FINAL PROJECT

ANALYSIS AND MANUFACTURING COMPOSITE FOR BRAKE SHOES OF MOTORCYCLE HONDA SUPRA X 125 USING FLY ASH COAL AND MAGNESIUM OXIDE WITH EPOXY MATRIX

Submitted as a Partial fulfillment of The Requirements for Getting Bachelor

Degree of Engineering in Mechanical Engineering Department

Arranged by:

BUKHORI ISAK ARIFIN

D200090208

MECHANICAL ENGINEERING DEPT. INTERNATIONAL PROGRAM IN
AUTOMOTIVE/ MOTORCYCLE ENGINEERING
UNIVERSITAS MUHAMMADIYAH SURAKARTA
2013

DECLARATION OF RESEARCH AUTHENTICITY

I assert verily that the research entitles:

ANALYSIS AND MANUFACTURING COMPOSITE FOR BRAKE SHOES OF MOTORCYCLE HONDA SUPRA X 125 CC USING FLY ASH COAL AND MAGNESIUM OXIDE

WITH EPOXY MATRIX

That made to fulfill some of requirements to get Bachelor Degree of Engineering in Mechanical Engineering Department of Universitas Muhammadiyah Surakarta, as far as I know is not plagiarism of a research that has been published, except the information source that to solve the problems.

Surakarta, July 2013

Researcher

Bukhori Isak Arifin

APPROVAL

The Final Project entitles "Analysis and Manufacturing Composite for Brake Shoes of Motorcycle Honda Supra X 125 cc using Fly Ash Coal and Magnesium Oxide with Epoxy Matrix" has been approved by supervisors for getting the Bachelor Degree of Engineering in Mechanical Engineering Department of Universitas Muhammadiyah Surakarta.

Written by:

Name

: Bukhori !sak Arifin

NIM

: D200 090 208

Has approved and legalized on:

Day

.

Date

Approved to be examined by Supervisor Team:

Supervisor I

Supervisor II

Dr. Supriyono

Wijianto, ST., M.Eng. Sc.

Addmitted by:

Secretary of International Program

Wijianto, ST., M.Eng. Sc.

VALIDATION

The Final Project entitles "Analysis and Manufacturing Composite for Brake Shoes of Motorcycle Honda Supra X 125 cc using Fly Ash Coal and Magnesium Oxide with Epoxy Matrix" has been approved by supervisors for getting the Bachelor Degree of Engineering in Mechanical Engineering Department of Universitas Muhammadiyah Surakarta.

Written by:

Name

: Bukhori Isak Arifin

NIM

: D200 090 208

Has approved and legalized on :

Day

Date

Team of Examiners :

Chair Person: Dr. Supriyono

Secretary

: Wijianto, ST. M.Eng. Sc.

Member

: Ir. Pramuko Ilmu Purbo Putro, MT.

Dean,

Agus Riyanto, MT.

Head of Department

Ir. Sartono Putro, MT.

DEDICATION

This Research paper is dedicated to:

Allah SWT,

Thanks for the best everything that Allah SWT given for me and thanks for love that always make me to never give up to do the best. I belive that Allah SWT will always give me the best for everything.

My beloved Mother (Siti Winarni, S.Pd.) and Father (Priyono, S.Pd., M.Pd.) Thanks for your prayer, love, care, support and affection. You always give me happiness but often I made you disappointed. I am sorry and promise to give you the best in the future.

My Siblings (Wachidah Yuniartika, S.Kep. Ners.) Thanks for your supports. It is make me strong to get something better.

All my family,

Thanks for your prayer, love, support and everthing.

All my frieds,

Thanks for your supports and love me.

MOTTO

"Whoever	comes	out to	study,	meaning	he	was	in	the	way	of
Allah until	returnin	ıg."								

(An - Nahl :43)

"Verily, with every difficulty there is relief."

(Al Insyirah: 6)

"I came, my guidance, my exams, my revision and I won!"

ACKNOWLEDGMENT

Assalamu' alaikum Warahmatullahi Wabarakatuh

Alhamdulillahirobbil'alamin. Praise and gratitude be to Allah SWT, the lord of world, because of His blessing and guidance The Research Paper can be done. Blessing and salutation be upon our prophet and messenger, who have guidance from the darkness to lightness.

The Final Project entitles entitles "Analysis and Manufacturing Composite for Brake Shoes of Motorcycle Honda Supra X 125 cc using Fly Ash Coal and Magnesium Oxide with Epoxy Matrix" can be done because of helping and supporting from other people. Therefore, writer sincerely would like to say thanks and appreciation to:

- Ir. Agus Riyanto, MT., as the Dean of Engineering Faculty of Universitas Muhammadiyah Surakarta.
- 2. Ir. Sartono Putro, MT., as the Head of Mechanical Engineering of Universitas Muhammadiyah Surakarta.
- Dr. Supriyono, as Director of International Program and the first supervisor who has given the researcher guidance, suggestions, and correction wisely.
- 4. Wijianto, ST. M.Eng. Sc, as the second supervisor who has given the researcher inspiration, spirit, advices, suggestions, and corrections to the paper completion.
- 5. All lecture of Automotive Engineering Department for guidance during the study in the university.

6. His beloved Mother and Father who always give praying, biggest

support, advises, care, affection and great attention.

7. His all funnies friends, thanks for your laugh, funnies experiences

and supports, I will never forget you.

8. All students of International program of Automotive Department,

thanks a lot for the best suggestion and advice, hope we can the

best engineer.

9. Those who cannot be mentioned one by one, writer wants to say

his thank and appreciation to all of them.

The writer realizes that this research paper is far from being perfect,

so the writer sincerely welcomes any constructive comment, criticism, and

suggestion from anyone.

Wassalamu'alaikum Warahmatullahi Wabarokatuh.

Surakarta, July 2013

The Writter

Bukhori Isak Arifin

TABLE OF CONTENT

IIILE	I
DECLARATION OF RESEARCH AUTHENTICITY	ii
APPROVAL	iii
VALIDATION	iv
DEDICATION	٧
MOTTO	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENT	Х
LIST OF FIGURES	xiii
LIST OF TABLES	xvii
ABSTRACT	xviii
CHAPTER I : INTRODUCTION	
1.1 Background	1
1.2 Problem Formulation	3
1.3 Problem Limitation	3
1.4 Objectives	5
1.5 Benefit	5
1.6 Writing Systematic	6

CHAPTER II: REVIEW OF LITERATURE

2.1	Review of Literature			
2.2	Basic Theory	11		
	2.2.1 Composite	8		
	2.2.2 MgO (Magnesium Oxide)	12		
	2.2.3 Carbon Powder Fly Ash	13		
	2.2.4 Epoxy Resin	14		
	2.2.5 Braking Characteristic	15		
	2.2.6 Compaction Process	16		
	2.2.7 Sintering Process	17		
	2.2.8 Hardness	18		
	2.2.9 Wearness	22		
	2.2.10 Macro Stucture Test	28		
CHAPTER	III : RESEARCH METHODOLOGY			
3.1	Flow Chart of Research	29		
3.2	Research Ways	30		
3.3	Tools and Material	31		
	3.3.1 Material of Brake Shoes	31		
	3.3.2 Tools	34		
	3.3.3 Testing Instalation	37		
3.4	Research Site	40		
3.5	Testing Procedure	40		
3.6	Data Analysis	46		
3.8	Difficulties	46		

CHAPTER IV: RESULT AND DISCUSSION

4.1 Result of Test Analysis	48			
4.1.1 Hardness Test	48			
4.1.2 Macro Photograph Result	52			
4.1.3 Oghosi Wear Test	55			
4.1.4 Braking Distance Test	57			
4.2 Discussion	59			
CHAPTER V : CONCLUSION AND SUGGESTION				
5.1 Conclusion	61			
5.2 Suggesstion	62			
REFERENCES				
APPENDIX	64			

LIST OF FIGURES

	Page
Figure 2.1 Fabrious Composite	10
Figure 2.2 Particulate Composite	11
Figure 2.3 Laminated Composites	11
Figure 2.4 Compaction Process	17
Figure 2.5 Brinell Hardness Test	20
Figure 2.6 Oghosi Wear Testing Method	23
Figure 2.7 Schematic Illustration of Adhesive Wear	24
Figure 2.8 Adhesive Wear Method	25
Figure 2.9 Abrasive Wear Method	26
Figure 2.10 Fatique Wear Method	26
Figure 2.11 Corosive Wear Mechanism	27
Figure 2.12 Erotion Wear Mechanism	28
Figure 3.1 Flow Chart Research	29
Figure 3.2 Fly Ash Coal	32
Figure 3.3 Epoxy Resin and Hardener	32
Figure 3.4 Magnesium Oxide (MgO)	33
Figure 3.5 Brake Shoes Plate	33
Figure 3.6 Dexton Epoxy and Hardener	34
Figure 3.7 Digital Scales	34
Figure 3.8 Dies	35
Figure 3.9 Press Tool	35

Figure 3.10 Oven	36
Figure 3.11 Vernier Caliper	36
Figure 3.12 Injection	36
Figure 3.14 Infrared Thermometer	37
Figure 3.15 Brinell Tool	37
Figure 3.16 Microscope	38
Figure 3.17 Oghosi Type OAT-U	38
Figure 3.18 Motorcycle Honda Supra X 125	39
Figure 3.19 Load Selection Button	41
Figure 3.20 Stereo Zoom Microscopic	44
Figure 3.21 Load of Brakes	45
Figure 4.1 Macro Photograph of Honda Genuine Parts	48
Figure 4.2 Macro Photograph of Variation 1	48
Figure 4.3 Macro Photograph of Variation 2	49
Figure 4.4 Macro Photograph of Variation 3	49

ANALYSIS AND MANUFACTURING COMPOSITE FOR BRAKE SHOES OF MOTORCYCLE HONDA SUPRA X 125 CC USING FLY ASH COAL, AND MAGNESIUM OXIDE WITH EPOXY MATRIX

Bukhori Isak Arifin

Automotive/ Motorcycle Engineering Department

Muhamadiyah University of Surakarta

Jl. Ahmad Yani Tromol Pos 1 Pabelan Kartasura 57102

Email: <u>bukhori14@yahoo.co.id</u>

ABSTRACT

Brake is one component of a motor vehicle that serves to slow or stop, this is very important in supporting aspects of driving safety. The study aims to investigate the influence of use fly ash coal and Magnesium oxide (MgO) with epoxy matrix as a material brake shoes.

The research was conducted in two phases, namely the field of testing and measuring brake wear in the lab. Metrology using a profile projector, in addition to the Brinell hardness testing is also performed to determine the hardness of each specimens of brake shoes before and after testing higher speeds with the same braking load time, braking distance and the wear rate also increased.

From brinell hardness test results generated that hardness resulting from brake shoes variation has a value of 6.4 BHN and brake shoes variation 2 has a value of 14.8 BHN more great than brake shoes Honda Genuine Parts has a value of 12.3, while for Variation 3 has a value of 10.2 BHN and Variation 4 has value 8.9 BHN is smaller than Honda Genuine Parts brake shoes.

Keywords: Fly ash coal, magnesium oxide (MgO), brake non-asbestos.