
 
 

 
 

___________________________________ 
This is not the published version of the article / Þetta er ekki útgefna útgáfa greinarinnar 

  

 Author(s)/Höf.: Uzdin, V.M.; Potkina M.N.; Lobanov I.S.; Bessarab P.F.; Jónsson H. 

  

 Title/Titill: Energy surface and lifetime of magnetic skyrmions  

 

 Year/Útgáfuár: 2017   

 

 Version/Útgáfa: Pre-print / óritrýnt handrit 

 

 Please cite the original version: 

 Vinsamlega vísið til útgefnu greinarinnar: 
V.M. Uzdin et al., Energy surface and lifetime of magnetic 
skyrmions, Journal of Magnetism and Magnetic Materials (2017), 
https://doi.org/10.1016/j.jmmm.2017.10.100  

 Rights/Réttur: 2017 Elsevier B.V. All rights reserved. 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Opin visindi

https://core.ac.uk/display/148430047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Energy surface and lifetime of magnetic skyrmions 
Uzdin V.M.1,2, Potkina M.N.2,3, Lobanov I.S.1, Bessarab P.F.1,3, Jónsson H.3,4 

1 University ITMO, St. Petersburg, Russia 
2 SPbGU, St. Petersburg, Russia 

3 University of Iceland, Reykjavík, Iceland 
4 Dept. of Applied Physics, Aalto University, Finland 

 

Abstract 

 

The stability of skyrmions in various environments is estimated by analyzing the 

multidimensional surface describing the energy of the system as a function of the directions of the 

magnetic moments in the system. The energy is given by a Heisenberg-like Hamiltonian that 

includes Dzyaloshinskii-Moriya interaction, anisotropy and external magnetic field. Local minima 

on this surface correspond to the ferromagnetic and skyrmion states. Minimum energy paths (MEP) 

between the minima are calculated using the geodesic nudged elastic band method. The maximum 

energy along an MEP corresponds to a first order saddle point on the energy surface and gives an 

estimate of the activation energy for the magnetic transition, such as creation and annihilation of a 

skyrmion. The pre-exponential factor in the Arrhenius law for the rate, the so-called attempt 

frequency, is estimated within harmonic transition state theory where the eigenvalues of the Hessian 

at the saddle point and the local minima are used to characterize the shape of the energy surface. For 

some degrees of freedom, so-called “zero modes”, the energy of the system remains invariant. They 

need to be treated separately and give rise to temperature dependence of the attempt frequency. As 

an example application of this general theory, the lifetime of a skyrmion in a track of finite width 

for a PdFe overlayer on a Ir(111) substrate is calculated as a function of track width and external 

magnetic field. Also, the effect of non-magnetic impurities is studied. Various MEPs for 

annihilation inside a track, via the boundary of a track and at an impurity are presented. The attempt 

frequency as well as the activation energy has been calculated for each mechanism to estimate the 

transition rate as a function of temperature.  

 

1. Introduction 

 

A quantitative measure of the topological stabilization of skyrmion states is an important 

fundamental problem connecting topology and physics [1]. For a continuum, the difference in 

topological charge of the homogeneous ferromagnetic (FM) and skyrmion states makes skyrmions 

absolutely stable with respect to perturbations such as thermal fluctuations.  In real systems 

magnetic moments are localized on sites of a discrete lattice and topological arguments are strictly 

speaking not valid. Instead the states are separated by a finite activation barrier which becomes 

infinite only in the continuous limit. 

The stability of magnetic skyrmions with respect to thermal fluctuations is a principal issue for 

their application in devices such as magnetic data storage [2]. Stochastic modeling of skyrmion 

dynamics to assess stability proves to be a difficult problem due to the large difference in time 

scales between a typical vibrational period of magnetic moments and the lifetime of a reasonably 

stable skyrmion. Nevertheless, it is this timescale difference that makes it possible to apply 

statistical approaches such as transition state theory (TST) to calculate the lifetime of skyrmions as 

a function of temperature. An Arrhenius law can be obtained for the rates of magnetic transitions 

and within the framework of harmonic TST (HTST) both the activation energy as well as the 

attempt frequency can be calculated with controlled accuracy [3,4]. Analysis of thermal stability 

within HTST is based on an analysis of the multidimensional energy surface of the system, namely 

the identification of the local minima corresponding to stable states and location of minimum 

energy path (MEP) between them. Having the largest statistical weight among neighbor paths, the 

MEP represents the mechanism of the magnetic transition, i.e. most probable magnetic 

configurations during the transition. The basic TST approach based on the following 



approximations: (i) classical dynamics of transition, i.e. the possibility of  quantum mechanical 

tunneling, which becomes dominant mechanism at low enough temperature, is not taken into 

account [5]; (ii) the lifetime is long with respect to spin vibrations so Boltzmann distribution is 

established and maintained; (iii) trajectories that make it to a transition state dividing surface 

separating initial and final states and are at heading from there away from the initial state are 

assumed to end up in the final state, i.e. the transition state is only crossed once. HTST 

approximation additionally presupposes that the energy surface in the relevant region around the 

minima and saddle points can be described by a quadratic function for all degrees of freedom. In 

this case the rate of magnetic transitions can be calculated analytically based on the shape of the 

energy surface near the minima and saddle point. 

A minimum energy path for skyrmion annihilation has been calculated using the GNEB method 

by several workers [6-10]. The activation energy obtained from the first order saddle point in this 

way has been found to be in close agreement with Landau-Lifschitz-Gilbert simulations for 

marginally stable skyrmions where such simulations can be carried out for a sufficiently long time 

interval [7,11], and HTST is expected to work even better for conditions where the skyrmion is 

more stable.  

 

2. Model and method 

 

The energy surface of the system is described by a Heisenberg type Hamiltonian for spins 

arranged on a planar triangular lattice. In addition to the exchange interaction it includes out-of-

plane magnetic anisotropy, Dzyaloshinsky-Moriya interaction and interaction with an external 

magnetic field   
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Here,  Si is the unit vectors specifying the direction of the magnetic moment on site i,   = 3 B is 

the value of magnetic moment which is taken to be the same for all sites. Parameters J and K, and 

vector Dij specify the magnitude of the exchange, anisotropy and Dzyaloshinsky-Moriya 

interactions, resp. Dij is chosen to lie the plane of the lattice perpendicular to the vector connecting 

atomic sites i and j. The magnetic field, B, is taken to be perpendicular to the plane, i.e. points along 

the z-axis of the coordinate system. The dipole-dipole interaction between the magnetic moments is 

taken into account in an effective through the value of the anisotropy parameter K [6,11] but is not 

included explicitly in (1). The summation <i, j> in (1) runs over all pairs of nearest neighbor sites. 

The numerical values of the parameters are taken from [12] and correspond to experimentally 

measured system consisting of a Pd/Fe overlayer on a Ir(111) substrate [1,13]: B = 0.093J, K = 

0.07J, Dij = 0.32 J, J=7 meV. A metastable skyrmionic state exists in this system as well as the  

homogeneous FM ground state. 

     For applications in nano-devices, one possibility is to move skyrmions along on a track. A 

critical issue is the lifetime of the skyrmion especially when the intrinsic size of the skyrmion is 

comparable to the width of the track. To describe such a system, we use periodic boundary 

condition along the track and free boundaries in the perpendicular direction. For the parameters 

chosen above, the typical size of the skyrmion is several nanometers and the simulation cell has to 

include at least 50×50 magnetic moments. The system then has 5000 degrees of freedom. Finding 

the MEP on such a multidimensional energy surface is a non-trivial task but it can be done using 

geodesic nudged elastic band method [7]. The maximum energy along the MEP, Es, which 

corresponds to a saddle point on the energy surface, gives the activation energy of the transition as 

Es -Em, where Em is the energy of the initial state minimum. The activation energy determines the 

exponential dependence of the transition rate on temperature. The pre-exponential factor can be 

estimated within HTST where a harmonic approximation is made for the energy in the vicinity of 

the saddle point and minima 
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Here, the index  corresponds either to the minimum = m) or the saddle point  = sp). The 

coordinates q are the deviations from these points along normal mode vectors. N denotes the 

dimension of the configuration space. The transition state dividing surfaces is taken to be a 

hyperplane going through the saddle point and having normal vector along the unstable mode, ile. 

pointing along the eigenvector corresponding to negative eigenvalue of the Hessian. The component 

of the velocity of system obtained from Landau-Lifshitz equations along the unstable mode at the 

transition state, can be as a linear combination of the normal mode coordinates qi 
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The pre-exponential factor, 0, within HTST then becomes [3] 
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Here Jsp and Jm are Jacobians evaluated at the saddle point and at the minimum, respectively. Eq. 

(4) is obtained when the harmonic approximation (2) is made for all degrees of freedom in the 

system. However, there can be degrees of freedom from which the energy of the system does not 

change, so-called zero-modes. For example, the in-plane movement of a skyrmion as a whole 

corresponds to two zero-modes. For these degrees of freedom expansion (2) fails and integration 

over corresponding variables has to be performed separately. In this case, the variable N in (4) 

should be taken to be the number of non-zero modes and expression (4) for the pre-exponential 

factor contains an addition multiplicative factor 
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where Vsp and Vm  are volumes, and nsp and , nm the numbers of zero modes at the saddle point and 

at the initial state minimum. If spm nn  , the attempt frequency will depend on temperature as 

given by eqn. (5). Knowledge of the activation energy and pre-exponential factor makes it possible 

to estimate the lifetime of the magnetic states at any value of the temperature for which HTST is 

applicable as 0
-1 exp[(Es -Em)/kBT].  

 

3. Skyrmion on a track  

 

For a skyrmion on a track, as in a racetrack memory device, it is important to assess the influence 

of the boundaries of the track on the stability of skyrmion. When the intrinsic the size of the 

skyrmion is comparable to the width of the track, the activation energy for skyrmion annihilation is 

smaller and, correspondingly, the activation energy for nucleation is higher than for a skyrmion in 

an extended domain [8]. For very narrow tracks the skyrmion is not even metastable.  There are two 

different mechanisms for skyrmion nucleation and annihilation in a track, either in the interior or 

through the boundary of the track. The two mechanisms were investigated for wide tracks in refs. 

[9,10] and as function of the track width for a skyrmion in a magnetic field of B=3.75 T in ref. [8]. 

The activation energy for skyrmion annihilation in the interior of the track was found to be higher 

than escape through the boundary in refs. [8,9], whereas in ref. [10] a crossover with respect to the 

external magnetic field was identified: at a large enough magnetic field the activation energy for 

boundary escape became higher than for annihilation in the interior of the track.   

 



 
 

Fig 1  Variation of the activation energy for annihilation of a skyrmion as a function of the width of 

the track, D, for three different values of the magnetic field  

B = 3.75 T in (a),  B = 4.6 T in (b), and B = 6.3 T in (c). Solid red symbols correspond to 

annihilation in the interior of the track, whereas open blue symbols corresponds to escape through  

the boundary. 

 

The activation energy for skyrmion annihilation in the interior of the track and escape through the 

boundary is given as a function of the track width D in Fig. 1 for three different values of the  

magnetic field. For a field of B = 3.75 T, as in ref. [8], escape through the boundary has lower 

activation energy for all values of D. In large magnetic field of B=6.3 T, the opposite order in 

activation energy is obtained, similar to what has been presented in [10]. A crossover takes place at 

in a field of B = 4.6 T, where for a narrow track the activation energy is lower for escape through 

the boundary, but for a wide track (D>27) it is lower for annihilation in the interior of the track. 

 

 
Fig 2.  Variation of the activation energy for nucleation  of  a skyrmion as a function of the width of 

the track, D, for three different values of the magnetic field  

B = 3.75 T in (a), B = 4.6 T in (b) and B = 6.3 T in (c). Solid red symbols correspond to nucleation 

in the interior of the track, whereas open blue symbols correspond to nucleation at the boundary. 

 

The variation of the activation energy for nucleation of a skyrmion with the width of the track is 

opposite to that of annihilation, as shown in Fig. 2. Again, a crossover is observed for a field of B = 

4.6 T, where for a wide track nucleation is lower in the interior of the track (D>27) but is lower for 

formation at the boundary for a narrow track (D<27). 

 



 
 

Fig. 3.Minimum energy paths for the transition from the skyrmion state to the ferromagnetic state in 

the interior (a) and through the boundary (b) of a track. Insets show saddle point configurations of 

the magnetic vectorsat. The width of the track is 30 atomic rows.  

 

To clarify the reason for the crossover shown in Fig. 3, the MEPs for skyrmion annihilation inside 

the track (a) and via the boundary of the track are shown for the three different values of the 

magnetic field. When the magnetic field is increased, the energy of the skyrmion state as compared 

to the FM ground state increases as well as the energy of the transition state, and the skyrmion 

becomes smaller. For annihilation in the interior of the track, the saddle point energy grows slower 

with the magnetic field than for escape through the boundary. As a result, the activation energy for 

escape through the boundary becomes larger than for annihilation in the interior of the track when 

the field reaches a certain value. The evolution of the magnetic configuration along the MEP is 

shown in the supplementary information for annihilation in the interior of the track and in for 

escape through the boundary [14]. 

The lifetime of a skyrmion is determined not only by the activation energy but also by the 

attempt frequency. For annihilation in the interior of the track, both the skyrmion state and the 

saddle point have two zero-modes which correspond to in-plane translation of the magnetic 

configuration. Therefore, according to (5), the attempt frequency does not depend on temperature. 

and the values obtained for the attempt frequency are 2.4·1012 s-1,  2.1·1012 s-1 and 1.2 ·1012 s-1 for 

the mangetic field of 3.75 T, 4.6 T and 6.3 T, respectively. For escape through the boundary, there 

is only one zero-mode at the saddle point corresponding to translation along the border. In this case 

the attempt frequency is proportional to (kBT )1/2. For T=10 K the values obtained are  2.0·1012 s-1, 

0.9·1012 s-1 and 0.4·1012 s-1 for the three values of the magnetic field. 

 

4. Skyrmion at a nonmagnetic impurity 

 

The interaction of a skyrmion with defects can be an important consideration for the stability and 

dynamics. Experiments have indicated that atomic defects can act as nucleation and pinning sites 

for skyrmions [13]. There is a repulsive interaction with non-magnetic defects but if this energy is 

overcome the skyrmion tends to be pinned by such defects [15,16]. It is important to characterize 

the energy surface for a skyrmion near an impurity, and assess the activation energy for the 

attachement and dissociation as well as the effect of the impurity on the lifetime of the skyrmion.  

Non-magnetic defects were modeled by empty sites of the triangular lattice. Figure 4 show the 

MEP for attachment and subsequent annihilation at a defect corresponding to three non-magnetic 



impurity atoms.  The initial state corresponds to a skyrmion placed far from the defect. After 

overcoming a small energy barrier, a lower energy minimum is obtained corresponding to a stable 

state where the defect is near the border of the skyrmion, where the magnetic moments have a large 

in-plane component. This is in agreement with experimental observations [15]. The saddle point on 

the energy surface between these two states determines the activation energy for pinning and 

dissociation of the skyrmion from the defect. 

The second part of the MEP shown in Fig.4 describes the annihilation of the skyrmion at the 

defect. Comparison of the activation energy for annihilation and nucleation with the data depicted in 

Figs. 1a and 2a for large values of D shows that the defect strongly decreases the values of the 

activation energy. Therefore, the calculated MEP shows that such defects decrease the lifetime of 

skyrmions and increase the rate of magnetic transitions. This is in agreement with experimental 

observations [13]. 

     An interesting possibility is to make use of the pinning of a skyrmion by non-magnetic defects to 

create a preferred path for the motion of a skyrmion as it hops from one defect to another. This 

would be an alternative to a track for directing its motion. 

 

 

 
 

Fig. 4  Minimum energy path for the attachment of a skyrmion to a non-magnetic impurity 

consisting of three non-magnetic atoms (the initial state, saddle point and final state marked with 1, 

2 and 3) and for the subsequent annihilation (saddle point and final state marked with 4 and 5). 

Insets show the corresponding orientation of the magnetic moments. The filled circles on the curve 

show location of images in the GNEB calculation. .  
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