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Abstract—Although SIMD extensions are a cost effective way
to exploit the data level parallelism present in most media
applications, we will show that they had have a very limited
memory architecture with a weak support for unaligned memory
accesses. In video codec, and other applications, the overhead for
accessing unaligned positions without an efficient architecture
support has a big performance penalty and in some cases makes
vectorization counter-productive. In this paper we analyze the
performance impact of extending the Altivec SIMD ISA with un-
aligned memory operations. Results show that for several kernels
in the H.264/AVC media codec, unaligned access support provides
a speedup up to 3.8X compared to the plain SIMD version,
translating into an average of 1.2X in the entire application.
In addition to providing a significant performance advantage,
the use of unaligned memory instructions makes programming
SIMD code much easier both for the manual developer and the
autovectorizing compiler.

I. INTRODUCTION

Multimedia applications have become a very important
workload, both in general purpose and embedded computing
application domains [1]. In microprocessors for desktop com-
puters and in most embedded media processors, the common
approach for dealing with the requirements of digital video
processing, and other multimedia applications, has been the
extension of the Instruction Set Architecture (ISA) with SIMD
instructions tailored to the operations and data types present
in multimedia kernels [2].

However, most SIMD media extensions have a limited
memory architecture which provides access to only contiguous
data in memory, with strong alignment restrictions and a weak
support for partial load and stores [3], [4]. These architectures,
either do not provide any hardware support for unaligned
accesses or provide it but at the expense of a big performance
penalty. Therefore, the programmer usually ends up taking
care of the alignment in software which, in turn, implies
an extra-overhead that reduces or inhibits the performance
gains due to vectorization. Moreover, software optimizations
such as data reorganization become unsuccessful in video
codec applications, where motion estimation (ME) and motion
compensation (MC) algorithms and variable block sizes entail
unpredictable alignments.

In this paper we analyze the performance impact of provid-
ing hardware support for unaligned access in current SIMD
extensions for emerging video applications like H.264/AVC
decoding and encoding [5]. We evaluate an efficient hard-
ware architecture that can deliver high bandwidth and low
latency for unaligned accesses. Software support includes new
instructions on top of the Altivec SIMD extension of the
PowerPC architecture. Our results show that the availability of
instructions for unaligned access has an important speed-up in
some kernels, and in some cases they allow the vectorization
of other kernels that otherwise have to be implemented with
scalar instructions.

This paper is organized as follows. In section II, we dis-
cuss the problem of alignment in video applications and we
overview the existing support for unaligned accesses in current
SIMD extensions. In section III, we describe the process of
adding support for unaligned memory access to the Altivec
extension both from hardware and software perspectives. In
section IV, we depict the methodology used for the experi-
mental evaluation and, in section V, we present some results in
terms of speed-up and reduction in the number of instructions.
Finally, in section VI, we present our main conclusions for this
paper.

II. SUPPORT FOR UNALIGNED ACCESS IN SIMD
EXTENSIONS

A memory reference is called misaligned (or unaligned)
when it accesses a position that does not match with the
memory access granularity of the processor. In most SIMD
architectures, it is not possible or it has a big performance
penalty to access an unaligned memory position. When there
is an attempt to access an unaligned position, it is necessary
to perform a realignment process that consist in, first, to read
the aligned memory word that is located before the unaligned
position and shift out the unnecessary bytes; second, to read
the aligned word that is located next to the unaligned position
and discard the unnecessary bytes; and finally, to merge the
two parts that were extracted previously. The realignment
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Index:
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Fig. 1. Vector load from an unaligned address

process for an unaligned vector load of four elements is shown
in figure 1.

The level of support for unaligned accesses in current SIMD
extensions includes variations from hardware mechanisms that
transparently perform the memory accesses, system exceptions
that generates a call to the operating system, and instructions
to do the re-alignment in software. In the domain of high
performance general purpose processors (GPPs) the Intel’s
SSE extension is the only one that includes both hardware
support and unaligned exceptions. The initial design of the
SSE extension only provides support for aligned accesses,
the instruction MOVDQA (Move Aligned Double Quadword)
requires that the effective address have to be aligned, and in the
opposite case a general protection fault is generated [6]. The
SSE2 extension includes support for non-aligned accesses by
providing the instruction MOVDQU (Move Unaligned Double
Quadword) that allows to load and to store non-aligned 128
bit words. This instruction was implemented using two 64-
bit loads (or stores) and was based on microcode; this kind
of implementation results in big latencies and big performance
penalties for unaligned accesses that cross cache boundaries. In
the SSE3 extension another instruction was introduced in order
to resolve the above mentioned problems [7]. The LDDQU
(Load Unaligned Integer 128 bits) instruction performs a 32-
byte load and then performs a shift to extract the corresponding
16 bytes of unaligned data. However this instruction may re-
duce performance if the load requires store to load forwarding
and it only applies for loads [8].

In other SIMD extensions like Altivec, MIPS and Alpha,
the hardware always returns aligned positions by automat-
ically clearing the lower bits of the effective address. In
these extensions, it is necessary to load the two adjacent
aligned positions and to shift them in order to extract the
unaligned data elements. SIMD extensions differ in the way
they can generate the data necessary for the shift. Naishlos
and Henderson call this value the ”realignment token” [9].
The realignment token can be an address, a bit mask or any
other value that is a function of the unalignment of the original
address. The Altivec extension uses an approach in which

src_ptr = InputArray;
LOOP:
alignmask = vec_lvsl(0,src_ptr);
aligned_a = vec_ld(0, src_ptr);
aligned_b = vec_ld(15, src_ptr);
unaligned = vec_perm(aligned_a,

aligned_b, alignmask);
src_ptr += srcStride;

END_LOOP

(a) Non unitary-stride ((srcStride%16)!=0)

src_ptr = InputArray;
alignmask = vec_lvsl(0,src_ptr);
aligned_a = vec_ld(0, src_ptr);

LOOP:
aligned_b = vec_ld(15, src_ptr);
unaligned = vec_perm(aligned_a,

aligned_b, alignmask);
aligned_a = aligned_b;
src_ptr += 16;

END_LOOP

(b) Stride-one vectors ((srcStride%16)=0)

Fig. 2. Altivec alignment code for a vector load

2 3 4 5 6 7 8 9

Index: 0 1 2 3 4 5 6 7 8 9

0 4 8 C 10 14 18 1C 20 24 28Address: 2C

vec_load(src[0]) vec_load[src[8])

8 9

10 11

10 11

vec_load(src[4])

70 1 2 3 4 5 6

Realign Shift Realign Shift

Index:

Fig. 3. Vector load from an unaligned address with stride one

the realignment token is a vector mask generated with the
LVSL (Load Vector for Shift Left) instruction which is used
in conjunction with the VPERM (Vector Permute) instruction
to merge two aligned vectors and to produce the desired
unaligned data [10]. Figure 2(a) shows the necessary code for
re-alignment of a vector load, using Altivec C intrinsics.

On the other hand, most Digital Signal Processors (DSP)
architectures traditionally do not provide support for unaligned
accesses. The proliferation of video applications in multimedia
devices have prompted the designers to enhance the memory
architecture of DSPs with misaligned accesses support. The
recent Trimedia TM3270 processor has included support for
32 bit non-aligned loads and stores with no-stall cycles [11],
previous processors in the Trimedia series produce exceptions
when trying to access a misaligned position. Due to the
fact that the TM3270 has only one load/store unit if the
unaligned access crosses a cache line boundary the access
may result in two sequential cache misses. In the TMS320C
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Texas instruments family of DSPs, the recent TMS320C64X
set of processors includes support for unaligned loads and
stores of 32 and 64 bit values. But when there is an unaligned
memory access one of the two memory ports can not be
used for memory operations and the memory system does not
assure that these memory accesses will be atomic [12]. Other
DSP architectures for embedded systems, like the TigerSharc,
support accesses to misaligned positions by using specialized
hardware units (like the Data Alignment Buffer) which per-
forms the required aligned loads and shifts [13]. The Cell
Broadband Engine has added two instructions for unaligned
load and stores into the PowerPC Processor Element (PPE).
Using the load instruction an unaligned load requires three
instructions (one less than plain Altivec) but still two more
than a single unaligned load [14]. These instructions belong
to the critical path of the loop body representing a significant
execution delay. The unaligned store instructions are useful
for the leading and trailing edges of misaligned arrays, but
not for unaligned 2-dimensional data structures like in video
codec applications.

Table I summarizes the unalignment support provided by
different architectures based on the scheme proposed by
Nuzman and Henderson and with the addition of some media
processors.

The first designs of SIMD ISAs did not include support for
unaligned accesses because it has been taken as an unnecessary
addition of complexity, specially for the load/store pipeline. As
a way to overcome the problem of unaligned accesses some
architectures, like PowerPC, included powerful permutation
instructions and units that help with the problems of data
reorganization within a vector register. But still there are some
applications, with video processing being one of the most
remarkable one, for those not having an efficient support for
unaligned accesses degrade the performance significantly. For
this kind of applications the extra cost in hardware complexity
is more than justified.

Although currently there are processors that include some
extent of support for non-aligned accesses and there are wide
consensus about their importance for video applications, most
of the current SIMD architectures that support unaligned
accesses have restrictions and limitations that do not allow
an efficient use of the unaligned instructions in all the cases.
These restrictions include: microcode-based operations, short
buses in internal datapaths, short bandwidth to the L1 data
cache, partial support for unaligned instructions that requires
several instructions for each memory access, not-supporting
unaligned stores, not being thread safe, causing extra latency
for crossing cache boundaries, requiring a sequential handling
of more than one cache miss and having restrictions in the
use of the load store units. Additionally there is not in the
literature a complete evaluation of the impact of unaligned in-
structions in SIMD extensions using contemporary multimedia
applications. We have addressed this issues by providing a high
performance and efficient support for both non-aligned loads
and stores and by evaluating their performance impact with a
state-of-the-art video codec like H.264/AVC.

Architecture & unaligned aligned realign realign
SIMD extension load load operation token

IA32 SSE1,2,3,4 movdqu, lddqu movdqa
PowerPC - Altivec lvx vperm lvsl
Cell (PPE) - Altivec lvlx, lvrx
MIPS-rev2 ldl, ldr
MIPS - MDMX luxc1 alnv.ps address
ALPHA ldq u extql, extqh, or address
Trimedia TM3270 ld32r
TI TMS320C64X ldnw

TABLE I
SUPPORT FOR UNALIGNED LOADS IN DIFFERENT PLATFORMS

A. Compiler Optimizations Related to Memory Alignment

As unaligned accesses usually have more latency than
aligned ones, the programmer/compiler tries to avoid them as
much as possible. In some algorithms in which unaligned ac-
cesses cannot be avoided, compile-time optimizations such as
loop peeling and static and dynamic detection of unalignment
can still be applied [15], [16]. Additional optimizations exist
for stride-one references [17]. Figure 2(b) shows a version of
the loop in figure 2(a) optimized for stride-one streams. In this
case, the mask for doing the permutation remains constant and
has to be calculated only once. Similarly it is possible to reuse
one of the aligned loads from one iteration to the next one (see
Figure 3). As a result the mask generation instructions and one
aligned load can be moved out the loop. (Note that in Altivec
a stride-one vector means that the stride is equal to 16).

B. Unaligned Access in Video Applications

In applications like video coding and decoding that use ME
and MC algorithms, it is not possible to avoid unpredictable
unaligned memory references. This is due to the fact that ME
performs a search and a comparison of pixel blocks within a
search window. The displacements in the search window can
be arbitrary and that results in a lot of unpredictable unaligned
accesses [18]. Additionally, in video standards like H.264/AVC
that supports variable block size for ME, it is necessary to
perform unaligned stores in order to save those blocks whose
size is not equal to the SIMD register width. In Altivec, 16-
bytes of a 16x16 block can be stored simultaneously to an
aligned memory address but for other blocks sizes, like 8x8
or 4x4, the data is naturally aligned to 8 or 4 bytes but not to
16-bytes requiring to perform partial stores of unaligned data.

Figures 4(a) and 4(b) show the distribution of unalignment
offsets for Altivec loads for two kernels (luma and chroma in-
terpolation) of the MC stage of the H.264/AVC decoder using
different input videos at different resolutions. The unalignment
offsets are distributed across the full range from 0 (aligned)
to 15. These offsets can not be determined at compile time,
and the use of optimizations like loop peeling is not well
suited. Moreover, these accesses are made on a 2-dimensional
pattern preventing the use of the compile time optimizations
developed for linear streams.

Figures 4(c) and 4(d) show the distribution of unalignment
offsets for the Altivec stores for the same kernels and input
sets. Here, the unalignment depends only on the block size.
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(b) chroma load pointers
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(c) luma store pointers
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Fig. 4. Alignment offsets in H.264/AVC luma and chroma interpolation
kernels

dst1 = vec_ld(0, dst);
dst2 = vec_ld(16, dst);
dstperm = vec_lvsr(0, dst);
dstmask = vec_perm(vzero_u8, neg1, dstperm);
rsum = vec_perm(sum, sum, dstperm);
fdst1 = vec_sel(dst1, rsum, dstmask);
fdst2 = vec_sel(rsum, dst2, dstmask);
vec_st(fdst1, 0, dst);
vec_st(fdst2, 16, dst);

Fig. 5. Altivec alignment code for a vector store

The offsets are predictable, and loop peeling can be applied
efficiently. The main concern with unaligned stores is that
they require a load-store sequence that can take more than 10
assembly instructions for each store and they are not atomic
which implies that they are not thread safe. Figure 5 shows
the Altivec intrinsics for performing an unaligned store. First,
there is a sequence of instructions that performs an unaligned
load, then the desired data is inserted into the loaded values
(with VEC SEL instructions), and finally, the two modified
words are stored back to memory.

III. ADDING SUPPORT FOR UNALIGNED LOADS AND

STORES

In order to evaluate the impact of unaligned access support
we have added SIMD instructions for unaligned loads and
stores. Complete support for unaligned instructions requires
modifications both in the load/store pipeline of the processor
and in the compiler tool chain.

The new instructions, called LVXU (load vector unaligned
indexed) and STVXU (store vector unaligned indexed), have
been added to the Altivec SIMD extension. The instructions
are similar to the aligned ones in Altivec; they use indexed
addressing but do not impose any alignment restriction on the
effective address.

The new instructions can be used directly in assembler
programs and, additionally, we have added support for them
as intrinsics into the GCC 4.0 compiler allowing to use them
in C/C++ programs and leaving the compiler to do the register
allocation, instruction scheduling and other optimizations.
Direct support for unaligned accesses can be very useful for
autovectorizing compilers because it simplifies the alignment
detection and correction optimizations [9], [17].

From the processor hardware perspective, it is necessary to
adapt the Load Store Unit (LSU) to include a realignment
subsystem and to modify the interconnection between the
processor and the L1 data cache (D-L1). Figure 6 shows the
structure of the LSU with the addition of an alignment network
unit. The architecture support for unaligned memory accesses
must be added so that it does not severely impact the latency
of aligned accesses, and has the minimum possible penalty
for unaligned ones. Taken that into account, long latency
mechanisms like microcode expansion must be avoided and
the bandwidth of the D-L1 must be adapted to the vector
accesses. Most of current SIMD implementations use ports
to the L1 that have half of the vector width, thus having
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Fig. 6. Load store pipeline of the modeled superscalar processor
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Fig. 7. Realignment unit using a two-bank interleaved cache

to perform two or more access to the L1 for each vector
reference [19], [20].

The alignment network unit can be designed using a two-
bank interleaved cache, so that two consecutive cache lines
can be accessed simultaneously, and therefore a whole stride-
one vector access, overlapped over two different cache lines,
can be performed. This scheme requires three building blocks:
an interchange switch, since it may be needed to swap the two
cache lines, a shifter to align the lines accessed to the initial
address, and a logic to mask the unused data based on the
unalignment offset [21] (see figure 7). Using this scheme, the
unaligned load can be performed in one cycle and the store
requires an additional cycle because it first needs to shift and
mask the data from the vector register and then to swap the
partition for the two cache banks [22], [23]. Using such a
scheme does not impose any of the restrictions that most of
the current processors that support non-aligned access have.
First there is not a cache line boundary penalty because there
are two parallel accesses to the multi-bank cache. Neither are

there forwarding restrictions with respect to the other memory
operations, and the unaligned accesses are atomic from the
processor perspective.

IV. METHODOLOGY

For our experiments we have selected the Altivec/VMX
extension of the PowerPC architecture. Altivec is very rep-
resentative of the current SIMD extensions and the results
presented here can be extended to other SIMD extensions as
well.

To conduct the experiments we are using a trace-driven sim-
ulation methodology using the IBM MET tools, that include
an instruction emulator and trace generator based on the Aria
dynamic instrumentation tool, and a cycle accurate processor
simulator based on the Turandot simulator [24].

The applications and kernels are programmed using Altivec
intrinsics and compiled with the GCC-4.0.2 compiler [25]. The
GCC compiler and GNU assembler have been modified to
include intrinsics and opcodes for the new instructions under
study. Traces are collected by running the applications on
the AIX-5.2 operating system using an Aria based instruction
emulator. The execution trace contains PowerPC, Altivec and
the new instructions added for unaligned accesses.

We have defined three different processor configurations for
the simulations. The first one is a 2-way in-order processor
that is somewhat similar to some current embedded media
processors like the Cell SPE. The other two configurations
are a 4-way and an 8-way out-of-order superscalar processors
with a microarchitecture similar to the IBM Power-4 processor
with the addition of the Altivec pipeline [26]. The three
configurations have the same number of pipeline stages and
the same configuration of the branch predictor and memory
hierarchy. The basic parameters of the modeled processors are
described in table II.

For our experiments we have selected the FFMPEG H264
decoder, an open source implementation of the H.264/AVC
standard that is optimized for high performance including
extensive use of SIMD instructions [27]. The high profile
of the H.264 was selected, with CABAC, B frames, multiple
reference frames, weighted prediction, and a I-P-B-B sequence
of pictures. Since we are interested in analyzing the perfor-
mance of H264/AVC at HD resolutions, we have selected input
sequences for 720x576, 1280x720 and 1920x1088 pixels. The
set of input sequences has different motion characteristics in
order to cover a broad range of video content.

V. PERFORMANCE EVALUATION

In order to isolate the effects of unaligned instructions we
have extracted some of the most important kernels of the
H.264/AVC decoder and encoder [28]. These kernels are: luma
interpolation, chroma interpolation, inverse transform (IDCT)
and sum of absolute differences (SAD). These kernels account
for 45% and 34% of the execution time of the complete
H.264/AVC decoder application for the scalar and Altivec
versions respectively (see section V-D). We have implemented
all these kernels for three different block sizes including
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Instr. x 1000 Total Int. Loads Stores Bran- Altivec Altivec Altivec Altivec Altivec
ches Load Store Simple Compl. Perm.

LUMA
16x16 scalar 9,926 6,437 2,693 676 120 0 0 0 0 0
16x16 altivec 1,999 269 9 10 85 244 106 564 128 584
16x16 unaligned 1,438 155 2 3 51 135 50 564 128 350
CHROMA
8x8 scalar 2,110 1,439 514 132 25 0 0 0 0 0
8x8 altivec 489 108 6 12 34 63 16 64 64 122
8x8 unaligned 388 79 6 12 23 40 16 48 64 100
IDCT
4x4 scalar 4,984 3,074 1,121 608 181 0 0 0 0 0
4x4 altivec 2,090 532 49 48 105 112 64 448 0 732
4x4 unaligned 1,960 530 49 48 53 112 64 448 0 656
4x4 altivec mat 1,980 486 177 32 105 256 64 128 256 476
4x4 mat unaligned 1,832 450 177 32 53 256 64 128 256 416
SAD
16x16 scalar 2,198 1,141 512 0 545 0 0 0 0 0
16x16 altivec 266 52 1 0 17 64 1 49 17 65
16x16 unaligned 170 52 1 0 17 32 1 49 17 1

TABLE III
DYNAMIC INSTRUCTION COUNT FOR H.264/AVC KERNELS (THOUSANDS OF INSTRUCTIONS)

Configuration Param 2-way 4-way 8-way

Issue Policy In-order Out-of Out-of
Order Order

Width
Fetch-Rename-Dispatch 2 4 8
Retire 4 6 12
Inflight 80 160 255

Units

FX 2 3 6
FP, LS, BR, VI 1 2 4
VPERM, VCMPLX 1 1 2

PhysRegs GPR, FPR, VPR 60 80 128

Queues

BR Issue 5 12 40
Issue: 10 20 40
Retire 80 128 160
Ibuffer 12 24 48

D-cache
Read Ports 1 2 4
Write Ports 1 1 2
Mis Max 2 4 8

L1-D
Size 32KB
Line Size 128B
Associativity 2

L1-I
Size 32KB
Line Size 128B
Associativity 1

L2-(I+D)

Size 1MB
Line Size 128B
Associativity 8
Latency 12 cycles

Main Memory Latency 250 cycles

TABLE II
PROCESSOR CONFIGURATIONS USED IN SIMULATION ANALYSIS

16x16, 8x8 and 4x4 pixels. Additionally we have evaluated
three different implementations of each of these kernels. The
first one is a scalar implementation using integer instructions,
the second one is the SIMD implementation using Altivec
instructions, and the third one is the Altivec implementation
extended with unaligned accesses.

A. Dynamic Instruction Count

Table III shows the dynamic instruction count for 1000
executions of each kernel for one block size per kernel (the
results for other block sizes are not shown due to space
constraints). When comparing the scalar and plain Altivec
versions, we appreciate a large reduction in the total number
of executed instructions due to vectorization. When comparing

the Altivec and the extended Altivec versions, we observe that
the use of the new unaligned instructions adds an additional
reduction (on average for all the block sizes) of 33.4%, 22.6%,
1.8% and 33.7% for the luma, chroma, IDCT and SAD kernels
respectively.

The most important instruction reduction comes from the
elimination of memory and permutation instructions. The per-
mutation instructions represent an overhead of the unaligned
memory operations and its reduction increases the ratio of
real computation. In kernels like SAD there is an average
reduction, for all the block sizes (not shown in the table) of
95% of the permutation instructions.

The use of unaligned instructions not only reduces the
Altivec memory operations, but also the integer arithmetic and
integer load and store instructions, due to the elimination of
some pointer arithmetic necessary in the realignment code.
Additionally, a number of branches are also eliminated from
the Altivec version, because in kernels like chroma there are
branches that depend on the unalignment offset of the address.
On the other hand, in kernels like IDCT, in which all the
input data is properly aligned by rearrangements in the source
code, the impact of unaligned instructions only contributes to
a small reduction of permutation instructions that are used
in the final load-add-store sequence. Additionally in some
kernels there is an additional elimination of branches that were
used for peeling the loops in the final store sequence and
which are possible to replace with a single unaligned load-
store sequence.

B. Speed-up

In order to analyze the potential and upper-bound speedups
before dealing with implementation issues we have made an
experiment in which the unaligned accesses have the same
latency than the aligned ones. For our architecture that means
that aligned and unaligned accesses will have a latency of 4
cycles for a D-L1 hit. In the next section we are going to an-
alyze the effects of latency increase in the unaligned accesses
due to the realignment hardware. These results can be taken
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Fig. 8. Speed-up in kernels with support for unaligned load and stores

as an upper-bound of the speed-up achievable with unaligned
instructions. The actual values for our suggested realignment
network are shown in the next section, but it is important
to note that more aggressive implementations are possible in
embedded systems (such as the one in the Trimedia-TM3270)
in which unaligned accesses are implemented with no stall
cycles.

Figure 8 shows the speed-up in the execution time for all the
kernels under study. All the values are normalized to the 2-way
scalar version. For the Luma interpolation kernels (fig 8(a)),
the Altivec version with unaligned instructions exhibits a 1.9X,
2.6X and 2.1X speed-up for the 16x16, 8x8 and 4x4 block
sizes respectively. It is worth to remark that as the block size
decreases the overhead of the realignment code in the Altivec
version increases. In the 4x4 case, the scalar implementation
has better performance than the Altivec one. In this case,
the use of unaligned instructions helps to eliminate a lot of

overhead inside the main loop of the interpolation routine,
thus allowing to obtain a important speed-up for a kernel that
otherwise would not be vectorized.

The chroma interpolation kernel has an average speed-up
of 1.1X and 1.25X for the 8x8 and 4x4 sizes respectively.
It should be noted that due to the YUV 4:2:0 chroma sub-
sampling scheme, used by most current video codecs (included
H.264/AVC), the size of the chroma blocks is 8x8, 4x4 and
2x2 pixels. The 2x2 block is not included because the available
DLP is very limited.

We have evaluated three versions of the IDCT. The first one
is the factorized algorithm for the 4x4 block size, in which
the speed-up is 1.07X. The second one is based on a matrix
product algorithm and has a speed-up of 1.09X [29]. Finally
there is the 8x8 factorized transform in which the speed-up is
1.06X. The impact of unaligned instructions in the IDCT is
minimal because, as noted before, the input data structures
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can be properly aligned in software. The unaligned store
instruction is useful here for performing partial load and stores
required in the output sequence. An additional instruction for
unaligned partial load and stores would be very useful for
reducing the overhead for loading small data structures like
4x4 blocks. In the SAD kernel, there is an average speed-
up of 1.16X for all block sizes and processor configurations.
The performance gains are bigger in the 2-way configuration
(going up to 1.4X speed-up for the 8x8 block version). The
speed-up is saturated for the 4-way and 8-way processor
because the processor does not find enough instructions to
issue in parallel and has bigger branch misprediction ratios.

From the obtained results, it is clear that supporting un-
aligned memory access is crucial in any SIMD extension
targeting multimedia workloads, where unaligned accesses can
not be avoided. In those kernels suffering from unaligned
addressing, the unaligned load/store support more than doubles
performance. Furthermore, kernels which resulted in perfor-
mance drops are now efficient at exploiting DLP, and the
resulting codes are shorter and easier to write and debug, even
for autovectorizing compilers.

C. Impact of the Latency of Unaligned Load and Stores

The evaluations in the previous section were done assuming
that unaligned instructions had the same latency as the aligned
ones, that is 4 cycles in all the processor configurations. In
order to analyze the effects of the latency of the hardware
realignment network, we have performed an experiment in
which the latency of the unaligned loads and stores is increased
by 1, 2, 4 and 6 extra cycles with respect to the original ones.
The resultant speed-ups compared to the original Altivec im-
plementation are shown in figure 9. Due to space constraints,
we only present results for the 4-way processor configuration.
Results for 2-wide and 8-wide configurations follow the same
pattern.

Luma interpolation is the more insensitive kernel to the
latency increase. With one extra cycle, the speed-up decreases
only 1.9% on average for the three block sizes. With six extra
cycles of latency, the speed-up decreases by 13.2% but still
achieves a 1.8X speed-up over the Altivec version.

Chroma interpolation, on the other hand, is more sensitive to
the latency of the unaligned load and stores, mainly in the 8x8
block size. The speed-up reduction is very similar to that of the
Luma interpolation kernel, ranging from 3.8% for one extra
cycle to 17% for 6 extra cycles. But, for the 8x8 block size,
when the latency increase in 8 cycles or more, the execution
time becomes worse than the original Altivec version. For the
4x4 case, although there is a performance penalty with the
latency increase, the use of unaligned instructions results in
speed-ups even with high latencies.

In the IDCT kernel the increase of latency affects only a
few unaligned memory operations used in the final load-add-
store sequence. The latency increase has a bigger impact in
the 8x8 version because it has more dependent load and stores
in the output sequence. It is important to note that the matrix
algorithm not only has a bigger speed-up than the factorized
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version but additionally tolerates better the latency increase;
the speed-up decreases 0.64% (1.09X) and 7.62% (1.02X) with
one and 6 more cycles of latency respectively.

In the SAD kernel, speed-ups are obtained in all the cases
with the exception of 6 extra cycles in the 16x16 size. That is
because this kernel is dominated by the memory access and
the latency of the loads is very significant for the performance
of the SIMD vectorization.

Summarizing, most of the kernels that use unaligned mem-
ory instructions exhibit considerable speed-ups when com-
pared to the original Altivec version until the point where
we double the memory latency. Using the proposed hardware
design, it is possible to perform a load with just one extra
cycle of latency and a store with two cycles (that means 5
and 6 cycles respectively). In such a case, most of the kernels
under study achieve a significant speed-up with respect to the
original Altivec version.

D. Impact of Unaligned SIMD Instructions in a Complete
H.264/AVC Decoder Application

Based on a profiling analysis of the H.264/AVC decoder,
we have estimated the impact of the unaligned memory
instructions on the complete application. Figure 10 shows
a profiling of the H.264 decoder for the scalar, Altivec,
and Altivec with unaligned instructions implementations. The
profiling was conducted on a PowerPC 970 machine using
the Apple Chud tools. The profiling shows that the most
time consuming parts of the H.264/AVC decoder are the MC
routines, the deblocking filter, the entropy coding (CABAC)
and the inverse transform (IDCT). The kernels that have been
optimized using Altivec SIMD instructions are the MC stage,
which includes the Luma and Chroma interpolation, and the
IDCT. The CABAC entropy coding is a kernel with a strong
serial behavior that it is not amenable for SIMD optimization.
The deblocking filter, although is an excellent candidate to
benefit from unaligned memory access support, contains a
high number of conditional branches that complicate the SIMD

vectorization. A SIMD optimized version for the deblocking
filter is currently under development.

Given the performance improvements obtained in the SIMD
optimized kernels, the Altivec version of the code is 1.2X
faster than the scalar version. The code optimized using
unaligned instructions ranges from 1.16X to 1.23X faster.
The average speedup is 1.20X compared to the plain Altivec
version, and 1.49X compared to the scalar version.

The input content has a very big impact on the performance
of the video decoder. For example, the riverbed sequence
includes highly complicated motion of fluids in which the
encoder can not use MC effectively, resulting in a few mac-
roblocks coded as inter-macroblocks. That, in turn, reduces
the relevance of the MC stage and reduces the potential for
optimization with unaligned instructions.

VI. CONCLUSION

We have evaluated the performance impact of extending
current SIMD ISAs with instructions for unaligned memory
accesses in the context of emerging video codec applications
like H.264/AVC. We have shown that for these kind of
applications (but not limited to them) there is a big overhead
for the SIMD memory accesses due to presence of unpre-
dictable unaligned memory references. We have shown that
this overhead comes from the additional instructions that are
necessary for doing the data realignment in software.

The main impact of supporting non-aligned memory in-
structions is a significant reduction of the number of dy-
namically executed instructions. Unaligned instructions allow
the programmer to remove code overhead necessary for data
realignment. In addition, control flow instructions used to
tailor code to the precise data unalignment offset can also be
avoided. This reduction of overhead instructions make SIMD
vectorization much easier, both for the manual developer and
the autovectorizing compiler. Whenever the alignment of data
can not be verified at compile time or fixed in the application,
the unaligned instruction can be used safely.

Our results show that for some kernels the presence of
overhead instructions prevents successful vectorizations, while
unaligned instructions allow successful exploitation of DLP.
Such is the case of the 4x4 pixel blocks that are common in
new video codecs that uses variable block size ME. In general
the unaligned memory operations increase the opportunities
for SIMD vectorization in latency dominated code and in
codes with highly unpredictable alignments. Video codec
workloads are only one example of such case of applications.

As a result of the significant reductions in the amount
of executed code, our results show that key kernels in
the H.264/AVC decoder and encoder benefit from important
speed-ups due to unaligned memory instructions. The speed-
ups range from 1.06X in the IDCT, where data accesses are
mostly aligned, to 2.1X in the Luma interpolation kernel,
where unaligned accesses are the norm.

We also measure the impact of the added latency of the
realignment network in the obtained results, and find that most
of the kernels obtain sensible performance improvements if
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the hardware does not introduce large latency increases (up
to 4 + 4 cycles in our simulations). These results help explain
why long latency mechanisms used in some current processors,
like microcode expansion or half-size datapaths do not result
in high speed-ups in current applications.

We conclude that instructions for unaligned memory ac-
cesses are extremely useful for media SIMD extensions be-
cause they allow a significant reduction of the memory access
overhead, allow vectorization of codes in which it is necessary
to access small amount of data with low latency, and because
they also lead to an easier SIMD software development. We
also support the approach of having both types of instructions,
aligned like in the original Altivec, and unaligned like those
evaluated in this study. The original aligned instructions can be
used when the alignment is predictable or known at compile
time and, in turn, they can be used as a hint to the processor
in order to optimize the memory accesses when all the data is
aligned.
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