks in four groups: Inte-

ger, Floating Point, Memory and Branch, as shown in Table

2. In each group, there are benchmarks with different in-

struction latency. For example, in the Integer group there

are short (cpu int) and long (lng chain cpuint)

latency operation benchmarks. In the Memory group,

ldint l2 is a benchmark with all loads always hitting in

second level of data cache, while ldint mem has all loads

hitting in memory and, hence, missing in all cache levels.

As expected, ldint l2 has higher IPC than ldint mem.

In the Branch group, there are two micro-benchmarks with

high (br hit) and low (br miss) hit prediction rate.

All the micro-benchmarks have the same structure. They

iterate several times on their loop body and the loop body

is what differentiates them. One execution of the loop body

is called a micro-iteration. Table 2 shows the details of the

loop body structures for the micro-benchmarks. The size of

the loop body and the number of micro-iterations is specific

for each benchmark. The benchmarks are compiled with

the xlc compiler with -O2 option and their object code

are verified in order to guarantee that the benchmarks retain

the desired characteristics.

After the first complete set of experiments, where we ran

all the possible combinations, we realized that some of the

benchmarks behave equally and do not add any further in-

sight to the analysis. Therefore, we present only the bench-

marks that provide differentiation for this characterization

418418



Table 2. Loop body of the different micro-benchmarks.
Name Loop Body

cpu int a += (iter * (iter - 1)) - xi * iter : xi ∈ {1, 2, ..., 54}

cpu int add a += (iter + (iterp)) - xi + iter : xi ∈ {1, 2, ..., 54}; iterp = iter -1 + a

cpu int mul a = (iter * iter) * xi * iter : xi ∈ {1, 2, ..., 54};

lng chain cpuint a += (iter * (iter - 1)) - x0 * iter : xi ∈ {1, 2, ..., 20}

b += (iter * (iter - 1)) - x1 * iter + a ...

a += (iter + (iter - 1)) - x10 * j ...

The cycle of instructions is repeated multiple times, for a total of 50 lines in the loop body.

br hit br miss if (a[s]=0) a=a+1; else a=a-1; s ∈ {1, 2, ..., 28}

a is filled with all 0’s for br hit and randomly (modulo 2) for br miss

ldint l1 ldint l2

ldint l3 ldint mem
a[i+s] = a[i+s]+1; where s is set that we always hit in the desired cache level.

ldfp l1 ldfp l2

ldfp l3 ldfp lmem
In the case of fp benchmarks, a is an array of floats.

cpu fp a += (tmp * (tmp - 1.0)) - xi * tmp —xi ∈ {1.0, 2.0, ..., 54.0}.

(float tmp = iter * 1.0)

work. For example, br hit, br miss, cpu int add,

cpu int mul and cpu int behave in a very similar way.

Analogously, the load-integers and load-floating-points do

not significantly differ. Therefore, we present only the

results for cpu int, lng chain cpuint, ldint l1,

ldint l2, ldint mem and cpu fp.

4.3 The Linux kernel

Some of the priority levels are not available in user mode

(Section 3.2). In fact, only three levels out of eight can

be used by user mode applications, the others are only

available to the OS or the Hypervisor. Modern Linux ker-

nels (2.6.23) running on IBM POWER5 processors exploit

software-controlled priorities in few cases such as reducing

the priority of a process when it is not performing useful

computation. Basically, it makes use of the thread priorities

in three cases:

• The processor is spinning for a lock in kernel mode. In

this case the priority of the spinning process is reduced.

• The kernel is waiting for operations to complete.

For example, when the kernel requests a spe-

cific CPU to perform an operation by means of a

smp call function() and it can not proceed un-

til the operation completes. Under this condition, the

priority of the thread is reduced.

• The kernel is running the idle process because there is

no other process ready to run. In this case the kernel

reduces the priority of the idle thread and eventually

puts the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of a pro-

cessor’s context and restores it to MEDIUM (4) as soon as

there is some job to perform. Furthermore, since the kernel

does not keep track of the actual priority, and to ensure re-

sponsiveness, it also resets the thread priority to MEDIUM

every time it enters a kernel service routine (for instance, an

interrupt, an exception handler, or a system call). This is

a conservative choice induced by the fact that it is not clear

how and when to prioritize a processor context and what the

effect of that prioritization is.

In order to explore the entire priority range, we devel-

oped a non-intrusive kernel patch which provides an inter-

face to the user to set all the possible priorities available in

kernel mode:

• We make priority 1 to 6 available to the user. As men-

tioned in Section 3.2, only three of the priorities (4, 3,

2) are directly available to the user. Without our ker-

nel patch, any attempt to use other priorities result in a

nop operation. Priority 0 and 7 (context off and sin-

gle thread mode, respectively) are also available to the

user through a Hypervisor call.

• We remove the use of software-controlled priorities

inside the Linux kernel, otherwise the experiments

would be effected by unpredictable priority changes.

• Finally, we provide an interface through the /sys

pseudo file system which allows user applications to

change their priority.

5 Analysis of the Results

In this section, we show to what extent the prioritization

mechanism of POWER5 effects the execution of a given

thread and the trade-off between prioritization and through-

put.

The following sections use the same terminology as Sec-

tion 3.2. We call the first thread in the pair the “Primary

Thread”, or PThread, and the second thread the “Secondary

Thread” or SThread. The term PrioP refers to priority of the

primary thread, while PrioS refers to the priority of the sec-

ondary thread. The priority difference (often expressed as

419419



Table 3. IPC of micro-benchmarks in ST mode and in SMT with priorities (4,4). pt stands for PThread

and tt for total IPC.

Micro IPC in SMT (4,4)

benchmark IPC ldint l1 ldint l2 ldint mem cpu int cpu fp lng chain cpuint

ST pt tt pt tt pt tt pt tt pt tt pt tt

ldint l1 2.29 1.15 2.31 0.60 0.87 0.79 0.81 0.73 1.57 0.77 1.18 0.42 0.91

ldint l2 0.27 0.27 0.87 0.11 0.22 0.17 0.19 0.27 0.87 0.25 0.65 0.27 0.72

ldint mem 0.02 0.02 0.81 0.02 0.19 0.01 0.02 0.02 0.90 0.02 0.39 0.02 0.48

cpu int 1.14 0.84 1.57 0.59 0.87 0.88 0.90 0.61 1.22 0.65 1.06 0.43 0.86

cpu fp 0.41 0.41 1.18 0.39 0.65 0.37 0.39 0.40 1.06 0.36 0.72 0.37 0.85

lng chain cpuint 0.51 0.49 0.91 0.45 0.73 0.47 0.48 0.43 0.86 0.48 0.85 0.42 0.85

PrioP −PrioS) can be positive in which case the PThread

has higher priority than the SThread or negative where the

SThread has higher priority. The results are normalized to

the default case with priorities (4,4).

Table 3 presents the IPC values in single thread mode as

well as in SMT mode with priorities (4,4). For each row,

the column pt shows the IPC of the primary thread and tt

shows the total IPC. For example, the second row presents

the case where ldint l2 is the primary thread. The IPC

ST column shows its single thread IPC value (0.27). The

third column present its IPC when running with ldint l1

(0.27) and the fourth column shows the combined IPC of

ldint l1 and ldint l2 when running together (0.87).

In the Sections 5.1 and 5.2 we discuss about the effects of

negative and positive prioritization. This effect is not sym-

metric as it follows the formula 1. For instance, at priority

+4 a thread receive 31 of each 32 decode slots, which rep-

resents an increase of 93.75% of the resources when com-

pared to the baseline, where a thread receives half of the

resources. However, at priority -4, a thread receives only

one out of 32 decode slots, which represents 16 times less

resources.

On the Figures 2 and 3, the results represent the rela-

tive performance of the primary thread shown in the graph’s

caption when coscheduled with each one of the other bench-

marks in the legend. The results are a factor of the baseline

case with no prioritization.

5.1 Effect of Positive Priorities

In this section, we analyze the performance improvement

of the PThread with different SThreads using positive pri-

orities (PrioP > PrioS). Figure 2 shows the performance

improvement of the PThread as its priority increases with

respect to the SThread. For example, Figure 2 (c) shows the

results when we run cpu int as PThread.

In general, the threads that have low IPC and are

not memory-bound, such as lng chain cpuint and

cpu fp, benefit less from having high priorities. Memory-

bound benchmarks, such as ldint l2 and ldint mem,

benefit from the prioritization mechanism when they

run with another memory-bound thread. This improves

performance up to 240% for ldint l2 and 70% for

ldint mem. On the other hand, high IPC threads, like

cpu int and ldint l1 are very sensitive to the prior-

itization as they can benefit from the additional hardware

resources. Therefore, their prioritization usually improves

the total throughput and increases their performance.

The results show that the memory-bound benchmarks

are also effected by the POWER5 prioritization mechanism,

when competing with other benchmarks of similar require-

ments. They are less sensitive than the purely cpu-bound

benchmarks, and they only benefit from an increased pri-

ority when co-scheduled with other memory-bound bench-

marks. As a rule of thumb, memory-bound benchmarks

should not be prioritized except when running with other

memory-bound benchmark. Section 5.3 shows that priori-

tizing these workloads is often in detriment of the overall

system performance.

In addition, a priority difference of +2 usually represents

a point of relative saturation, where most of the benchmarks

reach at least 95% of their maximum performance. The

memory-bound benchmarks represent an exception to this

rule, where the largest performance increase occurs from a

priority difference of +2 to +3.

5.2 Effect of Negative Priorities

In this section, we present the effects of the negative pri-

orities (PrioP < PrioS) on the micro-benchmarks. Fig-

ures 3 (a) to (e) show that setting negative priorities heav-

ily impacts the performance of all micro-benchmarks ex-

cept for ldint mem. The effect of the negative priorities

on the performance is much higher than the effect of the

positive priorities. While using positive priorities could im-

prove performance up to four times, negative priorities can

degrade performance by more than forty times.

Figure 3 (f) presents that ldint mem is insensitive to

low priorities in all cases other than running with another

thread of ldint mem. In general, a thread presenting high

latency memory operation, long dependency chains or slow

complex operations is less effected by a priority reduction.

Memory-bound benchmarks are the ones that impact the

other threads the most. They also present clear steps of per-
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Figure 2. Performance improvement of the PThread as its priority increases with respect to the

SThread. Note the different scale for ldint l1.

formance impact when the priority difference changes from

-2 to -3, and from -4 to -5. The priority difference of -5 is

extreme since the PThread obtains only the left-overs from

the memory thread. In general, a priority difference like -5

should only be used for a transparent background thread in

which the performance is not important.

While priority difference of +2 usually yields close to the

maximum performance, priority -3 results in a clear delta on

performance loss. For memory-bound threads, there is no

significant performance variation from 0 to -2. Consider-

ing that priority difference +2, most of the high IPC threads

reach 95% of their maximum performance, this suggests

that priority differences larger than +/-2 should normally be

avoided. Section 5.3 shows the additional throughput that

can be obtained based on this conclusion.

5.3 Optimizing IPC Throughput

POWER5 employs several hardware mechanisms to im-

prove the global throughput, like stalling the decode of the

low IPC tasks or flushing the dispatch of threads that would

otherwise decrease the overall performance of the system.

The POWER5 built-in resource balancing mechanism is ef-

fective in most cases where changing the thread’s priorities

negatively impact the total throughput.

Even though the baseline is effective, Figure 4 shows

several cases where the total throughput can be improved

up to two times or more. This comes at the expense

of severe slowdown of the low priority thread, espe-
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Figure 3. Performance degradation of the PThread as its priority decreases with respect to the SThread.

cially when the low priority thread has low IPC such as

lng chain cpuint. These cases can be exploited for

systems where total throughput is the main goal and where

the low IPC thread can actually afford the slowdown.

Furthermore, while the performance for the cpu-bound

benchmarks increase with their priority, the performance of

a memory benchmark remains relatively constant. Using

the prioritization mechanism for this combination yields, al-

most always, significant throughput improvement. In gen-

eral, we obtain an IPC throughput improvement when we

increase the priority of the higher IPC thread in the pair.

5.3.1 Case Study

In order to verify whether our findings can be applied to real

workloads, this section shows how software-controlled pri-

oritization can improve total IPC. We analyze the behavior

of two pairs of SPEC CPU 2000 and 2006 benchmarks [14].

The first one is composed of 464.h264ref (from now on re-

ferred as h264ref ) and 429.mcf (from now on referred as

mcf ). The second pair is composed of 173.applu (from now

on referred as applu) and 183.equake (from now on referred

as equake). We take as the baseline the scenario where they

run side by side, on different contexts of the same core,

without any type of software-controlled prioritization (i.e.,

with the same priority). The experiments follow the FAME

methodology.

When running with the default priorities (4,4), h264ref

has an IPC of 0.920 and takes about 3254 seconds to com-

plete, and mcf takes 1848 seconds and reaches an IPC of

0.144. The total IPC for this configuration is 1.064. Fig-

ure 5 (a) shows the performance of both benchmarks as we

increase the priority of h264ref. We can see that, until prior-
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Figure 4. Throughput w.r.t. execution (4,4). The legend shows the single-thread IPC of benchmarks.

ity difference +2, the performance of the mcf is reduced by

13.2%, while h264ref gains 10.4%. While the gain and the

loss are very similar in performance, the overall through-

put increases by 7.2%. Further increase in the throughput is

possible by degrading low IPC benchmark. The peak IPC is

reached when mcf runs 32% slower and h264ref runs 38%

faster than the base case with default priorities. In this case,

the overall system performance increases by 23.7%.

For the second pair, with the default priorities, applu has

an IPC of 0.500 and completes in 240 seconds. equake takes

74 seconds and has an IPC of 0.140. Together, they reach

a total IPC of 0.630 (Figure 5 (b)). In this case, the peak

combined IPC is obtained when applu receives priority +5.

It represents a 14% of improvement when compared to the

default case.

5.4 Optimizing execution time

The highest throughput does not always directly trans-

late into the shortest execution time of a whole applica-

tion [5]. Most of the parallel applications have synchroniza-

tion points where all the tasks must complete some amount

of work in order to continue. Load balancing in parallel ap-

plication is a hard problem since it is rarely the case where

the synchronized tasks finish perfectly at the same time.

In other words, usually a task has to wait for other tasks

to complete. This could clearly delay the progress of the

whole program.

5.4.1 Case Study

In this section we present an example where we are able

to improve the overall application execution time by using
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(a) h264ref and mcf

(b) applu and equake

Figure 5. Total IPCs with increasing priorities

the prioritization mechanism. In this example, we apply

a LU matrix decomposition over a set of results produced

by a Fast Fourier Transformation (FFT) for a given spectral

analysis problem. One possible organization of the problem

would create a software pipeline where one thread runs the

Fast Fourier Transformation, producing the results that will

be consumed by the second thread on the next iteration, by

applying LU over parts of this output.

Table 4. Execution time, in seconds, of FFT

and LU.

Priority Priority FFT exec. LU exec. Iteration exec.

Difference time time time

single-thread 1.86 –

mode - – 0.26 2.12

4,4 0 2.05 0.42 2.05

5,4 +1 2.02 0.48 2.02

6,4 +2 1.91 0.64 1.91

6,3 +3 1.87 2.33 2.33

In our measurement, the FFT takes for 1.86 seconds in

single-thread mode, and the LU takes 0.26 seconds to pro-

cess its part of the problem. In single-thread mode, the pro-

cessor would first execute the FFT and then the LU, thus,

each iteration would require 2.12 seconds to complete. In

the multi-threaded scenario, there is only FFT running in

the first iteration to produce the first input of the LU. On

the remaining iterations, both threads would be running in

parallel and the execution time of an iteration would be the

execution time of the longest thread. As we can see on the

Table 4, when run together in SMT mode, the FFT takes

2.05 seconds and the LU decomposition takes 0.42 seconds.

The LU thread would waste 1.63 seconds waiting for the

other task to complete. Using the prioritization mechanism,

we could increase the priority of FFT so it executes faster,

reducing the unbalance.

Table 4 shows that the best case consists of running with

a priority pair (6,4), which yields an iteration execution time

of 1.91 seconds. Effectively this represents a 10% improve-

ment when compared to the execution time in single thread

mode (where it would be necessary to run the FFT followed

by LU) and 9.3% of improvement over the default priori-

ties. On the other hand, by applying too much prioritiza-

tion, it’s possible to inverse the unbalance, which normally

represents a performance loss (priority (6,3)).

5.5 Transparent execution

Dorai and Yeung [7] propose transparent threads, which

is a mechanism that allows background threads to use re-

sources that a foreground thread does not require for run-

ning at almost full speed. In POWER5 this is implemented

by setting the priority of the “background” thread to 1 [10].

Figure 6 shows the effect of background threads over

foreground threads when a foreground thread runs with pri-

ority 6 (Figure 6 (a)) and with priority 5 (Figure 6 (b)).

We observe that the most effected threads are ldint l1,

cpu int and ldint l2, when they are running with a

memory-bound background thread.

Figure 6(c) presents the maximum effect that a back-

ground thread causes on the other foreground threads

(ldint l2, cpu fp, and lng chain cpuint) as we

reduce its priority from 6 to 2. In the figure, the different

foreground threads run with ldint mem in background as

it proved to be the worst case for all combinations.

For cpu fp and lng chain cpuint the effect of

the background thread increases linearly as we reduce the

priority from 6 to 2 until about 10% of their ST perfor-

mance. This is not the case for ldint mem that suffers

a sudden increment when its priority is 3 or 2. In the

chart, the label ’ld int mem 2’ represents the performance

of the ldint mem when it runs as a foreground thread and

the ldint mem is not the background thread. The graph

shows that the effect that any other micro-benchmark causes

on ldint mem is about 7%. We can conclude that, unless

running with another copy of itself, ldint mem can al-
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Figure 6. Primary thread Execution Time with respect to Single-Thread when SThread has priority 1

ways run as foreground thread without much performance

degradation.

Finally, Figure 6(d) shows the performance of the

background threads. Each point represents the aver-

age for all background threads: for example, the point

ldint mem (6,1) represents the average performance of

the background thread in the experiments (ldint mem,

cpu int), (ldint mem, cpu fp), (ldint mem,

lng chain cpuint), (ldint mem, ldint l1), and

(ldint mem, ldint mem) using priorities (6,1). We can

observe that in the worst performance degradation case

(under 10%) for cpu fp, the background threads obtain an

IPC of 0.23. For the lng chain cpuint benchmark this

IPC is 0.15.

In general, we can establish that the high-latency threads

are the best candidates for foreground thread and the worst

background thread. They suffer little impact from a back-

ground thread, but heavily effect the performance when

running in background. Furthermore, threads with very

high performance easily get effected by other threads (see

ldint l1 on Figure 6 (a)). They may not be suitable to

run with a background thread.

6 Conclusions

The IBM POWER5 processor presents two levels of

thread prioritization: the first level provides dynamic pri-

oritization through hardware, while the second level is a

software-controlled priority mechanism that allows a thread

to specify a priority value from 0 to 7. Currently, this mech-

anism is only used in few cases in the software platforms

even if it can provide significant improvements on several

metrics. We argue that it is mainly due to the fact that there

are no previous works aimed at the characterization of the

effects of this mechanism.

In this paper we perform an in-depth evaluation of

the effects of the software-controlled prioritization mech-

anism over a set of synthetic micro-benchmarks, spe-

cially designed to stress specific processor characteristics.

We present the following conclusions from our micro-

benchmarks. First, workloads presenting a large amount

of long-latency operations are less influenced by priorities

then the ones executing low-latency operations (i.e., integer

arithmetic). Second, it is possible, by using the prioritiza-

tion mechanism, to improve the overall throughput up to

two times, in very special cases. However, those extreme

improvements often imply drastic reduction of the low IPC

thread’s performance. On less extreme cases, it is possible

to improve the throughput by 40%. And third, we show

that, instead of using the full spectrum of priorities, only

priorities up to +/-2 should be used, while “extreme” prior-

ities should be used only when the performance of one of

the two threads is not important.

In addition, we present three case studies where priori-
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ties can be used to improve the total throughput by 23.7%,

the total execution time by 9.3% or to have a background

thread. Finally, we conclude that the prioritization mecha-

nism in POWER5 is a powerful tool that can be used to im-

prove different metrics. This work opens a path into broader

utilization of a software/hardware co-design that allows bet-

ter balancing of the underlying hardware resources among

the threads.
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