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Abstract

SIMD extensions are the most common technique
used in current processors for multimedia computing.
In order to obtain more performance for emerging
applications SIMD extensions need to be scaled. In
this paper we perform a scalability analysis of SIMD
extensions for multimedia applications. Scaling a 1-
dimensional extension, like Intel MMX, was compared
to scaling a 2-dimensional (matrix) extension. Eval-
uations have demonstrated that the 2-d architecture
is able to use more parallel hardware than the 1-d
extension. Speed-ups over a 2-way superscalar proces-
sor with MMX-like extension go up to 4X for kernels
and up to 3.3X for complete applications and the
matrix architecture can deliver, in some cases, more
performance with simpler processor configurations.
The experiments also show that the scaled matrix
architecture is reaching the limits of the DLP available
in the internal loops of common multimedia kernels.

I. INTRODUCTION

Multimedia applications have become one of the
most important workloads, both in general purpose
and embedded application domains. Devices like set-
top boxes, DVD and MP3 players, mobile phones and
many others demand high computational power in or-
der to support applications like digital video decoding,
digital image processing or speech compression and
decompression, that need to be done sometimes in real
time and under several power constraints. [1].

In microprocessors for desktop computers, the com-
mon approach for dealing with the requirements of
multimedia applications has been the extension of the
Instruction Set Architecture with SIMD instructions
tailored to the operations and data types present in
multimedia kernels. Extensions like Intel’s MMX and
SSE, Sun’s VIS, HP’s MAX, MIPS’s MDMX and
Motorola’s Altivec exploit the data level parallelism
(DLP) available in multimedia applications by per-
forming multiple sub-word operations in a single in-
struction [2].
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In the embedded domain, ASICs, media processors,
high performance DSPs or some combinations between
them are the most common solutions for dealing with
the computational and power requirements of multime-
dia and communications applications. But the changing
nature of multimedia and communication protocols
suggests the use of programmable processors instead
of custom ASICs or highly specialized application
specific processors. In this way DSPs manufacturers
are including SIMD extensions to their base architec-
tures. VLIWs DSPs like Analog Devices Tiger Sharc,
Motorola and Lucent’s StarCore and Texas Instruments
TMS320C6xx and superscalar-based DSPs like Tri-
Core also include SIMD capabilities [3].

On the other hand, some research proposals suggest
the use of vector processors [4], [5] as an effective way
of exploiting DLP present in multimedia applications.
An alternative approach comes from the combination
of vector registers and sub-word computation in such
a way that registers can be seen as matrices [6]. This
matrix architecture, referred as MOM (Matrix Oriented
Multimedia), can be seen as a 2-dimensional SIMD
extension to a superscalar or VLIW processor.

As multimedia standards become more complex,
processors need to scale their SIMD multimedia ex-
tensions in order to provide the performance required
by new applications. Scaling these extensions not only
need to address performance issues, but also power
consumption, design complexity and cost, especially
for embedded processors.

The focus of this paper is to develop an scalability
analysis of a 1-dimensional SIMD extension, like Intel
MMX, and a 2-dimensional extension, like MOM. For
the two kinds of SIMD extensions an scaling in the
width of registers and the number of execution units
was performed. We will show that making the matrix
registers bigger it is possible to pack almost all the data
available in the inner loops of common multimedia
kernels with a lower complexity processor than a 1-
dimensional SIMD extension. Further extensions in
width or length of matrix SIMD registers would not
result in significant performance improvements. By the



use of a scaled matrix architecture, the dynamic in-
struction count is reduced drastically while still allow-
ing the execution of more operations in parallel. The
final result is a significant increment of performance in
the evaluated multimedia applications, executing fewer
instructions and with a complexity-effective hardware
organization.

This paper is organized as follows: in chapter 2
an analysis of scalability alternatives is presented. In
chapter 3 the applications, simulator and modeled mi-
croarchitectures used in the experiments are detailed.
In chapter 4 results for both kernels and complete
applications are described; and finally in chapter 5
some conclusions are presented.

II. SCALING SIMD EXTENSIONS

The amount of parallelism that can be exploited us-
ing SIMD extensions is a function of three conditions.
The first one is the number of SIMD instructions that
can be executed in parallel, which is related with the
number of SIMD functional units and the hardware
resources necessary for continuous processing multiple
SIMD instructions. The second one is the number
of subwords that can be packed into a word, which
depends on the size of registers. Packing more data
into a single register allows to perform more opera-
tions in parallel for each instruction. The last one is
the presence of combined instructions that allow the
execution of different types of instructions (integer,
floating-point, SIMD) concurrently; this condition de-
pends on the application and the code generated by the
compiler [7].

The first two techniques are related with microarchi-
tecture and architecture features that can be modified to
scale SIMD extensions. Next we are going to analyze
the requirements and possibilities of implementing
these techniques for scaling 1- and 2-dimensional
SIMD extensions.

A. Scaling I1-Dimensional SIMD Extensions

The first approach for scaling SIMD extensions
consist of adding execution units to the SIMD pipeline.
The advantage of this approach is that it could im-
prove the performance at no programming cost. But,
adding more functional units to the pipeline implies
an increasing in register file ports, execution hardware
and scheduling complexity [8]. Such modifications
could have a big impact in area, timing, power and
complexity of the processor. But even if an aggressive
processor with many SIMD functional units could be
developed, performance gains could not be as good
as expected. Recent studies [9], [10] have shown that
there are some bottlenecks in the microarchitecture that
do not allow to obtain better performance by scaling
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the SIMD resources. These bottlenecks are related
with overhead and supporting instructions necessary
for address arithmetic, data transformation (packing,
unpacking, transposing), access overhead and limita-
tions in the issue width.

The other way of scaling is to increase the width
of SIMD registers, i.e. from current 128-bit registers
(in SSE2 and Altivec) to 256-bit, 512-bit or more.
However, this option has two main disadvantages. The
first one is the hardware implementation cost, that can
be significant, taken into account the required increase
in the width of interconnect buses, the doubling of
execution units, and, more important, the increase in
the memory bandwidth necessary to provide enough
data to larger SIMD registers [8]. Even if such a
processor could be implemented, having 256-bit or
512-bit registers could only be useful if applications
have memory data patterns that match the match the
hardware organization; that is, have enough operands
arranged in memory to fill the SIMD registers. This
can be true for some applications, but the majority of
image, video an audio applications have small arrays
or matrices sometimes non-contiguous in memory. For
example the JPEG and MPEG standards define 8 x 8
or 16 x 16 pixel blocks. For this kind of applications,
making registers bigger than the basic data structures
may incur a big overhead for taking data from memory
and/or storing back the results [11].

From the previous discussion we can conclude that
an scalable SIMD extension need to provide some
features in the ISA and in the microarchitecture that
allow the exploitation of DLP taken into account
the data patterns present in multimedia applications
without increasing the complexity of critical structures
in the processor

As a part of this study, the benefits and limitations
of scaling a MMX-like extension with 64-bit registers
(referred here as MMX64) to a 128-bit extension like
Intel SSE2 (referred as MMX128) are evaluated.

B. Scaling 2-dimensional Extensions

MOM is a matrix-oriented ISA paradigm for multi-
media applications based on fusing conventional vector
ISAs with SIMD ISAs, such as MMX. MOM is a
suitable alternative for the multimedia domain due to
its efficiently handling of the small matrix structures
typically found in most multimedia kernels [6]. Fig-
ure 1 describes how vector, MMX-like, and MOM
ISAs exploit DLP using a very simple code example
taken from a multimedia kernel. Vector processors,
Figure 1(a), perform multiple operations by using
long vectors; MMX ISAs, Figure 1(b), perform mul-
tiple sub-word operations within a single register; and
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Fig. 1. Comparison between (a) conventional vector, (b) MMX-like
and (c) matrix oriented ISAs

MOM, Figure 1(c), combines both approaches using
vector registers with subword capabilities.

As with 1-dimensional SIMD extensions, a 2-
dimensional architecture, like MOM, can be scaled in
the width of registers and the number of execution
units. Additionally a vector architecture can be scaled
in the number of parallel lanes and the maximum
vector length.

The original MOM architecture provides the pro-
grammer with 16 matrix registers, each one holding
sixteen 64-bit words [12]. In this work we study how
the vector register file in MOM architecture can scale
from 64-bit width to 128-bit, adding to the original
proposal more capacity and instructions. A 128-bit
matrix register can hold an 8 x 8 16-bit matrix or a
16 x 16 8-bit matrix. Like other vector architectures,
MOM vector load and store operations supports two
basic access methods: unit stride and strided [4]. By
using a strided access to memory, a matrix register can
be filled with data that it is not adjacent in memory
and with almost zero overhead for looping and address
calculation. In this way with the strided access using
vector registers is possible to overcome part of the
overhead associated with reorganization instructions
of SIMD extensions. This instructions represent a
significant part of the SIMD version of common image
and video applications, in which full images or frames
are divided into small blocks that are non contiguous
in memory.

Multimedia applications on vector architectures are
characterized by having small vector lengths [5], [13],
for that reason the maximum vector length of MOM
architecture is not going to be increased. As we will
show in section IV, matrix registers of 128-bit with a
maximum vector length of sixteen adapts well for most
common multimedia applications. Scaling the number
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Fig. 2. Register File and Datapath Comparison.

of processing units is different in vector architectures
than in SIMD extensions like MMX. MOM register
file and datapath are organized in a distributed way in
which the total register file is partitioned into banks
across lanes, and these banks are connected only to
certain functional units in their corresponding vector
lane. Figure 2 shows an specific organization of two
functional units divided into four vector lanes in which
the register file is divided into two banks per lane.
With the figure it is possible to compare the distributed
vector register file to a centralized SIMD register file
used in MMX. The distributed organization of the data-
path in MOM provides an effective mechanism to scale
performance. By adding more parallel lanes MOM can
execute more operations of a vector instruction each
cycle without increasing the complexity of the register
file. This can be obtained by dividing the register file
inside a lane into sub-banks. The limit for including
more lanes is the vector length that can be achieved in
the vectorization of multimedia applications [6].

Additional to a bigger register file, the scaled MOM
architecture includes new instructions to support partial
data movement between registers and memory. These
instructions are necessary for applications which data
patterns do not fill well in 128-bit matrix-registers and
they are similar to those ones that were included by
Intel in the SSE2 and SSE3 extensions [14].

For simplification purposes, we are going to re-
fer to MOM architecture with 64-bit registers as
VMMX64 (64-bit VectorMMX) and to MOM archi-
tecture with 128-bit registers as VMMX128 (128-bit
Vector-MMX).

C. Hardware cost of scaling

When scaling SIMD extensions, the register file
storage and communication between arithmetic units
become critical factors, dominating in area, cycle time



Processor configuration 4WAY SWAY
mmx64 mmx 128 vmmx64 vmmx128 mmx64 mmx128 vmmx64 vmmx 128
Logical registers 32 32 16 16 32 32 16 16
Physical registers 64 64 36 36 96 96 64 64
Lanes 1 1 4 4 1 1 4 4
Banks per Lane 1 1 2 2 1 1 4 4
Read ports per Bank 3 12 12 3 3 24 24 3
‘Write ports per Bank 8 8 2 2 16 16 2 2
Overall RF storage, KB 0.5 1.0 4.6 9.12 0.77 1.54 8.19 16.3
RF Area (Normalized
to mmx64 versions) 1 2.00X 1.41X 2.63X 5.14X 10.29X 2.10X 4.20X
TABLE I

SCALING REGISTER FILES FOR SIMD EXTENSIONS

and power dissipation of the processor [15]. Table I re-
sumes the parameters of capacity, complexity and area
of the registers files for a 4-way and 8-way superscalar
processors with 4 different SIMD extensions. Area
estimations are relative to the MMX64 configuration.

Register file area has been estimated assuming a
0.18 p CMOS process technology based on the models
described in [15]. It is very important to note that these
models are just approximative and useful to give upper
bounds and determine trends, but cannot be translated
directly to reality, because several full custom VLSI
optimizations could be done.

As Table I shows, the VMMX configurations have
more capacity in the register file and can support more
functional units that the MMX ones. This resource
capability is reflected in terms of the necessary area
for implementing VMMX extensions. The approach
followed here is similar to the Altivec extension to
the PowerPC architecture [16], in which a considerable
silicon area is invested in the implementation of the
SIMD extension, but in such a way that processor cycle
and complexity are not affected. By using a vector
organization in parallel lanes, these objectives can be
achieved when scaling the VMMX extension [5].

On the other hand, when MMX64 extension is
scaled to MMX128, the register file complexity be-
comes a predominant factor in terms of area and cycle
time. Table I shows that the ratio of area increase are
lower in VMMX than in MMX, so that for a 8-way
processor configuration the VMMX128 register file has
less area cost with less complexity than the MMX128.

The VMMX and MMX pipelines are not balanced in
terms of functional units and register file capacity, but
what we want to argue is that the VMMX processors
have these bigger resources because they can map ef-
fectively the hardware structure to the DLP available in
common multimedia applications without a significant
increment in complexity. In the VMMX configuration
the number of lanes and functional units can be ad-
justed in order to fulfill different design constraints in
terms of power and area without compromising the

binary compatibility or the complexity of the register
file.

D. A case of study: motion estimation

Figure II-D shows different versions of a fragment of
code taken from the motion estimation routine that is
part of the MPEG-2 encoder application. Code is taken
from function dist] that computes the Sum of Absolute
Differences (SAD) between two blocks of hx16 pixels
(h is typically 8 or 16) pointed by p/ and p2. There is
a stride Ix between rows.

Figure II-D(a) shows the scalar version: there are
two nested loops, one for intra row elements (¢) and
the other one for the different rows (7). In the MMX
versions the inner loop is eliminated. The MMX64
version, illustrated in Figure II-D(b), operates over
arrays of 1x 8 pixels, being necessary to divide the data
array in two regions. For each of these regions, it is
necessary to use and update pointers and to accumulate
the partial results of each sub-block in one register. The
MMX128 version, shown in Figure II-D(d), operates
over 1x 16 pixels arrays that are contiguous in memory,
allowing a single load to be performed for each row,
and requiring less pointer overhead than the 64-bit
version.

In the VMMX versions, both loops can be elimi-
nated because it is possible to pack the two dimen-
sional array into vector registers. For loading the data
into vector registers, it is necessary to define the vector
length (VL=h), and for each load, it is necessary to
specify, as a part of load instruction, the vector stride
Ix. In the VMMX64 version, shown in Figure II-D(c),
it is necessary to divide the array into 2 blocks of
hx8 pixels, thus being necessary two vector registers to
store the data array. Finally, in VMMX128, as shown
in Figure II-D(e), it is possible to pack all the pixel
array in a single vector register, reducing drastically
the number of instructions used. Specially a lot of
overhead instructions used for looping and address cal-
culation are eliminated, and SAD is implemented using
a packed accumulator that allows a parallel execution
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for (j=0; j<h; j++){
for (i=0; i<l16;

if ((v =
V= —V;
S+= Vv;
}
pl+= Ix;
p2+= 1x;

}

i++){

plli]l — p2[i]) < 0)

(a) scalar

for (j=0; j<h; j++){

VRI = MEM[pl];
VR2 = MEM[p2];
VR1 = VRI >> 1;
VR2 = VR2 >> 1;
VR3 = MEM[pl+8]; pl += Ix;
VRI = VRl — VR2;
VR4 = MEM[p2+8]; p2 += Ix;
VRI = Sum(|VRI]);
VR3 = VR3 >> 1;
VR4 = VR4 >> 1;
VRIS += VRI;
VR3 = VR3 — VR4;
VR3 = Sum(|VR3]);
VRIS += VR3;
}
s = VRI5;
s = s<<I;
(b) mmx64

for (j=0; j<h; j++){

VR1 = MEM[pl]; pl += Ix;
VR2 = MEM[p2]; p2 += Ix;
VRI = VRI >> 1;
VR2 = VR2 >> 1;
VR1 = VRI — VR2;
VR1 = Sum (| (VRIL]);
VRI15 += VRI;
}
s = VRI5;
s = s<<I;
(d) mmx128
Fig. 3.

of the operation over the vector registers [17].

III. EXPERIMENTAL METHODOLOGY

A. Workload

In order to evaluate the different architectures un-
der study we have selected six applications from the
Mediabench suite [18] that are representative of video,
still image and voice processing applications. For each
application we have selected the most computational
intensive kernels with potential DLP and evaluated
them in isolation. Table II describe the kernels and
benchmarks and their characteristics.
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ACC1 = 0;
ACC2 = 0;
VL = h;
R2 = 1x;
VR1 = MEM[pl] (Vs=R2);
VR2 = MEM[p2] (Vs=R2);
ACC1 = Sum(|VRI — VR2|);
VR3 = MEM[pl1+8] (Vs=R2);
VR4 = MEM[p2+8] (Vs=R2);
ACC2 = Sum(|VR3 — VR4|);
R5 = Sum(ACCl1);
R6 = Sum(ACC2);
R5 = R5 + R6;
S = RS5;

(c) vmmx64
ACC1 = 0;
Vi = h;
VR1 = MEM[pl] (Vs=lx);
VR2 = MEM[p2] (Vs=1lx);
ACCl = Sum(|VRl — VR2]);
R5 = Sum(ACC1);
S = RS5;

(e) vmmx128

Motion estimation code example

B. Simulation Framework

Emulation libraries containing the multimedia in-
structions have been used for the evaluated extensions:
MMX64, MMX128, VMMX64 and VMMX128. Most
of the functionality of MMX and SSE ISAs have
been implemented into the MMX64 and MMX128
emulation libraries respectively, although it is impor-
tant to note that the modeled extensions use more
logical registers and they are based on the Alpha
ISA, not on the IA32. Using these emulation libraries
versions of the mentioned kernels were developed. To
maximize performance, optimization techniques like
loop-unrolling and software pipelining were applied.
All codes have been compiled using gcc 2.95.2 with



[ Application | Description [ Kernel [ Description [ Data size
Jpegenc JPEG still image encoder rgb RGB to YCC color conversion RGB triads
fdct Forward Discrete Cosine Transform 8 X 8 16-bit
Jpegdec JPEG still image decoder h2v2 Image up-sampling Image width
yee YCC to RGB color conversion (Y,Cb,Cr) X Image_width 8-bit
mpeg2enc MPEG?2 video encoder motionl Sum of Absolute Differences 16 x 16 8-bit
motion2 Sum of Quadratic Differences 16 x 16 8-bit
idct Inverse Discrete Cosine Transform 8 x 8 16-bit
fdct Forward Discrete Cosine Transform 8 X 8 16-bit
mpeg2dec MPEG?2 video decoder comp Motion compensation 8 X 4 8-bit
addblock | Picture decoding 8 X 8 8-bit
idct Inverse Discrete Cosine Transform 8 x 8 16-bit
fdct Forward Discrete Cosine Transform 8 X 8 16-bit
gsmenc GSM 06.10 speech encoder | ltppar Parameter calculation for LTP filtering | 40 16-bit
gsmdec GSM 06.10 speech decoder | Itpfilt Long term parameter filtering 120 16-bit
TABLE 11
BENCHMARK SET DESCRIPTION
Parameter ‘ MMX ‘ VMMX [ [ L1 | 12 ]
2/4/8 way 2/4/18 way size 32KB 512KB
Physical SIMD registers 40/64/96 20/36/64 number of ports 1/2/4 1
Fetch, Decode, Grad. 2/4/8 2/4/8 port width (bytes) 8 16/32/64
Integer FUs 2/4/8 2/4/8 number of banks 8 2
FP FUs 1/2/4 1/2/4 sets per bank 32 2048
SIMD issue 2/4/8 1/2/3 associativity 4 2
SIMD FUs 2/4/8 1x4/2x4/3x4 line size (bytes) 32 128
Mem FUs (L1 ports) 1/2/4 (x64b) 1/1/2 (x64b) latency 3 12
L2 ports - 1x(64b/128b/256b) Main Memory Latency (cycles) 500
TABLE III TABLE IV
MODELED PROCESSORS MEMORY HIERARCHY CONFIGURATION
the -O2 flag. used as a guide of the potential performance that could

The simulation tool used in this work was an
improved version of Jinks Simulator [19], that is a
parametrizable simulator targeted at evaluating out-of-
order superscalar architectures with a special focus
on vector extensions. A combination of trace-driven
and execution-driven approaches based on ATOM [20]
were used for generating the input trace stream for the
simulator.

C. Processor Models

The baseline processor is a 2-way out-of-order su-
perscalar core similar to MIPS R10000 [21] with the
addition of a MMX64 SIMD extension. We have eval-
uated four different configurations that include MMX
and VMMX approaches for 64 and 128-bit registers:

o 2/4/8-way superscalar processor + MMX64

o 2/4/8-way superscalar processor + MMX128

o 2/4/8-way superscalar processor + VMMX64
o 2/4/8-way superscalar processor + VMMX128

Table III shows the processor configurations used
for the simulations. The 8-way superscalar processors
are too aggressive configuration that are obviously
not suitable for embedded systems and are nowadays
unfeasible in a high performance general purpose pro-
cessor at current clock frequencies, but they can be
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be obtained (and complexity problems that could be
found) when scaling processor resources.

D. Memory hierarchy model

A detailed memory hierarchy model with two lev-
els of on-chip cache and a Direct RAMBUS main
memory system have been included in the simulator.
Table IV shows the configuration parameters for caches
and main memory. Parameters are similar to those
found in some recent microprocessors with multimedia
extensions like PowerPC970. For VMMX versions a
vector cache was used [22]. The vector cache is a two-
bank interleaved cache targeted at accessing stride-one
vector requests by loading two whole cache lines (one
per bank) instead of individually loading the vector
elements. Then, an interchange switch, a shifter, and a
mask logic correctly align the data. Scalar accesses
are made to the L1 conventional data cache, while
vector accesses bypass the L1 to access directly the
L2 vector cache. This bypass is somewhat similar to
the bypass implemented in Itanium2 processor for the
floating point register file [23]. If the L2 port is Bx64-
bit wide, these accesses are performed at a maximum
rate of B elements per cycle when the stride is one, and
at 1 element per cycle for any other stride. A coherency



protocol based on an exclusive-bit policy plus inclusion
is used to guarantee coherency.

As shown in Table IV the latency value for the 2
cache levels and the main memory are relative high,
this is done because we want to determine the ability
of the proposed extensions to tolerate high latencies in
the memory subsystem.

IV. SIMULATION RESULTS
A. Kernel speed-up analysis

Figure 4 shows the kernels speed-up for the different
multimedia ISAs under study. The baseline is the 2-
way superscalar processor with a MMX64 extension.
Scaling from MMX64 to MMX128 does not result in
great performance increment taking into account that
register and functional units are twice the size of the
MMX64 ones. The speed-up goes up to 1.47X for
idct, 1.43X for ycc, 1.25X for addblock and 1.19X for
h2v2. These kernels have a regular data pattern and
they adapt well to 128-bit wide registers.

VMMX versions of kernels exhibit bigger speed-
ups than the MMX ones in all the cases and produce
significant speed-ups when going from VMMX64 to
VMMX128 versions, except for ltppar and addblock
kernels. The bigger speed-ups (4.10X for idct, 2.71X
for ycc, 2.43X for motion2 and 2.29X for motionl)
are due to the better matching between the data orga-
nization and the matrix registers structure. The speed-
up in h2v2 is due to the large size of the input data
set and the regular data patterns in memory, allowing
a vector stride of one and the use of the maximum
V' L available (16). In ltppar and Iltpsfilt, computation
is done over two short segments of data (40 16-bit
and 120 16-bit respectively). This limits the parallelism
that could be exploited when going from VMMX64 to
VMMX128 and is reflected in the small difference of
speed-ups. The small speed-up obtained by comp and
addblock in all versions is related with the parallel data
available (8x4 pixels in comp with a stride of 800),
that represents a small fraction of the matrix registers
in VMMX64 and incurs in some arithmetic overhead
in VMMX128.

In the idct VMMX128 version, it is possible to pack
the 8x8 16-bit input data set and coefficients in matrix
registers and then performing a multiply-accumulate
operation between them. Idct exhibits the biggest
speed-up due to the use of vector registers as a cache.
In VMMX versions we use a 2D-matrix algorithm that
need to multiply the input matrix and its transpose with
the coefficients matrix. In VMMX128, due to the fact
that we can store the whole matrices in vector registers,
we can maintain the matrix coefficients in a vector
register during the two matrix products and perform
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all the operations inside a vector register and only go
to memory to store the final result. This saves a lot of
redundant load operations and allows to apply software
pipelining over the packed accumulator that would be
extremely difficult to implement in a scalar or MMX
versions.

B. Complete applications speed-up

Speed-up of kernels only shows the potential of the
evaluated architectures on a highly data parallel code,
but these kernels are used in bigger applications where
there is a lot of scalar code associated to protocol over-
head (MPEG, JPEG) or file manipulation that cannot
use the SIMD units. Then, the multimedia extensions
not only need to exploit efficiently the data parallelism
available but not to degrade the performance of the
scalar portion of the application.

Mpeg2enc is the application which takes more bene-
fit from the use of matrix registers. Figure 5 shows that
VMMX versions of the application scales better than
MMX ones. VMMX128 version has the biggest speed-
up due to the good matching of data in the motion and
idct kernels to the 128-bit matrix registers. These ker-
nels account for more than 25% of the total execution
time of the MMX-64 version of the application running
on the 2-way processor. Mpeg2dec, instead, shows a
significant speed-up but the difference between MMX
and VMMX versions is smaller than in mpeg2enc. In
this application motion compensation routines are not
so much significant of the total execution time and their
data parallelism is not so big. Furthermore mpeg2dec
presents a lot of scalar code in picture decoding that
can not be vectorized.

In jpegdec application, VMMX versions show a
greater capacity to exploit DLP compared with MMX
versions. This is due to the fact that A2v2 and ycc
kernels operate over data that has a good pattern in
memory and the vector length used is high (8 and 16
in both cases). On the other hand, VMMX64 version
of jpegenc obtains a better performance than MMX
versions for less aggressive schemes, that is 2 and
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4-way. However, in 8-way configuration, MMX128
version outperforms the VMMX64 version, this is
due to the behavior of rgb kernel. The vectorization 60
[ vector cycles
hgppeqs alon.g the color space (red, green and .b.lue) w0l ) scalar cycles
dimension, yield a vector length of only 3. Addition-
ally, the order in which results must be stored in mem- 20+
ory does not benefit the VMMX64 version. However, od ‘ ‘
the VMMX128 version overcomes this limitation by %%%% %%%% 3% %%
allowing to pack more sub-word data into the matrix TehY YohYy Yok
register. 2-way 4-way 8-way
As showed in figure 5, for mpeg2enc, it is possible to Fig. 6. Cycle count distribution (jpegdec)

obtain a similar performance with a 2-way VMMX128
processor instead of a 8-way MMXI128 one. The
same behavior can be seen in jpegenc and mpeg2dec
between 4-way VMMX versions and 8-way MMX
ones. In those cases, scaling the 2-dimensional register
file of a simpler processor is much more effective
than scaling the complete resources of a processor
with 1-dimensional registers. In gsmenc and gsmdec
applications, the percentage of parallelization is small
(less than 10%) and therefore the applications does not
benefit so much from SIMD extensions.

C. Cycle Breakdown

Figure 6 shows the dynamic cycle distribution for
the jpegdec application. The remaining of the bench-
marks are not included for room reasons, but they
exhibit a similar behavior. The shadow part of each
column represents the dynamic cycles used in vector
operations, while the white part comes from the scalar
code. Results are normalized by the dynamic cycle
count of the reference 2-way MMX64 superscalar
processor.

As it was expected, scaling the MMX64 extension
provides a significant drop in the number of cycles
to execute the vector part of code. Scaling in both
dimensions (width and length) achieves the maximum
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reduction: for the 2-way architecture, the VMMX128
extension reduces the execution time of the vector code
in a 85% over the MMX64 extension.

However, it can be observed that, when most of the
available DLP parallelism is exploited via multimedia
extensions, the remaining scalar part of the code be-
comes the main bottleneck. For the 8-way VMMX128
architecture, the vector cycles represent only the 2.7%
of the overall execution time. By the Amhdal Law,
further improvements in the execution of the vector
region would be imperceptible in the full application.

D. Dynamic Instruction Count

Figure 7 shows the dynamic instruction count for the
benchmarks under study. Again, results are normalized
by the dynamic instruction count of the MMX64 archi-
tecture. The operations have been classified into five
categories: scalar memory, scalar arithmetic, control,
vector memory and vector arithmetic. We observe that
the VMMX architectures execute about 30% fewer
instructions than the MMX64, and the MMX128 an
average of 15% fewer instructions. This is obviously
due to the capability of these extensions to pack more
operations into a single instruction.
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Fig. 7. Dynamic instruction count

As seen in figure 7, the biggest instruction reduction
is achieved by the mpeg2enc application. This reduc-
tion comes from the commented elimination of scalar
instructions used for address computation and loop
manipulation. In any way, note that the limit of packing
data seems to be reached, and scaling further over,
either in width or in length, would not provide any
noticeable benefit. At this point, a full reorganization
of the code is required if we want to expose more
parallelism to the processor.

V. CONCLUSIONS

In this paper we have presented an scalability anal-
ysis of SIMD extensions for multimedia applications.
Scaling current 1-dimensional SIMD extensions was
compared to scaling a 2-dimensional architecture. The
comparison was made using both kernels and complete
multimedia applications. Scaling was made in the
width of SIMD registers and in processor resources.
The matrix architecture with 128-bit registers has
shown the best performance improvements compared
to a 64-bit matrix architecture and to 1-dimensional
(64-bit and 128-bit) SIMD extensions.

The benefits of a Matrix architecture come from
the elimination of some of the bottlenecks of current
SIMD extensions. Multimedia data structures fit very
well into matrix registers, the matrix nature of the ISA
eliminates a lot of pointer and loop code overhead,
and the combination of vector length and vector stride
eliminates the constraints in the contiguous data dis-
tribution in memory. In some cases, additional per-
formance improvements can be obtained by the use
of matrix registers as a cache for intermediate results,
reducing also the pressure on the memory hierarchy.

By applying all of these optimizations, the Matrix ar-
chitecture is reaching the limits of available DLP in the
inner loops of common multimedia applications. Fur-
ther scaling on the width or length of matrix registers
can no deliver significant performance improvements
because the execution time is now dominated by the
scalar portion of the code. Extracting more parallelism
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in the analyzed applications requires special code
transformations in order to execute multiple instances
of the optimized functions in parallel or dedicated
hardware to extract parallelism beyond the inner loops.

It was demonstrated also that, for video and image
applications, a simple processor with a VMMX128 ex-
tension can delivery more performance than a proces-
sor with a MMX extension and more resources. This
feature and the reduced complexity in some critical
structures of the matrix pipeline, like the register file,
makes the matrix enhanced processor a suitable choice
for embedded applications.
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