
Quantitative Analysis of Vector Code *

Roger Espasa., Mateo Valero, David Pa.dua{ Marta. Jimdnez, Eduard Ayguad6

Depart ament d ' A ryui tect ura de Compu tadors,
Universitat Politkcnica de Catalunya.

c/ Gran Capit&, Mbdul D6, OS071 Barcelona., SPAIN
e- mail : roger @ac. u pc.es

Abstract

In this paper we present the results of a detailed
simulation study of the execution of vector yrogrums
on a single processor of a Convex C3480 mrrrhine,
using a subset of the Perfect Club besch.marks. W e
are interested in evaluating several cost/performai,.ce
tradeofls that the machine designers m-ade in order to
asses which features of the arch,itecture severely liiirit
the performance attainable. W e present the detailed
usage of the vector functional units and n study of the
kinds of resource conflicts that stall 2h.e mach.ine. The
results obtained show that the resources of the ,vector
architecture are not e f ic ien t ly used inaisly due t o the
single bus m e m o y architecture. Other severe liniita-
t ions of the machine turn out t o be the lack of ch,aiit.ing
between vector loads and vector compuiations, atid ihe
lack of a second general purpose functiontal unit. We
also present some data about ihe port pressure on the
vector register file and we see tAat stalls due t o pod
conflicts are relatively high. W e also consider the slow-
down introduced by spill code and find tRat th.e 1iin.ited
number of vector registers also l imits perfornaaiacc.

1 Introduction

In order to design new architectures one has first
to properly understand the behavior of current archi-
tectures to be able to analyze its strengths and weak-
nesses and improve future designs. The analysis of
the interaction between axchitectures, compiler tech-
nology and application programs is an active field of
research where several studies have been carried. This

*This work was supported by the Ministry of Education of
Spain under contract. TIC 880/92, by ESPRIT 663.1 Basic Re-
search Action (APPARC) and by the CEPBA (European Center
for Parallelism of Barcelona).

'University of Illinois, at. Urbana-Champaign.

studies try to determine maximum parallelism avail-
able in t4he programs [7, 8 , 16, 121, frequency of exe-
cut*ion of instructions [lo], bottlenecks and hazards in
the archit,ecture [2], etc.

In t,his paper we are interested in the evaluation
of a vector architecture [5], together with its vector-
izing compiler [17]. Since the introduction of the first
register-register vector coniputer, the CRAY-1 [ll],
compila.tion technology has evolved to ma.ximize the
performa.nce t1ia.t programs written in high level lan-
guages can obtain from a. vector architecture. Nev-
ertheless there have been few studies in depth about
the relationship between vector architectures, vector-
izing compilers and vector programs. In [15, 14, 131
the CRAY-Y-MP a.rchitecture is evaluated through a
detailed s h d y of the program characteristics such as
nuniber and type of instructions executed, basic block
size, fraction of code vectorized, etc. [9] presents a
study on the register requirements of vector architec-
tures and ana.lyzes what combination of number of
registers and number of rea.d/write ports to the regis-
ter file has the best. cost performance tradeoff.

In this paper we present, results obtained from the
evalua.tion of a subset. of the Perfect Club [4] pro-
grams compiled using the Convex FC versioii V8.0
running on a single node of a Convex C3480 vector ma-
chine. To perform this research we have implemented
a trace generation tool called dixie able to generate
basic block traces from the execution of the programs.
This basic block traces are fed into a siinulator tl4at we
hwe developed t1ia.t. gives us detailed information, a t
the cycle level, of every event that. happens during the
execution of the program. This is in contrast with the
tools used in [14, 15, 131, which only provided statisti-
cal dat,a. to their authors. It is important to note that
we a.re going to evaluate automatically vectorized pro-
gra.nis, and thus we will be studying the performance
of the architecture together with its compiler.

In section 2 we present the measurement techniques

108&6192@6 $4.00 Q 1996 IEEE

used in this paper. We describe the trace driven ap-
proach we have used to simulate tlie execution of some
of the Perfect Club programs. In section 3 we present)
the benchmarks used in this paper. In secbion 4 we
present the abstract vector machine that. we will use
to carry the experiments. In section 6 we will study
the parallelism exploited by our abst-ract- niachine us-
ing the output of the Convex compiler. SectZion G will
look in detail into tlie reason that preveiii. tlie ma-
chine from extracting all the parallelism available and
section 7 will study the effects of spill code 011 vec-
tor execution. Finally in section 8 we will present. our
conclusions.

2 Overview of the measurement tech-
nique

Tlie machine 011 which the experiments were per-
formed is a single processor of a. Convex C3480. This
machine is ranked in the mini-supercomputer class,
and has 8 processors and each one of them has a. sca1a.r
execution unit and a vector execution unit,. We a.re
interested in the vector beha.vior, and thus all mea-
sures have been taken using a single processor run-
ning in single-user mode. Tlie (33400 processor ca.11 be
described as a register-register vect.or machine. Tlie
compiler used in all cases is the Convex FC iwrsio~~.
V8.0 with optiiiiizatioii level - 0 2 (\vhicli implies vec-
torization) [l] . The vector CPU consist.^ of t8wo func-
tional units. The first one ha.ndles all vector opera-
tions except multiplication, division and square root..
The second one handles all vector opera.tions. Ea.ch
functional unit has access to 8 vector regist.ers. The
vector registers me set up in register pa.irs. so t1ia.t.
each pair has two r e d ports and one write port. Ev-
ery vector register is ca.pa.ble of holding 121 elements
of 64 bits each. The vector CPU implements fiilly flcs-
ible chaining which means that. a.n opera.tion ca.n be
chained to a previous vector operation currently i n
progress regardless of the cycle a.t. which ea.ch opera-
tion has started. Due to the va.ria.nce in response time
that tlie memory system dways shows, vector coni-
putations can never be cha.ined to itecior lond inst,ruc-
tions. Vector stores can be cha.ined, though, to vector
operations because a set of buffers isolates tlie vector
CPU from the memory la.t,ency when sending c1a.t.a. 1.0
memory.

We have taken a tra.ce-driven a.pproa.ch t,o ga.t.her all
the data presented in this paper. We Imve cleveloped
a pixie-like tool called dixie 131 that is able t.o produce
a trace of basic blocks executed as well as a. tmce of

453

the values conta.ined i n the vector length (VI) regis-
ter. Tlie ability to trace the value of the vector length
register is critical to have a detailed simulation of the
execution of the programs, since each vector instruc-
tion caa execute with a potentially different vector
leiigth. Thus, our measurements do not suffer from
the problem reported in [IS].

Disie is a tool that given an executable file will
produce 1) a modified executable file wi th instrumen-
t,a.t.ion code that- will generate a trace and 2) a basic
block descript.ion file that. maps basic block identifiers
t.0 t.lie a.ctua.1 instr~ict~ions of each basic block. When
you run the iiistruiiiented executable it will generate
a tra.c.e of basic IAock identifiers and a trace of every
value that is assigned to the vector length register.
This two parallel traces a.re consumed by a cycle-level
simulator t,liat. uses the basic block description file to
siinulnte the execution of every single instruction and
measure the dyna.mic behavior of the program. Each
time t,he simula.tor finds an instruction that loads the
vl register it. will consume a value from the vector
length tra.ce. Dixie is able to tra.ce user and library
code mid, t,lius, the simulation runs include the user
vec.tor code plus all the vector code found in the for-
t.ra.11 nia,th libraries. It is important to note that we
siniu1at.e the output. of a commercial compiler without
int4roducing any modification in it and that this trac-
ing method gives us absolute precision in all of our
nieasorements.

The simula.tor we have developed 11% been based
011 an abstract version of IJie Convex a.rchitecture and
will be described in section 4.

3 Benchinark Programs

We Imve selected a subset, of the Perfect Club pro-
grams as our I>encliniark programs. The Perfect Club
appIica.tion codes are considered to be representative
of large typical scientific and engineering programs.
For our study, we have executed the thirteen codes
on the C3400 in scalar and vector mode and we have
obtained the speedups presented in table 1. Column
two presents the cpu t.ime (in seconds) of each on of
the programs when run in scalar mode. Column three
presents t.he cpu time of the programs (also in sec-
onds) when run in vector mode. Column four is the
speedup of the vector versus scalar version. Column
five preseiit,~ an estima.tion of the fraction of time spent
executing vector code. This estinia.tion has been ob-
tained inst~rument~ing a l l those basic blocks that had
some vect.or code with code that. reads tlie hardware
tio-~ers (TTR) of the (hives machine. Finally, column

six presents the percentage of time that this vect,or
basic blocks represent over the esecution time of ea.ch
program. This column can be taken as a rough indi-
cator of the degree of vectorization that. each prograin
allows.

As it can be seen from this table, most of the pro-
grams do not benefit too much from vector esecution,
and we believe that for the purposes of our study we
should only examine the subset of programs that. re-
ally exploit the vector CPU. Including programs that.
have very low speedups in the study would give us no
insight into the behavior of the vector cpii, beca.use
this programs make very little use of the vect$or func-
tional units and have very little instruction level par-
allelism to offer. Thus we have selected the five pro-
grams that have greater speedups: A RC2D, F L 0 5 2 ,
BDNA, TRFD and SPEC77. We should really have
included program MGSD iiistead of SPEC73, but due
to the long running time of MGSD ancl the extremely
high computation costs of the trace-driven siiniilator,
we have not been able to simula.te this progra.111 i n its
full length and thus we have dropped it. form the s t d y .

considered fully pipelined and with a latency of 1 cy-
cle. This asymmetric behavior of the functional units
is iniportant. when the control unit has to schedule the
different, operations. Whenever the control unit has to
issue an instruction that can be executed both in FUi
and FU2, the decoder will always try to send it first to
FU1 and, if that unit. is busy, it will try to send it to
FU2.

The vector unit has 8 vector registers which hold up
to 128 eleinents of G4 bits each one. This eight vector
registers are connected to the functional uni t s through
a. restricted crossbar. Every two vector registers are
grouped in a register bank and share two read ports
and one write port that links them to the functional
unit,s. The coinpiler is responsible to schedule the vec-
tor instructions and allocate the vector registers so
t.1ia.t. no port. conflicts arise. The machine modeled im-
plements fully flexible chaining [SI. Flexible chaining
allows for two dependent vector operations to be exe-
cuted simultaneously without imposing restrictions in
the issue t.ime of the two inst4ructions. Older vector de-
signs, like the CRAY-l, had a fised chaining scheme
in which chaining could only occur if the second op-
eration of a. dependentn pair was issued a t a particular
point, in time The cha.ining implementation we have 4 The abstract vector machine

The simulator used to gather the performance clat,a.
for the benchmark programs models an idealized ver-
sion of the C3400 machine. MJe feel that. i n order 1.0
better understand vector macliines it. is important, t,o
abstract low level details (like functionaI unit. lat,en-
cies, technology imposed 1ia.rdwa.re. restrictions. mein-
ory delays and so on) €rom our study and concvnt,ra.te
in the general behavior of the progranis. While t.he de-
tails omitted in the simulator are very important. and
deserve several studies in its own right, the conclu-
sions obtained from the data. gathered w i t h our sim-
ulator will still be valid. Since we \vi11 be looking a.t.
the relative frequency of severa.l different. event,~, the
inclusion of the aforementioned low level cletsails woiild
not introduce significanto differences in 0111' results.

The architecture studied consists of a scalar pa,rt,,
that we shall refer to as the SCAL func.tiona.1 unit,, and
an independent vector part. The scala-r portion is
able to execute one instruc.tion per cycle regardless
of dependencies, functioiial unit hamrds or bra.iiching
delays. The vector part consists of t8wo compiitat.ion
units (FUl and FU2) and one memory accessing unit,
(the LD/ST unit). The FU2 unit is a generd piirpose
arithmetic unit capable of executing all vector inst.riic-
tions. The FUl unit is a restricted funct,ional unit . that.
executes all vector instructions except mult,iplica.t,ion,
division and square root. Both functiona.1 onit.s are

464

chosen to model has two read and one write pointers
for ea.ch one of the vector registers. This read/write
point.ers control the nest. element. that has to be sent to
t.he functional units and allow that the same physical
vector register can be shared by different instructions
t h t . 1ia.ve started a.(, different. cycles.

The LD/ST unit. can only service one request
t.o/froni inenlory at time, because the architecture
simulabed has only one bus connecting the CPU to
iiieniory. TIIP meinory system sirnulated is an ideal
one t,ha.t. has a. 1 cycle latency 'and delivers one da-
~.um per cycle, regardless of the stride used. The real
C3400 architecture has one additional limitation re-
garding the memory system that we have chosen to
simulate. Despite the fact the memory delivers one
datum per cycle, we will not allow to chain the result
of a vector load instruction with a vector computa-
tion i~~structioii. This limitation is a common problem
t,Iia.t. mu1 tiprocessor vector architectures have to face
beca.use t.he variance in response time of real mem-
ory systems makes it. difficult to predict the arrival
time of a. dat.iini to the processor. Thus, while it is
not. impossible t.0 c.lia.in vector computations to vector
loads, a. reasoilable tnracleoff is to restrict this chaining.
M'e believe i k is important. to simulate this feature of
the Convex C3400 architecture in order to evaluate its
impact. on performance.

scalar
cputime

5 Instruction Level Parallelism

vector speedup vector bb vector
cputime cputinie execution %

We run each one of the five programs froin the Per-
fect Club and simulate its execution cycle by cycle.
The simulator reads a trace of basic block addresses
and executes each instructioii in the basic block follow-
ing the issue rules stated in section 4. A t every single
cycle we keep track of how ma.ny functional iinils are
simultaneously busy. This number gives 11s a n idea of
the amount of parallelisin present- in the program that.
we are actually exploiting. Note t1ia.t in our simulated
architecture the maximum pa.ra.llelism a.chievable (ig-
noring the scalar unit) is 3. In this section we will
look into the parallelisin t1ia.t. the a.rchit.ecture is able
to exploit, and in the following sections we will con-
sider what are the factors that. limit. this pa.ra.llelisni.

Table 2 presents the utilizatioii of the vector units.
Each row in the table presents a. different. ‘‘sta.te” of the
vector functional units. A value of 1 in t41ie columns
two to five indicates that. the corresponding unit. is
active. Thus, row iiuinber 0, with code 0000, corre-
sponds to the inachiiie being idle, and row number
1, with code 0001, corresponds to pure sca1a.r ese-
cution. The last row, with code 1111, corresponds
to maximum efficiency: nll three vector units (FU 1 ,
FU2 and LD/ST) and tlie scalar unit are working si-
multaneously. Columns sis to nine present, the frac-
tion of cycles that the nia.cliine 147a.s in each one of
the states. Columns six and seven present, tlie frac-
tion of cycles that the ”ihine was i n ea.ch one of tohe
states, using the weighted mean (each program con-
tributes to the mean proportionately to i t s running
time) and the arithmetic mean. Colunins eight. and
nine are obtained when considering only the vector

functional units and ignoring the state of the scalar
unit. Notice how every two rows are exact in its vec-
tor portion and only differ in the activity of the scalar
unit. We have “collapsed” every two rows by adding
them and we have the results presented in columns
eight, (tlie result- of collapsing the sixth column) and
nine (the result. of collapsing column seven).

Row number 1 i n table 2 corresponds to pure scalar
execution. Even for our benchmark programs that are
highly vectorizable there will always be some portion
of scalar code mostly related to library code for in-
put/output, scalar code generated to set up the envi-
ronment for vector computation and code correspond-
ing to portions of the program that current vectoriza-
tion technology can not handle.

Row 2 represents tlie situation where tlie vector
memory unit is the only functional unit working, while
in row 3 we have the percentage of cycles that the
loa.d/store vector unit and the scalar unit have been
running simultaneously. If we look either at column
8 or 0 we can see that. the fraction of cycles spent in
this two states is extremely high. Let’s assume that
scalar code is not useful for the computation, in the
sense that, scalar code is just overhead code to com-
pute addresses, perform calls, jumps, control loops,
etc. Table 2 shows us that in 35.98% of the cycles we
are irot producing any results. We are either moving
data or doing “setup” work. This high number of un-
productive cycles is due to several reasons. First, .all
a.pplica.tions have initialization loops that just initial-
ize the data structures to be used during the program
which only have vector memory operations. Second,
the architecture only has one memory bus, so when-
ever t,he instwction issue stage finds two consecutive

Table 2: tJt.ilixiition of the vecbor functional uni ts .

vector memory opera.tions in the code. it, will stall
waiting for the first memory operat,ion tlo complete. At.
best, the decoder will be able to issue a Te\v sca1a.r in-
structions found between the two inen1ory opera.t.ions.
but this only happens i n a few number of cycles (1%).
Third, the architectura.1 limitation of not, being a.ble to
chain vector computation instructions to vector loa.ds
is also responsible for stalling tlie ma.chine 1.0 wa.it, for
a memory operation. In tlie nest. section wt? will quan-
tify each one of these effects.

Rows 4 and 5 present. ra.t.her unusuad sitiia.t,ions. In
these rows we have trliat. the 001y vector unit . \\:orking
is FU1 and the scalar unit. ca.n be workiiig (row 5) or
not (row 4). This can happen wlienever a.) there is no
parallelism in the code, tJ1a.t is, we have a. single vec-
tor computation isolated between a. long scalar section
of code or b) whenever t*liere has been a. port conflict,
between the vector instruction and its sequential fol-
lower. Both cases are rakher unusud i n t81ic progra.iiis
studied, as we can see by the low (0.61%) fra.ct,ion of
cycles that they represent.

In rows 6 and 7 we see some degree of overlapping
between computation and inemory a.ccessing inst.ruc-
tions. We have that both the restricted vect,or Tunc-
tional unit and the loa.d/st,ore vect,or unit. are working
concurrently. the typical sequences of code t1ia.t. p i 1 t,
the machine in these two states are sequences where
we have issued am instruction to functional unit. 1 and
a memory instruction to the LD/ST unit (t h y ca.11 be
related or unrelated) and we encount,er in t,he instruc-
tion stream a) a computation instruction t,Iia.t. iiiiglit.
be dependent on the ineniory instr~ct~ioii i i i \\:hicl1 case

a. “1oa.d chain*‘ conflict arises and we have to stall the
niachine. or b) we find a second memory instruction
t.lia.t. will ha.vc: to wa.it. unl.il the one runniiig completes
or c) there a.re simply no more vector instructions to
be issued, which happens a t the end of loops, for ex-
ainple.

Rows 8 and 9 are siini1a.r but. not. equivalent to rows
4 a.nd 5. They represent. situations where the only
vect.or functional unit. working is the general purpose
fiincthia.l unit,. But the reasons t h t leads us to states
t;/9 or stsat.es 4/5 are rather different. In rows 4/5 we
were t.alliing about^ la.ck of parallelism or port conflicts.
Rows 8/9, a s wc will see more in depth i n the next sec-
t.ioii, can also be the result. of a port conflict but more
usually t h y will be the result of the presence of par-
allelism. If we ha.ve to consecut~ive vector instructions
l.lia.t, require the FU2 unit (for example, any mix of
consccii tive miilt.i~>lica.t~ions, divisions and square root
will do) 6he second instruction will have to stall wait-
ing for the first, one to free the functional unit. This
sit,ua.t,ion is rather frequent, aad corresponds to corn-
pute bound loops that have a. lot of vector instructions
t1~a.t. can only eseciite in FU2. Note the difference of
cycles percentage between rows 8 and 9 (5.67%) and
rows 4 a.nd 5 (0.61%). The decision to put a second
fiinct,iona.I uni t . t1ia.t. can only perform a subset of all
opera.t*ions instead of ha.ving a general purpose one has
a. significa.nl. nega.tive impact on performance. Next
sectmion will provide inore data to discus this tradeoff
in c1ept.h.

lto\vs 10 a n d 1 I represent. the overla.pping of FU2 in-
st,riict,ioiis wi t.li vector memory opera.tions. Again, this

two rows have a higher percentage of cycles (13.96)
than rows 6 and 7, iiiostly because of thc same rea-
sons explained for rows 8 and 9. See how the four
rows together represent, almost. a 20% of a.11 esecuted
cycles. I t is very import,a.nt to remark tha.ta ow sinillla-

tor treats all vector operations as being frilly pipelined.
Had we decided to take into account(the real la.tencies
of instructions like division or square root. (that- coulcl
be well beyond 10 cycles witch current. t.echnology)
we would see how the number of cycles ant1 percent,-
age that rows 8 through 11 represent woultl be much
higher. For example, if we chose a. 10 cyclc latency for
division, tlie execution of a vector division of il given
vector length would take a s much time as 10 vect.or a.&
ditions of the same vector length. This mea.ns IhaI. the
consequences of having a. second functiona.1 u i i i t. that.
cannot perform certain frequent. opcra.tions would ac-
tually be worse in a red niacliine tha.11 w1ia.t we 1ia.w
found in this paper. For the sake of sin-ip1icit.y. we
have chosen tlie 1 cycle htency a.pproach 1.0 liigliliglit~
the relative importance of the a.rchitectura.1 clecisions
involved in a ideal vector architecture brit. withoiit, get-
ting into implenientation issues.

The last four rows represent t.he stmates wlicre the
maximum parallelism is achieved hy the archi tec-
ture. In all of them, both vector computation unit-s
are working concurrently and producing IUJO resu1t.s
per cycle. Nevertheless, this peak eficiency is only
reached in 26.14% of all esecuted cycles. The rest of
the cycles are divided between a,) approsimat*ely 50%
of all cycles the vector coinputation unit,s a.re idle, t.hat.
is, we are executing scalar code or just. moving c1a.t.a.
around and b) in 26.42% of t,lie cycles only one of the
functional units is producing sonie result. If, a.ga.iti.
we w u m e that scalar code is not useful for the com-
putation because it’s just, overhead code to compuk
addresses, perform calls. jumps, control loops. etc.,
and we also assume that3 vect80r loads a.nd st.ore are
not part of tlie computation, we have a. very low av-
erage number of results coniputed per cycle. \V “e 1 lave
that in 26.14% of cycles we a.re prodiicing 2 results. i n
26.42% of cycles we are produc.ing just. 1 result. and in
47.43% of the cycles we are producing 0 resii1t.s. ’l-’his
gives us an average of 0.74 resu1t.s per cycle. Even t a k -
ing into account that this is a lower bound am1 tha.t, in
fact, there is also scalar code that. ca.n not. he consitl-
ered “overhead” since it. is a.ctually produciiig results,
it is still rather far from the p e d performa.uce of 2
results per cycle.

Looking at table 2 globally, we cmi note some other
interesting points. First, the fmction of code that. is
hidden by vector opera.tions is ra.ther high. Adding

t,he seven rows where the scalar unit is active and at
least. one of the vector unit.s is active we see that this
overlapping happens in 6.55% of all cycles. The per-
centage of cycles where we are executing scalar code
without. overlapping is 11.45%. As in our simulator
one cycle is equivalent to one scalar instruction, we
can see that, 56.3% of all scalar instructions have been
hidden by vector instructions. For the rest of instruc-
tions not overlapped, we believe that modern vector
processors should have a superscalar processor to ex-
ecute the sca.lar portion of programs, and thus the
11.45% of cycles could be further reduced.

Second, t.he t,otal number of cycles where the vec-
Lor LD/ST functiona.l unit is accessing memory is very
high. Since we assume a perfect. memory system, we
caa consider t.1ia.I. i n every single cycle that this func-
tional unit was busy, a datum was being transferred
from/t,o memory. Adding all rows where the LD/ST
unit. is busy, we get, t,ha.t. i n a 73.13% of all executed
cycles we were a.ccessing memory. On t,he other hand,
we ha.ve alrea.dy seen how i n 79.7% of all cycles a re-
sult. was produced. The compa.rison between this two
numbers gives us insight. into the balancing of the pro-
grams st,udietl. They turn out to be slightly compute
l~ound in terms of total number of “abstract” oper-
a.hions performed. Nevertheless, we have to insist in
the fact. that. neither memory latencies nor functional
unit latencies ha.ve been taken into account and these
a.re t.wo very importa.nt fa.ct.ors that could change this
bala.ncing. This is a. su tlject. tIia,t. deserves further in-
ves tigat. ion.

Finally, we need to M t e r understa.1~1 what are the
fa.ct.ors that. limit t.he machine and prevent it from
a.chieving full efficiency. We ha.ve a.rgued that some
of this fa.ct,ors could lie in the single bus architecture,
the load chain problem or the nsyniinetry between the
two fiinctional un i t s . I n the next sectioii we will quan-
tify the re1 a.tive i 11 I por tan ce of all this factors.

6 Liiiiitatioiis to instruction level par-
a1 1 e 1 i s iii

Our a.rchit4ect.ure introduces several resource lim-
it,a.t.ions t1ia.t ca.n be classified int,o: a) not enough
fiinct.ional units, 11) the lack of the ability to chain
a. computa.tion to a load instruction and c) conflicts
in t,he port,s of the vector register file. There is still
another intlirec t. I i nii tat ion introduced by the limited
number of vector registers. It is d) the spill code in-
st.ruct,ions used to move da.ta. between registers and
~nemory when 110 free registers are a.vaila.hle to per-

467

form a certain computation. In this section we will
deal with limitations a), b) and c) aiid in the next
section we will look into the spill code problem.

The simulator is able to collect. statistics about all
the hazards that occur during the execution of the
programs. When an instruction is not issued we de-
termine all the reasons that prevented the instructioii
from executing and store in a table the total nirmber
of cycles that the decoder had to stall due to those
reasons. For example, in the following code:

1. add vO,vl,v2
2. mu1 v2,vO,v3
3. add vO,v3,vl
we see how the third instruction can not be issued

for two reasons. First, it. has a read port conflict. with
the two previous instructions. 1nstriict.ions I ant1 2 use
the two read ports available in regisber ba.iik 0. ‘I“hus.
no other instruction can simultaneousl,y access a.ny of
the registers in that bank. In particular, instriiction 3
has a read port conflict in its first operand (vo). Sec-
ond, the two computational units in the vect,or cpu are
busy and the third instructioii will ha.ve to wait. until
one of the previous instructions finishes its execution
and releases its functional unit. When this sibuation
arises, the simulator stores in a table the total number
of cycles that the third instruction had to wait prior
to execution due to this combination of hazards.
As another example, consider the followiiig two in-

structions:
1. Id effa1,vO
2. st vO,effa2
This piece of code is just moving data in nlemory.

The second instruction stalls the decoder because it.
has two conflicts with the previous one. First., our
machine only has one load/store unit, so it’s not. pos-
sible to start the store in parallel. Second, even if we
had more busses connecting the CPU and memory we
have decided that we could not chain instructions to
the result of a load, so the store iiistructioti would have
to wait until ,the load completed. We t a n i this lat.t.er
situation as a “load chain conflict,”.

The effects of limitations a), b) and c) caii be seen i n
table 3. Each row in tlie table corresponds to a differ-
ent situation that stalled the machine. To iuiderstanrl
this table, consider all vector computation instructions
divided into two classes: a FU2-class instruction is an
instruction that can only execute in the FU2 fiinctional
unit. That is, we have three FU2-class instructioiis:
mul, d iv and sqrt . The rest of vector computation
instructions are FU1-class instructions because they
can execute in both functional units. The first, five
columns in table 3 have the following mea.nings: In
column labeled FU2, a. 1 indicates t.liat tlie nia.chine

was stalled because there was no functional unit avail-
able to execute a FU2-class instruction. In column la-
beled mi, a 1 indicates that the machine was stalled
because there was no functional unit available to ex-
ecute a FU 1-class instruction, which means that both
functional units were busy. In column labeled LD, a
1 indicates that the machine was stalled because the
vector load/store unit waq busy and could not accept
more nieniory instructions. In column labeled PRT a 1
indicates that, a certain instruction was not issued due
to conflicts in the read/wr.ite ports of the vector reg-
ister banks. Finally, a 1 in column labeled LDX (load
cbais) indicates that the machine was stalled because
a computation was dependent on a load instruction
and. thus, could not he cha.ined to it. The next two
columns show the percentage that, each one of these
Iiazard cornbillations represent over the total number
of eseciit.ed cycles (rising the weighted and arithmetics
inemis).

Row 0 presents the percentage of cycles that the
decoder stalled clue to the inability to chain a com-
putation to a. 1oa.d. [raving a 1 oiily in column LDX
means that. we were ready to issue a computation in-
struction, we had a free functional unit, we had ports
t.0 access the vec.tor registers iieeded as operands, but
one of those operands was tlie result of a previous
load still in progress. The percenhge of cycles logt
in this situation is very high (16.42%). If we add to-
gether all r o \ ~ where LDX is 1, we see that the lack
of chaining with loads is co-responsible for as much as
25% of stall cycles. Other vector machines, like the
Cray-YMP C90 do not, have this chaining restriction
and cam better utilize t,he functional units. Alterna-
tively, if tlie machine had more registers, these cycles
could probably be filled with useful computations by
unrolling tlie loops and scheduling tlie operations such
b1ia.t. vector loads and dependent computations could
be moved apart. as much as possible. Anyway, bear in
mind that. escept. for row 0, i n all other rows the LDX
problem is not. the only ca.use that stalls the machine.
Thus, if we removed tlie “load chain” restriction we
would be sure of eliminating those 16.42% of cycles
a.cc.ounted in row 0, but probably not. many more.

11.0~ 1 presents the number of lost cycles due exclu-
sively to port contention. Even though this row does
not. represent. a very large fraction of all executed cy-
cles, if we add toget*her all rows where column PRT has
a. I , we see that. there is a high number of wasted cy-
cles (14.86%) due to port contention. The architecture
provides $ read ports and 4 write ports to the vector
registers and tlie maximum possible simultaneous re-
quests a.re 4 reads and 2 writes for the functional unitf

-

Row
0

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. -

-
FU2

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

-

-

Iazar
FUl

0
0
0
0
0
0
0
1
1
1
1
0
0
0
0

-
-

-

combi lint ion -
LD
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0

-

~

PRT
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

- 1,DX
1
0
1
0
1
0
1
0
I
0
1
0
1
0
1

76 of execut.ion cvcles
wci gh t.ed

mean
16.42
1.62
2.59

30.06
0.65
3.18
0.01
2.94
1.28
2.11
0.36
8.29
2.18
3.48
1.51

a.ri tli nietic
inean
18.01

1.57
3.19

31.37
0.Gl
3.30
0.01
3.14
1.06
1.82
0.29
i.02
I .70
2.98
1.18

Table 3: Relative importance of' the Iiazarcls occurred during t.he escciit4ion of (.lit sis benchinark programs.

and one additional read or write for the LD/ST unit,
but still this seems not t,o be enough to sustain the
bandwith required by the vector functional units. k\Tc
have looked in detail at. this port. conflicts a11c1 found
that the overwhelming majority of conflicts a.re due t.o
reads. In particular, in 15.02% of a.11 esecuietl cycles
the machine was stalled due to a. conflict i n one or t.wo
of the read ports that the ca.ndida.t,e instfruct~ion for
being issued required. In contrast. only 1.19%) of all
executed cycles the reason of a. st.a.11 was a. write port,.
Note that these two percentages are iiot, indepentlenc.,
because there are instructions t1ia.t cause I>ot,Ii read
and write port conflicts siinultaneously.

Ftow 3 is the one that accounts for the largest. per-
centage of stall cycles (3O.G%). It. represenis the Iiaz-
ards occurred when the decoder tries to iswe 1,wo con-
secutive vector memory inst~ructions. This is a very
common situation in vector loops €or several reasons.
If the compiler does not perforni software pipelining
and/or loop unrolling, Lhe t-ypical startsing code of a
loop is a sequence of loads that. will bring the da.t>a.
to be operated on. This sequence of loa.tls will a.lways
conflict in our architecture. Also, at. tlre eiicl of' the
loop there is usually a sequence of severa.1 stmores t,lia.t
will conflict between them and will a.lso conflict. wit.11

the load instructions a.t the beginning of the nest iter-
ation of the loop. Note that in this row t.he only con-
flict is the memory unit, thus increasing the nuinber
of busses to memory should decrease the percent,age
of cycles stalled due to this reason. If we also add all
rows where LD is 3 , we have that the 1ac.k of more nieiii-

ory units is co-responsible €or stalling t.hc nia.chine i n
33.9% of all executed cycles.

Row 4 presents a. very special case. Whenever we
have a. 1oa.d follo\ved by a dependents store, we have two
conflicts. First, we ha.ve a 1 i n c.olumn LD because we
need the loa.cl/st.ore unita to issue the skore butB it's busy
servicing the load. Second, even if we had a second
nicn~ory unit, the load chain reqtriction would prevent
u s from issuing the store. Thus, we also have a 1 in
colunin LDX. Note that this situation is fairly rare,
a.nd corresponds mostly to loops that do initialization
work, l ike copying arrays or initializing memory. Row
6 correspond 1.0 a. still more special case i n which the
store following tlie load could also not be issued due
to the fact t1ia.t the read ports of the corresponding
regist,er h n k were both busy (most. probably, some
other previous instmction is using them).

Ilow 5 is a niore common situation. Consider the
follo\l;ing code:

I . add v2,v3,vO
2. St. v0,en-a.
3. Id effa2,vO
This code c a n casily arise i n loops. The result of

the addit.ion is stored in some array but. is no longer
iieeded i n the rest of the loop body. After instruc-
tion '2, tlie compiler knows that- register VO is dead,
and reuses it to bring some other value from memory.
\l'hcn t,rying 1.0 issue inst,ruction number 3, we have
a. LD/ST functional unit. conflict, and also a write port
conflict, t,o register VO, because the only write port to
t,he register bank where vo belongs is busy servicing
instruction nu niber 1. Ol>viously, there are other sit-
i i a h n s where this combinat.ion of conflicts can arise.

Let.'s consider rows 7 through 10. When we have a
1 in coluinn FU1, its meaning is that both functional

units were busy and so we could not issue a FU1-
type instruction. This four rows are showing u s that
the programs had some more parallelisni available t h . t
could be exploited by adding more functional units. If
we ignore for the moment that rows 8 , 9 and 10 present
port/load chain conflicts, the lost- cycles that. could
have been successfully used with a third functiona.l
unit is a1 least a G.G9% of all executed cycles. Actiia.lly,
if a third functional unit was added we could probably
reduce more cycles of execution, but. this will remain
a topic for future research for the moment.

As we have also noted in the previous sections, the
pressure 011 the FU2 unit is very high due 1.0 the fa.ct
that FU1 is not able to execute mult,iplica.t.ions, divi-
sions and square roots. This can easily be seen in rows
11 to 14, where the need for a.nother functional u i i i t , of
type FU2 stalls the machine in 15.46% of a.ll executed
cycles. It is also true t1ia.t rows 12 and 14 have also the
load chain conflict! but they represent. only a. 3.69% of
the executed cycles.

BDNA
ARCSD
FL052
TRFD
SPEC77

7 Spill code

When the compiler is allocating regist,ers in a basic
block file it may find itself withoutb any free register i n
which to store a result. In this sit.ua.t.ion, thc compiler
has to insert special instructions, c.alled spill code that .
will save a certain register to memory (spill it). t,o be
able to reuse that register to store some ot,her va.lue.
The contents of the register spilled to memory will be
reloaded at some 1a.ter point in time to some other
free register. This spill loa.d/store iiistructions are not.
part of the coinputakioii but are a a overhead intro-
duced by the compiler due to the limited size of the
register file. However, spill c.ode is a. nega.t.ivr cont>ri-
bution to performance only if it. actually increases the
minimum number of chimes requircd to execute ine
iteration of the loop where it. appea.rs. If a. loop wit.h
spill is highly compute hound, it means tha.t. there will
most probably be maay cycles where the LD/ST unit
will be free to be used by the spill instruc.t.ions, and
they will effectively be hidden by the coinput.a.tion in-
structions. 011 the other Iia,nd, if a loop is meinory
bound, every single spill in~truct~ioii will Icngthen itas
initiation interval at least. by vl cycles, where vl will
depend on the length of the vector registers.

If we had an architecture .with infinite regist>ers
there would be no spill code at. all. In this section
we will study the effect of spill code on perforniance.
There has been some previous work on the efT~cts of
spill code in vector processors. In [O] it. is suggested
that the effect of spill code is not. very hacl i n vect.or

original nospill
cycles' speedup
1053.7 1.49
223G.8 1.07

72G.3 1.07
875.4 1

2472.1 1.01

processors because spill can be hidden in t h e cycles
where the load/store unit is not busy. Nevertheless,
in [9] the architecture under study was a CRAY-Y-
MP which has the same number of functional units as
our a.rchitecture but has 3 paths to ineinory (two load
busses mid one store bus) and thus has many more
opportunities to hide those spill instructions. We be-
lieve that. in our single bus architecture the effect of
spill code will he significa.nt1y higher.

To study the effects of spill on performance we have
niodified the simulator so that each time it finds a vec-
tor spill instruction it ignores it. This way we are cre-
ating the effect. of having an infinite register file, and
we a.re eliminating the negative effect of spill code. We
run the programs a.gain with this version of the simu-
lator and we obtain the tot.al number of cycles needed
to execute them. We can see the effect of spill code by
comparing this results with the results obtained with
t.he origina.1 si mulator.

Table 4 presents the results. First column in .ta-
ble 4 is the total nuniber of cycles (in millions) needed
to esecute the original program and the second col-
unin is the speedup obtained when eliininating all the
spill from the programs. We can see the great variance
in speedup betsweeii the different prograins. BDIA hap
pens to have extremely long basic blocks, coming from
very long loops, and' the compiler h a s to introduce a
lot. of spill code to esecute them with only eight reg-
isters. We 1ia.w measured the niean size of BDNA
vect.or basic blocks a.nd it's close to 120 instructions
(not. including the scalar instructions). From this table
we can conclude that in a single bus architecture spill
code has a. nega.tive effect, 011 performance, especially
for t,liose programs that have a high register pressure.

8 Coiiclusioiis and Future Work

In this paper we have presented quantitative mea-
surements of the execution of vector code produced by
a commercial coinpiler on a vector supercomputer. We
have chosen a subset. of the Perfect Club benchmarks

and executed it using a simulator. Results show t1ia.t
the fraction of time executing vector co~nput~atioas is
not as high as one would expect (around 50%). We
have presented data about the fraction of utilization
of the vector functional units and found that only in
roughly 5% of the cycles are all vector coiiipritatioii
units busy, while there is a 25% percent of cycles where
only one of the two arithmetic units is working a.nd the
last 50% of the cycles are either load/store cycles or
purely scalar cycles. The major limitation that pre-
vents full utilization of the machine is the single bus to
memory architecture, which even in the case of adding
infinite number of functional units and ports, would
be responsible for stalling the machine in 33.9% of all.
executed cycles. Relaked with the iiieniory problems
is the inability to cha.in loads and computa.tion. This
restriction is respoiisible for stalling the " d i e in a.
combined 25% of all executed cycles. Additiona.1 limi-
tations found were the lack of a second functional uni t ,
able to perform multiplication and division (15.46% of
executed cycles) and liiiiit>ed nurnber of ports 1.0 ac-
cess the vector register file (14.86%)). We have a.lso
seen that vector spill code is not negligible and t1ia.t. it
produces an average slowdowii of 8%).

The tools we have developed for this study are cur-
rently being used to evaluate solutions to tlie problems
reported in this paper. We are currently looking a.t. dif-
ferent alternatives to solve the spill problem, as well
as reducing the number of conflicts in the vector regis-
ter file ports. We are also investigatiiig new fiinctiona.1
unit schemes to reduce t>he number of lost cycles.

References

Convex Press, Richa.rdson, T e s ~ , U S A . COi\r-
V E X Architecture R.efereiice hfait.iral (C Series),
sixth edition, April 1992.

Zarka Cvetanovic and Dileep B1ianda.rka.r. C1ia.r-
acterization of APLIJA AXP performance tising
TP and SPEC workloads. In,terii.ntio,rnl Syi11.-

posium on Conzpuier Architecttire, pa.ges 6U--iO,
1994.

Roger Espasa and Xa.vier Ma.rtorel1. Dixie:
a trace generation system for the C3480.
Technical Report CEPBA-RR-94-08, Universi t a t .
Polit2cnica. de Cakalunya., 1994.

M. Berry et al. The, Perfect. Club beuc1ima.rks:
Effective performa.iice evaluat.ion of siipercompu t-
ers. The Intematioirnl Joiininl o j Superconipaier
Applications, pages 5-40, Fall 1989.

[5] John L. Hennessy and David A. Patterson.
Computer Architecture A Quaniiiative Approach.
M0rga.n Kaufinann Publishers, 1990.

[GI Kai Hwaiig and Zhiwei Xu. Multipipeline net-
working for compound vector processing. IEEE
Tmrrsactioias o s Computers, 37(l), January 1988.

[7] Norman P. Jouppi. The nonuniform distribution
of instruction-level and machine parallelism and
its effect. 011 performance. I E E E Transaciions on
Computers,, 38(12):1645-1658,1989.

IS] Norman P. Jouppi and David W. Wall. Available
instruction level parallelism for superscalar and
superpipelined machines. ASPL OS, pages 272-
282. 1989.

[9] Corinna. G . Lee. Code Optimiters and Register
0rgaitixtzort.s f o r Vector Architectures. PhD the-
sis, University of California a t Berkeley, 1992.

[lo] Larry McMahan and Ruby Lee. Pathlengths
of SPEC benchmarks for PA-RISC, MIPS, and
S PARC . CO.I!fPCOhr, 1993.

[l l] R,. M . Russell. The CRAY-1 computer system.
Coii~itrerricntioiis of the ACM, 21(1):63-72, Jan-
uary 1978.

[12] Micha.el D. Smith, Mike Johnson, and Mark A.
Horowtiz. Limits on multiple instruction issue.
ASPLOS, pages 290-302,1989.

113; Sriram Vajapeyam. Instruction-Level Character-
izniioir of the Cray Y-MP processor. PhD thesis,
University of Wisconsin, Madison, 1991.

[14 Srira.111 \!a,ja.peyam and Wei-Chung Hsu. On the
instructio~i-level characteristics of scalar code in
highly-~ect~orixed scientific applications. IEEE
Micro 2.5: pages 20-28, 1992.

[Is] Sriram Vajapeyam, Gurindar S. Sohi, and Wei-
Chung Hsu. An empirical study of the Cray Y-
MP processor iising the PERFECT Club bench-
marks. Iirtevnational Symposium on Computer
Architect,irre, pa.ges 170-179, 1991.

[16] Da.vid M'. Wall. Limits of iiistruction level paral-
lelism. ASPLOS, pages 17G-188, 1991.

[17] H . Zima and B. Cllapinan. Supercompilers for
parallel a1t.d irector computers. ACM Press, New
York, NY, 1991.

461

