
24

Embedded systems have specific
constraints and characteristics, such as real-
time constraints, low-power requirements,
and severe cost limitations that differentiate
them from general-purpose systems. Proces-
sors for embedded systems typically are sim-
ple, with short pipelines and in-order
execution. When they are used for real-time
applications, they also lack unpredictable
components, such as caches and branch pre-
dictors. These bare processors provide pre-
dictable performance, and hence they can
guarantee worst-case execution times of real-
time applications. However, embedded sys-
tems must host increasingly complex
applications and have increasingly higher data
throughput rates. To meet these growing
demands, future embedded processors will
resemble current high-performance proces-
sors. For example, the new Philips TriMedia
already has a deep pipeline, L1 and L2 caches,
and branch prediction.1 But because of their
unpredictable components, such processors
have unpredictable execution times, so they

are difficult to use in real-time applications.
Because embedded processors must be low in

cost, obtaining as much performance as possi-
ble from each resource is desirable. Hence, a
viable option is a simultaneous multithreading
(SMT) processor, which shares many resources
between several threads for a good cost-perfor-
mance tradeoff.2 An SMT design adapts a
superscalar processor’s front end to fetch from
several threads, while the back end is shared.
An instruction fetch policy decides from which
threads to fetch instructions, thereby implicit-
ly determining how internal processor
resources, such as rename registers or instruc-
tion queue (IQ) entries, are allocated to threads.
SMT processors have high throughput but,
because of uncontrolled interference between
threads, poor performance predictability—
even worse than that of superscalar processors
running only one thread. This poses problems
for the suitability of high-performance SMT
processors in real-time systems.

Other resource-sharing approaches include
multiprocessors, which share only the higher

Francisco J. Cazorla
Alex Ramirez
Mateo Valero

Polytechnic University of

Catalonia

Peter M.W.
Knijnenburg

Leiden University

Rizos Sakellariou
University of Manchester

Enrique Fernández
University of Las Palmas

de Gran Canaria

ALTHOUGH SIMULTANEOUS MULTITHREADING PROCESSORS PROVIDE A GOOD

COST-PERFORMANCE TRADEOFF, THEY EXHIBIT UNPREDICTABLE

PERFORMANCE IN REAL-TIME APPLICATIONS. THE AUTHORS PRESENT A

RESOURCE MANAGEMENT SCHEME THAT ELIMINATES A MAJOR CAUSE OF

PERFORMANCE UNPREDICTABILITY IN SMTS, MAKING THEM SUITABLE FOR

MANY TYPES OF EMBEDDED SYSTEMS.

QOS FOR HIGH-PERFORMANCE
SMT PROCESSORS IN
EMBEDDED SYSTEMS

Published by the IEEE Computer Society 0272-1732/04/$20.00 © 2004 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/148621361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

levels of the memory hierarchy. In multi-
processors, different threads are assigned to
separate processors, so their performance is
more predictable. However, since they share
few resources between threads, their cost-
performance ratio is worse than that of SMTs.
Also, in a limited form of SMT, different
threads share only a few resources, typically the
instruction and data caches and the function-
al units, but each thread has its own instruction
pipeline. An example is the Meta.2 This solu-
tion has better performance predictability for
the individual threads but underuses many
resources, thus reducing total throughput.
Hence, the cost-performance tradeoff is worse
than that of a full-fledged SMT.

The key problem with using SMTs in
embedded real-time systems is that in the tra-
ditional collaboration between the operating
system (OS) and the SMT, the OS only
assembles the workload, whereas the proces-
sor decides how to execute this workload.
Hence, part of the OS’s traditional responsi-
bility has “disappeared” into the processor.
Consequently, the OS cannot guarantee time
constraints on the execution of a thread if that
thread must run concurrently with other
threads, even when the processor has sufficient
resources to guarantee time constraints. To
handle this situation, the SMT processor
should be able to guarantee specific require-
ments set by the OS. This implies a tight
interaction between the OS and the proces-
sor, so that the OS can exercise more control
over how threads execute and how they share
the processor’s internal resources.

We propose a new collaboration in which
the SMT processor provides “levers” with
which the OS can fine-tune the processor’s
internal operation as needed to meet certain
requirements. In particular, we propose a
resource management mechanism to accom-
plish one such requirement: the ability to exe-
cute one thread in a workload at a given
percentage of its full speed. This amounts to
eliminating the SMT’s performance unpre-
dictability and thus simplifies the use of
out-of-order, high-performance SMTs in
embedded environments.

OS-SMT collaboration
Most approaches to thread prioritization

focus on workload selection or provide limit-

ed control of performance predictability
because a given thread’s instructions per cycle
(IPC) still depends on the workload the thread
executes in.3,4 In contrast, our new approach
allows one thread to run at an arbitrary per-
centage of its full speed by dynamically allo-
cating enough resources to accomplish this.
In addition, the other threads in the workload
receive many resources that the high-priority
thread temporarily doesn’t need and can reach
significant speed.

The common characteristic of many cur-
rent fetch policies is that they attempt to
improve established metrics such as through-
put or fairness.5 There are several optimiza-
tions that improve on these basic policies, such
as stalling, flushing, or reducing the fetch pri-
ority of threads experiencing L2 misses,6-9 or
reducing the effects of misspeculation by
stalling on hard-to-predict branches.10 How-
ever, the problem with all the fetch policies
proposed so far is that the performance of a
certain thread in a workload is unpredictable.
For example, Figure 1 shows the IPC of the
benchmark gzip when it runs alone (full
speed) and when it runs with other threads
using two different fetch policies, icount11 and
flush.9 The icount policy first fetches from
threads with the fewest instructions in the
processor’s front end. The flush policy stalls a
thread upon an L2 miss and flushes the
thread’s instructions from the pipeline. Gzip’s
IPC varies considerably, depending on the
fetch policy and characteristics of the other
threads running in the workload. Thus, if we
want to provide performance predictability
on an SMT processor, current resource man-
agement approaches using instruction fetch
policies are no longer adequate. Hence, we
need a new paradigm for resource manage-
ment in SMT processors.

In this article, we approach performance pre-
dictability as a quality of service requirement.
The inspiration for this approach came from
QoS in networks that gives processes guarantees
about bandwidth, throughput, or other ser-
vices. Analogously, SMT resources can be
reserved for threads guaranteeing a required
performance. In an SMT processor, each thread
reaches a certain percentage of the speed it
would achieve running alone on the machine.
Hence, for a given workload consisting of N
applications and a given instruction fetch

25JULY–AUGUST 2004

policy, these fractions give rise to a point in an
N-dimensional space that we call the QoS
space.

For example, Figure 2a shows the QoS space
for two threads, eon and twolf. In this figure,
both the x- and y-axes span from 0 to 100 per-
cent. We used two fetch policies: icount and
flush++.7 Theoretically, it is possible to reach
any point in the shaded area below these points
by judiciously inserting empty fetch cycles.
Hence, we call this area the reachable part of
the space for the given fetch policies. In Figure
2b, the dashed curve indicates points that intu-
itively we could reach using a fetch and resource
allocation policy. Obviously, by assigning all
fetch slots and resources to one thread, we reach
100 percent of its full speed. Conversely, it is
impossible to reach 100 percent of each appli-
cation’s speed at the same time because the
applications must share resources.

In Figure 2b, the QoS space representation
also provides an easy way to visualize other
metrics used in the literature. Points of equal
weighted speedup4 lie on the line perpendic-
ular to the diagonal from bottom left to top
right. The figure shows the point with maxi-
mum weighted speedup in the reachable part.
Similarly, points of equal throughput lie on a
single line whose slope is determined by the
ratio of the full speed of each thread (in this
case, –1.2/3.8 = –0.32). The figure indicates
such a point with maximum throughput.
Finally, points near the bottom left to top
right diagonal indicate fairness, in the sense
that each thread achieves the same proportion
of its full speed. For all these cases, maximum

values lie on the lines farthest from the origin.
Each point or area in the reachable part

entails application execution properties: max-
imum throughput; fairness; real-time con-
straints; power requirements; a guarantee, say
70 percent, of a given thread’s full speed; or
any combination of these properties. In other
words, each point or area in the space repre-
sents a solution to a QoS requirement. It is
the OS’s responsibility to select a workload
and a QoS requirement, and it is the proces-
sor’s responsibility to provide the levers that
enable the OS to pose such requirements.

To implement the levers, we consider the
SMT as having a collection of sharable resources
and add mechanisms to control how the
resources are shared. These mechanisms include
prioritizing instruction fetch for particular
threads, reserving parts of the resources such as
instruction or load/store queue entries, priori-
tizing issue, and so forth. In our view, there
should be a tight interaction between the OS
and the processor. Figure 3 depicts this rela-
tionship. When levers are present, the OS,
knowing the needs of applications, can exploit
the levers to navigate through the QoS space.
Parameterizing this solution makes it generally
usable and enables it to provide opportunities
for fine-tuning the machine for arbitrary work-
loads and QoS requirements. For example, we
have shown elsewhere that directly controlling
resource allocation can improve the total
throughput and fairness of SMT processors.6

To satisfy a wide range of varying QoS
requirements, it is essential that instruction
fetch policies return points that maximize the

26

QUALITY OF SERVICE FOR SMT PROCESSORS

IEEE MICRO

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

gz
ip

 IP
C

gzip full
speed

One thread Two threads Three threads Four threads

gzip
eon

gzip
art

gzip gcc
wupwise

gzip
twolf mcf

gzip gap
apsi crafty

gzip mcf
equake swim

Icount
Flush

Figure 1. Instructions per cycle of gzip benchmark with different workloads and fetch policies.

space’s reachable part. This means that we
must find policies that can sacrifice some IPC
from one application for better IPC in anoth-
er. Whether this tradeoff is acceptable depends
on the circumstances. Rather than consider-
ing maximum throughput or fairness the ulti-
mate objective, it is important that we provide
as much flexibility as possible with a mecha-
nism that dynamically adjusts resource allo-
cation to achieve a given OS requirement.
This mechanism reverses the procedure of
current mechanisms that behave the same way
throughout the execution of a program and
define only a single point in the QoS space.
The new mechanism is dynamic and attempts
to converge to a point or area in the QoS space
that represents a QoS requirement.

QoS through resource allocation
There are two ways to influence a thread’s

IPC. One is a static assignment of resources
to threads. In contrast, we propose a novel
dynamic mechanism that meets a QoS
requirement that a specific job runs at a given
percentage of its full speed—that is, of the
IPC the job would have if it ran on the
machine by itself. As an example, we show
that we can achieve 70 percent of gzip’s full
speed as it runs in several workloads, while
maximizing the throughput of the other
threads in the workload.

Methodology
We assume a fairly standard, four-context

SMT configuration. Our machine can fetch
up to eight instructions from up to two threads
each cycle. It has six integer, three floating-
point, and four load/store functional units and
32-entry-deep integer, load/store, and float-
ing-point IQs. There are 320 physical regis-
ters shared between all threads. Each thread
has its own 256-entry reorder buffer. We use a
two-level cache hierarchy with separate 32-
Kbyte, four-way, set associative data and
instruction caches and a unified 512-Kbyte,
eight-way L2 cache. Latency from L1 to L2 is
10 cycles, and from L2 to memory 100 cycles.
We use a trace-driven SMT simulator, based
on the SMTsim simulator.11 It consists of our
own front end, which reads a trace file, and a
modified version of SMTsim’s back end.

We collected traces of the most representa-
tive 300-million-instruction segment of each

27JULY–AUGUST 2004

(a)

100IPC = 3.8

IPC = 1.2

90

80

70

60

50

40

30

20

10

0

eo
n

re
la

tiv
e

IP
C

 (
%

)

0 20 40 60 80 100

twolf relative IPC (%)

(b)

100IPC = 3.8

IPC = 1.2

80

60

40

20

0

eo
n

re
la

tiv
e

IP
C

 (
%

)

0 20 40 60 80 100

twolf relative IPC (%)

Icount
Flush++

fairness line

Maximum
throughput

Maximum
weighted speedup

Maximum
throughput on
fairness line

Maximum
throughput
line.
Slope = −0.32

Maximum
weighted
speedup line.
Slope = −1

Reachable part

Reachable part

Figure 2. QoS space for three standard fetch policies (a); important QoS
points and areas (b).

SMT
processor

Workload Requirements
OS fine
tuning Feedback

Operating system

Figure 3. Interaction between OS and architecture to
enforce QoS requirements.

program, following an idea presented by Sher-
wood et al.12 The workloads consisted of pro-
grams from the SPEC2000 integer and fp
benchmark suites. We executed each program
using the reference input set and compiled
each program using the DEC Alpha AXP-
21264 C/C++ and Fortran compilers using
static libraries and a high level of optimization.

In our experiment, we considered workloads
of two, three, and four threads, the same work-
loads we used in Figure 1. We considered two
types of threads: memory-bounded (MB) and
threads with high instruction-level parallelism
(ILP). MB threads exhibit a high number of
L2 misses and have a low full speed. ILP
threads exhibit good memory behavior and
have a high full speed. We focus on L2 cache
behavior because it is the main source of
unpredictability in SMT processors.13 In par-
ticular, a MB thread tends to clog the pipeline
after an L2 miss because many instructions are
waiting for the miss to resolve. This can severe-
ly degrade other threads’ performance because
they cannot use resources occupied by the
stalled MB thread. In contrast, instructions in
ILP threads tend to issue and execute quickly,
so they do not occupy resources for a long
time. We always use the ILP thread gzip as the
high-priority thread (HPT). The low-priority
threads (LPTs) are either all ILP or all MB.
They are denoted In and Mn, respectively,
where n is the number of LPTs. For example,

I1 denotes the workload consisting of gzip and
eon, and M2 denotes the workload consisting
of gzip, mcf, and twolf.

Static resource allocation
Next, we statically assign resources, namely

instruction and load/store queue entries, to the
HPT. Figure 4a shows the resulting QoS space
for varying numbers of these resources (from
0 to the maximum value 32 in steps of 4), and
Figure 4b shows the resulting IPC values. The
HPT is gzip and the LPT is bzip2. Figure 4a
also shows the points reached by the round-
robin (RR), icount, and flush instruction fetch
policies for comparison. The graph in Figure
4a is not symmetrical because we fetch and
issue instructions from the HPT gzip first.

By controlling resource allocation, we can
navigate through the QoS space and bias a
workload’s execution to a prioritized thread.
Figure 4b shows that, in this case, total
throughput remains almost unchanged. Only
when we reserve no entries or all entries for the
HPT does throughput degrade, because only
one thread is running. For the other cases, both
threads are ILP and don’t occupy IQ entries
for a long time. Hence, prioritizing the fetch
and issue of the HPT delivers almost full speed
quickly but, on the other hand, degrades the
LPT quickly. This shows that if the OS could
control the resource allocation of an SMT, it
would be ready to handle QoS requirements

28

QUALITY OF SERVICE FOR SMT PROCESSORS

IEEE MICRO

0
8
16
24
32
Icount

4
12
20
28
RR
Flush

100 7

6

5

4

3

2

1

0

75

50

25

0

gz
ip

 (
H

P
T

)
re

la
tiv

e
IP

C

IP
C

0 25 50

bzip2 (LPT) relative IPC IQ entries reserved for HPT

75 100 0 4 8 12 16 20 24 28 32

HPT IPC
LPTs IPC
Throughput

(a) (b)

Figure 4. QoS space resulting from static resource allocation (a); IPC values and overall throughput for different resource
allocations (b).

and real-time constraints. Next, we propose a
mechanism by which the OS can accomplish
one of such real-time constraints: executing a
thread, at least, at a given IPC.

Dynamic resource allocation
Our dynamic allocation mechanism con-

trols a designated HPT’s execution speed by
dynamically allocating resources to it. The
mechanism ensures that the HPT runs at a tar-
get IPC that represents x percent of the IPC it
achieves running alone on the machine. At the
same time, the mechanism tries to maximize
the throughput of the remaining LPTs as well.

Underlying our mechanism is the observa-
tion that in order to realize x percent of a given
job’s overall IPC, it is sufficient to realize x per-
cent of the maximum possible IPC at every
instant throughout the job’s execution. We
employ two alternating phases13 in order to
accomplish this objective:

• Sampling. The HPT receives all shared
resources, and LPTs temporarily stop. As
a result, we obtain an estimate of the
HPT’s full speed, called the local IPC. To
counteract LPTs interference, this phase
is divided into a warm-up phase of
50,000 cycles and an actual sampling
phase of 10,000 cycles.

• Tuning. Our mechanism first determines
a local target IPC, which is the local IPC
computed in the last sampling period
multiplied by the target percentage given
by the OS. Next, we tune resource allo-
cation every 15,000 cycles for a period of
1.2 million cycles. Thus, each tuning
phase consists of 80 subphases of 15,000
cycles each. At the end of each subphase,
the IPC of the HPT is computed. If this
IPC value is lower than the target IPC
given by the OS, the HPT receives more
resources. Otherwise, the number of
resources dedicated to the HPT decreas-
es. The number of resources is architec-
ture dependent and should be established
experimentally for a particular processor.

The resources we consider are rename reg-
isters, instruction and load/store queue
entries, and ways in the eight-way set associa-
tive L2 cache. Implementing our mechanism
requires counters in the front end to track the

number of IQ entries and registers used by
each thread. This is no more complex than
icount, which tracks IQ entries. We only add
counters for the registers, which are incre-
mented in the decode stage and decremented
when instructions commit. In addition,
reserving L2 cache ways requires small changes
in the least recently used (LRU) cache replace-
ment policy. We can compute the IPC in each
tuning subphase with just a few instructions,
and, if no cache access is required, this com-
putation is not time consuming.

Figure 5 shows by an example that our QoS
mechanism works. In this example, HPT gzip
must run at 70 percent of its full speed. The y-
axis denotes the achieved percentage of gzip’s
full speed. The x-axis denotes the achieved
average speed of the LPTs as a percentage of
their full speed, the speed they’d obtain if they
ran as a single workload using flush. The flush
and icount policies are scattered through the
QoS space and almost always reach percent-
ages for gzip much lower than 70 percent. In
contrast, our QoS mechanism always achieves
70 percent of gzip’s full speed or slightly more.
This shows that we can isolate gzip’s execution
from the other threads and hence enable real-
time constraints on an SMT processor. In
another article, we show that we can reach
arbitrary percentages with the same accuracy.13

Figure 6 shows total IPC values, demonstrat-
ing that our mechanism is efficient and does not
starve the LPTs. The LPTs’ names and workload
designations are listed on the x-axis. For this

29JULY–AUGUST 2004

100

80

60

40

20

0

gz
ip

 (
H

P
T

)
fu

ll
sp

ee
d

(%
)

0 20 40 60

LPTs relative IPC (%)

80 100

I1_QoS I2_QoS

I3_QoS M1_QoS

M2_QoS M3_QoS

I1_icount I2_icount

I3_icount M1_icount

M2_icount M3_icount

I1_flush I2_flush

I3_flush M1_flush

M2_flush M3_flush

Figure 5. QoS space resulting from dynamic resource allocation.

example, the total throughput of our QoS mech-
anism does not degrade, on average, compared
with either icount or flush. This shows that our
mechanism reserves resources only when the
HPT requires them and leaves enough room for
the LPTs to make significant progress. The LPTs’
throughput is lower with our QoS mechanism
than with the other policies because we must
reserve many resources for the HPT to reach its
high target percentage, even if it temporarily has
no use for them. With icount and flush, the
LPTs would have used these resources. More-
over, during the sampling periods, the LPTs stop,
further degrading their throughput. Our pri-
mary goal, however, is to reach 70 percent of
gzip’s full speed, and to do so for workloads I1
through I3, we must pay a price. On the other
hand, for workloads M1 and M3, our approach
gives the LPTs (which are MB) less opportuni-
ty to clog the pipeline after a load that has a long
latency due to an L2 cache miss. As a result,
because the required speed of the HPT (which
is ILP) is higher than it is in either icount or
flush, the total throughput increases.

Our approach is a first step toward the use
of high-performance SMT processors in

future real-time systems. In future work, we
extend the present approach to support sev-
eral high priority threads. We will also incor-

porate other types of QoS requirements, like
minimizing power consumption, in the pre-
sent framework. MICRO

Acknowledgements
This work has been supported by the Min-

istry of Science and Technology of Spain under
contract TIC-2001-0995-C02-01, and grant
FP-2001-2653 (Francisco J. Cazorla), the
HiPEAC European Network of Excellence, an
Intel fellowship, and the EC IST program
(contract HPRI-CT-2001-00135). The
authors would like to thank Oliverio J. San-
tana, Ayose Falcón, and Fernando Latorre for
their work in the simulation tool.

References
1. T.R. Halfhill, “Philips Powers Up for Video,”

Microprocessor Report, no. 168, Nov. 3, 2003.
2. M. Levy, “Multithreaded Technologies Dis-

closed at MPF,” Microprocessor Report, no.
168, Nov. 10, 2003.

3. R. Jain, C.J. Hughes, and S.V. Adve, “Soft
Real-Time Scheduling on Simultaneous Mul-
tithreaded Processors,” Proc. 23rd Real-
Time Systems Symp. (RTSS-23), IEEE Press,
2002, pp. 134-145.

4. A. Snavely, D.M. Tullsen, and G. Voelker,
“Symbiotic Job Scheduling with Priorities for
a Simultaneous Multithreaded Processor,”

30

QUALITY OF SERVICE FOR SMT PROCESSORS

IEEE MICRO

6

5

4

3

2

1

0

To
ta

l I
P

C

eon

(I1) (I2) (I3) (M1) (M2) (M3)

gcc wupwise gap apsi
crafty

art mcf twolf mcf equake
swim

QoS
Icount
Flush
HPT gzip IPC

Figure 6. Effectiveness of our QoS mechanism: total throughput for various workloads, using our mecha-
nism and using standard fetch policies icount and flush.

Proc. 9th Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems (ASPLOS-9), ACM Press, 2000, pp.
234-244.

5. K. Luo, J. Gummaraju, and M. Franklin, “Bal-
ancing Throughput and Fairness in SMT
Processors,” Proc. IEEE Int’l. Symp. Perfor-
mance Analysis of Systems and Software
(ISPASS 01), IEEE Press, 2001, pp. 164-171.

6. F.J. Cazorla et al., “Approaching a Smart
Sharing of Resources in SMT Processors,”
Proc. Workshop Complexity-Effective
Design (WCED), June 2004; http://www.
ece.rochester.edu/~albonesi/wced04/.

7. F.J. Cazorla et al., “Improving Memory
Latency Aware Fetch Policies for SMT
Processors,” Proc. 5th Int’l Symp. High-
Performance Computing (ISHPC-5), LNCS
Press, 2003, pp. 70-85.

8. F.J. Cazorla et al., “DCache Warn: An I-Fetch
Policy to Increase SMT Efficiency,” Proc. 18th
Int’l Parallel and Distributed Processing Symp.
(IPDPS 04), IEEE CS Press, 2004, pp. 74-83.

9. D. Tullsen and J. Brown, “Handling Long-
Latency Loads in a Simultaneous Multi-
threaded Processor,” Proc. 34th Int’l Symp.
Microarchitecture (Micro-34), IEEE CS Press,
2001, pp. 318-327.

10. P.M.W. Knijnenburg et al., “Branch classifi-
cation for SMT fetch gating,” 6th Workshop
in Multi-Threaded Execution, Architecture and
Compilation (MTEAC-6), 2002, pp. 49-56.

11. D. Tullsen et al., “Exploiting choice: Instruc-
tion fetch and issue on an implementable
simultaneous multithreading processor”.
Proc. 23rd Int’l Symp. on Computer Archi-
tecture (ISCA-23), 1996, pp. 191-202.

12. T. Sherwood, E. Perelman, and B. Calder,
“Basic Block Distribution Analysis to Find
Periodic Behavior and Simulation Points in
Applications,” Proc. 10th Int’l Conf. Paral-
lel Architectures and Compilation Tech-
niques (PACT 01), IEEE CS Press, 2001,
pp. 3-14.

13. F.J. Cazorla et al., “Predictable Performance
in SMT Processors,” Proc. 1st Conf. Com-
puting Frontiers (CF 04), ACM Press, 2004,
pp. 433-443.

Francisco J. Cazorla is a doctoral candidate at
the Polytechnic University of Catalonia
(UPC), Spain. His research interests include
instruction fetch policies for SMT architec-

tures. Cazorla has BS and MS degrees in com-
puter science from the University of Las Pal-
mas de Gran Canaria, Spain.

Alex Ramirez is an assistant professor in the
Computer Architecture Department at UPC.
His research interests include profile-guided
compiler optimization, code layout optimiza-
tion, and design and implementation of super-
scalar and multithreaded processors. Ramirez
has a PhD in computer science from UPC.

Mateo Valero is a professor in the Computer
Architecture Department at UPC. His research
interests include high-performance architec-
tures. Valero has a PhD in telecomunications
from UPC. He is an IEEE Fellow, an Intel Dis-
tinguished Research Fellow, and an ACM Fel-
low. Since 1994 he is a foundational member
of the Royal Spanish Academy of Engineering.

Peter M.W. Knijnenburg is an assistant pro-
fessor of computer science at the Leiden Insti-
tute of Advanced Computer Science, Leiden
University, The Netherlands. His research
interests include adaptive and iterative com-
pilation, interaction of compilers and
computer architectures, and computer archi-
tecture. He has a PhD in computer science
from Utrecht University.

Rizos Sakellariou is a lecturer in computer sci-
ence at the Department of Computer Science,
University of Manchester, UK. His research
interests include high-performance, parallel
and distributed systems. He has a PhD in com-
puter science from University of Manchester.

Enrique Fernández is a professor in the Com-
puter Science and Systems Department at the
University of Las Palmas de Gran Canaria
(ULPGC). His research interests include
high-performance architectures. He has an
industrial engineering degree from the Poly-
technic University of Las Palmas and a PhD in
computer science from ULPGC.

Direct questions and comments about this
article to Francisco J. Cazorla, Computer
Architecture Dept., Polytechnic University of
Catalonia, C/Jordi Girona 1-3, Edifici D-6,
Campus Nord 08034 Barcelona, Spain,
fcazorla@ac.upc.es.

31JULY–AUGUST 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003100200046006500620072007500610072007900200032003000300034002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

