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Abstract

Instruction fetch bandwidth is feared to be a major limit-
ing factor to the performance of future wide-issue aggress-
ive superscalars.

In this paper, we focus on Database applications running
Decision Support workloads. We characterize the locality
patterns of ia database kernel and find frequently executed
paths. Using this information, we propose an algorithm to
lay out the basic blocks for improved I-fetch.

Our results show a miss reduction of 60-98% for real-
istic I-cache sizes and a doubling of the number of instruc-
tions executed between taken branches. As a consequence,
we increase the fetch bandwith provided by an aggressive
sequential fetch unit from 5.8 for the original code to 10.6
using our proposed layout. Our software scheme combines
well with hardware schemes like a Trace Cache providing
up to 12.1 instruction per cycle, suggesting that commer-
cial workloads may be amenable to the aggressive I-fetch
of future superscalars.

1 Introduction

Future wide-issue superscalars are expected to demand
a high instruction bandwidth to satisfy their execution re-
quirements. This will put pressure on the fetch unit and
has raised concerns that instruction fetch bandwidth may
be a major limiting factor to the performance of aggress-
ive processors. Consequently, it is crucial to develop tech-
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niques to increase the number of useful instructions per
cycle provided to the processor.

The number of useful instructions per cycle provided by
the fetch unit is broadly determined by three factors: the
branch prediction accuracy, the cache hit rate and the num-
ber of instructions provided by the fetch unit for each ac-
cess. Clearly, many things can go wrong. Branch mispre-
dictions cause the fetch engine to provide wrong-path in-
structions to the processor. Instruction cache misses stall
the fetch engine, interrupting the supply of instructions to
the processor. Finally, the execution of non-contiguous ba-
sic blocks prevents the fetch unit from providing a full width
of instructions.

Much work has been done in the past to address these
problems. Branch effects have been addressed with tech-
niques to improve the branch prediction accuracy [10] and
to predict multiple branches per cycle [20, 24]. Instruc-
tion cache misses have been addressed with software and
hardware techniques. Software solutions include code re-
ordering based on procedure placement [7, 6] or basic block
mapping, either procedure oriented [16] or using a global
scope [8, 21]. Hardware solutions include set associative
caches, hardware prefetching, victim caches and other tech-
niques. Finally, the number of instructions provided by the
fetch unit each cycle can also be improved with software
or hardware techniques. Software solutions include trace
scheduling [4], and superblock scheduling [9]. Hardware
solutions include branch address caches [24], collapsing
buffers [2] and trace caches [5, 19].

While all these techniques have vastly improved the per-
formance of superscalar I-fetch units, they have been largely
focused and evaluated on engineering workloads. Unfortu-
nately, there is growing evidence that popular commercial
workloads provide a more challenging environment to ag-
gressive instruction fetching.

Indeed, recent studies of database workload performance
on current processors have given useful insight [1, 12, 14,
15, 18, 23]. These studies show that commercial work-
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loads do not behave like other scientific and engineering
codes. They execute fewer loops and have many procedure
calls. This leads to large instruction footprints. The ana-
lysis, however, is not detailed enough to understand how to
optimize them for improved I-fetch engine performance.

The work in this paper focuses on this issue. We pro-
ceed in three steps. First, we characterize the locality pat-
terns of database kernel code and find frequently executed
paths. The database kernel used is PostgreSQL [13]. Our
data shows that there is significant locality and that the exe-
cution patterns are quite deterministic.

Second, we use this information to propose an algorithm
to reorder the layout of the basic blocks in the database ker-
nel for improved I-fetch. Finally, we evaluate our scheme
via simulations. Our results show a miss reduction of 60-
98% for realistic instruction cache sizes and adoubling of
the number of instructions executed between taken branches
to over 22. As a consequence, a 16 instruction wide se-
quential fetch unit using a perfect branch predictor increases
the fetch bandwidth from 5.6 to 10.6 instructions per cycle
when using our proposed code layout.

The software scheme that we propose combines well
with hardware schemes like a Trace Cache. The fetch band-
with for a 256 entry Trace Cache improves from 8.6 to
12.1 when combined with our software approach. This sug-
gests that commercial workloads may be amenable to the
aggressive instruction fetch of future superscalars.

This paper is structured as follows. In Section 2, we give
a detailed account of the internals of a database manage-
ment system and compare PostgreSQL to it. In Section 4,
we analyze the locality and determinism of the database ex-
ecution. In Section 5, we describe the basic block reorder-
ing method that we propose. In Section 6 we give details on
related work. In Section 7 we evaluate the performance of
our method and compare it to other hardware and software
techniques. Finally, in Section 8 we conclude and present
guidelines for future work.

2 Database Management Systems

Database Management Systems are organized in differ-
ent software modules. Those modules correspond to dif-
ferent functionalities to run queries, maintain the Database
tables or use statistics on the Database data among others.
Our interest focuses on those modules that take charge of
running relational queries which are the most time consum-
ing part of a RDBMS.

In order to run a relational query, it is necessary to per-
form a number of steps as shown in Figure 1. The query is
specified by the user in a declarative language that determ-
ines what the user wants to know about the Database data.
Nowadays, the Structured Query Language (SQL) is the
standard declarative language for relational Databases [3].

SQL
Executor

Access Methods

Buffer Manager

Storage Manager

kernel
Query ExecutionParsing-Optimization

kernel

Optimizer

Parser
Query
Result

Figure 1. Steps required for the execution of an SQL
query and all the RDBMS modules involved.

The SQL query is translated into an execution plan that will
be processed by the Query Execution kernel. The query ex-
ecution plan has the form of a tree, with nodes representing
the different operations.

The task of the Parsing-optimization kernel is to check
the grammatical correctness of the SQL expression and to
generate the best execution plan for the given query in a
specific computer and Database. While the importance of
the Parsing-optimization module is paramount to generate
a plan that executes fastest on a specific computer, the time
employed to run it can be considered small compared to the
total time spent in executing the query.

2.1 The Query Execution Kernel of a RDBMS

The Executor of a RDBMS (Figure 1) contains the
routines that implement basic operations like Sequential
Scan, Index Scan, Nested-Loop Join, Hash Join, Merge
Join, Sort, Aggregate and Group. It also contains the
routines that schedule the execution of those basic opera-
tions as described by the execution plan.

Just below the Executor, are the lower modules of the
DBMS, the Access Methods, the Buffer Manager and the
Storage Manager. This modular structure hides the differ-
ent semantic data levels from the Executor. Now, we de-
scribe those semantic data levels and the communication
data structures for the lower modules of the DBMS.

The tables of a Database are stored as files following a
given logic structure. The Storage Manager is responsible
for both managing those files and accessing them to provide
file blocks to the Buffer Manager.

The Buffer Manager is responsible for managing the
blocks stored in memory similarly to the way the OS Vir-
tual Memory Manager does. The Buffer Manager provides
memory blocks to the Access Methods Module.

The Access Methods of a RDBMS provide tuples to the
Executor module. Depending on the organization ofeach
table, the Access Methods will traverse the required in-
dex structures and plain database tables stored in the blocks
managed by the Buffer Manager. Each DBMS will imple-
ment different Access Methods for its own index and data-
base table structures.
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2.2 PostgreSQL

PostgreSQL is a public domain, client/server database
developed at the University of California-Berkeley, very
popular among the Linux community, with a large number
of users. PostgreSQL has a client/server structure and com-
promises three types of processes; clients, backends and a
postmaster. Each client communicates with one backend
that is created by the postmaster the first time the client
queries the database. The postmaster is also in charge of
the initialization of the database.

The structure of the server backend of PostgreSQL cor-
responds to that of a general DBMS that we explained be-
fore, shown in Figure 1.

The execution of a query in PostgreSQL is performed in
a pipelined fashion. This means that each operation passes
the result tuples to the parent operation in the execution plan
as soon as they are generated, instead of processing their
whole input and generating the full result set. This explains
the lack of loops and the long code sequences found in the
PostgreSQL and other DBMS kernels [15].

2.3 DSS Workloads and TPC-D

In this paper we use the Transaction Processing Per-
formance Council benchmark for Decision Support Sys-
tems (TPC-D) [22] as a workload for our experiments. DSS
workloads imply large data sets and complex, read-only
queries that access a significant portion of this data.

TPC-D has been described in the recentliterature on the
topic [1, 23] and for this reason we do not give a detailed
account of it. At a glance, the TPC-D benchmark defines
a database consisting of 8 tables, and a set of 17 read-only
queries and 2 update queries. It is worth noting that the
TPC-D benchmark is just a data set and the queries on this
data; it is not an executable. The tables in the database are
generated randomly, and their size is determined by a Scale
Factor. The benchmark specification defines the database
scale factor of 1 corresponding to a 1GB database. There
are no restrictions regarding the indices that can be used for
the database.

3 Database Setup

We set up the Alpha version of the Postgres 6.3.2 data-
base on Digital Unix v4.0 compiled with the�O3 optimiz-
ation flags and thecc compiler. A TPC-D database is gen-
erated with a scale factor of 0.1 (100MB of data). With the
generated data we build two separate databases, one having
Btree indices and the other having Hash indices. Both data-
bases have unique indices on all tables for the primary key
attributes (those attributes that identify a tuple) and multiple

entry indices for the foreign key attributes (those attributes
which reference tuples on other tables).

4 Analysis of the Instruction Reference Pat-
terns

Next, we examine the instruction reference patterns of
the database focusing on locality issues by counting the
number of times each basic block is executed, and recording
all basic block transitions.

We select our Training set based on the importance of
the Qualify and Scan operations, and the large number of
misses attributed to the Access Methods and Buffer Man-
ager modules [17].

The Training set used to obtain the profile information
consists of executing queries 3, 4, 5, 6 and 9 on the Btree
indexed database only. This set also includes queries with
and without an extensive use of the Aggregate, Group and
Sort operations, because they need all their children's res-
ults to be executed, which stops the normal pipelined execu-
tion of queries in the PostgreSQL database, and implies the
storage of large temporary results. Furthermore, these op-
erations store and access the temporary data without going
through the Access Methods, which makes them somehow
unique.

4.1 Reference locality

The data in Table 1 illustrates an important character-
istic of the database code. Only 12.7% of the static instruc-
tions were referenced for an execution of the Training set,
which means that the database contains large sections of
code which are rarely accessed.

Total Executed Percent
Procedures 6.813 1.340 19.7%
Basic blocks 127.426 15.415 12.1%
Instructions 593.884 75.183 12.7%

Table 1. Total number of static program elements, and
the fracion of them that are actually used.

Figure 2 plots the percentage of the dynamic basic
block references captured by a given number of static ba-
sic blocks. We observe that the 1000 most popular basic
blocks (0.7% of the total count)accumulate 90% of the dy-
namic references, and that 2500 blocks gather as much as
99%.

This large concentration of the basic block references
implies a large potential for exploiting locality. To fur-
ther explore temporal locality, we counted the number of
instructions that were executed between two consecutive in-
vocations of a basic block.
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Figure 2. Percentage of total basic block references
for a number of basic blocks.

If we consider the subset of the most popular basic
blocks which concentrate 75% of the dynamic basic block
references, we observe that they have a probability of 33%
of being re-executed in less than 250 instructions, and as
much as 19% of being referenced twice in less than 100 in-
structions.

4.2 Execution determinism

Next, we study how deterministic are the sequences of
executed basic blocks.

We classify basic blocks in one of four kinds attending at
how they affect the program flow. Fall-through basic blocks
do not end with a branch instruction, so execution always
continues on the next basic block. Branch basic blocks end
with a conditional or unconditional branch. Subroutine call
basic blocks end with a subroutine invocation or indirect
jump, and may have many successors. Return basic blocks
have many possible successors, as a subroutine may be ref-
erenced from several places.

BB Type Static Dynamic Predictable
Fall-through 24.4% 22.4% 100%
Branch 42.4% 50.2% 59%
Subroutine call 8% 13.7% 100%
Subroutine return 25.2% 13.7% 100%

Table 2. Percentage of basic blocks executed by type,
both static and dynamic. Percentage of the dynamic
number that behaves in a fixed way.

Most basic block transitions have a very high, or very
low probability of being executed. Looking at the numbers
in Table 2, fall-through basic blocks, subroutine calls and
returns compromise 50% of the dynamic basic blocks, and
these usually have a fixed target. Also, 59% of the branch
basic blocks (30% of the total basic blocks) tend to behave
in a fixed way, either always taken or always not taken.
Overall, 80% of the basic block transitions are predictable,
which means that the executed sequences of basic blocks
are fairly deterministic.

We have shown that there is a large concentration of ref-
erences in a small set of very popular basic blocks and that
there is substantial temporal locality to be exploited, as the

most popular blocks are referenced every few instructions.
Also, the execution paths are quite deterministic, allowing
us to exploit spatial locality by mapping basic blocks ex-
ecuted sequentially in consecutive memory locations. This
allows us to build basic block traces at compile time, arran-
ging them carefully in memory to avoid conflict misses.

5 Method description

Instrumenting the database and running the Training set,
we obtained a directed control flow graph with weighted
edges.

To improve the fetch bandwidth, we build our basic
block sequences placing in consecutive memory positions
those basic blocks executed sequentially, maximizing the
number of instructions executed between taken branches.

Also, to reduce the instruction cache miss rate, we will
map the most frequently executed code sequences in a re-
served area of the cache and otherpopular sequences close
to other equally popular ones, reducing interference among
them.

5.1 Seed selection

We first tried an automatic seed selection (auto selec-
tion). The list of seeds contains the entry points of all func-
tions, in decreasing order of popularity. This selection tries
to expose the maximum temporal locality, building first the
sequences for the most popular functions.

The second seed selection (opsselection) was based on
our knowledge of the database structure. We limited the list
of seeds to the entry points of the Executor operations. This
seed selection will obtain longer sequences than the first
one, as most functions will be included halfway through
the main sequence, as they are referenced by it. However,
some important basic blocks may be left out, as they will be
unreachable from the selected seeds, or some intermediate
basic block will not pass the Exec or Branch thresholds.

Also, the sequences built this way will have lower tem-
poral locality as they include less frequently referenced ba-
sic blocks surrounding the most popular ones.

5.2 Sequence building

Using the weighted graph obtained running the training
set, and starting from the selected seeds, we implement a
greedy algorithm to build our basic block traces targeting
an increase in the code sequentiality. Given a basic block,
the algorithm follows the most frequently executed path out
of it. This implies visiting a subroutine called by the ba-
sic block, or following the control transfer with the highest
probability of being used. All the other valid transitions
from the basic block are noted for future examination.
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For this algorithm we use two parameters calledExec
Threshold, andBranch Threshold. The trace building al-
gorithm stops when all the successor basic blocks have been
visited or have a weight lower than the Exec Threshold, or
all the outgoing arcs have a branch probability less than the
Branch Threshold. In that case, we start again from the next
acceptable transition, as we noted before, building second-
ary execution paths for the same seed. Once all basic blocks
reachable from the given seed have been included in the
main or secondary sequences, we proceed to the next seed.

(Execution Threshold)

(b) Resulting sequences(a) Weighted Graph
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Figure 3. Trace building example.

Figure 3.a shows an example of the weighted graph and
Figure 3.b shows the resulting sequences. We use an Ex-
ecThresh of 4 and a BranchThresh of 0.4. Starting from
seedA1 and following the most likely outgoing edge from
each basic block we build the sequenceA1 ! A8 (Fig-
ure 3.b). The transitions toB1 andC5 are discarded due to
the Branch Threshold. We noted that the transition fromA3
toA5 is a valid transition, so we start a secondary trace with
A5, but all its successors have been already visited, so the
sequence ends there. We do not start a secondary trace from
A6 because it has a weight lower than the Exec Threshold.

5.3 Sequence Mapping

Figure 4 shows the sequence mapping scheme. We
define a logical array of caches, equal in size and address
alignment to the physicalcache. The sequences found in
the first pass of the algorithm described in Section 5.2 are
mapped from the start of the logical cache array. Then, we
place the rest of the sequences in order, one pass at a time,
keeping the area used by the sequences in the first pass free
of code in all logical caches. This way, the first sequences

will not be replaced from the cache by any other code, and
so will be free of interference. We call this area the Conflict
Free Area (CFA), and derives directly form theSelfConf-
Freearea proposed in [21].

The size of this CFA is determined by the Exec and
Branch Thresholds used for the first pass of our sequence
building algorithm.
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CFA

Instruction Cache (I-cache)

Figure 4. Sequence mapping into a direct mapped
cache

When all the sequences have been mapped in the cache,
we map all the remaining basic blocks in order, this time
filling the entire address space. This rarely executed code is
expected not to produce many conflicts with the sequences
placed in the CFA.

6 Related Work

The use of profile-directed code reordering to reduce the
instruction cache miss rate is not new. Hwu and Chang [8]
use function inline expansion, and group into traces those
basic blocks which tend to execute sequentially. Then, they
map these traces in the cache so that functions which are
executed close to each other are placed in the same page.

Pettis & Hansen [16] propose a reordering of the proced-
ures in a program and the basic blocks within each proced-
ure. Their aim is to minimize the conflicts between the most
frequently used functions, placing functions which refer-
ence each other close in memory. They also reorder the
basic blocks in a procedure, moving unused basic blocks
to the bottom of the function code or even splitting the pro-
cedures in two, moving away the unused basic blocks. Their
algorithm does not consider the target cache geometry.

Gloy et al. [6] extend the Pettis & Hansen algorithm at
the procedure level to consider the temporal relationship
between procedures in addition to the targetcache inform-
ation and the size of each procedure. Hashemiet al [7] and
Kalamaitianoset al[11] use a cache line coloring algorithm
inspired in the register coloring technique to map proced-
ures so that the resulting number of conflicts is minimized.
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Torrellaset al [21] propose a basic block reordering al-
gorithm for Operating System code, running on a very con-
servative vector processor. They map the code in the form of
sequences of basic blocks spanning several functions, and
keep a Conflict Free Area for the most frequently referenced
basic blocks.

Our target goes beyond an instructioncache miss rate re-
duction. Targeting an increase in the number of sequential
instructions executed, we combine the different approaches
and map out basic block traces as a unit, keeping whole
sequences in theconflict free areainstead of preserving in-
dividual basic blocks in it.

Techniques like trace scheduling [4] and superblock
scheduling [9], use static branch prediction to define logical
groups of basic blocks, enlarging the scope of the compiler
to schedule instruction issue by moving individual instruc-
tions across basic blocks.

For more aggressive processors, the width of instruc-
tions provided to the processor becomes an important issue.
Techniques like the Branch Address Cache [24], the Col-
lapsing Buffer [2] and the Trace Cache [19, 5] approach the
problem of fetching multiple, non-contiguous basic blocks
each cycle. Both the Branch Address Cache and the Col-
lapsing Buffer accessnon-consecutivecache lines from an
interleaved i-cache each cycle and then merge the required
instructions from each accessed line.

The Trace Cache does not require fetching of non-
consecutive basic blocks from the i-cache. This isdone by
storing the dynamically constructed sequences of instruc-
tions in a special purposetrace cache. If a fetch request cor-
responds to one of the sequences stored in the tracecache,
this sequence is passed to the decode unit, effectively fetch-
ing multiple basic blocks in a single cycle. On a tracecache
miss, fetching proceeds from the conventional i-cache and
a new sequence is created and stored in the trace cache.

Our approach targets an increase in the number of in-
structions provided by the instruction cache, reducing the
need of the trace cache, and providing a better back-up
mechanism in case of a trace cache miss.

7 Method Evaluation

As we said before, our method is based on profile in-
formation. In order to evaluate our technique we used a dif-
ferent set of queries for the Test and Training sets. The Test
set used to obtain the simulation results consists of queries
2, 3, 4, 6, 11, 12, 13, 14, 15 and 17, executed on both the
Btree and the Hash indexed databases (see Section 3). For
both the Training and the Test sets, all queries were run to
completion.

We compared the results of both our automatic code lay-
out (autolayout) and the experience based layout (opslay-
out) with those obtained by the method proposed by Pettis

& Hansen (P&H layout) and the work of Torrellaset al(Torr
layout).

7.1 Simulation setup

We did not generate a new executable with the proposed
code layouts. Instead, we generated a new address foreach
basic block, feeding the simulators with this faked address
instead of the original PC. The code was not modified in
any way, so all basic blocks have the same size for all the
examined code layouts.

The fetch unit used in our simulations corresponds to the
SEQ.3 fetch unit described in [19]. This fetch unit accesses
two consecutive cache lines, and provides the instructions
from the fetch address up to the first taken branch, or up to
a maximum of three branches, or 16 instructions, whichever
comes first.

We used perfect branch prediction to examine the per-
formance limit of the examined techniques, avoiding inter-
ference due to branch and target mispredictions.

7.2 Instruction cache miss rate

Table 3 shows the miss rate for the sequential fetch unit
and the different code layouts. We present results for dif-
ferent i-cache and CFA sizes. We also evaluated a 2-way
set associative cache and the addition of a 16-line fully-
associative victim cache. The numbers given are in terms
of i-cache misses per instruction executed.

i-cache Code layout Cache
/ CFA orig P&H Torr auto ops 2-way victim
8/2 6.5 3.0 2.3 2.2 2.1 6.1 5.6
8/4 – – 2.9 4.2 2.9 – –
8/6 – – 3.1 2.3 5.2 – –
16/4 4.0 1.1 0.9 0.8 0.7 2.6 3.4
16/8 – – 0.7 0.8 0.6 – –
16/12 – – 0.8 0.8 1.0 – –
32/4 2.7 0.3 0.2 0.3 0.2 1.2 1.6
32/8 – – 0.2 0.4 0.2 – –
32/16 – – 0.3 0.2 0.1 – –
32/24 – – 0.2 0.3 0.2 – –
64/8 1.4 0.09 0.05 0.07 0.04 0.3 0.4
64/16 – – 0.14 0.08 0.05 – –
64/24 – – 0.02 0.03 0.03 – –

Table 3. Instruction cache miss rate for the different
i-cache and CFA sizes examined.

Our proposed layouts obtain similar results to theTorr
layout, and always outperform theP&H layout. All the code
layouts obtained better results than both the 2-way associ-
ative cache and the victim cache.

From the results shown, it is clear that the most import-
ant factor regarding the miss rate reduction offered by our
technique is the size of the CFA.

Intuitively, an increase in the CFA size causes both pos-
itive and negative effects. On the one hand, a larger CFA
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shields more routines from self-interference, and, as a res-
ult, eliminates misses in those routines. On the other hand,
however, less area is left for the rest of the routines, which
will suffer more conflict misses. Once the CFA size reaches
a certain value, the second effect will dominate. Also, once
the CFA is able to satisfy most of the references, there is
little point in further increasing it, as we will be taking out
cache area that may be better used to avoid conflict misses
in other code.

7.3 Fetch bandwidth

We compared fetch bandwith results with those of the
basic Trace Cache described in [19]. We simulated a direct
mapped Trace Cache of 256 entries (16KB). All kinds of
branch instructions were counted against the 3 branch limit,
including unconditional branches and subroutine calls and
returns. We did not stop instruction fetch on indirect jumps
as was done in [5, 19].

I-cache Code layout Trace cache
/ CFA orig P&H Torr auto ops 16KB 16KB+ops
Ideal 7.6 9.6 8.5–9.9 9.9 10.7 10.3 12.2
8/2 3.1 5.2 5.6 6.0 6.2 5.1 8.4
8/4 – – 5.0 5.3 6.6 – 8.7
8/6 – – 4.9 5.8 5.6 – 8.1
16/4 4.0 7.3 7.4 8.1 8.8 6.2 10.3
16/8 – – 7.4 8.1 9.0 – 10.4
16/12 – – 7.3 7.9 8.1 – 10.2
32/4 4.7 8.8 8.9 9.2 10.0 7.2 11.5
32/8 – – 8.4 8.8 10.1 – 11.5
32/16 – – 8.0 9.3 10.3 – 11.8
32/24 – – 8.2 9.2 10.1 – 11.6
64/8 5.8 9.3 8.8 9.8 10.6 8.6 12.0
64/16 – – 8.4 9.7 10.5 – 12.1
64/24 – – 8.5 9.8 10.6 – 12.1

Table 4. Fetch bandwidth in instructions per cycle.
The i-cache miss penalty is 5 cycles.

Table 4 shows the number of instructions per cycle
provided by each setup.

TheIdealline corresponds to a perfect instructioncache.
For the realistic i-cache setups, we applied a fixed miss pen-
alty of 5 cycles. We did not count any miss penalty on a
trace cache hit.

Looking at theIdeal fetch bandwidth provided by each
technique, we observe that theP&H layout is very close to
theautoreordering and the 16KB Trace Cache. Theopsre-
ordering has more potential bandwidth than any other tech-
nique except the combination of itself with the Trace Cache.

The method proposed by Torrellaset al.shows a variable
behavior. The larger the CFA, the more basic blocks are
included in the CFA. These basic blocks have been pulled
out of their sequences to be included in the CFA, which
breaks the sequential execution jumping in and out of the
CFA.

Once the average number of cycles taken by each fetch
request is considered, both theautoand theopslayouts be-

come clearly better than any other technique. The Trace
Cache could not remember all the executed sequences, and
had to resort to sequential fetching 52% of the times, and
the fetch unit could provide few instructions due to the lack
of sequentiality in the original code.

Our proposed layout could use the whole memory space
as asoftware trace cacheto capture the most frequently ex-
ecuted sequences of code, and could provide more instruc-
tions per cycle using the statically stored traces. When using
theopslayout, the fetch engine could provide more instruc-
tions per cycle, even on a Trace Cache miss, both due to
the increased sequentiality of the code and to the reduced
i-cache miss rate.

It is worth noting that a lower miss rate alone does not
mean a higher fetch bandwidth, as can be observed com-
paring the results of the P&H and the Torr layouts for the
larger caches. In order to improve the fetch bandwidth, both
the i-cache miss rate and the sequentiality of code must be
taken into account.

8 Conclusions and Future Work

Instruction fetch bandwidth is feared to be a major limit-
ing factor to the performance of future wide-issue aggress-
ive superscalars.

In this paper, we focus on Database applications run-
ning Decision Support workloads. We characterize the loc-
ality patterns of database kernel code and find frequently
executed paths. Using this information, we propose an al-
gorithm to lay out the basic blocks of the database kernel for
improved fetch bandwith. This is achieved by both a reduc-
tion of the i-cache miss rate and an increase in the number
of instructions executed between taken branches.

Our results show a miss reduction of 60-98% for real-
istic i-cache sizes, obtaining miss ratesunder 0.05% with
a 64KB direct mapped cache. The proposed code layout
also increases the number of instructions executed between
taken branches from the 8.9 of the original code to 22.4.
With this, a 16 instruction wide fetch unit could provide
10.6 instructions per cycle using our proposed code layout.

Improving only the i-cache miss rate or the potential
fetch bandwidth provided is not enough. Both factors must
be taken into account to provide optimal results.

A Trace Cache alone could not hold all the executed se-
quences, while our technique used all the memory space as a
Software Trace Cache to statically store the most frequently
executed traces. As a consequence, while the Trace Cache
alone could only provide 8.6 inctructions per cycle, a com-
bination of the Software-Hardware Trace Caches increased
the result to 12.1.

We have shown that large first level i-caches can cap-
ture the working set of large applications like a DBMS. It
is worth studying if the controlled use of code expanding
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techniques like function inlining and code replication can
increase the potential fetch bandwidth provided by a se-
quential fetch unit while keeping the miss rate under con-
trol.

In the near future we plan to extend the proposed
algorithm to automatize the process of selecting the
thresholds and the seeds while obtaining results closer to
the knowledge-based selection. Also, we will examine the
effect of our technique on the IPC for a wider range of ap-
plications like OLTP workloads and the SPEC benckmark.
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