Quantitative Analysis of Vector Code *

Roger Espasa, Mateo Valero, David Padua! Marta Jiménez, Eduard Ayguadé

Departament d’Arquitectura de Computadors,
Universitat Politecnica de Catalunya.
¢/ Gran Capita, Modul D6, 08071 Barcelona, SPAIN

e-mail: roger@ac.upc.es

Abstract

In this paper we present the results of a detailed
simulation study of the execution of vector programs
on a single processor of a Convex C34/80 machine,
using & subset of the Perfect Club benchmarks. We
are interested in evaluating several eost/performance
tradeoffs that the machine designers made in order lo
asses which features of the architecture severely limit
the performance attainable. We preseni the detailed
usage of the vector functional units and a study of the
kinds of resource conflicts that stall the machine. The
results obtained show that the resources of the vector
architecture are not efficiently used mainly due to the
single bus memory archilecture. Other severe limila-
tions of the machine turn out to be the lack of chaining
between vector loads and vector compulations, and the
lack of a second general purpose functional unit. We
also present some data about the port pressure on the
vector register file and we see that stalls due 1o port
conflicts are relatively high. We also consider the slow-
down introduced by spill code and find that the limited
number of vector regislers also limits performance.

1 Introduction

In order to design new architectures one has first
to properly understand the behavior of current archi-
tectures to be able to analyze its strengths and weak-
nesses and improve future designs. The analysis of
the interaction between architectures, compiler tech-
nology and application programs is an active field of
research where several studies have been carried. This

*This work was supported by the Ministry of Education of
Spain under contract TIC 880/92, by ESPRIT 6634 Basic Re-
search Action (APPARC) and by the CEPBA (European Center
for Parallelism of Barcelona).

tUniversity of Illinois, at Urbana-Champaign.

1066-6192/95 $4.00 © 1995 IEEE

studies try to determine maximum parallelism avail-
able in the programs [7, 8, 16, 12], frequency of exe-
cution of instructions [10], bottlenecks and hazards in
the architecture [2], etc.

In this paper we are interested in the evaluation
of a vector architecture [5], together with its vector-
izing compiler [17). Since the introduction of the first
register-register vector computer, the CRAY-1 [11],
compilation technology has evolved to maximize the
performance that programs written in high level lan-
guages can obtain from a vector architecture. Nev-
ertheless there have been few studies in depth about
the relationship between vector architectures, vector-
izing compilers and vector programs. In [15, 14, 13]
the CRAY-Y-MP architecture is evaluated through a
detailed study of the program characteristics such as
number and type of instructions executed, basic block
size, fraction of code vectorized, etc. [9] presents a
study on the register requirements of vector architec-
tures and analyzes what combination of number of
registers and number of read/write ports to the regis-
ter file has the best cost performance tradeoff.

In this paper we present results obtained from the
evaluation of a subset of the Perfect Club [4] pro-
grams compiled using the Convez FC wversion V8.0
running on a single node of a Convex C3480 vector ma-
chine. To perform this research we have implemented
a trace generation tool called dixie able to generate
basic block traces from the execution of the programs.
This basic block traces are fed into a simulator that we
have developed that gives us detailed information, at
the cycle level, of every event that happens during the
execution of the program. This is in contrast with the
tools used in [14, 15, 13}, which only provided statisti-
cal data to their authors. It is important to note that
we are going to evaluate automatically vectorized pro-
grams, and thus we will be studying the performance
of the architecture together with its compiler.

In section 2 we present the measurement techniques

used in this paper. We describe the trace driven ap-
proach we have used to simulate the execution of some
of the Perfect Club programs. In section 3 we present
the benchmarks used in this paper. In section 4 we
present the abstract vector machine that we will use
to carry the experiments. In section 5 we will study
the parallelism exploited by our abstract machine us-
ing the output of the Convex compiler. Section 6 will
look in detail into the reason that prevent the ma-
chine from extracting all the parallelism available and
section 7 will study the effects of spill code on vec-
tor execution. Finally in section 8 we will present our
conclusions.

2 Overview of the measurement tech-
nique

The machine on which the experiments were per-
formed is a single processor of a Convex C3480. This
machine is ranked in the mini-supercomputer class,
and has 8 processors and each one of them has a scalar
execution unit and a vector execution unit. We are
interested in the vector behavior, and thus all mea-
sures have been taken using a single processor run-
ning in single-user mode. The C3400 processor can be
described as a register-register vector machine. The
compiler used in all cases is the Convex FC version
V8.0 with optimization level -02 (which implies vec-
torization) [1] . The vector cpu consists of two func-
tional units. The first one handles all vector opera-
tions except multiplication, division and square root.
The second one handles all vector operations. Each
functional unit has access to 8 vector registers. The
vector registers are set up in register pairs, so that
each pair has two read ports and one write port. Lv-
ery vector register is capable of holding 128 elements
of 64 bits each. The vector cpu implements fully flex-
ible chaining which means that an operation can be
chained to a previous vector operation currently in
progress regardless of the cycle at which each opera-
tion has started. Due to the variance in response time
that the memory system always shows, vector com-
putations can never be chained to vector load instruc-
tions. Vector stores can be chained, though, to vector
operations because a set of buffers isolates the vector
cpu from the memory latency when sending data to
memory.

We have taken a trace-driven approach to gather all
the data presented in this paper. We have developed
a pixie-like tool called dixie [3] that is able to produce
a trace of basic blocks executed as well as a trace of

the values contained in the vector length (v1) regis-
ter. The ability to trace the value of the vector length
register is critical to have a detailed simulation of the
execution of the programs, since each vector instruc-
tion can execute with a potentially different vector
length. Thus, our measurements do not suffer from
the problem reported in [15].

Dixie is a tool that given an executable file will
produce 1) a modified executable file with instrumen-
tation code that will generate a trace and 2) a basic
block description file that maps basic block identifiers
to the actual instructions of each basic block. When
you run the instrumented executable it will generate
a trace of basic block identifiers and a trace of every
value that is assigned to the vector length register.
This two parallel traces are consumed by a cycle-level
simulator that uses the basic block description file to
simulate the execution of every single instruction and
measure the dynamic behavior of the program. Each
time the simulator finds an instruction that loads the
vl register it will consume a value from the vector
length trace. Dixie is able to trace user and library
code and, thus, the simulation runs include the user
vector code plus all the vector code found in the for-
tran math libraries. It is important to note that we
simulate the output of a commercial compiler without
introducing any modification in it and that this trac-
ing method gives us absolute precision in all of our
measurements.

The simulator we have developed has been based
on an abstract version of the Convex architecture and
will be described in section 4.

3 Benchmark Programs

We have selected a subset of the Perfect Club pro-
grams as our benchmark programs. The Perfect Club
application codes are considered to be representative
of large typical scientific and engineering programs.
For our study, we have executed the thirteen codes
on the C3400 in scalar and vector mode and we have
obtained the speedups presented in table 1. Column
two presents the cpu time (in seconds) of each on of
the programs when run in scalar mode. Column three
presents the cpu time of the programs (also in sec-
onds) when run in vector mode. Column four is the
speedup of the vector versus scalar version. Column
five presents an estimation of the fraction of time spent
executing vector code. This estimation has been ob-
tained instrumenting all those basic blocks that had
some vector code with code that reads the hardware
timers (TTR) of the Convex machine. Finally, column

six presents the percentage of time that this vector
basic blocks represent over the execution time of each
program. This column can be taken as a rough indi-
cator of the degree of vectorization that each program
allows.

As it can be seen from this table, most of the pro-
grams do not benefit too much from vector execution,
and we believe that for the purposes of our study we
should only examine the subset of programs that re-
ally exploit the vector cpu. Including programs that
have very low speedups in the study would give us no
insight into the behavior of the vector cpu, because
this programs make very little use of the vector func-
tional units and have very little instruction level par-
allelism to offer. Thus we have selected the five pro-
grams that have greater speedups: ARC2D, FL0OS52,
BDNA, TRFD and SPEC77. We should really have
included program MG3D instead of SPEC77, but due
to the long running time of MG3D and the extremely
high computation costs of the trace-driven simulator,
we have not been able to simulate this program in its
full length and thus we have dropped it form the study.

4 The abstract vector machine

The simulator used to gather the performance data
for the benchmark programs models an idealized ver-
sion of the C3400 machine. We feel that in order to
better understand vector machines it is important to
abstract low level details (like functional unit laten-
cies, technology imposed hardware, restrictions, mem-
ory delays and so on) {rom our study and concentrate
in the general behavior of the programs. While the de-
tails omitted in the simulator are very important and
deserve several studies in its own right, the conclu-
sions obtained from the data gathered with our sim-
ulator will still be valid. Since we will be looking at
the relative frequency of several different events, the
inclusion of the aforementioned low level details would
not introduce significant differences in our results.

The architecture studied consists of a scalar part,
that we shall refer to as the SCAL functional unit, and
an independent vector part. The scalar portion is
able to execute one instruction per cycle regardless
of dependencies, functional unit hazards or branching
delays. The vector part consists of two computation
units (FU1 and FU2) and one memory accessing unit
(the LD/ST unit). The FU2 unit is a general purpose
arithmetic unit capable of executing all vector instruc-
tions. The FU1 unit is a restricted functional unit that
executes all vector instructions except multiplication,
division and square root. Both functional units are

considered fully pipelined and with a latency of 1 cy-
cle. This asymmetric behavior of the functional units
is important when the control unit has to schedule the
different operations. Whenever the control unit has to
issue an instruction that can be executed both in FU1
and FU2, the decoder will always try to send it first to
FU1 and, if that unit is busy, it will try to send it to
FU2.

The vector unit has 8 vector registers which hold up
to 128 elements of 64 bits each one. This eight vector
registers are connected to the functional units through
a restricted crosshar. Every two vector registers are
grouped in a register bank and share two read ports
and one write port that links them to the functional
units. The compiler is responsible to schedule the vec-
tor instructions and allocate the vector registers so
that no port conflicts arise. The machine modeled im-
plements fully flexible chaining [6]. Flexible chaining
allows for two dependent vector operations to be exe-
cuted simultaneously without imposing restrictions in
the issue time of the two instructions. Older vector de-
signs, like the CRAY-1, had a fixed chaining scheme
in which chaining could only occur if the second op-
eration of a dependent pair was issued at a particular
point in time The chaining implementation we have
chosen to model has two read and one write pointers
for each one of the vector registers. This read/write
pointers control the next element that has to be sent to
the functional units and allow that the same physical
vector register can be shared by different instructions
that have started at different cycles.

The LD/ST unit can only service one request
to/from memory at time, because the architecture
simulated has only one bus connecting the cpu to
memory. The memory system simulated is an ideal
one that has a 1 cycle latency -and delivers one da-
tum per cycle, regardless of the stride used. The real
(3400 architecture has one additional limitation re-
garding the memory system that we have chosen to
simulate. Despite the fact the memory delivers one
datum per cycle, we will not allow to chain the result
of a vector load instruction with a vector computa-
tion instruction. This limitation is a common problem
that multiprocessor vector architectures have to face
because the variance in response time of real mem-
ory systems makes it difficult to predict the arrival
time of a datum to the processor. Thus, while it is
not impossible to chain vector computations to vector
loads, a reasonable tradeoff is to restrict this chaining.
We believe it is important. to simulate this feature of
the Convex C3400 architecture in order to evaluate its
impact on performance.

scalar vector | speedup | vector bb vector

cputime | cputime cputime | execution %

ADM 105.3- 105.1 1.0 67.6 64.3
SPICE 23.2 28.2 0.8 24 8.5
QCD 76.4 69.7 1.1 6.4 9.1
MDG 708.6 819.1 0.9 309.4 37.8
TRACK 40.6 39.2 1.0 2.7 6.9
BDNA 203.9 68.4 3.0 42.5 62.1
OCEAN 372.6 312.3 1.2 41.0 13.1
DYFESM 63.9 53.7 1.2 31.0 57.7
MG3D 2310.2 1267.3 1.3 552.6 43.6
ARC2D 800.2 120.6 6.6 118.3 98.1
FLO52 121.1 31.8 3.8 28.9 91.0
TRFD 125.4 71.5 1.8 52.4 73.2
SPECT7 361.5 242.8 1.5 184.9 76.1
TOTAL 5312.9 3229.7 1.6 1440.0 44.6

Table 1: Speedup for the Perfect. Club progra.ns on the C3400 machine.

5 Instruction Level Parallelism

We run each one of the five programs from the Per-
fect Club and simulate its execution cycle by cycle.
The simulator reads a trace of basic block addresses
and executes each instruction in the basic block follow-
ing the issue rules stated in section 4. At every single
cycle we keep track of how many functional units are
simultaneously busy. This number gives us an idea of
the amount of parallelism present in the program that
we are actually exploiting. Note that in our simulated
architecture the maximum parallelism achievable (ig-
noring the scalar unit) is 3. In this section we will
look into the parallelism that the architecture is able
to exploit, and in the following sections we will con-
sider what are the factors that limit this parallelism.

Table 2 presents the utilization of the vector units.
Each row in the table presents a different “state” of the
vector functional units. A value of 1 in the columns
two to five indicates that the corresponding unit is
active. Thus, row number 0, with code 0000, corre-
sponds to the machine being idle, and row number
1, with code 0001, corresponds to pure scalar exe-
cution. The last row, with code 1111, corresponds
to maximum efficiency: all three vector units (FU1,
FU2 and LD/ST) and the scalar unit are working si-
multaneously. Columns six to nine present the frac-
tion of cycles that the machine was in each one of
the states. Columns six and seven present the frac-
tion of cycles that the machine was in each one of the
states, using the weighted mean (each program con-
tributes to the mean proportionately to ils running
time) and the arithmetic mean. Columns eight and
nine are obtained when considering only the vector

functional units and ignoring the state of the scalar
unit. Notice how every two rows are exact in its vec-
tor portion and only differ in the activity of the scalar
unit. We have “collapsed” every two rows by adding
them and we have the results presented in columns
eight (the result. of collapsing the sixth column) and
nine (the result of collapsing column seven).

Row number 1 in table 2 corresponds to pure scalar
execution. Even for our benchmark programs that are
highly vectorizable there will always be some portion
of scalar code mostly related to library code for in-
put/output, scalar code generated to set up the envi-
ronment for vector computation and code correspond-
ing to portions of the program that current vectoriza-
tion technology can not handle.

Row 2 represents the situation where the vector
memory unit is the only functional unit working, while
in row 3 we have the percentage of cycles that the
load/store vector unit and the scalar unit have been
running simultaneously. If we look either at column
8 or 9 we can see that the fraction of cycles spent in
this two states is extremely high. Let’s assume that
scalar code is not useful for the computation, in the
sense that scalar code is just overhead code to com-
pute addresses, perform calls, jumps, control loops,
etc. Table 2 shows us that in 35.98% of the cycles we
are not producing any results. We are either moving
data or doing “setup” work. This high number of un-
productive cycles is due to several reasons. First, all
applications have initialization loops that just initial-
ize the data structures to be used during the program
which only have vector memory operations. Second,
the architecture only has one memory bus, so when-
ever the instruction issue stage finds two consecutive

Functional units in use %% of execution cycles
weighted | arithmetic | (w. mean) (a. mean)
Row | FU2 [FU1 | L/S | SCAL mean mean | (collapsing) | (collapsing)
0. 0 0 0 0 0.00 0.00
1. 0 0 0 1 11.45 11.00 11.45 11.00
2. 0 0 1 0 34.98 37.00
3. 0 0 1 T 1.00 0.80 35.98 37.80
4. 0 1 0 0 0.46 0.00
5. 0 1 0 1 0.15 0.00 0.61 0.20
6. 0 1 1 0 4.80 5.80
7. 0 T T 1 0.38 0.00 5.18 6.20
8. 1 0 0 0 5.43 4.60
9. 1 0 0 1 0.2 0.00 5.67 4.60
10. 1 0 1 0 13.13 11.60
171. 1 0 1 1 0.83 0.20 13.96 12.20
12. 1 1 0 0 6.72 5.80
13. 1 1 0 1 .41 0.80 8.13 7.00
14. 1 1 1 0 16.47 14.00
15. 1 T 1 T 254 2.80 18.01 17.60

Table 2: Utilization of the vector functional units.

vector memory operations in the code, it will stall
waiting for the first memory operation to complete. At
best, the decoder will be able to issue a few scalar in-
structions found between the two memory operations,
but this only happens in a few number of cycles (1%).
Third, the architectural limitation of not being able to
chain vector computation instructions to vector loads
is also responsible for stalling the machine to wait for
a memory operation. In the next section we will quan-
tify each one of these effects.

Rows 4 and 5 present rather unusual sithations. In
these rows we have that the only vector umt working
is FU1 and the scalar unit can be working (row 5) or
not (row 4). This can happen whenever a) there is no
parallelism in the code, that is, we have a single vec-
tor computation isolated between a long scalar section
of code or b) whenever there has been a port conflict
between the vector instruction and its sequential fol-
lower. Both cases are rather unusual in the programs
studied, as we can see by the low (0.61%) fraction of
cycles that they represent.

In rows 6 and 7 we see some degree of overlapping
between computation and memory accessing instruc-
tions. We have that both the restricted vector lunc-
tional unit and the load/store vector unit are working
concurrently. the typical sequences of code that put
the machine in these two states are sequences where
we have issued an instruction to functional unit 1 and
a memory instruction to the LD/ST unit (they can be
related or unrelated) and we encounter in the instruc-
tion stream a) a computation instruction that might
be dependent on the memory instruction in which case

a “load chain” conflict arises and we have to stall the
machine, or b) we find a second memory instruction
that will have to wait until the one running completes
or ¢} there are simply no more vector instructions to
be issued, which happens at the end of loops, for ex-
ample.

Rows 8 and 9 are similar but not equivalent to rows
4 and 5. They represent situations where the only
vector functional unit working is the general purpose
functional unit. But the reasons that leads us to states
8/9 or states 4/5 are rather different. In rows 4/5 we
were talking about lack of parallelism or port conflicts.
Rows 8/9, as we will see more in depth in the next sec-
tion, can also be the result of a port conflict but more
usually they will be the result of the presence of par-
allelism. If we have to consecutive vector instructions
that require the FU2 unit (for example, any mix of
consecutive multiplications, divisions and square root
will do} the second instruction will have to stall wait-
ing for the first one to free the functional unit. This
situation is rather frequent, and corresponds to com-
pute bound loops that have a lot of vector instructions
that can only execute in FU2. Note the difference of
cycles percentage between rows 8 and 9 (5.67%) and
rows 4 and 5 (0.61%). The decision to put a second
functional unit that can only perform a subset of all
operations instead of having a general purpose one has
a significant negative impact on performance. Next
section will provide more data to discuss this tradeoff
in depth.

Rows 10 and 11 represent. the overlapping of FU2 in-
structions with vector memory operations. Again, this

two rows have a higher percentage of cycles (13.96)
than rows 6 and 7, mostly because of the same rea-
sons explained for rows 8 and 9. See how the four
rows together represent almost a 20% of all executed
cycles. It is very important to remark that our simula-
tor treats all vector operations as being fully pipelined.
Had we decided to take into account the real latencies
of instructions like division or square root (that could
be well beyond 10 cycles witch current technology)
we would see how the number of cycles and percent-
age that rows 8 through 11 represent would be much
higher. For example, if we chose a 10 cycle latency for
division, the execution of a vector division of a given
vector length would take as much time as 10 vector ad-
ditions of the same vector length. This means that the
consequences of having a second functional unit that
cannot perforn certain frequent. operations would ac-
tually be worse in a real machine than what we have
found in this paper. For the sake of simplicity, we
have chosen the 1 cycle latency approach to highlight
the relative importance of the architectural decisions
involved in a ideal vector architecture but without get-
ting into implementation issues.

The last four rows represent the states where the
maximum parallelism is achieved by the architec-
ture. In all of them, both vector computation units
are working concurrently and producing {wo results
per cycle. Nevertheless, this peak efficiency is only
reached in 26.14% of all executed cycles. The rest of
the cycles are divided between a) approximately 50%
of all cycles the vector computation units are idle, that
is, we are executing scalar code or just moving data
around and b) in 26.42% of the cycles only one of the
functional units is producing some result. If, again,
we assume that scalar code is not useful for the com-
putation because it’s just overhead code to compute
addresses, perform calls, jumps, control loops. etc.,
and we also assume that vector loads and store are
not part of the computation, we have a very low av-
erage number of results computed per cycle. We have
that in 26.14% of cycles we are producing 2 results, in
26.42% of cycles we are producing just 1 result and in
47.43% of the cycles we are producing 0 results. This
gives us an average of 0.74 results per cycle. Even tak-
ing into account that this is a lower bound and that, in
fact, there is also scalar code that can not be consid-
ered “overhead” since it is actually producing results,
it is still rather far from the peak performance of 2
results per cycle.

Looking at table 2 globally, we can note some other
interesting points. First, the fraction of code that is
hidden by vector operations is rather high. Adding

457

the seven rows where the scalar unit is active and at
least. one of the vector units is active we see that this
overlapping happens in 6.55% of all cycles. The per-
centage of cycles where we are executing scalar code
without overlapping is 11.45%. As in our simulator
one cycle is equivalent to one scalar instruction, we
can see that 56.3% of all scalar instructions have been
hidden by vector instructions. For the rest of instruc-
tions not. overlapped, we believe that modern vector
processors should have a superscalar processor to ex-
ecute the scalar portion of programs, and thus the
11.45% of cycles could be further reduced.

Second, the total number of cycles where the vec-
tor LD/ST functional unit is accessing memory is very
high. Since we assume a perfect memory system, we
can consider that in every single cycle that this func-
tional unit was busy, a datum was being transferred
from/to memory. Adding all rows where the LD/ST
unit is busy, we get that in a 73.13% of all executed
cycles we were accessing memory. On the other hand,
we have already seen how in 79.7% of all cycles a re-
sult was produced. The comparison between this two
numbers gives us insight into the balancing of the pro-
grams studied. They turn out to be slightly compute
bound in terms of total number of “abstract” oper-
ations performed. Nevertheless, we have to insist in
the fact that neither memory latencies nor functional
unit latencies have been taken into account and these
are two very important factors that could change this
balancing. This is a subject that deserves further in-
vestigation.

Finally, we need to better understand what are the
factors that limit the machine and prevent it from
achieving full efficiency. We have argued that some
of this factors could lie in the single bus architecture,
the load chain problem or the asymmetry between the
two functional units. In the next section we will quan-
tify the relative importance of all this factors.

6 Limitations to instruction level par-
allelism

Our architecture introduces several resource lim-
itations that can be classified into: a) not enough
functional units, b) the lack of the ability to chain
a computation to a load instruction and c) conflicts
in the ports of the vector register file. There is still
another indirect limitation introduced by the limited
number of vector registers. Tt is d) the spill code in-
structions used to move data between registers and
memory when no free registers are available to per-

form a certain computation. In this section we will
deal with limitations a), b) and ¢) and in the next
section we will look into the spill code problem.

The simulator is able to collect statistics about all
the hazards that occur during the execution of the
programs. When an instruction is not issued we de-
termine all the reasons that prevented the instruction
from executing and store in a table the total number
of cycles that the decoder had to stall due to those
reasons. For example, in the following code:

1. add vO,v1,v2

2. mul v2,v0,v3

3. add v0,v3,vl

we see how the third instruction can not be issued
for two reasons. First, it has a read port conflict with
the two previous instructions. Instructions 1 and 2 use
the two read ports available in register bank 0. Thus,
no other instruction can simultaneously access any of
the registers in that bank. In particular, instruction 3
has a read port conflict in its first operand (v0). Sec-
ond, the two computational units in the vector cpu are
busy and the third instruction will have to wait until
one of the previous instructions finishes its execution
and releases its functional unit. When this situation
arises, the simulator stores in a table the total number
of cycles that the third instruction had to wait prior
to execution due to this combination of hazards.

As another example, consider the following two in-

structions:
1. Id effal,v0

2. st v0,effa2

This piece of code is just moving data in memory.
The second instruction stalls the decoder because it
has two conflicts with the previous one. First, our
machine only has one load/store unit, so it’s not pos-
sible to start the store in parallel. Second, even il we
had more busses connecting the cpu and memory we
have decided that we could not chain instructions to
the result of a load, so the store instruction would have
to wait until the load completed. We term this latter
situation as a “load chain conflict”.

The effects of limitations a), b) and c¢) can be seen in
table 3. Each row in the table corresponds to a differ-
ent situation that stalled the machine. To understand
this table, consider all vector computation instructions
divided into two classes: a FU2-class instruction is an
instruction that can only execute in the FU2 functional
unit. That is, we have three FU2-class instructions:
mul, div and sqrt. The rest of vector computation
instructions are FUl-class instructions because they
can execute in both functional units. The first five
columns in table 3 have the following meanings: In
column labeled FU2, a 1 indicates that the machine

was stalled because there was no functional unit avail-
able to execute a FU2-class instruction. In column la-
beled FU1, a 1 indicates that the machine was stalled
because there was no functional unit available to ex-
ecute a FUl-class instruction, which means that both
functional units were busy. In column labeled LD, a
1 indicates that the machine was stalled because the
vector load/store unit was busy and could not accept
more memory instructions. In column labeled PRT a 1
indicates that a certain instruction was not issued due
to conflicts in the read/write ports of the vector reg-
ister banks. Finally, a 1 in column labeled LDX (load
chain) indicates that the machine was stalled because
a computation was dependent on a load instruction
and, thus, could not be chained to it. The next two
columns show the percentage that each one of these
hazard combinations represent over the total number
of executed cycles (using the weighted and arithmetics
means).

Row 0 presents the percentage of cycles that the
decoder stalled due to the inability to chain a com-
putation to a load. Having a 1 only in column LDX
means that we were ready to issue a computation in-
struction, we had a free functional unit, we had ports
to access the vector registers needed as operands, but
one of those operands was the result of a previous
load still in progress. The percentage of cycles lost
in this situation is very high (16.42%). If we add to-
gether all rows where LDX is 1, we see that the lack
of chaining with loads is co-responsible for as much as
25% of stall cycles. Other vector machines, like the
Cray-YMP C90 do not have this chaining restriction
and can better utilize the functional units. Alterna-
tively, if the machine had more registers, these cycles
could probably be filled with useful computations by
unrolling the loops and scheduling the operations such
that vector loads and dependent computations could
be moved apart as much as possible. Anyway, bear in
mind that except for row 0, in all other rows the LDX
problem is not. the only cause that stalls the machine.
Thus, if we removed the “load chain” restriction we
would be sure of eliminating those 16.42% of cycles
accounted in row 0, but probably not many more.

Row 1 presents the number of lost cycles due exclu-
sively to port contention. Even though this row does
not. represent. a very large fraction of all executed cy-
cles, if we add together all rows where column PRT has
a 1, we see that there is a high number of wasted cy-
cles (14.86%) due to port contention. The architecture
provides 8 read ports and 4 write ports to the vector
registers and the maximum possible simultaneous re-
quests are 4 reads and 2 writes for the functional units

Hazard combination % of execution cycles

weighted | arithmetic

Row | FU2 | FU1 | LD | PRT | LDX mean mean
0. 0 0 0 0 1 16.42 18.01

1. 0 0 0 1 0 1.62 1.57

2. 0 0 0 1 1 2.59 3.19

3. 0 0 1 0 0 30.06 31.37

4. 0 0 1 0 1 0.65 0.61

5. 0 0 1 1 0 3.18 3.30

6. 0 0 1 1 1 0.01 0.01

7. 0 1 0 0 0 2.94 3.14

8. 0 1 0 0 i 1.28 1.06

9. 0 1 0 1 0 2.11 1.82

10. 0 1 0 1 1 0.36 0.29
11. 1 0 0 0 0 8.29 7.02
12. 1 0 0 0 1 2.18 1.70
13. 1 0 0 1 0 3.48 2.98
14. 1 0 0 1 1 1.51 1.18

Table 3: Relative importance of the hazards occurred during the execution of the six benchmark programs.

and one additional read or write for the LD/ST unit,
but still this seems not to be enough to sustain the
bandwith required by the vector functional units. We
have looked in detail at this port conflicts and found
that the overwhelming majority of conflicts are due to
reads. In particular, in 15.02% of all executed cycles
the machine was stalled due to a conflict in one or two
of the read ports that the candidate instruction for
being issued required. In contrast, only 1.19% of all
executed cycles the reason of a stall was a write port.
Note that these two percentages are not independent,
because there are instructions that cause both read
and write port conflicts simultaneously.

Row 3 is the one that accounts for the largest per-
centage of stall cycles (30.6%). It represents the haz-
ards occurred when the decoder tries to issue two con-
secutive vector memory instructions. This is a very
comimon situation in vector loops for several reasons.
If the compiler does not perform software pipelining
and/or loop unrolling, the typical starting code of a
loop is a sequence of loads that will bring the data
to be operated on. This sequence of loads will always
conflict in our architecture. Also, at the end of the
loop there is usually a sequence of several stores that
will conflict between them and will also conflict with
the load instructions at the beginning of the next iter-
ation of the loop. Note that in this row the only con-
flict is the memory unit, thus increasing the number
of busses to memory should decrease the percentage
of cycles stalled due to this reason. If we also add all
rows where LD is 1, we have that the lack of more mem-
ory units is co-responsible for stalling the machine in
33.9% of all executed cycles.

Row 4 presents a very special case. Whenever we
have a load followed by a dependent store, we have two
conflicts. First, we have a 1 in column LD because we
need the load/store unit to issue the store but it’s busy
servicing the load. Second, even if we had a second
memory unit, the load chain restriction would prevent
us from issuing the store. Thus, we also have a 1 in
column LDX. Note that this situation is fairly rare,
and corresponds mostly to loops that do initialization
work, like copying arrays or initializing memory. Row
6 correspond to a still more special case in which the
store following the load could also not be issued due
to the fact that the read ports of the corresponding
register bank were both busy (most probably, some
other previous instruction is using them).

Row 5 is a more common situation. Consider the
following code:

l. add v2,v3,v0

2. st vQ,effa

3. 1d effa2,v()

This code can easily arise in loops. The result of
the addition is stored in some array but is no longer
needed in the rest of the loop body. After instruc-
tion 2, the compiler knows that register v0 is dead,
and reuses it to bring some other value from memory.
When trying to issue instruction number 3, we have
a LD/ST functional unit conflict and also a write port
conflict to register v0, because the only write port to
the register bank where v0 belongs is busy servicing
instruction number 1. Obviously, there are other sit-
uations where this combination of conflicts can arise.

Let’s consider rows 7 through 10.- When we have a
1 in column FU1, its meaning is that both functional

units were busy and so we could not issue a FUl-
type instruction. This four rows are showing us that
the programs had some more parallelism available that
could be exploited by adding more functional units. If
we ignore for the moment that rows 8, 9 and 10 present
port/load chain conflicts, the lost cycles that could
have been successfully used with a third functional
unit is at least a 6.69% of all executed cycles. Actually,
if a third functional unit was added we could probably
reduce more cycles of execution, but this will remain
a topic for future research for the moment.

As we have also noted in the previous sections, the
pressure on the FU2 unit is very high due to the fact
that FU1 is not able to execute multiplications, divi-
sions and square roots. This can easily be seen in rows
11 to 14, where the need for another functional unit of
type FU2 stalls the machine in 15.46% of all executed
cycles. It is also true that rows 12 and 14 have also the
load chain conflict but they represent only a 3.69% of
the executed cycles.

7 Spill code

When the compiler is allocating registers in a basic
block file it may find itself without any free register in
which to store a result. In this situation, the compiler
has to insert special instructions, called spill code that
will save a certain register to memory (spill it), to be
able to reuse that register to store some other value.
The contents of the register spilled to memory will be
reloaded at some later point in time to some other
free register. This spill load/store instructions are not
part of the computation but are an overhead intro-
duced by the compiler due to the limited size of the
register file. However, spill code is a negative contri-
bution to performance only if it actually increases the
minimum number of chimes required to execute ine
iteration of the loop where it appears. If a loop with
spill is highly compute bound, it means that there will
most probably be many cycles where the LD/ST unit
will be free to be used by the spill instructions, and
they will effectively be hidden by the computation in-
structions. On the other hand, if a loop is memory
bound, every single spill instruction will lengthen its
initiation interval at least by v1 cycles, where vl will
depend on the length of the vector registers.

If we had an architecture with infinite registers
there would be no spill code at all. In this section
we will study the effect of spill code on performance.
There has been some previous work on the eflects of
spill code in vector processors. In [9] it is suggested
that the effect of spill code is not very bad in vector

original [nospill

cycles | speedup

BDNA 1053.7 1.49
ARC2D 2236.8 1.07
FLO52 726.3 1.07
TRFD 875.4 1
SPEC77 2472.1 1.01

Table 4: Speedup obtained when eliminating all the
spill code from the programs.

processors because spill can be hidden in those cycles
where the load/store unit is not busy. Nevertheless,
in {9] the architecture under study was a CRAY-Y-
MP which has the same number of functional units as
our architecture but has 3 paths to memory (two load
busses and one store bus) and thus has many more
opportunities to hide those spill instructions. We be-
lieve that in our single bus architecture the effect of
spill code will be significantly higher.

To study the eflects of spill on performance we have
modified the simulator so that each time it finds a vec-
tor spill instruction it ignores it. This way we are cre-
ating the eflect of having an infinite register file, and
we are eliminating the negative effect of spill code. We
run the programs again with this version of the simu-
lator and we obtain the total number of cycles needed
to execute them. We can see the effect of spill code by
comparing this results with the results obtained with
the original simulator.

Table 4 presents the results. First column in ta-
ble 4 is the total number of cycles (in millions) needed
to execute the original program and the second col-
umn is the speedup obtained when eliminating all the
spill from the programs. We can see the great variance
in speedup between the different programs. BDNA hap-
pens to have extremely long basic blocks, coming from
very long loops, and' the compiler has to introduce a
lot of spill code to execute them with only eight reg-
isters. We have measured the mean size of BDNA
vector basic blocks and it’s close to 120 instructions
(not including the scalar instructions). From this table
we can conclude that in a single bus architecture spill
code has a negative effect on performance, especially
for those programs that have a high register pressure.

8 Conclusions and Future Work

In this paper we have presented quantitative mea-
surements of the execution of vector code produced by
a commercial compiler on a vector supercomputer. We
have chosen a subset of the Perfect Club benchmarks

and executed it using a simulator. Results show that
the fraction of time executing vector cormputations is
not as high as one would expect (around 50%). We
have presented data about the fraction of utilization
of the vector functional units and found that only in
roughly 5% of the cycles are all vector computation
units busy, while there is a 25% percent of cycles where
only one of the two arithmetic units is working and the
last 50% of the cycles are either load/store cycles or
purely scalar cycles. The major limitation that pre-
vents full utilization of the machine is the single bus to
memory architecture, which even in the case of adding
infinite number of functional units and ports, would

be responsible for stalling the machine in 33.9% of all.

executed cycles. Related with the memory problems
is the inability to chain loads and computation. This
restriction is responsible for stalling the machine in a
combined 25% of all executed cycles. Additional limi-
tations found were the lack of a second functional unit
able to perform multiplication and division (15.46% of
executed cycles) and limited number of ports to ac-
cess the vector register file (14.86%). We have also
seen that vector spill code is not negligible and that it
produces an average slowdown of §8%.

The tools we have developed for this study are cur-
rently being used to evaluate solutions to the problems
reported in this paper. We are currently looking at dif-
ferent alternatives to solve the spill problem, as well
as reducing the number of conflicts in the vector regis-
ter file ports. We are also investigating new functional
unit schemes to reduce the number of lost cycles.

References

[1] Convex Press, Richardson, Texas, U.S.A. CON-
VEX Architecture Reference Manual (C Series),
sixth edition, April 1992.

{2

it

Zarka Cvetanovic and Dileep Bhandarkar. Char-
acterization of APLHA AXP performance using
TP and SPEC workloads. Iniernational Sym-
postum on Compuler Archilecture, pages 60-70,
1994.

{3] Roger Espasa and Xavier Martorell. Dixie:
a trace generation system for the (C3480.
Technical Report CEPBA-RR-94-08, Universitat

Politécnica de Catalunya, 1994.

{4] M. Berry et al. The Perfect Club benchmarks:
Effective performance evaluation of supercomput-
ers. The International Journal of Supercomputer

Applications, pages 5-40, Fall 1989.

461

[5] John L. Hennessy and David A. Patterson.
Computer Archilecture A Quantitative Approach.
Morgan Kaufmann Publishers, 1990.

[6] Kai Hwang and Zhiwei Xu. Multipipeline net-
working for compound vector processing. IEEE
Transactions on Computers, 37(1), January 1988.

[7] Norman P. Jouppi. The nonuniform distribution
of instruction-level and machine parallelism and
its effect on performance. IEEE Transactions on
Compulers, 38(12):1645-1658, 1989.

Norman P. Jouppi and David W. Wall. Available
instruction level parallelism for superscalar and
superpipelined machines. ASPLOS, pages 272-
282, 1989.

[9] Corinna G. Lee. Code Optimizers and Register
Organizaiions for Vector Archilectures. PhD the-

sis, University of California at Berkeley, 1992.

(10] Larry McMahan and Ruby Lee. Pathlengths
of SPEC benchmarks for PA-RISC, MIPS, and

SPARC. COMPCON, 1993.

[11}] R. M. Russell. The CRAY-1 computer system.
Communications of the ACM, 21(1):63-72, Jan-
uary 1978.

[12] Michael D. Smith, Mike Johnson, and Mark A.
Horowtiz. Limits on multiple instruction issue.

ASPLOS, pages 290-302, 1989.

|13} Sriram Vajapeyam. Instruction-Level Character-
tzation of the Cray Y-MP processor. PhD thesis,
University of Wisconsin, Madison, 1991.

[14] Sriram Vajapeyam and Wei-Chung Hsu. On the
instruction-level characteristics of scalar code in
highly-vectorized scientific applications. JEEE

Micro 25, pages 20-28, 1992.
[15]

Sriram Vajapeyam, Gurindar S. Sohi, and Wei-
Chung Hsu. An empirical study of the Cray Y-
MP processor using the PERFECT Club bench-
marks. Inlernational Symposium on Compuler
Architeciure, pages 170-179, 1991.

[16] David W. Wall. Limits of instruction level paral-
lelism. ASPLOS, pages 176-188, 1991.

[17) H. Zima and B. Chapman. Supercompilers for
parallel and vector computers. ACM Press, New
York, NY, 1991.

