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Abstract— The comparison and alignment of DNA and protein
sequences are important tasks in molecular biology and bioin-
formatics. One of the most well known algorithms to perform
the string-matching operation present in these tasks is the Smith-
Waterman algorithm (SW). However, it is a computation intensive
algorithm, and many researchers have developed heuristic startegies
to avoid using it, specially when using large databases to perform
the search. There are several efficient implementations of the SW
algorithm on general purpose processors. These implementations
try to extract data-level parallelism taking advantage of Single-
Instruction Multiple-Data extensions (SIMD), capable of perform-
ing several operations in parallel on a set of data. In this paper, we
propose a more efficient data parallel implementation of the SW
algorithm. Our proposed implementation obtains a 30% reduction
in the execution time relative to the previous best data-parallel alter-
native. In this paper we review different alternative implementation
of the SW algorithm, compare them with our proposal, and present
preliminary results for some heuristic implementations. Finally, we
present a detailed study of the computational complexity of the
different alignment algorithms presented and their behavior on the
different aspect of the CPU microarchitecture.

I. INTRODUCTION

During the last decades, the most important advances in
molecular biology and genomic technologies have led to
a nearly exponential growth in the biological information
generated by the scientific community. This flow of genomic
information [8] has required not only computerized databases
to store, organize, and index the data, but also specialized tools
to view and analyze them. One of the most important tasks in
this area is the alignment of two biological sequences (DNA,
RNA or protein sequences).

Molecular biologists usually compare sequences to find
similarities between them in order to define whether one
sequence is similar to another. Generally, such comparisons
involve aligning sections of the two sequences in a way that
exposes the similarities between them. For example, consider
the sequences A=csttpggg with eight residues (symbols)
and B=csdtnglawgg with eleven residues. One possible
alignment could be:

A = c s - t t p g - - - g g
| | | | |

B = c s d t - n g l a w g g

In the above alignment, we say that b3 = d is inserted
into the first sequence or it is deleted from the second one,

depending on the point of view. Also, a5 = p is substituted
by b5 = n or b5 by a5. Consecutive dashes in the sequences
represent a gap, for example, there is a gap of length one
between a2 and a3 and a gap of length three between a6 and
a7 in the first sequence.

In order to compare biosequences, a similarity score be-
tween the individual residues must be established. Biologists
have defined substitution scoring functions that assign a simi-
larity score between all possible pairs of residues. In the case
of proteins, these functions quantify whether the substitution of
one residue for another is likely to conserve the chemical and
physical properties of the protein or is more likely to disrupt
essencial structural and functional features of the protein. For
these reasons, the definition and evaluation of these score
functions is an important scientific discussion in the biology
community. Numerous approaches have been used to create
such quantifications, referred to as substitution score matrix.
Some of these matrices are PAM, PAM100, BLOSUM45,
BLOSUM62, etc [10] [15] [14]. An interesting discussion
about the characteristics of these matrices can be found in [17].

Researchers have proposed several methods for alignment of
two biological sequences. However, the dynamic programming
(DP) is probably the most important programming method in
sequences alignment [23] and many researchers have proposed
different algorithms based on DP to quantify the similarity
of a pair of sequences [18] [25] [27] [12]. Between these
alternatives, the most important sequence-search algorithm is
that of Smith-Waterman [27], which is generally considered to
be the most sensitive. Sensitivity is a measure of how well a
method can detect the actual similarity between two sequences.
Nevertheless, the computationally intensive task involved in
the algorithm is a very restrictive factor that prevents the
use of these kind of proposals. The time complexity of this
algorithm is O(m, n), where m and n are the lengths of the
two sequences respectively.

On the other hand, many heuristic strategies have been
proposed and developed to speed-up the execution of the
search and alignment tasks, such as FASTA [20], BLAST [7]
and ParAlign [22]. These methods reduce the running time by
several factors compared with the SW algorithm. However,
this reduction is obtained at the expense of sensitivity, and
due to this loss of sensitivity some related sequences can not
be detected in a search.

For these reasons, in order to perform both sensitive and fast
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searches in biological databases, researchers have studied and
proposed several strategies to produce a fast implementation
of the SW algorithm under different computational platforms
such as special purpose hardware, specific purpose copro-
cessors, general purpose multiprocessors and general purpose
uniprocessors.

In this work, we study the implementation of the SW
algorithm on modern general purpose uniprocessors (GPPs)
that contain some parallel processing capabilities like mul-
timedia SIMD extensions. In addition, we propose another
alternative for implementing the algorithm in these processors
that exploits more data parallelism to speed-up execution.
Specifically, our strategy uses the Altivec SIMD extension
included in the IBM PowerPC970 processor. With this new al-
ternative, a reduction of 30% in the execution time is achieved
relative to the best previous implementation (on a single
processor). Additionally, we perform a preliminary comparison
between some SW implementations and some well-known
heuristic strategies. We analyze some critical elements of the
performance behavior in these search applications and finally,
we analyze how these applications behave over all the running
time.

This paper is organized as follows: Section II discusses the
related work. Section III details some aspects of the Smith-
Waterman algorithm, and some strategies for implementing it
on GPPs with SIMD capabilities. Section IV describes the
experimental infrastructure that has been used in this work.
Section V describes the experiments and the parameters of
the evaluation. Finally, in section VI some conclusions and
future work are presented.

II. RELATED WORK

Several special purpose hardware solutions have been de-
veloped with parallel processing capabilities using FPGAs or
custom VLSI technology [28] [16] [3]. These machines are
able to process more than 2000 millon matrix cells per second
and they have been installed successfully in many research
centers around the world. However their disadvantages are the
high cost and the lack of programmability.

Parallel computing is a very common alternative to obtain
high performance in the execution of SW algorithm and other
biological applications. In this case, strategies include the
use of general purpose supercomputers [26], special purpose
multiprocessors, and clusters of workstations. These machines
can sustain a very high performance and can often be used
effectively. In this case, a sequence analysis task is subdivided
into thousands of individual tasks, which can be distributed to
multiple processors with only a little programming difficulty
and minimal knowledge of the architecture. These machines
can exploit efficiently, the fine and coarse grain parallelism that
exist in the sequences analysis applications [24] [30]. How-
ever, any performance improvement obtained on the runtime
of a single task (in a single processor) immediately benefits
the whole system.

On the other hand, general purpose uniprocessors with data
parallel processing capabilities like multimedia SIMD exten-

sions, have been used to execute the algorithms for database
searching. Alpern et al [6] described different ways to speed
up the SW algorithm including a parallel implementation using
microparallelism by dividing the 64-bit wide Z-buffer registers
of the Intel Parangon i860 processor into four parts. They used
this strategy to compare the query sequence with four different
database sequence simultaneously. They achieved more than
a five-fold speed-up over a conventional implementation of
the algorithm. Wozniak [29] presented a way to implement
the SW algorithm using the Visual Instruction Set (VIS)
technology of the Sun UltraSPARC microprocessors. This
implementation reached a speed up close to two relative to the
same algorithm implemented with integer instructions on the
same machine. On the other hand, Green [13] with the SWAT
program and recent versions of SSEARCH [19] include a non-
parallel variant of SW algorithm that is about twice as fast as
the implementation of Alperh and Wozniak. This is probably
the best non-parallel reference for speed comparisons on a
monoprocessor.

Rognes [21] proposed a faster implementation of the SW
algorithm using SIMD extensions. This implementation is
based on the MMX and SSE technology included in the
Intel’s general purpose processors. Their results show a six-
fold speed-up relative to the fastest previous known SW
implementation. A speed of more than 150 million cell updates
per second was obtained on a single Intel Pentium III 500 MHz
processor.

Our work has several contributions. First, we propose
another alternative for implementing the SW algorithm that
can extract more data level parallelism than previous works
(including Rognes’s work). Our strategy is implemented using
the Altivec SIMD extension included in the IBM PowerPC970
processor. Due to the fact that the SW implementation of
Rognes [21] is probably the best reported on a single general
purpose processor, we use this implementation as a point of
comparison in our work. Finally, we analyze some critical el-
ements of the performance behavior in the search applications
for biological data.

III. SMITH-WATERMAN ALGORITHM DESCRIPTION

The Smith-Waterman algorithm is a database search algo-
rithm developed by T.F. Smith and M.S. Waterman [27]. It
implements dynamic programming techniques that take two
sequences of any length, and at any location determine an
optimal alignment between the two sequences. In the process,
scores or weights are assigned to each character-to-character
comparison: positive for exact matches/substitutions, negative
for insertions/deletions. In weight matrices, scores are added
together and the highest scoring alignment is reported. A short
description of the algorithm follows.

Given a query sequence A of length m, a database sequence
B of length n, a substitution score matrix S, a gap-open
penalty q and a gap extension penalty r, the optimal local
alignment score T can be computed using the following
recursive equations:
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Fig. 1. Data-dependency graph in the execution of Smith-Waterman
algorithm.

ei,j = max{ei,j−1, hi−1,j − q} − r (1)
fi,j = max{fi−1,j, hi,j−1 − q} − r (2)
hi,j = max{hi−1,j−1 + S[A[i], B[i]], fi,j, ei,j , 0} (3)
T = max{hi,j} (4)

Where, ei,j and fi,j are the maximum local-alignment score
involving the first i symbols of A and the first j symbols of B,
and ending with a gap in sequence B or A, respectively. And
hi,j represents the overall-maximum local-alignment score
involving the first i symbols of A and the first j symbols of
B. The recursion should be calculated with i going from 1 to
m and j from 1 to n, with the initial conditions ei,j = fi,j =
hi,j = 0 for all i = 0 or j = 0. The order of the computation
of the values in the alignment matrix hi,j is strict, that is,
the value of any cell cannot be computed before the value of
all cells to the left and above it has been computed. Figure 1
shows the data dependencies in the calculation of hi,j . From
the figure, it can be observed that the computation of hi,j is
independent across the minor diagonals. This characteristic has
been observed by several researchers and based on it, they have
proposed several special purpose architectures that exploit this
parallelism [9].

A. Strategies to Execute the Smith-Waterman Algorithm Using
SIMD Extensions on GPPs

There are several ways to exploit the existing parallelism in
the computation of the SW algorithm using SIMD extensions.
As shown in figure 2, the first possibility is to perform the
execution of vectors of cells parallel to the minor diagonal in
the matrix (figure 2a), however, for GPPs, this alternative has
many memory problems due to the non-uniform access pattern
of data in cache [29].

A second option is shown in figure 2b, where the calculation
is made on vectors of cells parallel to the query sequence.
This alternative has been evaluated by Rognes [21] and their

results show a six-fold speed-up relative to the fastest previous
implementation. However, this strategy has to handle data de-
pendencies within the vector. This alternative takes advantage
of the fact that in many cells of the matrix, e and f are zero
(see equations (1) and (2)), and hence they do not contribute to
h. It happens when both the query and the database sequences
are not very similar. As long as h is less than the threshold
q + r, which is the penalty of a single symbol gap, e and
f will stay at zero along a column or row in the matrix.
Because of this characteristic, operations can be reduced and
data dependencies in the calculation of h are removed, thereby
computations are simplified. However, if any of the cell values
are above the threshold the computation of the h-values must
be done one by one to preserve the program semantics.

In this paper, we propose another alternative to exploit
more data-level parallelism (DLP) that entails performing
the calculation with a combination of the first and second
alternatives. This alternative is shown in figure 2c. In this
alternative, we process the vector of cells parallel to the
query sequence and at the same time we process the vector
of cells from the next column in diagonal direction in the
same thread. It is possible because both vector of cells do not
have dependencies between them and these operations can be
performed by independent instructions. In figure 2c, vectors
of cells that are marked with the same minor diagonal can
be computed in parallel. However, this alternative does not
eliminate the data dependencies inside a vector, then, when this
is required, it must be handled as in the previous alternative. As
we will see in section V, this way of performing the operations
can reduce around 30% the execution time compared with
previous strategies.

B. Using Heuristics in the Sequence Alignment Process

Although dynamic programming based approaches like
SW are recognized as very sensitive alternatives for detect-
ing distantly related sequences, they have the limitation of
computational complexity. The time and space complexity
is quadratic when the two sequences have similar lengths.
And in some cases, complexity can become exponential if
there are multiple optimal solutions and all of them need
to be determined. For these reasons, heuristic strategies have
been developed to speed-up the search process in very large
databases. These heuristics reduce the runtime considerably,
however this is done at the expense of sensitivity in such
a way that some distantly related sequences may not be
detected in a search. In this paper, the proposed approach is
compared with different implementations of the SW algorithm
and with the most popular heuristic strategy: BLAST [7].
Additionally, we implemented the heuristic strategy developed
by Rognes [22] and we compared it with the other strategies.
This strategy initially performs a very rapid computation of
the exact optimal ungapped alignment score for all diagonals
in the alignment matrix. This first step can be performed in
a very parallel way because all the horizontal and vertical
data dependencies of the figure 1 are eliminated. The second
part of the algorithm includes the use of a novel heuristic
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Fig. 2. Parallel alternatives to perform the SW algorithm.

TABLE I

PARAMETERS OF THE PROCESSOR

Processor IBM PowerPC 970

Clock Speed 1.6 GHz
Main Memory 512 MB
L1 Data Cache 32KB
L1 Instruction Cache 64KB
L2 Data Cache 512KB
Cache Size line 128 B
System Bus 800MHz
Compiler gcc 3.3.3
Compiler Opt. Flags -O3, mtune=G5
Operating System Mac OSX

for computing an approximate score of a gapped alignment
by combining the score of several diagonals that have been
calculated in the first step. Finally this approximated score
is used to select the most interesting database sequences
for a subsequent SW alignment. The results obtained by
Rognes show that this strategy has a better sensitivity than
existing heuristics, including BLAST. However, it is slower
than the BLAST algorithm. In this paper, due to its potential
to be improved using SIMD extensions, this strategy has been
implemented, studied, and used to compare with the other
approaches including the mentioned implementation of the SW
algorithm.

IV. EXPERIMENTAL METHODOLOGY

An execution-based methodology is used to evaluate the
performance of the different alternatives that have been de-
scribed above. To evaluate these, we have collected data
on execution time, instruction profiling, executed instructions
per cycle (IPC), phase analysis, cache behavior and branch
prediction accuracy. The study has been performed on a
PowerPC970 machine with Altivec SIMD Extension [11].
Hardware performance monitoring counters and the CHUD
tools from Apple [1] have been used to collect data. Some
pertinent parameters of the machine are given in table I.

A. Input Working Set and Database

Evaluations were done using a set of 11 different amino
acid query sequences against the SwissProt [2] database. These

TABLE II

QUERY SEQUENCES USED IN THE EVALUATIONS

Protein Family Accession (ID) length (symbols)

Globin P02232 143
Ras P01111 189
Interferon a P05013 189
Glutathione S-transferase P14942 222
Serine Protease P00762 246
Histocompatibility antigen P10318 362
Alcohol dehydrogenase P07327 375
Serine Protease inhibitor P01008 464
Cytochrome P450 P10635 497
H+-transporting ATP synthase P25705 553
Hemaglutinin P03435 567

11 sequences represent a range of well characterized protein
families. The length of these sequences ranged from 143 to
567 amino acids. It is important to remark, that the same
set of queries has previously been used by other researchers
to evaluate different alignment approaches, like BLAST and
ParAlign [7] [22]. Some characteristics of these sequences
are listed in table II. For each query sequence the name of
the protein, the accession number (ID), and the quantity of
amino acids (symbols or residues) are shown. Currently, the
SwissProt database contains more than 62,615,309 residues
grouped into 172,233 protein sequences. All the database
searches have been executed with a gap open penalty of 10
and a gap extension penalty of 1. Additionally, the blosum62
amino-acid substitution score matrix has been used [14]. This
is a 24x24 matrix of amino acids, where column c, row r
indicates the score associated with replacing amino acid c with
amino acid r in a protein. For all implementations, the options
were adjusted to show the best 500 hits.

V. EXPERIMENTAL RESULTS

In this section we evaluate different data-parallel implemen-
tations of the SW algorithm, as well as a straight-forward
non-parallel implementation, and the best non-parallel variant
of the algorithm. This implementation is part of the recent
versions of SSEARCH application [19] and it is recognized
as a very effective and optimal alternative for the analysis of
biological sequences [4]. This is probably the best scalar (non

102



Fig. 3. Number of columns that are processed at the same time

data-parallel) reference for speed comparison. Additionally,
we evaluated the above mentioned heuristic approaches. In
summary, we evaluated the following strategies:

• ssearch: Best known scalar implementation of the SW
algorithm. This is part of the SSEARCH program.

• sw rognes: Data-parallel implementation based on the
Rognes SW strategy [21] and described in figure 2b.

• sw alt2: Data-parallel implementation based on our pro-
posal (figure 2c). This version processes 2 columns at the
same time as shown figure 3a.

• sw alt3: Data-parallel implementation based on our pro-
posal. This version processes 3 columns at the same time
as shown figure 3b.

• sw alt4: Data-parallel implementation based on our pro-
posal. This version processes 4 columns at the same time
as shown figure 3c.

• Hrognes+sw3: Data-parallel implementation based on
sw alt3 and the Rognes heuristic [22] and briefly de-
scribed in section III-B.

• blast: BLAST program [7].

A. Execution Time

Figure 4a shows the time required by each application
to search similar sequences in the database. Figure 4b is
a zoom of the previous figure to concentrate on the data-
parallel and heuristic implementations. The horizontal axis in
the figures indicates the length of the query sequences and
the vertical axis indicates the execution time in seconds. As
can be seen, heuristic strategies perform faster than all the
SW implementations. However, our SW optimization (sw alt3)
is in average 30% faster than the Rognes implementation
(sw rognes), which is the best previous implementation. This
is due to the way we exploit parallelism (figure 2c). This
approach allows us to calculate 3 columns of the hi,j matrix at
the same time, taking advantage of using more registers, data
reusing and the functional unit throughput. It is interesting to
note that also the sw alt2 version obtains a speed-up around
15%.

B. Instruction Breakdown

The execution-based approach allows us to collect precise
performance measurements on a real processor for the studied
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TABLE III

INSTRUCTION COUNT FOR EACH APPLICATION

Application Instruction Count [MegaInst]

Blast blastp 3,635
Sserch 261,816
Sw rognes 37,667
Sw alt2 37,642
Sw alt3 37,613
Hrognes+sw3 17,837
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workloads, which have a large scale behavior. As an example
of that, table III shows the number of executed instructions
for each evaluated application when the search of similar se-
quences is performed using the query sequence Glutathione S-
transferase P14942 that has a length of 222 residues. Figure 5
shows the percentage of instruction classes for some of the
evaluated strategies. In this figure, there are some important
aspects that are necessary to analyze. First, the amount of
floating point instructions in the applications is negligible. This
shows that this kind of applications have different nature than
other scientific applications where the amount of floating point
instructions is significant. None of the analyzed applications
contains more than 1% of floating point instructions. In fact,
most of the executed instructions in all applications are ALU
instructions, that is, 57% integer ALU instructions in blast,
43% in ssearch, 11.3% integer ALU and 55.13% altivec
ALU instructions in sw rognes, 7.7% integer ALU and 69%
altivec ALU instructions in sw alt3, and finally, 33% integer
ALU and 39.5% altivec ALU instructions in Hrognes+sw3.
Comparing these results to the instruction distribution for the
SPEC 2000 made in [5], where the average ALU instructions
is around 40%; we can see that this applications place more
pressure over the execution units than the SPEC suite (be it
integer or SIMD functional units), making these applications
computationally bounded.

Another important observation is the amount of memory in-
structions in each application. There is a significant percentage
of load instruction in each application, (23% in blast, 20%
in ssearch, 17% in sw rognes, 14% in sw alt3 and 20% in
Hrognes+sw3). However, the amount of store instructions is
very small. This is due to the fact that all the applications
have to load each database sequence from memory and at the
end of the computation, they do not store the same amount
of data, because after many calculations, only the score value
of the alignment is kept. Again, comparing these results to
the percentage of memory instructions in SPEC 2000 [5],
where the average of memory instructions is around 40%; we
can see that there are significant differences between SPEC
and sw rognes and Hrognes+sw3 search applications. The
result shows that the pressure over memory system in these
applications is lower than in the SPEC. Our results show that
these applications perform more computation per unit of data
than the average SPEC benchmark.

C. IPC and Phase analysis

Applications for sequence search and comparison of biolog-
ical data have a very large scale behavior (behavior seen over
billions of instructions). Therefore, it is important to analyze
how these applications behave across their entire execution.
This knowledge can help us understand what kind of hardware
and software optimizations could be done to further improve
performance. In this section, an analysis of the behavior of the
running time is done. To do that, the number of instructions
executed per cycle (IPC) is collected during the execution. The
goal is to observe if the execution is composed of phases and
how they change over time. Figures 6a, 6b and 6c show the
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IPC results for the blast, Hrognes+sw3, sw alt3 applications
during all the execution time. Figures 6d, 6e and 6f show the
same data for a smaller fraction of the execution time (zoom
x 100). Here, it is important to remark that we have exploited
smaller fractions of execution time and the behavior is similar
to the shown graphics, however for space reasons, not all the
graphics are shown.

There are several observations that we have to emphasize.
First, the different values of IPC between the applications
(Blast 1, Hrognes+sw3 1.8, sw alt3 1.3 on average). It is nec-
essary to remember that all these applications are very different
solutions to the problem of sequence searching. Therefore,
a direct comparison is mistaken. However, we can see that
although Hrognes+sw3 and sw3 alt are slower solutions for
the problem, the ILP that the processor can extract in these
applications is greater than for Blast. That is, these applications
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make a better use of the resources of the processor, but take
a lot more instructions to compute the results. Additionally,
these proposals make use of the Altivec SIMD extension
included in the PowerPC 970 processor that implements SIMD
registers of 128-bit length which can peform up to 16 8-bit
operations or 8 16-bit operations depending on the size of the
data that is used, meaning that a single Altivec operation per
cycle (and IPC of 1) is actually performing 8 or 16 operations
per cycle, which makes IPC results somewhat misleading.

On the other hand, as can be observed in figure 6, IPC
does not exhibit an appreciable phase behavior. However, it
is important to take into account some characteristics of the
situation presented in the execution of the applications. First,
biological databases are composed of thousands of sequences
with different lengths, these sequences are not sorted taking
their length into account, as an example, in the SwissProt
database, the first sequence has 924 symbos, second 102, third
75, fourth 296, and so on. Second, the basic algorithm of each
application performs a search over each of the sequences (in
order of indexing), and usually, the time spent for performing
the search is associated with the length of sequence and with
the similarity between the query and the database sequence.
As an illustration of these characteristics, figure 7a shows the
length for each database sequence. In this figure, horizontal
axis is the index of the sequence, that is, the number of the
sequence in the database, and vertical axis is the length of the
sequence.

All these characteristics imply that there is not a clear
pattern of IPC behavior in the applications over the running
time. However, it is important to analyze the behavior of the
applications in more precise regions of the database. For that,
we have collected data in two different regions: a high score
region and a low score region. A high score region means a
zone in database where there are many sequences that match
very well with the query sequence, and a low score region
means the opposite. In our example, a score below 150 can
be considered as a low score. Figure 7b shows the length of
sequences in a region of the sequence that contains both high
and low score regions. Indexes between 50500 and 50750
belong to a region that contains several database sequences
with high score and indexes between 50750 and 51000 belong
to a region that contains sequences with low score.

D. High and Low Score regions Behavior

In order to show how applications behave in regions where
there is a high or low score, we analyzed the IPC, instruction
and cycles count of the execution in these regions. The
last two measures are normalized to the length of database
sequence. Figures 8 and 9 show the results for sw alt3 SW
implementation and Hrognes+sw3 heuristic. Results in sw alt3
show how the cycles and instruction count increase when the
high score region is processed. The IPC decreases in this zone.
Also, we can see that even in this high score zone there is not a
phase behavior. Additionally, Hrognes+sw3 heuristic presents
a similar behavior, that is, it does not have a phase behavior
either.

On the other hand, in a low score region, the behavior of
the execution is more regular (indexes greater than 50750 in
figures 8 and 9), the instructions and cycles count are lower
and the IPC is higher than in the high score region. In the
case of sw alt3, the reason is that when database sequences
are not very similar, many calculation are avoided (due to the
presence of zeros in the scores matrix hi,j) and more data
parallelism can be extracted. In the case of the Hrognes+sw3
heuristic, the first step of the algorithm (that contains more
data parallelism) performs a fast filtering and selects only
possible sequences that can have high score to be processed
in a second step of the algorithm (that is the exhaustive SW
algorithm, which is slower and with less data parallelism due
to data dependencies). However, in the low score region, this
second step is avoided most of the time, because very few
sequences are selected.

E. Computational Requirements in Search Algorithms.

Another interesting analysis is the computational require-
ments in the calculation of the alignment score between a
query sequence and database sequences in the regions that
have been analyzed in the previous subsection. In order to do
that, we have collected data over the IPC, cycles and instruc-
tions required for processing each residue of the database se-
quences. The results have been classified by score. Figures 10
and 11 show results for the sw alt3 SW implementation and
the Hrognes+sw3 heuristic. The analyzed regions are the
same used in the previous analysis. Data is normalized to the
length of the database sequence. As can be seen in figures 10
and 11, there is a significant difference in the computational
requirements (instructions) between the high and low score
regions, for example, in sw alt3, when the comparison is
performed with not similar sequences (low score: around 150
or less score), the number of required instructions per residue
is between 500 and 1000, however when a similar sequence
is analyzed (higher score: greater than 200, 600 or more)
the number of required instructions to process the database
sequences increases up to 2500 and 3500. That is, around
5 times more instructions. This is due to the lack of data
parallelism in the comparison of very similar sequences, as
explained in section III.

To summarize, the amount of computation per data is
relatively high, specially when sequences are similar. Results
show that search algorithms for biological sequences are not
the typical search application in a database. They perform
many calculations over each piece of data that is loaded from
memory. Therefore these are a challenge for the execution
units of the processors.

F. Cache and Branch Prediction Behavior

Table IV shows the data L1 cache behavior and the branch
prediction accuracy obtained in the different applications. In
general, there is a low cache miss rate in all applications, this
is due to the fact that the access to data are made in a regular
pattern because all the symbols of each database sequence
are stored contiguously. It is important to remark that the
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TABLE IV

DATA L1 MISS RATE AND BRANCH PREDICTION ACCURACY (%)

Application Data L1 Miss rate (%) branch pred. accuracy (%)
Blast 3.8 89
Sw rognes 0.1 81
Sw alt3 0.15 80.5
Hrognes+sw3 0.25 96

PowerPC 970 processor can support data prefetching with a
hardware mechanism. This mechanism can reduce the negative
performance impact of the memory latencies. This is especially
useful when the memory access pattern is regular as in the case
of our applications. The results for branch prediction show that

applications has not many branches and control instruction
(see figure 5) and they have a regular prediction accuracy.
It is important to note that even though these memory and
branch prediction results, the IPC is not greater than 2 in
any of the applications. The reason is that although there are
many independent altivec instructions in the applications, the
processor only has one vector functional unit and one vector
permute functional unit.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of implementing
the Smith-Waterman algorithm for comparison of biological
sequences. This study has been performed over general pur-
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pose processors with a certain capacity of parallel processing
using multimedia SIMD extensions. Additionally, we have
proposed an alternative way to implement this algorithm based
on exploiting data-level parallelism not only in the columm
direction (as it has been presented by Rognes [21]), but also
exploiting the parallelism in a minor diagonal direction as
shown figure 2c. This new strategy achieves a significant
reduction of 30% in the execution time and has a potential
for more speedup if more functional units are added into
the processor, alleviating its computationally bound nature.
Besides, we have compared our alternative to other recognized
SW implementations and with some heuristics alternatives like
Blast, and the heurist Rognes proposal. Additionally, some

characteristics like execution time, IPC, instruction classifica-
tions, and phase behavior have been analyzed.

In the phase analysis, we found that biological database
search algorithms do not present a regular pattern of be-
havior or phases. This is due to the intrinsic characteristics
of the problem. Besides, we have analyzed the behavior of
these algorithms on different regions of the database, that is,
in high and low score regions. The results reveal that the
computational requirements increase in zones of the database
where their sequences are more similar to the query sequence,
and the IPC falls considerably. This observation is confirmed
when we quantified the amount of required instructions for
performing the SW algorithm in the high and low score
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regions. However, even when a comparison with a low score
sequence is done, the amount of required instructions is high.
This shows the computational requirements for performing
biological sequence analysis, and it also shows that search
algorithm for biological data are computationally expensive
due to the high amount of data that needs to be processed.

It is important to remark that in spite of the execution time
reduction that we have obtained using the new implementation
strategy, the SW algorithm is still being computationally
demanding. The use of general purpose processors that allows
to extract fine-grain parallelism with SIMD extensions can
help to speed-up the execution of this algorithm, but its
performance is still far from reaching the performance of
heuristics strategies, especially when very large databases are
used.

On the other hand, with the important information ob-
tained in the phase analysis, it is possible to focus a deeper
performance analysis over small parts of the execution. We
have identified how the performance behaves in low and high
score regions. Also, this information is usefull to define which
regions should be taken into account in future analysis to
reduce the complexity of simulation and tracing process when
architectural and microarchitectural studies are carried out.
Our future work in this point is to obtain a complete perfor-
mance characterization of these applications using simulation
techniques that allow us to define several architectural and mi-
croarchitectural optimizations in high performance processors
to speedup the execution of these applications.

Additionally, we think that it is necessary to include other
bioinformatic applications that perform another task over
biological information in futures studies. Our future studies
will include important applications from domains like multi-
ple sequences analysis, Genome-level alignment, phylogenetic
analysis, and so on.
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