FINAL PROJECT

COMPARISON ANALYSIS OF ENGINE PERFOMANCE BETWEEN CONVENTIONAL ENGINE (CARBURETOR) SYSTEM AND ELECTRONIC FUEL INJECTION (EFI) ENGINE SYSTEM OF TOYOTA KIJANG SERIES 7K-E

RESEARCH PAPER

Submitted as a Partial Fulfillment of the Requirements for Getting the Bachelor Degree of Engineering in Automotive Department

> Arranged by: SAFRI GUNAWAN D700 070 005

MECHANICAL ENGINEERING DEPARTMENT INTERNATIONAL PROGRAM IN AUTOMOTIVE/MOTORCYCLE ENGINEERING MUHAMMADIYAH UNIVERSITY OF SURAKARTA January 2011

DECLARATION OF RESEARCH AUTHENTICITY

I assert verily that the research entitles:

COMPARISON ANALYSIS OF ENGINE PERFOMANCE BETWEEN CONVENTIONAL ENGINE (CARBURETOR) AND ELECTRONIC FUEL INJECTION (EFI) ENGINE OF TOYOTA KIJANG SERIES 7K-E

That made to fulfill some of requirements to get bachelor degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta, as far as I know is not a plagiarism of a research that has been published, except the information source that used to solve the problem.

> Surakarta, December 2010 Researcher,

Safri Gunawan

VALIDATION SHEET

The Final Project entitles "Comparison Analysis of Engine Perfomance between Conventional Engine (Carburetor) and Electronic Fuel Injection (EFI) Engine of Toyota Kijang Series 7K-E" has been Approved by supervisors for getting the Bachelor Degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta.

Written by:

Name	:	Safri Gunawan
NIM		D700 070 005

Has approved and legalized on: Day : Date :

Approved to be examined by Consultant Team:

Supervisor I

Supervisor II

(Ir. Tri Tjahjono, MT.)

(Dr. Supriyono)

VALIDATION PAGE

The Final Project entitles "Comparison Analysis of Engine Perfomance between Conventional Engine (Carburetor) and Electronic Fuel Injection (EFI) Engine of Toyota Kijang Series 7K-E" has been defended in front of examiners team and approved as a partial fulfillment of the requirements for getting the Bachelor Degree of Engineering in Automotive Department of Muhammadiyah University of Surakarta.

Written by:

Name	:	Safri Gunawan
NIM	:	D700 070 005

Has approved and legalized on:

1

Day

Date

Member 2

Team of Examiners:

Chair Person	: Ir. Tri Tjahjono,	MT.
--------------	---------------------	-----

Member 1 : Dr. Supriyono

: Ir. Sartono Putro, MT.

Head of Department,

(Ir. Sartono Putro, MT.)

iv

SUMMARY

Safri Gunawan. D700 070 005. Comparison Analysis of Engine Perfomance between Conventional Engine (Carburetor) System and Electronic Fuel Injection (Efi) Engine System of Toyota Kijang Series 7k-E. Research Paper. Muhammadiyah University of Surakarta. 2010.

The research is presented to get the number of comparison for torque, power, and specific fuel consumption between conventional engine (carburetor) system and electronic fuel injection (EFI) engine system. The method that used to get the data is by using the experiment method. The research is begun by preparing tools and materials those will be used for making test bed. After that is assembling the system on the engine alternately after getting the data including voltage, current, engine rotation (rpm), and fuel consumption ($m\ell$). Based on the experiment and parameter those have been experimented, the engine performance on the conventional system is lower at the high engine rotation than electronic fuel injection system, and when the engine rotation is low, the engine performance of the conventional system is higher than electronic fuel injection system, and the specific fuel consumption on the conventional engine system at high engine rotation is more wastefully than electronic fuel injection system, but at low engine rotation, the conventional engine system is more economical than electronic fuel injection system.

Key words: torque, power, and specific fuel consumption.

ACKNOWLEDGMENT

Assalamu'alaikum Wr. Wb.

Alhamdulillahirobbil'alamin. Praise and gratitude be to ALLAH SWT, the lord of universe, because of his blessing and guidance the research paper can be done.

The Final Project entitles "Comparison Analysis of Engine Perfomance between Conventional Engine (Carburetor) And Electronic Fuel Injection (EFI) Engine of Toyota Kijang Series 7K-E" can be done because of helping and supporting from other people. Therefore, writer sincerely would like to say thank and appreciation to:

- Ir. Agus Riyanto, MT., as Dean of Mechanical Engineering of Muhammadiyah University of Surakarta.
- Ir. Sartono Putro, MT., as the Head of Mechanical Engineering of Muhammadiyah University of Surakarta.
- Ir. Tri Tjahjono, MT., as the first supervisor who has given the researcher inspiration, spirit, advice, suggestion, and correction to the paper completion.
- 4. Dr. Supriyono, as the second supervisor who has given the researcher guidance, suggestion, and correction wisely.

vi

- All lectures of Automotive Engineering Department for the guidance during the study in the university.
- His parents "daddy and mommy" for affection, love, prayer, wishes, and guidance.
- 7. His older brother "Adi" for suggestion and advice.
- 8. His families, who have given spirit.
- 9. His best friend "Ngison and Tri", we are the champion.
- 10. Mas Fani Nur Fadhilah Ichsan, thanks a lot for your best motivation.
- 11. Students of SMKN 1 Percut Sei Tuan "Imron and Rizqi", Students of SMK Mandiri Binaan SMKN 1 Percut Sei Tuan "Agus and Iqbal", and SMKN1 Kutalim Baru "Wira", thanks a lot for your helpfulness.
- 12. Head of Automotive Department of SMKN1 Percut Sei Tuan and SMK PAB 6 Medan-Marelan, thank you so much for the place and equipments that used to do the experiment.
- 13. All students of International program of Automotive Department, thanks a lot for the best suggestion and advice, hope we can the best engineer.
- 14. Those who cannot be mentioned one by one, writer wants to say his thank and appreciation to all of them.

The writer realizes that this research paper is far from being perfect, so the writer sincerely welcomes any constructive comment, criticism, and suggestion from anyone.

Wassalamualaikum Wr. Wb.

Surakarta, February 2010 The writer

ΜΟΤΤΟ

٢ يُسْرًا ٱلْعُسْرِ مَعَ فَإِنَّ.

For indeed, with hardship [will] be ease

أَلْعُسْرِ مَعَ إِنَّ.

Indeed, with hardship [will be] ease

(Q.S. Al-Insyirah 5-6)

And remember! Your Lord caused to be declared (publicly): "if ye are grateful, I will add more (favours) unto you; but if ye show ingratitude, truly My punishment is terrible indeed." (Q.S. Ibrahim: 7)

CONTENT

	Page
TITLE	i
DECLARATION OF RESEARCH AUTHENTICITY	ii
VALIDATION SHEET	iii
VALIDATION PAGE	iv
SUMMARY	v
ACKNOWLEDGMENT	vi
ΜΟΤΤΟ	viii
CONTENT	іх
LIST OF FIGURES	xiii
LIST OF TABLES	xvi
CHAPTER I: INTRODUCTION	1
1.1 Background of the Study	1
1.2 Objective of the Study	2
1.3 Benefit of the Study	3
1.4 Scope Area of the Study	3
CHAPTER II: LITERATURE REVIEW	4
2.1. Literature Study	4
2.2. Fundamental Theory	6
2.2.1 Combustion Engine	6
2.2.2 Engine Performance	7

a. Torque	8
b. Power	9
c. Specific Fuel Consumption (SFC)	9
2.2.3 Engine Efficiencies	11
1. Thermal Efficiency	11
2. Volumetric Efficiency	12
CHAPTER III: RESEARCH METHODOLOGY	13
3.1 Experiment Devices System	13
3.1.1 Electronic Fuel Injection System	13
a. Basic Operation System	15
b. How Electronic Fuel Injection Works	16
1) Air Induction System Overview	18
a. Air Induction Component System	20
2) Fuel Delivery System Overview	25
a. Fuel Delivery Component System	26
3) Ignition systems Overview	33
3.1.2 Conventional System (Carburetor) Overview	34
1) Carburetors System	34
a. Fixed-Venturi Carburetor System	35
b. Variable-Venturi Carburetor System	40
2) Conventional Ignition System	41
3.1.3 AC Generator	42

3.2 Flow Chart of Research	43
3.3 Tools and Materials	44
a. Toyota engine series 7K-E with specification	44
b. Dynamometer Unit	44
c. Tachometer	50
d. Timing Light	51
e. Filler Gauge	51
f. Battery	52
g. Graduated Glass (Burret)	52
h. Stopwatch	52
i. Multimeter	53
3.4 Experiment Installation	53
3.5 Sample	54
a. Electronic Fuel Injection Engine System	54
b. Conventional Engine System (Carburetor)	55
3.6 Experiment Location	55
3.7 Experiment Procedures	55
3.8 Data Analysis Layout	57
3.9 Difficulties	57
CHAPTER IV: RESULT AND DISCUSSION	58
4.1 Experiment Result and Sample Analysis	58
4.2 Data Analysis	59

4.2.1 Calculation of Power	59
4.2.2 Calculation of Torque	62
4.2.3 Calculation of Specific Fuel Consumption	63
4.3 Discussion	70
4.3.1 Torque	70
4.3.2 Power	71
4.3.3 Specific Fuel Consumption	74
CHAPTER V: CONCLUSION AND SUGGESTION	76
5.1 Conclusion	76
5.2 Suggestion	76
BIBLIOGRAPHY	77
APPENDIX	

LIST OF FIGURES

	Page
Figure 2.1. Components of Basic Combustion	7
Figure 2.2. Correlation among Torque, Power, and SFC to Engine Rotation	10
Figure 3.1. Engine Control Diagram	14
Figure 3.2. Sketch of Air Induction	19
Figure 3.3. Throttle Body	21
Figure 3.4. Intake Air Chamber and Manifold	23
Figure 3.5. Manifold Absolute Pressure Sensor	24
Figure 3.6. Sketches of Fuel Delivery and Injection Control	26
Figure 3.7. Fuel Pump	27
Figure 3.8. Fuel Delivery Pipe	28
Figure 3.9. Fuel Pump Electrical Controls and Opening Relay Diagram	28
Figure 3.10. Pulsation Damper	29
Figure 3.11. Fuel Pump Diagram	30
Figure 3.12. Fuel Filter	31
Figure 3.13. Fuel Pressure Regulator	31
Figure 3.14. Fuel Injectors	32
Figure 3.15. Air Assist System	33
Figure 3.16. Digital Ignition System	34
Figure 3.17. Float System	35

Figure 3.18. Idle System	36
Figure 3.19. Low-speed System in Operation	37
Figure 3.20. Vacuum Operated Power System	38
Figure 2.21. Operation of the Acceleration-pump System	39
Figure 3.22. Choke Valve Closed	40
Figure 3.23. Round-piston Variable Venturi Carburetor	41
Figure 3.24. Conventional Ignition System Diagram	41
Figure 3.25. Flow Chart of Research	43
Figure 3.26. Toyota Engine series 7K-E	44
Figure 3.27. Load Installation Panel	45
Figure 3.28. Load Installation Panel Diagram	46
Figure 3.29. Mounting of Generator to Engine	47
Figure 3.30. Tachometer	50
Figure 3.31. Timing Light	51
Figure 3.32. Filler Gauge	51
Figure 3.33. Battery	52
Figure 3.34. Graduated Glass (Burret)	52
Figure 3.35. Stopwatch	52
Figure 3.36. Multimeter	53
Figure 3.37. Electronic Fuel Injection Engine Mechanism	54
Figure 3.38. Conventional Engine (Carburetor) Mechanism	55
Figure 4.1 Chart of torque comparison between electronic fuel injection system and conventional system	70

Figure 4.2 Chart of p injection sys	ower comparison between electronic fuel stem and conventional system	71
Figure 4.3. Chart for cor	nparison of torque and power	72
Figure 4.4. Chart of Intensity	Engine Performance at Simulated Solar	73
Figure 4.5. Chart of between conventior	Specific Fuel Consumption comparisons electronic fuel injection system and al system	74
Figure 4.6. Chart of Fue	I Consumption at Propeller Power	75

LIST OF TABLES

	Page
Table 1. Data for Conventional Engine (Carburetor) Experiment	58
Table 2. Data of Electronic Fuel Injection (EFI) Engine Experiment	59
Table 3. Numbers of Electricity Power on Conventional Engine Experiment	60
Table 4. Number of Electricity Power on Electronic Fuel Injection Engine Experiment	61
Table 5. Number of Torque on Conventional Engine Experiment	62
Table 6. Number of Torque on Conventional Engine Experiment	63
Table 7. Fuel consumption rate number of conventional engine system	64
Table 8. Fuel consumption rate number of EFI engine system	65
Table 9. SFC of Conventional Engine System	66
Table 10. SFC of EFI Engine System	67
Table 11. The Engine Performance for Conventional Engine System	68
Table 12. The Engine Performance for EFI Engine System	69