
Online Prediction of Applications Cache Utility
Miquel Moreto*, Francisco J. Cazorlat, Alex Ramirez*t and Mateo Valero*t

*Universitat Politecnica de Catalunya, Departament d'Arquitectura de Computadors, Barcelona, Spain
HiPEAC. European Network of Excellence on High-Performance Embedded Architecture and Compilation

tBarcelona Supercomputing Center Centro Nacional de Supercomputacion, Barcelona, Spain
Emails: {mmoreto, aramirez, mateo}@ac.upc.edu, francisco.cazorla@bsc.es

Abstract- General purpose architectures are designed to offer
average high performance regardless of the particular appli-
cation that is being run. Performance and power inefficiencies
appear as a consequence for some programs. Reconfigurable
hardware (cache hierarchy, branch predictor, execution units,
bandwidth, etc.) has been proposed to overcome these inefficien-
cies by dynamically adapting the architecture to the application
needs. However, nearly all the proposals use indirect measures
or heuristics of performance to decide new configurations, what
may lead to inefficiencies.

In this paper we propose a runtime mechanism that allows
to predict the throughput of an application on an architecture
using a reconfigurable L2 cache. L2 cache size varies at a
way granularity and we predict the performance of the same
application on all other L2 cache sizes at the same time. We
obtain for different L2 cache sizes an average error of 3.11%,
a maximum error of 16.4% and standard deviation of 3.7%.
No profiling or Operating System participation is needed in
this mechanism. We also give a hardware implementation that
allows to reduce the hardware cost under 0.4% of the total L2
size and maintains high accuracy. This mechanism can be used
to reduce power consumption in single threaded architectures
and improve performance in multithreaded architectures that
dynamically partition shared L2 caches.

I. INTRODUCTION

The limitation imposed by instruction-level parallelism has
motivated the appearance of thread-level parallelism (TLP)
as a common strategy for improving processor performance.
TLP paradigms such as simultaneous multithreading (SMT)
[1], [2], chip multiprocessing (CMP) [3] and combinations of
both offer the opportunity to obtain higher throughput, but
they also face the challenge of sharing architecture resources.
Some studies deal with the resource sharing problem in SMTs
at the core resources level [4] like issue queues, registers, etc.
In CMPs, resource sharing is lower than in SMT, focusing in
the cache hierarchy. Several mechanisms have been proposed
to dynamically split the L2 cache in a CMP architecture in
order to maximize throughput or fairness [5]-[9].

However, the problem of adapting resources to program
needs is not only a problem of multithreaded architectures.
Several mechanisms have been proposed in superscalar archi-
tectures to use reconfigurable hardware that adapts microar-
chitecture features when the characteristics of the program
change [10]-[14]. The common problem with all these self-
tuning techniques is that decisions are based on indirect
performance metrics or empirical heuristics.

In this paper we focus on dynamic configuration of the
cache hierarchy. In particular, we propose a mechanism that

allows to accurately predict the Instruction Per Cycle (IPC)
of an application as we vary the amount of cache we devote
to it. We vary L2 cache size by activating/deactivating some
ways of a set associative cache. Our mechanism combines
Stack Distance Histograms [15] and ananalytical model for
predicting processor IPC introduced in [16]. We also have im-
proved the model [16] in order to increase our IPC prediction
accuracy. On average over all SPEC CPU 2000 benchmarks,
our mechanism obtains an average error of 3.11%, with a
maximum error of 16.4% (twolf) and a standard deviation
of 3.7%. The ability to predict IPC as we change the cache
configuration can be applied in two different scenarios:
Cache sharing in MT architectures. A better sharing of

the L2 cache among the running threads can be obtained.
Previous work on this topic proposes static and dynamic
partitioning of a shared L2 cache in CMP/SMT architectures
in order to maximize throughput or fairness [5]-[9]. These
proposals use indirect metrics of throughput such as total
number of misses, or data reuse. The mechanism we propose
provides a direct estimation of performance for different cache
configurations, which is the appropriate metric to maximize
total throughput.
Power reduction. A better reduction in cache energy

dissipation can be obtained by adjusting the hardware re-
sources. By having a direct estimate on the performance of
the application, it is possible to obtain the desired trade-
off between power consunmption and performance. Previous
work consisted in statically switching on or off L2 ways
[13] or switching off lines after a number of cycles without
being accessed [14]. However, these proposals cannot bound
performance losses and rely on empirical heuristics. Giving
the real contribution of each way to the final IPC can be used
to bound performance losses while saving power.

In both areas, previous work relies on empirical heuristics
and thresholds to make decisions. To our knowledge, we are
the first to mix runtime measurements with analytical models
to dynamically predict the actual performance impact of such
decisions. The main contributions of this work are:

1) A runtime mechanism to predict IPC for different cache
configurations with high accuracy. This proposal can help to
reconfigure L2 caches in CMP/SMT scenarios for dynamic
cache partitioning and in single core scenarios to reduce
power. The important difference with previous work in these
areas is that new configurations are based on real measures of
throughput instead of indirect measures or adhoc heuristics.

1-4244-1058-4/07/$25.00 C 2007 IEEE 169

2) An modified version of the memory model in [16] that
allows to better predict the cost of an L2 miss.

3) A sampling technique to reduce hardware cost under
0.4% of the total L2 size without excessive accuracy loss (the
average error raises to 4%).

4) A systematic benchmark classification so that results
are consistent in every benchmark group. This classification
extends previous intuitive classifications that were obtained by
hand. l
The rest of this paper is structured as follows. In Section II we
introduce the methods that we employ to predict IPC curves
and in Section III we show how to combine them to obtain IPC
predictions. Next, in Section IV we describe the experimental
environment and in Section V we discuss simulation results.
In Section VI we deal with a practical implementation in
hardware as well as a sampling technique to reduce this cost.
In Section VII we report related work and, finally, we conclude
with Section VIII.

II. BASIS OF IPC CURVES PREDICTION

We define the IPC curve of an application as the set of IPC
values that the application obtains for different configurations
of the L2 cache. These configurations have a way granularity.
Thus, in a K-way L2 cache, IPC curves have exactly K
points (as we assume that at least one way is assigned to
the application). In order to accurately predict IPC curves, we
have combined two instruments: the stack distance histogram
(SDH) [15], and an analytical model for superscalar proces-
sors performance [16].
Stack Distance Histogram. In [15] the concept of stack
distance is introduced to study the behavior of storage hi-
erarchies. Common eviction policies such as Least Recently
Used (LRU) have the stack property. Thus, each set in a cache
can be seen as an LRU stack, where lines are sorted by their
last access cycle. In that way, the first line of the LRU stack
is the Most Recently Used (MRU) line while the last line is
the LRU line. As an example, we can see in Table I a stream
of accesses to the same set. In this situation, cache lines A, B
and C have stack distances 3, 4 and 1 respectively.

TABLE I: STREAM OF ACCESSES TO GIVEN CACHE SET

Cache Line A B C C A D B
Number of Reference 1 2 3 4 5 6 7

To build SDHs for a K-way associative cache with
LRU replacement algorithm, we need K + 1 counters:
C1, C2, CK, C>K. On each cache access, one of the
counters is incremented: If it is a cache hit to a line in the ith
position in the LRU stack of the set, Ci is incremented. If it
is a cache miss, the line is not found in the LRU stack and, as
a result, we increment the miss counter C>K. SDHs can be
obtained during execution by running the thread alone in the
system [5] or by adding some hardware counters that profile
this information [6], [7]. A characteristic of these histograms

'This classification is not used in IPC predictions.

is that the number of cache misses for a smaller cache with the
same number of sets can be easily computed. For example, for
a K'-way associative cache, where K' < K, the new number
of misses can be computed as:

K

misses = C>K + S C
i=K'+1

(1)

As an example, in Table II we show a SDH for a set with
4 ways. In the example, 5 accesses would have missed in
the cache. However, if we had reduced the number of ways
to 2 (keeping the number of sets constant), we would have
experienced 20 misses (5 + 5 + 10).

TABLE II: SDH EXAMPLE

Stack Distance 1 2 3 4 >4
Number of Accesses 60 20 10 5 5

Superscalar Processors Analytical Modeling. In [16], a
model that estimates performance for a superscalar proces-
sor is proposed. This model computes an ideal Cycle Per
Instruction (CPI) when no misses occur and adds CPI penalties
for each type of hazard, including branch mispredictions,
instruction cache misses and data cache misses. Some as-
sumptions and simplifications are done in this model, but
simulations prove that it is accurate enough. Comparing to
detailed simulation, errors are within 5.8% on average and
within 13% in the worst case.
We use this analytical model to predict the performance of
superscalar processors as we vary the L2 cache size. In our
scenario, we can assume that ideal CPI is independent of the
cache configuration (it only depends on data dependencies of
the particular application). We also assume that the branch
miss penalty remains constant for different cache sizes. Thus,
we are only interested in using the part of the model that con-
cerns the cache hierarchy. The model considers L2 instruction
and data misses separately.
1) Instruction Misses: Initially, the processor issues instruc-
tions at the steady-state IPC. When an instruction L2 miss oc-
curs, instructions in the issue queue and the front-end pipeline
maintain issue rate for some cycles, but when the issue queue
drains, issue-rate drops to zero following a linear descend
[17]. After a miss delay, Al, instructions are delivered from
main memory. Then, IPC ramps up to its steady-state value.
In [16], it is shown that lost cycles until steady-state IPC
is attained compensate useful cycles until the issue queue
drains. Thus, the penalty for an isolated instruction cache
misses is approximately equal to the main memory latency.
Furthermore, as instruction cache misses must be serialised,
each miss in a burst of consecutive instruction cache misses
has the same penalty as an isolated one: Al cycles.
2) Data Misses: The basic difference between instruction and
data cache misses is that instruction fetch and issue continue
after the data cache miss, and so several data misses can
occur in parallel. After AD cycles, data is delivered from
main memory. In [16] it is shown that the misspenalty for an
isolated data L2 miss can be approximated by AD.

170

When we have a burst of n L2 cache data misses, they will
overlap if they all fit in the reorder buffer (ROB). In this
situation, the misspenalty of AD cycles is shared among all
misses. Then, being MD the total number of L2 data misses
and Ni the number of times that we have a burst of i misses
that fit in the ROB, we can approximate the average L2 data
misspenalty per miss (DCM) with the following formula:

1.52 instructions per cycle. Using the previous formula, we
predict the throughput for a configuration with 16 ways as
1.637, which is very close to the real value of 1.647. The
relative error of this prediction is 0.65%.

TABLE III IPC PREDICTION FOR v xR T E x

I C w w' Acw,w AD
272M 178M 7 16 -12.5M 250

DCM
1 ROBsize

M-D E N, . ADM

i=

(2)

III. PREDICTION OF IPC CURVES

In this section, we detail how to obtain an Online Prediction of
Applications Cache Utility. We call this methodology OPACU.
We use SDHs to compute the number of misses for each
possible L2 cache size, and the memory model described in
the previous Section to determine the miss penalty of each L2
miss.
OPACU Methodology. In our baseline configuration, the L2
cache has a variable number of active ways. We start by
assigning w ways and computing the throughput of an appli-
cation during C cycles. We denote this value as IPCreal,w,
with IPCrea,w I , where I is the number of committed
instructions in this period. This IPC value is valid for the given
number of ways that are being used.
Thanks to the SDH, we know whether an access would be a
miss or a hit with a different number of ways w' C [1, K].
Independently of the number of active ways, we store the
LRU counters of the last K accesses of the thread and obtain
the SDH for the whole K-way associativity L2 cache, as we
explain in Section VI. On the other hand using the analytical
model explained in Section II, we can estimate at runtime the
number of times that we have a burst of i L2 data misses with
an L2 cache with w' ways. We denote this number as Ni" for
1 < i < ROBsize for any possible number of ways w', and
the total number of instruction and data L2 misses as MIW
and M_W respectively. These numbers are obtained at runtime
using the hardware explained in Section VI. Using Ni[, we
can compute the L2 data misspenalty when we use w' ways,
DCMW', with Formula 2. Thus, we can estimate the variation
in the total misspenalty for the new configuration due to data
and instruction L2 misses, ACw'W and ACW' W respectively.

AC,W = DCMW . MD_ DCMW M_D (3)

AC,w' = (MIr -Mfl Al (4)
The value AXCW,W' = ACIW ,W + AC)W may be positive or

negative depending on the value of w and w'. Thus, we can
predict the IPC when using w' ways, denoted as IPCpred,w/.

IPCpred,w' = C+ CW,W(5)

To illustrate this technique, we have chosen the vortex
benchmark from SPEC CPU 2000 suite. In Table III we can
see the different values when using a cache configuration with
16 ways, with just 7 active ways. We have an IPCreal,7 of

Improving the Memory Model. We have modified the
memory model in [16] to increase accuracy in our predictions.
The original model considers that two L2 data misses overlap
if their ROB distance (in number of instructions) is less than
the ROB size. One of the main assumptions of the model is
that the ROB fills after an L2 data cache miss. However, this
is not always true. To illustrate this point, we have measured
the average ROB occupancy after an L2 data miss is serviced
from main memory and commits for a ROB with 256 entries.
This value varies depending on the application and is always
less than the size of the ROB as it can be seen in Figure 1.
We consider that this value remains constant when varying
L2 cache size. This approximation works better than using
the ROB size as a fixed value.

;i 256 -

2246
192-__
1 0-

>,128-

> 961
64-

co 32-aQc
E

F4
IngD m Fq Er0g 0 i 0x C

Benchmarks

Fig. 1. Average ROB occupancy after an L2 miss commits

The actual problem is that the ROB is not always the bottle-
neck for performance. Sometimes issue queues are full with
dependent instructions on the missing load, causing fetch and
issue to stall. Thus, it is more representative to use average
ROB occupancy after an L2 miss to determine if two L2
misses overlap. This value is easily obtained at runtime with
a hardware counter. This intuition is confirmed by simulations
in Section V. This improvement decreases our average error
from 3.34% and maximum error of 20.9% (with the memory
model from [16]) to an average error of 3.11% and maximum
error of 16.4%.
Benchmark Characterization Using IPC Curves. We have
extended previous classifications of benchmarks [5]-[7] based
on the shape of the IPC curves. We have used this classifi-
cation to analyze our simulations results. We simulate each
SPEC CPU 2000 benchmark in our baseline architecture (see
Section IV) which has a 1MB L2 cache 16-way associativity.
We observe that the performance of each benchmark varies
as we increase the number of ways given to it. As shown
in Figure 2, there are three different cases. Low utility (L)

171

benchmarks are not affected by L2 cache space because nearly
all L2 accesses are misses. Other benchmarks just need some

ways to have maximum throughput as they fit in the L2 cache,
that we call small working set (S). Finally, high utility (H)
benchmarks always improve their performance as we increase
the number of ways given to them. Clear representatives of
these three groups are applu (L), gzip (S) and ammp (H)
in Figure 2.

2.5

u

a.

1.5

0.5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of L2 ways

Fig. 2. IPC of benchmarks as we vary L2 cache size

In [6], this classification was done by hand. Here we propose

a new metric to systematically classify benchmarks in these
three groups.

Metric 1. The wp%o(B) metric measures the number of ways

needed by a benchmark B to obtain at least a given percentage
P% of its maximum IPC (when it uses all L2 ways).
We have found that using a value of P = 90% as threashold
gives a metric that accurately corresponds to the intuitive clas-
sification that we have previously introduced. In Table IV we

can see all SPEC CPU 2000 benchmarks classified depending
on the value of w90%0. Just note that H benchmarks have
8 < wK0%< 16, S benchmarks have 2 < w90%0 < 8 and
L have 1 < w90%0 < 2.

TABLE IV: BENCHMARK CLASSIFICATION

H W90%T S W90% L W90%
ammp 14 crafty 4 applu I
apsi 10 gcc 3 bzip2

art 10 gzip 4 eon 2
facerec 10 perl 5 equake
fma3d 9 swim 3 gap 2
galgel 15 vortex 7 lucas
mgrid mcf
parser mesa 2
twolf 15 sixtrack
vpr 15 wupwise

It is interesting to note that in average, SPEC CPU 2000
benchmarks need 6.11 ways to attain 90% of their peak
IPC (in our baseline configuration). This means that, ideally,
61.8% of the 16 ways in the L2 can be turned off with just
a 10% IPC degradation. This result is a good motivation for
power and cache partitioning.

IV. EXPERIMENTAL ENVIRONMENT

In order to focus on the correctness of IPC predictions,
we have evaluated our ealuation on single core superscalar
processors with separated LI instruction and data caches, and
a unified set associative L2 cache. The processor is single
threaded and can fetch up to 8 instructions each cycle. It has 6
integer (I), 3 floating point (FP), 4 load/store functional units,
and 32-entry I, load/store, and FP instruction queues. The
processor has a 256-entry ROB and 256 physical registers. We
use a two-level cache hierarchy with constant 64B lines with
separate 32KB, 4-way associative data and 2-way associative
instruction cache, and a unified 1MB, 16-way L2 cache.
Latency from LI to L2 is 15 cycles, and from L2 to memory
250 cycles. We use a 32B width bus to access L2 and a

multibanked L2 of 16 banks with 3 cycles of access time.
We have extended the SMTSim simulator [2] to obtain SDHs
and the memory model to obtain performance predictions.
We collected traces of the most representative 300 million
instruction segment of each SPEC CPU 2000, following the
SimPoint methodology [18].
We have simulated each application on all available L2 sizes
(from 1-way to 16-ways available). At the same time, we

predict the performance of the same application on all other L2
cache sizes using our methodology, described in Section III.

That is, when running with 3 ways, we predict performance
for 1 to 16 ways. For each IPC prediction IPCpred,w/, of a

real IPC IPCreai we measure the relative error as:

IIPCpred,w/ IPCreai,wi

rel error= 100 IPCreadiw a

Finally, we compute the arithmetic mean of all the relative
errors.

V. EVALUATION RESULTS

In this section we show the accuracy of our IPC prediction
mechanism, as well as a sensitivity analysis regarding different
processor parameters.

A. Accuracy

Figure 3 shows the average relative error for each SPEC CPU
2000 benchmark. Benchmarks belonging to the same group

(L, S, H) are shown together. Overall, the average prediction
error is 3.1%. It is important to note that average error is
consistent across benchmarks of the same type, with L and
S benchmarks having lower error, and H benchmarks having
higher error.

Figure 4 shows detailed IPC prediction results for two bench-
marks representative of different error ranges. The figure
shows IPC predictions for all 16 L2 cache sizes when using
data obtained running on K L2 cache ways. In the case of
gap, the average prediction error is 0.27%, and prediction
accuracy is very high regardless of the number of cache ways

used to make the prediction. On the opposite size, textttparser
has an avergae error of 9.8%. Predictions are inaccurate in
all cases, because the impact of L2 cache misses is being
underestimated in IPC prediction.

172

~Sm allIVVorkirng Set (gzip)
Low Uti lity (applu)

-mHigh UtilityI (armmp)

20

.15-
0

Lu
0 1 0

0 ~
3 a'weLc 3 @ E2 m X E m

m] X

Low Utility Small Working High Utility Meal
Set
Benchmarks

Fig. 3. Mean relative error for all SPEC CPU 2000 benchmarks

1 .3 -

1.2

1 .1 - l-W
1-

0.9 -

0.8 -

0o -I
.,I0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of ways (gap)

-.1 2 4 5 e6 87 - 8 9
10 1 1 1 13 14 15 16 -4-real

(a) Gap
1.2

0.9 - D~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ----
a e
06

0.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of ways (parser)

--1 2 3 4 6 7 8 9
10 11 12 13 14 15 16 -4-real

(b) Parser

Fig. 4. IPC predictions for gap and parser

Global Error per Benchmark Group. It is significant that
relative errors for each benchmark group H, S and L have
similar results. In that way, we have that H benchmarks present
an average relative error of 5.09%, while S benchmarks
present lower errors (3.83% in average) and L benchmarks
have negligible errors (0.72% in average). These results are
intuitive as benchmarks that are memory bounded present
more IPC variability and, as a consequence, predictions are
less accurate.
Error per Cache Size. Figure 5 shows the average IPC
prediction error as we change the number of ways simulated
to make the rest of the predictions. That is, the average error
for predicting performance on 2-16 ways when running on
1 way, and so on. We have averaged the relative error for a
given number of active ways among all benchmarks in the
same group.
Our reults show that average error is higher for very small and
very large L2 caches. In fact, if we have a number of ways

_b

L.

3:

14-

12

10

4

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of ways simulated

Fig. 5. Average relative error for H, S and L benchmarks when simulating
a fixed number of ways

between 4 and 12, the average relative error is under 3%. For
small caches, we can see that errors are higher when predicting
IPC for large caches. The same happens the other way round.
This situation is intuitive as we are trying to predict IPC for
caches up to 16 times larger or smaller. The plot shows a high
peak error for the smallest L2 cache size. In this particular
case, we are predicting the performance of a highly associative
cache based on results of a 64KB direct mapped L2 cache
and 32K LI caches. This unusual setup naturaly leads to high
prediction errors.
We have observed that H benchmarks present less accuracy
when they are executing with just one or two ways, while S
benchmarks have problems when using just one way. How-
ever, this situation is unlikely to happen. On the one hand, in
a low power scenario, as these benchmarks satisfy w90o0 > 2,
if we decide to loose 10% performance to reduce power, then
these benchmarks will have at least 3 active ways (they would
use exactly w90o0 active ways). On the other hand, in a CMP
scenario, we have done an experiment in a CMP architecture
with two cores with a shared 16-way 1MB L2 cache and
private instruction and data LI 4-way caches of 32KB. We
have implemented the policies used in [5]-[7] to minimize
the total number of L2 misses. Thus, each 2-thread workloads
can be classified into one of these 6 groups: HH, HL, HS,
LL, LS, and SS. We composed a total of 48 workloads, 8
in each group, in which every benchmark appears between 3
and 5 times, which means that results are not biased by the
behavior of any benchmark. In average, S benchmarks receive
more than one way in 92% of the decisions, while in the
case of H benchmarks, this happens in 96% of all decisions.
H benchmarks receive more than two ways in 91% of the
decisions. Thus, in these situations the mean IPC prediction
error would be even lower than the reported 3.11%.
Outliers. The highest errors among benchmarks are obtained
for par s e r and two 1 f. These benchmarks do not satisfy
the approximation that the misspenalty for an isolated data
L2 miss is approximately AD. If there are instructions before
the L2 miss in the pipeline, the processor can do some useful
work while waiting for data to come from memory. This useful
work is not easy to measure and even harder to predict for
different sizes of L2. This obsrvation was also shown in [16].

173

v
QZ
r_
0

t;

4J

IL

Another source of inaccuracy is the use of a fixed value of
ROB occupancy after a data L2 miss commits. It is clear that
when the ROB size is the bottleneck, ROB will fill nearly
always. This is exactly the case for art, which is the H
benchmark with less error. In Figure 6(a) we show art's ROB
occupancy after an L2 miss. However, in the case of twolf
ROB occupancy after a data L2 miss varies a lot and the mean
value is less representative of overlaps (see Figure 6(b)). Thus,
when the ROB is not the main bottleneck for performance, we
obtain higher errors in predictions.

Number of ROB entries used after a L2 data miss

(a) Art

Number of ROB entries used after a L2 data miss

(b) Twolf

Fig. 6. ROB occupancy after a data L2 miss

B. Sensitivity Analysis
In this section, we check the sensitivity of our OPACU
methodology regaring several processor parameters. We per-

form six different studies. The first two concern a parameter
of the cache hierarchy, while the last four are related to the
analytical model. The rest of the processor parameters remain
constant.
Data and Instruction LI size. First, we vary the LI cache
size from 16KB to 64KB, while keeping the associativity
constant. When LI cache size varies, the number of L2
accesses also varies. Larger LI caches lead to less L2 accesses.

A new hit to the LI instruction or data cache would probably
be a hit in L2 if the whole L2 cache is active. However, if just
some ways of the L2 are active, this LI hit could have been a

miss in the L2 due to its low associativity. Thus, it is intuitive
that the mean relative error will decrease with LI cache size.
In Figure 7(a) we can see the evolution of the mean relative
error, confirming this intuition.
Latency from L2 to memory. In this experiment we vary the
L2 cache latency from 100 cycles to 400 cycles, while keeping
other parameters constant. In this situation, average relative
error increases according to latency from L2 to memory. When
this latency increases, the contribution of L2 misses to the
total CPI becomes more important and the error increases.
In Figure 7(b) we can see the evolution of the mean relative
error, showing this behavior.

-4 -

E

-

-t0
16 32 64

LI Cache Size in KB

ze4
-

. 2 -

100 250 400
L2 latency (cycles)

(a) Average relative error depending (b) Average relative error depending
on LI size. on latency from L2 to memory.

ZE 5
-

2 4 -

,, 3 -- -# -

F 2 -

q 1
< O --

128 256 512
ROB size

(c) Average relative error depending (d) Average relative error depending
on ROB size. on issue queue size.

Fig. 7. Sensitivity Analysis

Interaction between Branch Misspredictions and Cache
Misses. Next, we have observed that in some benchmarks
many wrong path instructions are executed (for example, in
the case of twol f, 40% of the fetched instructions are from
the wrong path). Thus, we check the assumption that there
is no interaction between L2 misses and branch prediction
misses. We have run these benchmarks with perfect branch
predictor and the mean relative errors result in approximately
the same values. Hence, this hypothesis is confirmed to be
correct.

Interaction between Instruction and Data Cache Misses.
We have observed that in some benchmarks, the number of
instruction LI misses is high (for example, in the case of
crafty). It is important to know if the interaction between
instruction misses and data misses is accurately modeled.
To verify this assumption, we have considered a perfect LI
instruction cache. However, simulations make no substantial
differences in the results. Thus, instruction and data misses
can be treated separately.

ROB size. In this study, we vary the ROB size from 128 to
512 entries. Figure 7(c) shows that for smaller ROB sizes, the
mean relative error decreases, while the opposite occurs for
greater ROB sizes. In our model, we expect the ROB size to
be the main bottleneck after a data L2 miss. When the ROB is
larger, it is more likely to happen that the issue queue becomes
the bottleneck. Thus, the mean ROB occupancy after an L2
miss becomes less representative of overlaps. When the ROB
is smaller, ROB occupancy after an L2 miss is concentrated
around the full ROB size.

Queues size. Finally, we vary issue queues size from 32
to 64 entries. Although it does not appear directly in the
formula, it is clear that smaller issue queues lead to more

conflicts, becoming the main bottleneck instead of the ROB.
Consequently, we have larger error in IPC predictions. In
Figure 7(d) we can see the evolution of the mean relative
error.

174

.7 4-

- 2-

a. 1

32 48 64
IQ size

f
70

-7 60

40
= 30

p 20

LL 10o
I

A-n- P-/.-

.71
>C

VI. HARDWARE IMPLEMENTATION

In this Section we show a possible implementation of our IPC
prediction method. There are two main hardware components:
First, we need a set of counters to know the number of
committed instructions, the number of cycles and the average
ROB occupancy after an L2 miss commits. Second, we need
some hardware to track L2 accesses as other proposals have
already shown [6], [7]. For each cache configuration 2 we use
hardware to determine at runtime if two L2 accesses overlap,
count the number of bursts of overlapped L2 misses, and
predict IPC.
Overlap Counters. For each possible cache size we have
a counter overlapw that counts the number of bursts of
overlapped L2 misses. When we have a miss, we need to know
if this miss is overlapped with previous misses. According
to our memory model, instruction L2 misses do not overlap.
Thus, bursts are always of only one miss. In case of an
instruction L2 miss with stack distance i, we can directly
increase the counter overlapi. In case of a data L2 miss,
we need to know the average ROB occupancy after an L2
miss commits to know if this particular L2 miss overlaps
with previous ones. This information can be tracked with a
hardware counter that we call AROAL2M (stands for Average
ROB Occupancy After an L2 Miss commits). This counter is
updated every time a served L2 miss commits. This value can
be obtained with some cycles of latency, as this latency is not
crucial because the mean value should not vary too much in
a period.
Countdown Counter. When a new non-overlapped L2 miss
with stack distance i appears, we set a countdown counter to
the value of AROAL2M. This counter, called cdci, is different
for each L2 cache size. Each time an instruction is committed,
we decrease the counters, which saturate to zero. Thus, when
a new L2 miss with stack distance i appears, if cdci :t 0,
then it overlaps with the previous L2 miss. Notice that we
can count committed instructions that are actually prior to the
miss. However, this is not a big problem as the number of
instructions in the ROB when an L2 miss occurs is normally
small [16]. In any case, if we want to check that the committed
instruction is after the data L2 miss, we can add an instruction
identifier that is assigned at fetch time and sorts instructions.
Predicted Cycle Variation Counters. Next, we need a
counter for each cache configuration that stores the variation
in total misspenalty due to L2 misses. We call this counter
PCVw for a cache configuration with w ways.
Instructions and Cycles Counters. Finally, we need a
hardware counter that gives the total number of instructions
committed in a fixed period of cycles, denoted as Icounter.
The amount of cycles elapsed since we began tracking L2
accesses must be also stored in a counter denoted Ccounter.
Auxiliary Tag Directory (ATD). Normally, L2 caches have
two separate parts that store data and address tags to determine

2We work at way granularity. Hence, we have as many configurations as
the number of ways in the L2 cache associativity.

if the access is a hit. Basically, our prediction mechanism
needs to track every L2 access, and store a separate copy of
the L2 tags information in an ATD, coupled with the LRU
counters. As we have a cache with 16 ways, we need 4 bits
to encode the stack distance. As we described in Section II,
an access with stack distance larger than the associativity
corresponds to a cache miss. Thus, with this ATD we can
determine whether an L2 access would be a miss or a hit in
the 16 possible cache configurations.
In Figure 8 we sketch a diagram of this hardware implemen-
tation. Our main contributor to hardware cost corresponds to
the ATD, for which we propose to use a sampled version.

cdci Overlap Pc_
cdc2 . 5yerlaP2 _ F 2

cdc5 erap PV15
cdc, Overlap,

AROAl MKX idounter n ourt

Fig. 8. Hardware implementation

Sampled ATD. Instead of monitoring every cache set, we
can decide to track accesses from a reduced number of sets.
This idea was also used in [6] in a CMP environment to
determine the cache partition that minimizes the total number
of misses using a sampled number of sets. Instead, we use
it in a different situation, say to predict IPC with a sampled
number of sets. We define a sampling distance d, that gives
the distance between sampled sets. For example, if d, = 1,
we are tracking all the sets. If d, = 2, we track half of the
sets, and so on. Sampling reduces the size of the ATD at the
expense of less accuracy in IPC predictions. In this situation,
some accesses are not tracked and, as a consequence, the
information in the overlap counters is always less than real
values.
Figure 9 shows the four error curves that are measured on the
left y-axis. It is clear that for L benchmarks sampling makes
no difference as their IPC is nearly constant for any L2 cache
size. In S and H accuracy degradation is more important and
errors quickly become significant. With a sampling distance
of 8 we obtain average errors around 9%. We think that this
is an interesting point of design.
Hardware Cost. We suppose a 40-bit physical address space.
Each entry in the ATD needs 29 bits (1 valid bit + 24-bit tag
+ 4-bit for LRU counter). Each sampled set has 16 ways, so
we have an overhead of 58B for each set. We also need 16
cdci counters of lB because the ROB has 256 entries. It is
necessary an extra counter of lB for AROAL2M. Next, we
need 16 overlapi counters of 4B, supposing a total of 64B.
For the predicted cycles variation stored in PCVW, we need

175

4.1
N
.0)
cli
-1
4..
0

.-El

0
u
2

'a
(o
1:

1 2 4 8 16 32 64 128 256 512 1024

Sampling distance

Fig. 9. Average relative error and hardware cost depending on the sampling
distance

16 registers of 4B. Finally, we need two registers of 4B for
Icounter and Ccounter. In that way, the hardware overhead of
this circuits can be seen in Figure 9 measured on the right
y-axis.
Improving Accuracy. In order to reduce even more prediction
errors, we can use two methods. First, as sampling leads to
a number of untracked accesses, we can scale the counters in
the following way:

counterestimated = scaling factor * counter

However, it is not easy to stablish such a scaling factor. It
is clear that the number of misses overlapped by the first
L2 miss depends on the size of available L2 cache. For
example, if we have a smaller L2 cache, then we obtain
more L2 misses and, as a consequence, bursts of overlapped
L2 misses contain more L2 misses. Just to illustrate this
point, in the case of twolf, the misspenalty for an L2 miss
goes from 137 cycles to 192 cycles when we have 1 or 16
active ways. Thus, this scaling factor should depend on the
number of ways that we are predicting. Furthermore, this value
depends on the application. In that way, we have empirically
found the optimal scaling factor for each sampling distance.
These values must be stored in hardware. Figure 10 shows
the accuracy in IPC predictions as we increase the sampling
distance.

1 20 -

w,
05

cr 1 0 -
c~0

5-
:>

_ High Utility
- * - Small Wo rking Set

Low Utility
Mean

1 2 4 8 1 6 32 64 128 256 512 1024

Sampling Distance

Fig. 10. Average relative error with optimal sampling factor

Another option is to combine the sampled ATD with informa-
tion inside the L2 cache. If we have w ways active, we can use

the LRU counters inside the L2 cache to detect any access with
stack distance less or equal to w. Hence, this proposal requires
that on every L2 hit we can read the LRU counter of the
accessed line. Please note that this information is readable as
it should be sent to the logic that determines which line to evict
on an L2 miss. Thus, we only have to drive this information
outside the L2 cache, which should not suppose many changes
in the cache design. With this information, we can check if
the access overlaps with previous accesses. The sampled ATD
gives misses information for larger caches configurations. In
this situation, IPC estimations are more accurate, as it can be
seen in Figure 11, and we manage to obtain average errors
under 5%. An interesting point of design is obtained with
a sampling distance of 16, where we obtain average errors
around 4%.

25-

0 20-

1-

ot 10

0

- High Utilit y
Small Working Set
Low Utility
Me an

U ;- 1--- r 1- 1

1 2 4 8 1 6 32 64 128 256 512 1024

Sampling Distance

Fig. 11. Average relative error using L2 cache information

VII. RELATED WORK

Many papers focus on predicting the IPC of applications. On
the one hand, some papers try to reduce time complexity
of design space exploration. Some studies have focused on
reducing simulation time by selecting a representative small
trace of an application [19]. A different approach consists in
sampling design space points to train artifitial neural networks
that predict performance in the whole design space with
high accuracy [20]. However, our proposal lies in a different
scenario, as it is a runtime mechanism. On the other hand,
other papers predict IPC at runtime [21]. They analyze IPC
in a window of time together with information obtained at
compile time, and predict the future value of IPC. The main
difference is that the processor configuration remains constant
in IPC predictions.
Several papers have the objective of dynamically adjusting the
cache size assigned to each thread in a multithreaded scenario.
In [5], column caching is introduced. It allows to partition
the caches in a cache hierarchy. In this paper, the control of
cache partitions is let to the software (or the programmer). In
[7], a dynamic cache partitioning technique is developed for
SMT systems extending the previous paper. Here, partition
sizes are varied at runtime using the total number of L2
misses. In [8], a similar dynamic scheme is introduced that
decides partitions depending on the average data reuse of each
application. In [9], instead of using the number of misses

176

f

r r 1

Ous
.>

a:
aw

for each application, they use the missrate to ensure fairness
among threads. Finally, in [6] the authors present a suitable
and scalable implementation of the technique appeared in [7]
using sampling and showed similar performance gains with
just an extra 0.2% space in L2 cache. However, all these
proposals are using indirect measures of performance such us
misses or data reuse. Our proposal is to use direct estimations
of performance to obtain optimal partitions.
Regarding reconfigurable hardware for single threaded pro-
cessors, several proposals try to reduce power consumption
without loosing too much performance. In [11], working
set signatures are used to represent programs instructions
working set and find the minimal instruction cache size to
minimize instruction misses (data misses are not treated). In
[13], selective cache ways are introduced. These caches just
precharge lines in active ways. This study is expanded in [12],
where some algorithms are given to dynamically decide to
switch on/off cache ways. However, they are unable to ensure
a quality of service as they are using indirect measures of
IPC. For example, they report a maximum IPC reduction
of 52%. In [14], Cache Decay is proposed to dynamically
switch off a cache line when it is highly probable that no
more accesses will be done to this line. This occurs after a
fixed number of cycles or other more agressive variants of
this approach. In [22], the authors present a runtime decision
algorithm for activating or inactivating cache lines based on
the number of accesses to the LRU and MRU active lines.
Finally, in [10], issue width and the number of execution
units is dynamically modified depending on the present IPC.
When the IPC is under a given threshold, then issue width
is decreased. In this scenario, mainly all proposals cannot
estimate performance degradation as they depend on empiric
thresholds and heuristics concerning indirect measures of
performance. Our proposal gives the opportunity to bound
these losses.

VIII. CONCLUSIONS

Throughout this work we have presented a runtime mechanism
that accurately predicts IPC as L2 cache size varies. We have
shown average errors of 3.11% with predictions that follow the
shape of the real IPC curve. To obtain these results, we have
modified previous memory models to obtain higher accuracy
in predictions. Furthermore, we have systematically classified
benchmarks so that results are consistent in every benchmark
group. We have also discussed a practical implementation that
has an extra cost between 5.68% of the L2 cache size (best
accuracy) and under 0.4% (for a 4% error). Hardware cost is
reduced using a sampling technique.
Our mechanism can be used to reduce power consumption
in single threaded architectures as it can be used to give the
real contribution of each way to the final IPC and bound per-
formance losses. A second possible application is to improve
performance in multithreaded architectures that dynamically
partition shared L2 caches. The mechanism we propose gives
direct estimation of performance for different cache configu-

rations, instead of other indirect measures of performance that
are currently used to maximize total throughput.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science
and Technology of Spain under contract TIN-2004-07739-
C02-01, and grant AP-2005-3318. The authors would like to
thank Carmelo Acosta, Ayose Falcon, Daniel Ortega, Jeroen
Vermoulen and Oliverio J. Santana for their work in the sim-
ulation tool. The authors would also like to thank anonymous
reviewers for their helpful comments.

REFERENCES

[1] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multistreamed
superscalar processors. Technical Report 93-05, University of California
Santa Barbara, 1993.

[2] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithread-
ing: maximizing on-chip parallelism. in ISCA, 1995.

[3] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multipro-
cessor. Computer, 30(9):79-85, 1997.

[4] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynamically
controlled resource allocation in SMT processors. In MICRO, 2004.

[5] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache
partitioning via columnization. In Design Automation Conference, 2000.

[6] M. K. Qureshi and Y N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

[7] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. Journal of Supercomputing, 28(1):7-26, 2004.

[8] A. Settle, D. Connors, E. Gibert, and A. Gonzalez. A dynamically
reconfigurable cache for multithreaded processors. Journal ofEmbedded
Computing, 1(3-4), 2005.

[9] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In PACT, 2004.

[10] R. Iris Bahar and S. Manne. Power and energy reduction via pipeline
balancing. In ISCA, pages 218-229, 2001.

[11] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In ISCA, 2002.

[12] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures. In MICRO,
2000.

[13] D. H. Albonesi. Selective cache ways: on-demand cache resource
allocation. In MICRO, 1999.

[14] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting
generational behavior to reduce cache leakage power. In ISCA, 2001.

[15] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78-117,
1970.

[16] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In ISCA, 2004.

[17] P. Michaud, A. Seznec, and S. Jourdan. Exploring instruction-fetch
bandwidth requirement in wide-issue superscalar processors. In PACT,
1999.

[18] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discov-
ering and exploiting program phases. IEEE Micro, 2003.

[19] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. Statistical
simulation: Adding efficiency to the computer designer's toolbox. IEEE
Micro, 2003.

[20] E. Ypek et al. Efficiently exploring architectural design spaces via
predictive modeling. In ASPLOS, 2006.

[21] S. Chheda et al. Combining compiler and runtime ipc predictions to
reduce energy in next generation architectures. In CF, 2004.

[22] H. Kobayashi, I. Kotera, and H. Takizawa. Locality analysis to control
dynamically way-adaptable caches. Comput. Archit. News, 33(3):25-32,
2005.

177

