FINAL PROJECT

THE STUDY OF FRICTION COEFFICIENT, BRAKE PADS TEMPERATURE AND ADDHESIVE RESISTANCE ON BRAKE PADS USING FLY ASH COAL

Submitted as a Partial Fulfillment of the Requirements for GettingBachelor Degree of Engineering in Automotive Department

> Arranged by: Agus Syafaruddin

> > D 200 090 210

MECHANICAL ENGINEERING DEPARTMENT INTERNATIONAL PROGRAM IN AUTOMOTIVE/MOTORCYCLE ENGINEERING MUHAMMADIYAH UNIVERSITY OF SURAKARTA November 2014

DECLARATION OF RESEACH AUTHENTICITY

I assert verily that the research entitles.

THE STUDY OF FRICTION COEFFICIENT, BRAKE PADS TEMPERATURE AND ADDHESIVE RESISTANCE ON BRAKE PADS USING FLY ASH COAL

That made to fulfill some of requirement to get Bachelor Degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta, as far I know is not a plagiarism of research that has been published, except the information source that to solve the problem.

Surakarta, October 2014 Researcher, Agus Syafaruddin

APPROVAL

The Final Project entitles "The Study of Friction Coefficient, Brake Pads Temperature and Addhesive Resistance on Brake Pads Using Fly Ash Coal" has been approved by Supervisors and authorized by Secretary of International Program as partial fulfillment of the requirements for getting the Bachelor Degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta.

Written by:

Name: Agus SyafaruddinNIM: D 200 090 210Has approved and legalized on:

Day Date

Supervisor I

(Supriyono, ST, MT, Ph.D)

(Wijianto, ST, M. Eng. Sc)

(Wijianto, ST, M. Eng. Sc)

VALIDATION

The Final Project entitles "The Study of Friction Coefficient, Brake Pads Temperature and Addhesive Resistance on Brake Pads Using Fly Ash Coal" has been approved by Supervisors and authorized by Secretary of International Program as partial fulfillment of the requirements for getting the Bachelor Degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta.

Written by:

Name	: Ag	us Syafaruddin	
NIM	: D 2	200 090 210	
Has appro	ved and	legalized on:	
Day	:		
Date	:		
Team of E	xamine	rs :	1.
Chair Per	son	: Supriyono, ST, MT, Ph.D.	app
Member 1		: Wijianto, ST, M. Eng. Sc.	11-0
Member 2	:	: Ir. Pramuko Ilmu Purbo P, M.	T. Jany

Dean, Dean, (Ir: Sri Sunarjono, M.T,Ph.D).

Admitted by,

Head of Department,

(Tri Widodo Besar R. M. Sc. Ph.D)

THE STUDY OF FRICTION COEFFICIENT, BRAKE PADS TEMPERATURE AND ADDHESIVE RESISTANCE ON BRAKE PADS USING FLY ASH COAL

Agus Syafaruddin

Automotive Engineering Department of Muhammadiyah University of Surakarta Jln. A. Yani Pabelan, Kartasura, Tromol Pos I, Telp. (0271) 715448 Surakarta <u>Email: Udinchizha@ymail.com</u>

ABSTRACT

Abstract:

Brake pads are one component of a motor vehicle which is used to slow or stop the vehicle. When at high-speed vehicle brake has a very important role. The purpose of this study was to investigate the influence of the environment in the form of spraying with water, sea water, and oil to the friction coefficient of the brake pads and investigate adhesion resistance resulting of a break from the manufacture of brake pads Fly Ash compared with Honda Genuine Parts brake.

This research was conducted by mixing ingredients brake pads according to a predetermined composition, press the brake pads with a load of 3 tons for 30 minutes, then heated to a temperature of 120 °C for 30 minutes. The method is performed in testing the friction coefficient is based on the standard ASTM C1028. To determine the value of the resistance of glue or adhesive shear loads due to the brake pads using the ASTM D3737 standard, in place on the die according to ASTM standard D905. Analysis is conducted after got data of testing result.

The results showed that the friction coefficient brake Honda Genuine Parts at 0.64 μ while the friction coefficient brake Fly Ash of 0.60 μ . But the brake condition given spraying water, sea water, and oil brake Fly Ash is better than Honda Genuine Parts. From the test results and the calculation of shear strength indicates that the brake pads Fly Ash not better than the Honda Genuine Parts brake. This is evidenced from the results of testing the shear strength of Honda Genuine Parts brake at 3.552×10^6 (N/m²) while the brake Fly Ash at 2.471×10^6 (N/m²).

Keywords: Brake pads, fly ash coal, friction coefficient

ΜΟΤΤΟ

Success is not measured by wealth, success is an achievement that we want.

To get a success, your courage must be greater than your fear.

Do whatever you like, be consistent, and success will come naturally.

Intelligence is not the determinant of success, but hard work is the real determinant of your success.

Wise man talks because they have something to say. Fool man talks because they have to say something.

If you cannot be a smart person, so be a good person.

"Verily, never will Allah change the condition of a people until they change it (their state of goodness)"

(QS. Ar-Ra'du:11)

"Nay, seek (Allah's) help with patient perseverance and prayer: It is indeed hard, except to those who bring a lowly spirit" (QS. Al-Baqarah: 45)

DEDICATION

This Research paper is dedicated to:

Allah SWT,

Thanks for the best everything that you have given for me and thanks for you love that always make me to never give up to do the best. I believe that you will always give me the best for everything.

My beloved (Alm) Mom and (Alm) Dad,

Thanks for your prayer, love, support and affection.

You always give me happiness but often I made you disappointed.

I am sorry and I promise to give you the best the future.

My Brother and My Sister

Thanks for your supports.

It is make me strong to get something more and more.

As long as I know you, you make me to be better and adult.

All my friends (Automotive Engineering '09, etc)

Thanks for your supports and love me.

ACKNOWLEDGEMENT

Assalamu'alaikum Warohmatullahi Wabarokatuh.

Praise be to Allah, The Great Rabb, the Most Gentle and Beneficiant, because of His blessing and guidance, the research paper can be finished.

The Final Project entitles "Design of Proportional Integral Derivative (PID) Controller for Bus Suspension System Using Matlab Software" can be finished because of helping and supporting from other people. Here, the writer most grateful to the following people for their comments and suggestions, especially to:

- 1. **Ir. Sri Sunarjono, M.T, Ph.D.**, as the Dean of Engineering Faculty of Muhammadiyah University of Surakarta.
- 2. **Tri Widodo Besar R., M. Sc. Ph.D.**, as the Head of Mechanical Engineering Department of Muhammadiyah University of Surakarta.
- 3. **Wijianto, ST. M.Eng. Sc.**, as Secretary of International Program of Muhammadiyah University of Surakarta.
- 4. **Supriyono, ST, MT, Ph.D.,** as the first supervisor who has given many ooportunities to the writer to develop the project.
- 5. **Wijianto, ST. M.Eng. Sc.**, as the second supervisor who has given corrections and suggestions wisely.
- 6. **All lecturers** of Automotive Engineering Department for the guidance during the study in the university.
- 7. My beloved (Alm) **Mother and Father** who always give enormous pray, biggest support, care affection and great attention.

- 8. **My Brothers and Sister,** thanks for has been a Friend of our family and giving health attention.
- My best friend Automotive Engineering 2009 thanks for your laugh, funnies experiences that used to do the experiment.
- 10. Head of Mechanical Laboratory of Gajah Mada University, thanks a lot for the place and equipments that used to dothe experiment.
- 11. All students of **International Program Automotive Department**, thank a lot for the best suggestion and advice, hope we can the best engineer.
- 12. My friends and staffs in **PESMA K.H. Mas Mansur**. Thanks for accompany him during has study.
- 13. Those who cannot be mentioned one by one, writer wants to say his thank and appreciation to all of them.

The writer realizes that this research paper is far from being perfect, so the writer sincerely welcomes any constructive comment, criticism, and suggestin from anyone.

Wassalamu'alaikum Warohmatullahi Wabarokatuh

Surakarta, October 2014

Writer,

Agus Syafaruddin

CONTENTS

Page

TITLE PAGE	i
DECLARATION OF RESEACH AUTHENTICITY	ii
APPROVAL	iii
VALIDATION	iv
ABSTRACT	v
МОТТО	vii
DEDICATION	viii
ACKNOWLEDGEMENT	ix
CONTENTS	xi
LIST OF FIGURES	xv
LIST OF TABLES	xviii
CHAPTER I: INTRODUCTION	1
1.1 Background	1
1.2 Objective of Research	2

1.3	Advan	tages of Research	3
1.4	Problei	m Limitation	4
CHAPTER	II: LIT	ERATURE OF REVIEW	5
2.1	Literat	tures Review	5
2.2	Basic	Theory	6
	2.2.1	Brake	6
	2.2.2	Brake Pads	12
	2.2.3	Sintering	14
	2.2.4	Composite	15
	2.2.5	Fly Ash Coal	19
	2.2.6	Epoxy Resin	21
	2.2.7	MgO (Magnesium Oxide)	23
2.3	Testin	g Method	24
	2.3.1	Friction	24
	2.3.2	Friction coefficient	25
	2.3.3	Glue Strength Testing	28

CHAPTER	III: RESEARCH METHODOLOGY	32
3.1	Flow Chart of Research	32
3.2	Research Ways	34
3.3	Materials and Tools	35
	3.3.1 Materials of Brake Shoes	35
	3.3.2 Tools	39
3.4	Testing Installation	44
	3.4.1 Friction Test Equipment Brake Canvas	44
	3.4.2 Pressure Test Equipment	45
3.5	Research Site	48
3.6	Test Specimens	48
3.7	Research Procedure	49
CHAPTER	IV: RESULT AND ANALYSIS	55
4.1	Result of Testing Analysis	55
	4.1.1 Results Testing of Friction	55
	4.1.1 Results Testing of Friction	55

	4.1.2	Results of Temperature brake pads	57
	4.1.3	Results of Strength Glue Slide	60
4.2	Analys	sis	62
CHAPTER	V: CO	NCLUSION AND SUGGESTION	64
Conclusion			64
Suggestion	S		65
REFERENC	CES		
APENDIX			

LIST OF FIGURE

Page

Figure 2.1 Construction Drum Brakes	7
Figure 2.2 Drum brake type single leading shoe	9
Figure 2.3 Drum brake type two leading shoes	10
Figure 2.4 Disc brake	11
Figure 2.5 Brake pads	13
Figure 2.6 Fibrous Composite	18
Figure 2.7 Particulate Composite	18
Figure 2.8 Laminated Composites	19
Figure 2.9 waste fly ash / carbon powder	19
Figure 2.10 Type of damage to the brake drum	30
Figure 3.1 Flow Chart of Research	33
Figure 3.2 Fly ash coal	36
Figure 3.3 Epoxy resin and Hardener	37
Figure 3.4 Magnesium Oxide (MgO)	37

Figure 3.5 Brake Shoes Plate	38
Figure 3.6 Dextone Epoxy and Hardener	38
Figure 3.7 Dies	39
Figure 3.8 Oven	40
Figure 3.9 Press Tool	40
Figure 3.10 Vernier Caliper	41
Figure 3.11 Non-contact Infrared Thermometer	41
Figure 3.12 Expense / Ballast	42
Figure 3.13 Rope	42
Figure 3.14 Scales	43
Figure 3.15 Motorcycle Honda Supra X 125	44
Figure 3.16 Pressure Machines Test TARNO GROCKI	45
Figure 3.17 Jig test press brake drums	46
Figure 3.18 Jig test press brake drum isometric	46
Figure 3.19 Jig test press brake drum looks a top, front and right	47
Figure 3.20 Brake canvas made from Fly Ash	48

Figure 3.21 Brake canvas AHM	49		
Figure 3.22 coefficient of friction testing scheme	51		
Figure 4.1 Relationship between Graphs with given a type Brake	Pads		
Friction Coefficient Effect against Environmental	56		
Figure 4.2 Relationship between Graphs with Given Brake Pads	type		
Environmental Effect of Temperature Brake Pads	58		
Figure 4.3 Relationship between Graphs with Given Brake Pads	type		
Environmental Effect of Temperature Brake Pads	59		
Figure 4.4 Relationships between Graph Results Type Brake Pads	Slide		
against Strength Glue			

LIST OF TABLE

Table 4.1 The Results of Calculations of Friction Coefficient	55
Table 4.2 The results of the study average brake pads	57
Table 4.3 The Research Strength Glue Slide	60