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Abstract

Simultaneous Multithreading (SMT) is an architectural
technique that allows for the parallel execution of several
threads simultaneously. Fetch performance has been identi-
fied as the most important bottleneck for SMT processors.
The commonly adopted solution has been fetching from
more than one thread each cycle. Recent studies have pro-
posed a plethora of fetch policies to deal with fetch priority
among threads, trying to increase fetch performance.

In this paper we demonstrate that the simultaneous shar-
ing of the fetch unit, apart from increasing the complexity of
the fetch unit, can be counterproductive in terms of perfor-
mance. We evaluate the use of high-performance fetch units
in the context of SMT. Our new fetch architecture proposal
allows us to feed an 8-way processor fetching from a sin-
gle thread each cycle, reducing complexity, and increasing
the usefulness of proposed fetch policies.

Our results show that using new high-performance fetch
units, like the FTB or the stream fetch, provides higher per-
formance than fetching from two threads using common
SMT fetch architectures. Furthermore, our results show that
our design obtains better average performance for any kind
of workloads (both ILP and memory bounded benchmarks),
in contrast to previously proposed solutions.

1. Introduction

Simultaneous Multithreading (SMT) [23, 24] is a tech-
nique that allows instructions from many applications or
threads to coexist in each stage of the processor pipeline.
Processor resources are shared among several tasks each cy-
cle, taking advantage not only from the existing ILP of each
thread but also from TLP among them. The higher through-
put of instructions obtained increases the overall SMT per-
formance. In case that a thread is stalled because of a branch
misprediction or a cache miss, processor resources can be
used efficiently by instructions from other threads.

As is the case with superscalar processors, the SMT fetch
unit is one of the most important parts of the processor. In-

struction supply to the following stages of the processor de-
pends on it. The presence of branches and I-cache misses in
the instruction flow cause fetch stalls that affect the whole
processor. In spite of the important role of the SMT fetch
unit, current implementations are far from optimal perfor-
mance. Hence, the fetch unit is currently the most impor-
tant bottleneck of an SMT processor [1, 22].

Fetching from a single thread seems to be insufficient to
feed an 8-way execution core. Solutions that try to widen
the fetch throughput are targeted to fetch from multiple
threads in a single cycle [6, 12, 22]. A priority policy is
used to assess which thread should be fetched first. When
no more instructions can be fetched from this highest prior-
ity thread, then the second highest priority thread is fetched.
This process continues until the instruction fetch limit is
reached or no more threads are available.

However, fetching from multiple threads is not a triv-
ial issue. Replicating the fetch unit to have an individual
engine for each thread is too complex and too expensive.
Thus, the most significant changes required to convert a
superscalar processor into an SMT take place in the fetch
stage. First, a program counter must be maintained for each
thread. Second, multiple branch predictions (one per thread)
are needed, with a branch predictor port devoted for each
thread. Also, in order to improve the branch prediction ac-
curacy, a return address stack and a branch history register
are needed for each thread. Third, multiple I-cache accesses
must be done in a single cycle and a memory port for each
thread is necessary. The cache should also be multi-bank to
reduce bank conflicts. After these cache accesses are final-
ized, instructions fetched from each thread must be aligned
and joined in a single packet. All these modifications, espe-
cially the inclusion of more ports, seriously affect the im-
plementation of the processor, both in terms of layout and
cycle time [2, 3].

In this paper we evaluate current SMT fetch implemen-
tations and propose a new implementation targeted to solve
the two main problems of the SMT fetch unit: high com-
plexity and low performance. We demonstrate that it is pos-


https://core.ac.uk/display/148621376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sible to maintain a high fetch throughput without needing to
simultaneous share the fetch unit among threads. Our pro-
posal consists of a fetch architecture which is capable of
fetching enough instructions from a single thread without
reducing performance and allows for the implementation of
simpler fetch policies.

This paper is organized as follows: Section 2 discusses
related work. Section 3 describes SMT fetch architectures
needed to fetch from one thread and from many threads, as
well as the high-performance, low complexity fetch units
we propose for SMT. Section 4 describes our experimental
methodology and Section 5 present simulation results. Fi-
nally, Section 6 concludes the paper.

2. Related Work

Simultaneous Multithreading [23, 24] is a technique able
to exploit task-level parallelism by issuing instructions from
multiple threads in the same cycle. Sharing resources dy-
namically among all threads reduces the probability that a
functional unit is idle for several cycles.

In a later paper, Tullsen et al. [22] evaluate a realistic
SMT implementation and highlight two main bottlenecks
in an SMT processor: fetch bandwidth and branch predictor
accuracy. To fill all fetch slots, the SMT architecture is ex-
tended to fetch from several threads each cycle. Also, some
policies to give a priority to threads, such as Round-Robin
or ICOUNT, are introduced. However, on the one hand, the
presence of taken branches in the instruction flow limits the
amount of instructions that can be fetched from a single
thread. On the other hand, branch mispredictions caused by
an inefficient branch predictor imply that many instructions
fetched must be later discarded. Burns et al. [1] also de-
tect fetch fragmentation and branch prediction accuracy as
the key factors in increasing the general SMT performance.

We propose a new SMT fetch architecture that attacks
the two main sources of performance degradation identified
in previous papers and that is able to maintain a continu-
ous flow of instructions to feed the rest of the pipeline.

Fetch policies have been proposed to reduce the number
of wrong-path instructions in the pipeline. Luo et al. [11]
use a confidence estimator to find threads that are likely to
be in the correct path. A thread with many low-confidence
branches is given a lower priority and, once the low con-
fidence branches have been resolved, the priority of the
thread is increased. If the number of unresolved low con-
fidence branches overcomes a given threshold, the thread is
stalled. Knijnenburg et al. [9] employ a branch classifier to
filter out difficult to predict branches. When a branch clas-
sified as difficult is encountered, the thread is stalled until
the branch is resolved.

Both the stream predictor [16] and the gskew predictor
[14] we use provide high prediction accuracy, which im-
plies that a high percentage of fetched instructions are from

the correct path. Moreover, these fetch architectures could
be used in conjunction with fetch policies based on branch
predictability to increase SMT performance.

High performance fetch is also necessary to achieve
a high overall performance in traditional superscalar pro-
cessors. Fetch bandwidth is limited by the I-cache hit
rate, branch prediction accuracy, and the presence of taken
branches in the instruction flow. Several techniques have
been proposed to overcome these limits, by fetching non-
continuous instruction sequences in a single cycle. These
techniques need multiple branch predictions to increase
branch predictor bandwidth, a complex or special purpose
cache to increase instruction bandwidth, and some kind of
merging mechanism to join all instructions in a single block.

The Branch Address Cache [25] employs a multi-bank
BTB (called BTAC) for supplying fetch addresses of pre-
dicted blocks. An extended two-level branch predictor is
used to predict multiple branches per cycle. Although this
fetch unit was initially designed as a two-stage unit, it re-
quires a complex alignment network after the interleaved
I-cache access that will probably affect the cycle time or re-
quire a new pipeline stage.

The Collapsing Buffer [5] employs a multiple branch
predictor and an interleaved BTB to predict multiple blocks
per cycle. A devoted buffer is used to merge groups of in-
structions separated by a taken branch. A significant amount
of logic is needed after accessing the BTB and after ac-
cessing the multi-bank I-cache, which enlarges the fetch
pipeline with one or two stages.

The Trace Cache [18] solves cycle time problems of pre-
vious techniques by moving part of the logic out of the crit-
ical path. A special purpose cache stores sequences of dy-
namic instructions collected by the trace fill unit at the back
end of the pipeline. A multiple branch predictor (Trace Pre-
dictor) is also used to generate indexes to access the Trace
Cache. If there is a miss, a core fetch unit with an inter-
leaved cache is used to provide instructions. This scheme
effectively avoids cycle time problems, but at the cost of ex-
tensive additional hardware.

Oberoi and Sohi [15] propose a mechanism for out-of-
order fetching in superscalar processors. It uses multiple se-
quencers that prefetch instructions into a pool of buffers,
from which they are taken to rename.

Although the techniques discussed above can be alterna-
tive solutions to the fetch bandwidth problem of an SMT
processor, their complexity makes them inefficient to im-
plement. The fetch target buffer (FTB) [17] and fetching in-
struction streams [16] are good techniques to increase the
fetch bandwidth of superscalar processors with low com-
plexity. In this paper, we show that they also help to re-
duce the complexity of the SMT fetch as well as maintain-
ing high performance. Furthermore, we show that they also
allow for the implementation of fine grain fetch policies.



3. Fetch Architectures for SMT

In this section we examine current fetch architectures for
SMT. We study a fetch unit design which is necessary to im-
plement policies that fetch only from one thread each cycle,
as well as a fetch unit design for policies that try to fetch
from more than one thread (we will study those that fetch
from a maximum of two threads). We present results for
a typical fetch engine for SMT which uses a gshare [13]
branch predictor plus a BTB [10].

Next, we present two high-performance fetch engines: a
gskew [14] branch predictor plus an FTB [17] design, and a
fetch configuration based on instruction streams [16].

3.1. Fetching from a Single Thread

The most basic implementation of an SMT fetch unit is
the one that fetches from only one thread each cycle, de-
noted by 1.X fetch policy: up to X instructions from / thread.
The implementation of this fetch configuration is depicted
in Figure 1. There is a fine-grained, non-simultaneous shar-
ing of the fetch unit which implies a simple fetch design,
similar to that of a superscalar processor. The instruction
cache does not need any modification. As there are no mul-
tiple simultaneous accesses, there is no need to have a multi-
banked cache to avoid bank conflicts. Also, a simple single-
portinstruction cache can be used because no more than one
thread will access the cache each cycle.

There is only one addition to a superscalar fetch design:
a fetch policy is necessary to decide which thread should be
fetched each cycle, among those threads that are not blocked
due to an instruction cache miss. The easiest way is to do
this in a Round Robin [22] fashion, although better policies
can be applied, like ICOUNT [22].

The main problem of this fetch architecture is that a sin-
gle program/thread is not enough to fully use the avail-
able fetch bandwidth. On the one hand, branch predictors
that predict only one branch per cycle limit the fetch band-
width to 6-8 instructions per cycle, the typical size of a basic
block in integer codes. On the other hand, instructions are
sometimes in non-contiguous cache locations, hence fetch-
ing from a cache line or from continuous cache lines does
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Figure 1. Fetch architecture for a 1.X fetch
policy
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Figure 2. Fetch throughput (in instructions
per fetch cycle) using ICOUNT fetching only
from one thread each cycle (gzip-twolf)

not provide sufficient instructions to fill the fetch bandwidth
required by an 8-way SMT processor. Therefore, it is hard
to achieve overall high performance by using a fetch unit
that is limited to one branch prediction and one instruction
cache line per cycle.

As an example, Figure 2 shows simulation results for
a two-thread workload of one thread with high ILP (gzip)
and one memory bounded thread (twolf) using the ICOUNT
fetch policy and the gshare+BTB fetch unit (simulation pa-
rameters are described in Section 4). Fetch throughput is
measured in instructions per fetch cycle (IPFC), i.e., the av-
erage number of instructions provided by the fetch unit on
every fetch request. Experiments with different workloads
and number of threads show similar trends.

As can be seen, this fetch implementation is far from op-
timal. With a fetch bandwidth of 8 instructions per cycle,
it has a fetch performance less than 5 instructions per cy-
cle. Our results show that gshare+BTB provides more than
4 instructions only 60% of the fetch cycles. It is able to pro-
vide 8 instructions (and, therefore, fully use the fetch band-
width) only 31% of the fetch cycles. Overall, the available
fetch width is heavily underused.

Furthermore, when increasing the fetch bandwidth to 16
instructions, this fetch architecture is still unable to use half
the fetch bandwidth. Our results show that gshare+BTB
provides more than 8 instructions only 32% and 16 instruc-
tions only 6% of the fetch cycles. Hence, it is clear that
increasing the fetch bandwidth beyond the size of a basic
block is not an effective solution to achieving a high fetch
performance when using fetch architectures that predict in-
dividual branches.

Clearly, this architecture can not provide a high fetch
performance (8 or 16 instructions per cycle) if it is limited
to a single thread.



3.2. Fetching from Multiple Threads

The common solution adopted in SMT to overcome the
fetch bandwidth problem is to fetch from multiple threads
each cycle [22]. Figure 3 shows the fetch architecture nec-
essary to implement a 2.X fetch policy (up to X instructions
from 2 threads). Fetching simultaneously from two cache
lines and then merging instructions into a single long line
reduces the fetch bottleneck and increases performance.

However, a fetch design using a policy that fetches from
two threads simultaneously is hard to implement [2, 8, 22]
and requires additional hardware and complexity (empha-
sized with grey boxes in Figure 3).

With regard to the branch predictor, it must provide as
many predictions as the number of threads to be fetched in
a cycle. A branch predictor port is needed for each thread.

With regard to the instruction cache, it requires a port for
each thread to fetch a cache line. It requires multiple banks
to avoid, or at least to diminish, bank conflicts due to con-
currentaccess. A common way is to implement it as a multi-
port cache with interleaved banks [20]. Bank-conflict logic
must be added before the cache access to avoid different
threads accessing the same bank in the same cycle. More-
over, the cache must be non-blocking, so there must be a
MSHR (Miss Status Holding Register) for each thread. All
these changes in the I-cache imply an increase in the num-
ber of decoders, read amplifiers, multiplexers, and registers.

With regard to the logic after the cache access, it is nec-
essary to perform a mask operation to isolate the correct in-
structions and a shift operation to align instructions. These
operations must be replicated, one per fetched thread. Af-
terward, individual cache lines are merged in a single cache
line that will be passed to the decode stage. Implementing
this realignment network is not trivial and it will probably
impact the cycle time or the pipeline depth.

Figure 4 shows fetch throughput results when fetching
from two threads simultaneously. There is a noticeable im-
provement in the fetch throughput compared to a 1.X fetch
policy (light bars in Figure 4, taken from Figure 2). As more
threads are fetched, there are more possibilities to fill the
fetch bandwidth totally.
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Figure 3. Fetch architecture for a 2.X fetch
policy
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Figure 4. Fetch throughput (in instructions
per fetch cycle) using ICOUNT fetching from
up to two threads each cycle (gzip-twolf)

On the one hand, fetching from two threads up to 8
instructions (2.8) provides a 28% improvement of fetch
throughput over fetching from one thread (1.8). For 2.8,
gshare+BTB provides 8 instructions 54% of the fetch cy-
cles and more than 4 instructions 80% of the fetch cycles.

On the other hand, extending the fetch width to 16 in-
structions, fetching from two threads (2.16) gives a 33% im-
provement of fetch throughput over fetching from only one
thread (1.16). With the 1.16 policy it is very difficult to pro-
vide 16 instructions in a cycle (less than 9% of the fetch cy-
cles). For 2.16, gshare+BTB provides 16 instructions 16%
and more than 8 instructions 46% of the fetch cycles.

These results show that fetching from two threads each
cycle does reach a relatively good fetch performance, but at
the expense of an increased implementation cost.

3.3. High Performance Fetch Engines

In order to increase SMT fetch performance, techniques
attempt to increase fetch throughput by fetching from sev-
eral threads simultaneously. However, the complexity of
fetching from more than one thread can be avoided if a sin-
gle thread were able to provide sufficient instructions to fill
the fetch bandwidth.

In the Related Work Section we have discussed solutions
to deal with the problem of low fetch bandwidth in the con-
text of superscalar processors. All of them are complex im-
plementations based on having a multiple branch predictor
and a special purpose cache to overcome the limits of a sin-
gle cache line. In this paper, we propose a new SMT fetch
unit implementation based on two different branch predic-
tors that provide high performance with low complexity:
gskew+FTB and the stream front-end.

First, Reinman et al. [17] propose the fetch target buffer



(FTB), which increases the effective fetch width provided
by a BTB by ignoring some non-taken branches. Poten-
tially, a fetch block provided by an FTB can contain sev-
eral non-taken branches. Hence, fetch blocks provided by
an FTB are larger than fetch blocks provided by a clas-
sical BTB. In conjunction with the FTB, we employ a
gskew [14] branch predictor to predict conditional branches.
This branch predictor improves two-level branch predic-
tors by decreasing conflict aliasing in the prediction tables.
Branches are stored in three prediction tables which are ac-
cessed using three different indices. Taking the prediction
of each table, a majority vote selects the branch prediction
in order to diminish the effect of a wrong prediction due to
conflict aliasing in any of the tables.

The gskew+FTB fetch unit provides higher fetch perfor-
mance than that provided by a gshare+BTB fetch unit. Our
numbers show that gskew+FTB obtains a 5% performance
improvement on average over a gshare+BTB on a super-
scalar processor.

Second, Ramirez et al. [16] propose a fetch architecture
based on fetching instruction streams. A stream is a dy-
namic sequence of instructions, from the target of a taken
branch to the next taken branch. It can contain several non-
taken branches and thus many basic blocks. A stream pre-
dictor is used to predict which stream should be executed
next: given a starting address and some path information, it
provides the number of sequential instructions until the next
taken branch, and the target of this taken branch.

The stream fetch gives high performance for superscalar
processors, providing on average an 11% performance im-
provement over a gshare+BTB and a 5.5% improvement
over gskew+FTB. It is only 1.5% lower than using a trace
cache mechanism, but with much lower complexity.

Our goal is to reduce the SMT fetch complexity by em-
ploying new fetch unit designs which provide better fetch
performance. If we could obtain a single-thread throughput
that would almost fill the fetch bandwidth, there would be
no need to implement complex fetch designs to fetch from
two or more threads per cycle. In our case, the fetch imple-
mentation would correspond to the 1.X policy shown in Fig-
ure 1, instead of to the more complex 2.X policy shown in
Figure 3.

4. Simulation Setup

We use SPECint2000 for our simulations. Benchmarks
are compiled on a DEC Alpha AXP-21264 using Compaq’s
C/C++ compiler with *-O2’ flag. Additionally, code layout
is optimized using spike [4] with profile data obtained from
executing the frain input set. Due to the large simulation
time of SPEC2000, traces of the most representative 300
million instruction slices have been collected, following the
idea presented in [19]. Table 1 shows the ref input sets and

Ref Fast-fwd Avg. BB

input (billions inst.) | size (insts.)
164.gzip graphic 68.1 11.02
175.vpr place 2.1 9.68
176.gcc 166.1 15 5.76
181.mcf inp.in 43.5 3.92
186.crafty crafty.in 74.7 9.24
197.parser ref.in 83.1 6.37
252.eon cook 57.6 8.73
253.perlbmk | splitmail.535 453 10.06
254.gap ref.in 79.8 9.16
255.vortex lendianl.raw 58.2 6.50
256.bzip2 inp.program 51.3 10.02
300.twolf ref 3243 8.00

Table 1. SPECint2000 characteristics

the amount of fast-forward applied during trace collection.

Table 2 shows the workloads used in our simulations.
We have used workloads including 2, 4, 6, and 8 threads.
Workloads are classified according to the characteristics of
the included benchmarks: with high instruction-level paral-
lelism (ILP), with bad memory behaviour (MEM), or a mix
of benchmarks with high ILP and bad memory behaviour
(MIX). Due to the characteristics of SPECint2000, with few
benchmarks that are really memory bounded, a MEM work-
load is only feasible for 2 and 4 threads.

The simulator used is a modified trace-driven version
of SMTSIM [23]. Our simulator permits execution along
wrong paths by having a separate basic block dictionary in
which information of all static instructions is contained.

We have modified the fetch stage of the simulator, by de-
coupling it in two stages, a prediction and a fetch stage.
Therefore, the pipeline depth of the simulator is incre-
mented from 8 to 9 stages. Previous work has shown that
a decoupled fetch implementation is beneficial not only for
superscalar processors [17], but also for SMT [7]. Fetch tar-
get queues (FTQs, one per thread) provide latency tolerance
between the branch predictor and the fetch unit. The branch
predictor generates fetch requests for each thread which are
stored in the FTQs, and the fetch unit takes requests from
FTQs to drive I-cache accesses. Note that all the configura-
tions presented in this paper implement a decoupled fetch,
and no configuration obtains a special advantage from its
use.

[ Workload | Benchmarks |
2_ILP eon, gcc
2_MEM mcf, twolf
2_MIX gzip, twolf
4_ILP eon, gce, gzip, bzip2
4_MEM mcf, twolf, vpr, perlbmk
4_MIX gzip, twolf, bzip2, mcf
6_ILP eon, gce, gzip, bzip2, crafty, vortex
6_MIX gzip, twolf, bzip2, mcf, vpr, eon
8_ILP eon, gcc, gzip, bzip2, crafty, vortex, gap, parser
8_MIX gzip, twolf, bzip2, mcf, vpr, eon, gap, parser

Table 2. Mutithreaded Workloads




Fetch Width 8/16 instr.
Fetch Policy ICOUNT
Fetch Buffer 32 instr.
Dec. & Ren. Width 8 instr.

Gshare Predictor
Gskew Predictor
BTB/FTB

Stream Predictor

64K-entry, 16 bits history

3 x 32K-entry, 15 bits history
2K-entry, 4 way associative
1K-entry, 4 way + 4K-entry, 4 way
DOLC index: 16-2-4-10

RAS * 64-entry
FTQ size * 4-entry
Functional Units 6 int, 4 1d/st, 3 fp
Instruction queues 32-entry int, 32-entry 1d/st, 32-entry fp

Reorder Buffer * 256-entry
Physical Registers 384 int and 384 fp
LI I-Cache 32KB, 2-way, 8 banks
LI D-Cache 32KB, 2-way, 8 banks
L2 Cache 1MB, 2-way, 8 banks, 10 cyc.
Line size 64 bytes
TLB 48-entry 1 + 128-entry D
Main Memory latency 100 cycles

Table 3. Simulation parameters (resources
marked with * are replicated per thread)

In our experiments, we adopt the [COUNT fetch pol-
icy [22]. ICOUNT gives priority to threads according to
the number of instructions in the decode, rename and dis-
patch stages of the processor. Its aim is to balance resources
among the threads by prioritizing threads with the fewest
number of active instructions in the pipeline. It is impor-
tant to observe that in our fetch configuration, the fetch pol-
icy selects the FTQ from which requests should be taken for
fetching (recall Figures 1 and 3). Therefore, the branch pre-
dictor has to generate a fetch request for the thread selected
by ICOUNT in a previous cycle, which is stored in its cor-
responding FTQ.

We provide simulation results obtained by three different
fetch architectures: a standard SMT fetch unit formed by a
gshare [13] branch predictor plus a BTB [10], and two en-
hanced SMT fetch units, namely, a gskew [14] branch pre-
dictor plus a FTB [17], and the stream fetch unit [16].

The baseline configuration is shown in Table 3. We have
selected branch predictor sizes that require a hardware bud-
get of approximately 45 KB. In case that the branch predic-
tor requires multiple tables or mechanisms (direction and
target separately), the total hardware budget is this size.

It is important to highlight that, as the decode width is
limited to 8 instructions, overall performance values can not
exceed 8 instructions per cycle. Instructions provided by the
fetch unit are stored in an intermediate fetch buffer where
they remain until they proceed to the decode stage. If the
decode stage is stalled and the fetch buffer fills up, fetch is
also stalled until room is available in the fetch buffer to al-
locate new instructions. That implies that there is no intrin-
sic gain from widening the fetch bandwidth beyond the de-
code width limit.

5. Simulation Results

In this section we present results obtained with the
stream and the gskew+FTB fetch engines for SMT, com-
paring them to the extensively used gshare+BTB SMT fetch
unit. We have found that the influence of the fetch unit per-
formance on the overall SMT throughput differs depend-
ing upon benchmark characteristics. For this reason, we first
analyze the results obtained when simulating only bench-
marks with high ILP. Next, we analyze the results obtained
when memory bounded benchmarks are included.

For each experiment, we provide numbers of fetch per-
formance, denoted by Fetch Throughput (measured in In-
structions Per Fetch Cycle, IPFC), and overall SMT perfor-
mance, Commit Throughput (measured in Instructions Per
Cycle, IPC).

5.1. SMT executing ILP benchmarks

Figure 5 shows the IPC results obtained from workloads
containing only high ILP benchmarks. These benchmarks
have few memory problems due to data accesses, as well as
large amounts of independent sequential instructions. In this
environment, the fetch throughput is the real limiting factor
for overall SMT throughput. The higher the number of in-
structions provided by the fetch unit, the higher the overall
performance.

As shown in Figure 5(a), with equivalent hardware
resources and fetching from one or two threads every
cycle, both gskew+FTB and the stream fetch unit out-
perform the typical gshare+BTB. Using ICOUNT.1.8,
gskew+FTB obtains a 9% average commit improvement
over gshare+BTB, while the stream fetch obtains a 10% im-
provement over gskew+FTB, and a 20% over gshare+BTB.
For ICOUNT.2.8, gskew+FTB obtains a 5% improvement
over gshare+BTB, while the stream fetch achieves 9% over
gshare+BTB and 4% over gskew+FTB. Obviously, as the
stream fetch has a better fetch performance, it also provides
a better commit performance for this kind of workload, out-
performing both gshare+BTB and gskew+FTB in all cases,
as shown in Figure 5(b).

Taking the results from Figure 5, it is clear that if sev-
eral threads with high ILP are simulated, fetching from only
one thread is a very limiting factor. The fetch policy itself is
not a limiting factor, as it selects from high-quality threads,
and it is not that important which one is selected. However,
a high fetch bandwidth is really important, so the gains ob-
tained using a better fetch unit are more noticeable. Conse-
quently, having a fetch bandwidth of 8 instructions, the best
is to fetch from two threads instead of from only one, in an
attempt to fill all fetch slots.

However, as we have shown in Section 3, fetching from
more than one thread requires much more hardware com-



8 7-|Ogshare+BTB
W gskew+FTB
7 1M stream fetch

Fetch Throughput (IPFC)
>

4_ILP 6_ILP
Benchmark \ Fetch Policy

(a) Fetch throughput

Commit Throughput (IPC)

8 1|Ogshare+BTB
W gskew+FTB
7 +{Mstream fetch

=)

o

IS

w

4_ILP
Benchmark \ Fetch Policy

6_ILP

(b) Commit throughput

Figure 5. Throughput using ICOUNT.1.8 vs ICOUNT.2.8 and simulating only ILP benchmarks

plexity that can impact the cycle time. Both stream fetch
and gskew+FTB are efficient when providing instructions
from only one thread each cycle. However, limiting them to
fetch up to 8 instructions per cycle is very restrictive if ILP
is high and the fetch unit is able to fetch more than 8 in-
structions per cycle.

The alternative we propose is to widen the fetch band-
width to increase fetch throughput instead of fetching from
several threads. Widening the fetch bandwidth from 8 to
16 is simple and does not require many changes. Cache
lines already contain 16 instructions in our processor con-
figuration and buses until the decode stage are already 16-
instruction wide. We only have to modify the hardware to
select 16 instructions instead of 8.

Figure 6 shows simulation results for this new configura-
tion. Throughput of the stream fetch unit is higher when we
use ICOUNT.1.16 instead of ICOUNT.2.8, achieving a 9%
of commit improvement on average. The stream fetch unit
provides large fetch blocks that can potentially include sev-
eral non-taken branches, and limiting the fetch bandwidth
to 8 instructions seriously limits its performance.

In contrast, gshare+BTB and gskew+FTB have a lower
performance with ICOUNT.1.16 than with ICOUNT.2.8
(9.7% of commit slowdown for gshare+BTB and 4% for
gskew+FTB). The reason is that these fetch architectures
predict branches individually and therefore limit the fetch
bandwidth to one basic block per cycle. FTB diminishes this
effect by ignoring some non-taken branches, although it is
still unable to provide fetch blocks with a length close to 16
instructions.

The all-in-one solution that is fetching many instructions
from many threads (ICOUNT.2.16) provides higher fetch
performance for all fetch units, but, of course, at a much
higher cost.

As shown in Figure 6(b) the stream fetch we implement
with ICOUNT.1.16 outperforms the other fetch implemen-
tations with ICOUNT.2.8 (19% commit improvement over
gshare+BTB and 13% over gskew+FTB). Moreover, our
performance results with ICOUNT.1.16 are similar to those
obtained with the other fetch units and ICOUNT.2.16. Only
gskew+FTB outperforms the stream fetch for 4_ILP and
6_ILP by 2.7% and 6.8%, respectively. We consider that this
loss in performance is compensated by the smaller hardware
budget needed to implement an ICOUNT.1.16 fetch policy
versus an ICOUNT.2.16 fetch policy.

We conclude that for ILP workloads the stream fetch
using ICOUNT.1.16 is the design offering the best
cost/performance trade-off, with higher performance than
ICOUNT.2.8 and less complexity than either I[COUNT.2.8
or ICOUNT.2.16.

5.2. SMT executing memory bounded bench-
marks (MIX & MEM)

Figure 7 shows simulation results when memory
bounded benchmarks are included in the workload. As
shown in Figure 7(a), fetch throughput results have the same
trend noted in the previous section for ILP benchmarks. The
gskew+FTB fetch unit provides better fetch performance
than gshare+BTB, while the stream fetch outperforms both
gshare+BTB and gskew+FTB. Besides this, fetching from
two threads simultaneously gives the opportunity to provide
more instructions every cycle, so the fetch throughput in-
creases from ICOUNT.1.8 to ICOUNT.2.8, as expected.

However, the behaviour of workloads including memory
bounded benchmarks differs from the behaviour observed
previously when only ILP benchmarks were executed. Fig-
ure 7(b) shows the overall performance of these workloads.
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Unexpectedly, fetching from two threads actually decreases
performance.

The problem of fetching from several threads using
memory bounded benchmarks was also identified in [21].
A single thread with poor cache performance can strangle
overall SMT performance, by monopolizing resources that
could be exploited by other threads. The solution proposed
in [21] is to free resources occupied by a stalled thread by
flushing its instructions from the pipeline. Other techniques
also propose flushing or stalling threads according to other
criteria [6, 9, 11].

As shown in Figure 7(b), the stream fetch unit fetching
from only one thread outperforms fetching from two threads
for all workloads, even when the fetch width is limited to 8

instructions per cycle. Fetching from only one thread allows
to fill the pipeline only with instructions from the thread
with less in-flight instructions, which is probably a thread
that is not stalled due to a data cache miss. Fetching from a
second low-quality thread allows this second thread to take
over more resources, which will not be available for the
other threads until the cache miss is resolved. Our way of
solving this problem is to fetch instructions only from the
first, highest priority thread to fill all available fetch slots.
The conclusion is that improving fetch unit bandwidth is
good if there are no stall situations in the pipeline, as hap-
pens with high ILP workloads. Moreover, using a powerful
fetch unit inappropriately by fetching from a second, low-
quality thread, can be harmful to overall SMT performance,
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as happens with memory bounded benchmarks.

Figure 8 shows results when the fetch bandwidth is ex-
tended to 16 instructions per cycle. We have maintained
the bar of ICOUNT.1.8 from Figure 7, as it provides bet-
ter performance than ICOUNT.2.8. Obviously, fetch perfor-
mance (Figure 8(a)) benefits from increasing the number of
instructions that can be fetched. However, the stream fetch
is able to provide more instructions by widening fetch band-
width to 16 instructions than the other techniques.

As shown previously, fetching from many threads when
having memory bounded workloads is not a good solution
to improve overall SMT performance. Even ICOUNT.2.16
obtains worse commit performance than ICOUNT.1.16
and ICOUNT.1.8 in almost all cases, as shown in Figure
8(b). The best performance is obtained with ICOUNT.1.16,
which combines a wide fetch with a fine grain thread
selection. Both gskew+FTB and stream fetch unit using
ICOUNT.1.16 obtain a 3 to 4% improvement on average
over gshare+BTB using [COUNT.1.8.

These results show that, although a high-performance
fetch unit is necessary to increment the overall SMT perfor-
mance, a selection scheme is equally important to speed up
this performance. The ICOUNT fetch policy tries to share
resources equally among threads. In spite of this being a
good policy if there are many threads with a high ILP, it
can be bad if a thread is stalled for several cycles and is
given more and more resources. Therefore, the best solution
is to fetch only from a high-quality thread, and as much as
possible. Our proposal does just that: we implement a fetch
unit which can fetch only from one thread (always the most
promising, according to the fetch policy), and which is able
to provide sufficient instructions to maintain an instruction

flow from the fetch onward.

We conclude that both gskew+FTB and the stream
fetch increase fetch throughput even when memory
bounded benchmarks are simulated. In spite of performance
speedups obtained, the potential provided by more effective
fetch engines is not totally exploited by the fetch policy (in
our case, [COUNT), which is unable to translate all the po-
tential provided by these fetch units into a higher overall
performance. Current fetch policy proposals are based on
fetch units fetching from two threads using a gshare pre-
dictor with a BTB, which has low fetch performance as
we have shown in this paper. Future fetch policy propos-
als should be targeted to exploiting the fetch potential pro-
vided by a high bandwidth fetch unit fetching from a single
thread, in order to increment the overall SMT performance.

6. Conclusions

The fetch unit is the most significant obstacle to achiev-
ing higher performance in SMT. To alleviate this, the com-
mon solution adopted (from the publication of [22] on), has
been fetching from several threads in a single cycle.

In this paper, we have shown that implementing a fetch
architecture fetching from more than one thread is too ex-
pensive, both in terms of cost and complexity. We have
demonstrated that a better solution to increment the SMT
fetch performance is not to fetch few instructions from sev-
eral threads, but to fetch many instructions from a single
thread. This can be done by implementing more accurate
branch predictors, such as a gskew+FTB or a stream predic-
tor employed in this paper. Implementing a fetch unit fetch-
ing only from one thread solves the problem of the high-



complexity of the SMT fetch unit.

In addition, we have shown that fetching from more than
one thread does not always provide better performance.
Fetching from several threads in a single cycle can even
be counterproductive, because sharing the fetch unit among
threads also implies competition among them. In certain sit-
uations, this can even lead to a performance loss.

We conclude that the use of a fine-grain, non-
simultaneous shared fetch unit for SMT implies a new point
of view of the SMT fetch problem. This also implies that
some fetch policies proposed so far in the literature have to
be revisited to adapt to a new kind of fetch organization.
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