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Abstract 

The conformational preference of the cyano group of the 1-cyano-1-silacyclohexane was studied 

experimentally by means of gas-phase electron diffraction (GED) and dynamic nuclear magnetic 

resonance (DNMR) as well as by quantum chemical (QC) calculations applying high-level coupled 

cluster methods as well as DFT methods. According to the GED experiment, the compound exists in 

the gas-phase as a mixture of two conformers possessing the chair conformation of the six-membered 

ring and Cs symmetry while differing in the axial or equatorial position of the substituent (axial = 

84(12) mol %/equatorial = 16(12) mol %) at T = 279(3) K, corresponding to an A value (Gax – Geq) of –

1.0(4) kcal mol–1. Gas-phase CCSD(T) calculations predict an A value of  –0.72 kcal mol–1 at 279 K. In 

contrast, the low-temperature 13C NMR experiments resulted in an axial/equatorial ratio of 35/65 mol 

% at 120 K corresponding to an A value of 0.14 kcal mol–1. An average value for DG#
e®a = 5.6 ± 0.1 

kcal mol–1 was obtained for the temperature range 110-145 K. The dramatically different 

conformational behaviour in the gas-phase (GED) compared to the liquid phase (DNMR) suggests a 

strong solvation effect. According to natural bond orbital analysis the axial conformer of the title 

compound is an example of stabilization of a form, which is not favoured by electrostatic effects and is 

favored predominantly by steric and conjugation effects.  

Keywords 

Silacyclohexane,  Molecular structure, Gas electron diffraction, Dynamic NMR spectroscopy, 

Quantum chemical calculations, Conformational analysis 

1. Introduction 

The stereochemistry of cyclohexane 1 is among the best explored areas in organic stereochemistry.1, 2 

The chair-to-chair inversion in cyclohexane is well understood, the Gibbs free energy of activation for 

the step chair ® half-chair# ® twist is generally accepted to be 10.1–10.5 kcal mol–1. Far fewer 

investigations have been reported on silicon-containing six-membered rings. In silacyclohexane 3 the 

activation energy is about one-half of the value for cyclohexane.3 The conformational equilibrium of a 

large number of monosubstituted cyclohexanes has been studied. Winstein and Holness defined the A-

value as the thermodynamic preference for the equatorial conformation over the axial one (see Scheme 

1 for definition of A).2, 4 A positive A value corresponds to a preference for the equatorial conformer 
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and ΔG = Gax – Geq > 0. All energy differences herein will be presented as (axial – equatorial).  As a 

rule, in monosubstituted cyclohexanes, the substituent prefers the equatorial position of the chair 

conformation. Rare exceptions are substituents having mercury bonded to the cyclohexane ring.2 When 

the substituent becomes bulkier its equatorial preference generally increases. The simplest alkyl 

groups; methyl, ethyl, isopropyl, and t-butyl have been used as examples. This tendency has in a 

classical way been ascribed to a 1,3-syn-diaxial interaction between the substituent in axial position 

and axial hydrogens on the ring carbon atoms in positions 3 and 5.5 Towards the end of the last century, 

accepted A values were 1.74, 1.79, 2.21, and 4.9 kcal mol–1 for Me, Et, i-Pr, and t-Bu, respectively.5-7 

Evidence that question the model of 1,3-syn-diaxial interaction is starting to appear. Wiberg et al. 

revised the A values for the three lightest alkyl groups and reported the values of 1.80, 1.75, and 1.96 

kcal mol–1 for Me, Et, and i-Pr respectively (all values reported with the error limit of ± 0.02 kcal mol–

1) and the authors concluded that there was no evidence of a 1,3-syn-diaxial interaction with the axial 

hydrogens at C(3,5).8 Taddei and Kleinpeter have examined the role of hyperconjugation in substituted 

cyclohexanes.9, 10 Cuevas et al. using atoms in molecules (AIM) analysis concluded that the t-Bu group 

is more stable when it adopts the axial position in cyclohexane but produces destabilization of the 

cyclohexyl ring.11 Clearly the conformational preferences in monosubstituted cyclohexanes are still not 

fully understood. In recent years A values for some monosubstituted derivatives of 3 have been 

reported. Methyl,12-14 phenyl,15 and t-Bu16 substituents were found to have positive A values, albeit 

much lower in magnitude than the corresponding cyclohexane analogues.17, 18 Other substituents like 

CF3
19, 20

 and SiH3
21 were found to prefer the axial position contrary to their cyclohexane analogues. The 

halogens are substituents of special interest being monoatomic with decreasing electronegativity and 

increasing size and polarizability as one goes down the halogen group. The A values of the 

halocyclohexanes have been reported a number of times using different methods.2, 22 In a recent study 

we reported on experimental and theoretical conformational properties of 1-halogenated-1-

silacyclohexanes.23 The calculated conformational energies ΔE (at CCSD(T)/CBS level of theory) are 

shown in Fig. 1. The calculated data are in good agreement with experimental results. The calculations 

were extended to include the halocyclohexanes and At derivatives as well.  
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Figure 1. Conformational energies ΔE = Eax – Eeq for C6H11X and C5H10SiHX.23 Copyright by the ACS 

Publications. Reproduced with permission. 

It is remarkable to see the opposite behavior of the two series. All halocyclohexanes show preference 

for the equatorial position whereas all silacyclohexanes show preference for the axial position of the 

halogen. Within each series the preference (eq or ax) is lowest for the fluoro derivative but 

considerably higher for the heavier halogens.  The cyanide ion is well known to exhibit 

pseudohalogenic character in main group chemistry.24 It is therefore interesting to explore how cyanide 

as a substituent will fit into the results summarized in Fig. 1.  

NMR conformational analysis of cyanocyclohexane 2 applying various methods using variable 

solvents at different temperatures have over the time consistently predicted positive A values in the 

range of 0.12–0.25 kcal mol–1.6, 25-30 Recently Durig et al. published a microwave (MW), Raman, and 

infrared (IR) spectroscopic study on 2.31 From IR spectra in xenon solution the axial conformer was 

found to be more stable by 0.18 ± 0.03 kcal mol–1 (ΔH = – 0.18 ± 0.03 kcal mol–1). The Raman effect 

of the liquid sample resulted in a similar value of 0.13 ± 0.05 kcal mol–1 (ΔH = – 0.13 ± 0.05 kcal mol–

1). MP2(full)/6-311+G(d,p) ab initio calculations predicted the axial form to be more stable by 0.34 

kcal mol–1 (A = –0.34 kcal mol–1), whereas the B3LYP method with the same basis sets predicted the 

equatorial form to be more stable by 0.51 kcal mol–1(A = +0.51 kcal mol–1).31 

In this paper, we report the first synthesis of the title compound 4 and conformational analysis of 4 

using gas-phase electron diffraction (GED) and dynamic NMR (DNMR) experiments as well as 

quantum chemical (QC) calculations of both 2 and 4 and compare the conformational properties of the 

cyanide group in silacyclohexane and cyclohexane.  
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Scheme 1 

 

2. Results 

2.1. Gas electron diffraction 

The structure optimizations of the axial and equatorial conformers of molecule 4 were carried out under 

Cs symmetry. To reduce the number of refined parameters the following assumptions were made on the 

basis of M06-2X32/aug-cc-pVTZ results. Only the geometric parameters of the axial conformer were 

refined and the parameters of the equatorial form were tied to those of the axial conformer using the 

calculated differences. A molecular model and the atom numbering are shown in Fig. 2. For the axial 

conformer the difference between the nearly equal C2–C3 and C3–C4 bond lengths was constrained to 

the calculated value. All C–H bonds, H–C–H angles, and Hax–C2–C3, Heq–C3–C2, Heq–C3–C4, and Hax–

C3–C2 angles are set equal. Angles that define the orientation of the C–H bonds were set to calculated 

values. Mean vibrational amplitudes of atom pairs were refined in five groups corresponding to the peaks 

of the radial distribution curve. The experimental and theoretical f(r) curves along with their differences 

Δf(r) are given in Fig. 3. The final set of structural and vibrational parameter for the axial conformer is 

listed in Table 1 and Table 2. According to the GED data, the axial conformer of 4 has a 84(12) mol % 

abundance in the vapor of 4 at 279(3) K. This value corresponds to an A value of –1.0(4) kcal mol–1 

(Table 1). As can be seen from Table 1, this result is in excellent agreement with DFT calculations using 

the M06-2X functional. Likewise, the molecular structure derived from the GED experiment is very well 

predicted by the M06-2X calculations (Table 1). 

X

X

A = -ΔG° = RTln(K)

Si
R

3: R = H
4: R = CN

R

1: R = H
2: R = CN

a e
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Figure 2. Molecular model and atom numbering of 1-cyano-1-silacyclohexane 4 (axial conformer). 

 

Figure 3. Experimental (dots) and calculated (solid lines) radial distribution curve for the axial conformer 

of 1-cyano-1-silacyclohexane 4 as obtained by gas electron diffraction. Below: difference curve 

(experiment – model). 

 

 

 

	

	

	

Table 1. Main geometrical parameters of the axial conformer of  

1-cyano-1-silacyclohexane (4) molecular model of Cs symmetry.a  
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Notes: a Relative electronic energies at 0 K (ΔE); relative standard enthalpy (ΔH°), relative 

standard free energy (–ΔG°) and mole fraction (χ) in the gas-phase at 298 K at the M06-2X 

/aug-cc-pVTZ level of theory; b Fixed; c Hax-C2-C3 = Heq-C3-C2 = Heq-C3-C4 = Hax-C3-C2. 

R-factor =4.9% was calculated using eq. (1) in the experimental section; Parenthesized 

values are 3σ. 

 M06-2X GED 

ΔE (kcal mol–1) 1.0  

ΔH°298 (kcal mol–1) 1.0  

ΔG°298 (kcal mol–1) 0.9 1.0(4) 

χax % 82 84(12) 

Bond lengths (in Å) re Ra 

Si–C7 1.876 1.875(2) 

Si–C2 1.867 1.866(2) 

C2–C3 1.539 1.541(3) 

C3–C4 1.531 1.533(3) 

(C–H)av 1.090 1.083(4) 

Si–H 1.475 1.475b 

CN 1.149 1.161(5) 

Bond angles (in °)c Ðe Ðh1 

C2–Si–C6 106.3 108.2(1.3) 

C3–C4–C5 114.2 113.5(1.6) 

(H–C–H)av 106.7 106.7b 

C2–C3–C4 113.4 114.8(0.9) 

Si–C2–C3 109.4 110.5(0.5) 

C7–Si–C2 106.5 106.8(1.4) 

C2–Si–C6–C5 -44.8 -37.9(3.9) 

Si–C6–C5–C4 55.4 51.8(1.7) 

C6–C5–C4–C3 -66.4 -66.1(1.5) 
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Table 2. Experimental structural parameters (GED) of the axial conformer of  

1-cyano-1-silacyclohexane molecule (4) (bond lengths ra in Å, bond angles Ð h1 in °, amplitudes u in 

Å, and vibrational corrections rh1 – ra in 10–4 Å) and  

M06-2X /aug-cc-pVTZ values for geometric and vibrational parameters. 

 

Parameters 
GED M06-2X 

ra u re u rh1 – ra 

Si–C2 1.866(2) 0.052(2) 1.867 0.051 6 

Si–C7 1.875(2) 0.053(2) 1.876 0.051 3 

C2–C3 1.541(3) 0.054(2) 1.539 0.052 9 

C3–C4 1.533(3) 0.052(2) 1.531 0.051 6 

C≡ N 1.161(5) 0.035(5) 1.149 0.033 7 

C–Hav 1.083 (4) 0.078(5) 1.090 0.076 17 

Si–H 1.475fixed 0.089(2) 1.475 0.087 17 

C7· · · C2 2.998(26) 0.107(5) 2.999 0.095 67 

C7· · · C3 3.565(64) 0.209(22) 3.451 0.185 168 

C7· · · C4 4.157(77) 0.213(22) 4.032 0.189 212 

Si· · · C3 2.802(8) 0.082(5) 2.786 0.070 54 

Si· · · C4 3.162(20) 0.089(5) 3.152 0.077 82 

Si· · · N 3.030(5) 0.067(5) 3.024 0.055 70 

C2· · · C4 2.588(13) 0.079(5) 2.567 0.067 37 

C3· · · C5 2.560(23) 0.081(5) 2.572 0.069 47 

C2· · · C6 3.020(25) 0.097(5) 2.988 0.084 45 

C2· · · C5 3.178(12) 0.088(5) 3.171 0.076 57 

C2· · · N 4.046(30) 0.180(22) 3.968 0.156 –478 

C3· · · N 4.527(80) 0.331(22) 4.205 0.307 –1192 

C4· · · N 5.182(97) 0.347(24) 4.827 0.323 –1251 

Note: Parenthesized values are 3σ. 
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2.2. Dynamic NMR spectroscopy (DNMR) 

The 13C NMR spectra of 4 were recorded in the temperature range from 110–160 K. At 160 K the 

spectra are in agreement with a rapid interconversion of the two chair forms. On cooling below 140 K 

the spectra show a large line broadening and gradual splitting of signals into a main signal and a 

smaller one, indicating a mixture of a major and a minor conformer. This effect, which is most 

pronounced for the C3 and C5 atoms (around 24 ppm), is shown in Fig. 4. As a general rule in 

cyclohexane chemistry, the resonance signals of the axial conformer are shifted to lower δ values33-36 

and the same has been found to be true for the substituted silacyclohexanes.12, 15, 21, 23 QC calculations of 

the chemical shifts may be used to further confirm assignments of signals to the conformations in 

question. Table 3 shows the calculated chemical (and experimental) shifts for the ring carbon atoms in 

4. The carbon atoms C3 and C5 are predicted to have 0.90 ppm higher chemical shift in the equatorial 

conformer than in the axial one. The experimental difference is 0.91 ppm at 110 K (Figure 4). 

Therefore, the major component is assigned to the equatorial conformer.   

 

 

 

Figure 4. 13C NMR spectrum of 1-cycano-1-sila-cyclohexane 4 at 110 K. 

 

!"########################!$%&'#############################################!(%)'#
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Table 3. Calculated chemical shifts (relative to TMS, ppm) for the ring carbon atoms in the axial and 

equatorial conformers of 1-cyano-1-silacyclohexane (4). Experimental values at 110 K are shown in 

parenthesis.   

C atom Axial / calc. (exp.) Equatorial / calc. (exp.) Ax. – Eq. / calc. (exp.) 

2(6) 13.34 (14.45) 13.57 (14.83) –0.23 (–0.38) 

3(5) 28.39 (23.59) 29.29 (24.50) –0.90 (–0.91) 

4 34.07 (29.41) 33.78 (29.62) 0.29 (0.21) 

 

Based on this signal assignment, dynamic NMR simulations of the C3(5) signals using the software 

WinDNMR37 as shown in Fig. 5 allowed determination of the rate constants (ke®a) and the 

corresponding free energies of activation (DG#
e®a) as a function of temperature. Chemical shifts, 

derived from NMR spectra, which were recorded at the lowest temperatures, were assumed to represent 

conditions of negligible interconversions. An average value for DG#
e®a = 5.6 ± 0.1 kcal mol–1 was 

obtained for the temperature range 110-145 K. Furthermore, the equilibrium constant (K e®a) and the 

free energy difference (DGe®a), for the equatorial to axial transformations, corresponding to 120 K (a 

temperature close to the coalescence point) were determined from the relative signal intensities (K e®a = 

0.55 and DGe®a = 0.14 kcal mol–1). This corresponds to about 65/35 mol % mixture of the equatorial 

and axial conformers. 
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Figure 5. Low-temperature 13C NMR spectra for the C3 and C5 atoms of 4. Experimental spectra are to 

the left and simulated spectra are to the right. 

2.3. Quantum chemical calculations 

In the present work the decomposition of the total electronic energy E(tot) into Lewis E(L) (orbital 

population ni = 2.0) and non-Lewis E(NL) parts (see Table 4) is performed using the concept of natural 

bond orbital (NBO) analysis. The localized Lewis component E(L) corresponds to more than 99.5% of the 

full electron density, and incorporates in good approximation all steric and classic electrostatic effects. 

The non-Lewis E(NL) part describes all types of conjugation. Table 4 shows that if only effects of 

conjugations would be considered, the axial conformation of 4 would be more preferable. The total steric 

energy E(ST) from the NBO analysis was calculated as described in Refs.38-40 The Natural Coulomb 

Electrostatic energies E(NCE), total and its Lewis components, were calculated as described in.41 Table 4 

further shows that steric interactions in the axial conformer are more pronounced than in the equatorial 

conformer. It is to be noted that from the point of view of total steric energy at the HF/6-311++G** level 

of theory, the axial conformer of 4 is on the contrary more stable by 2.8 kcal mol–1. This may be attributed 

-4-3-2-1012

Exp. Calc. 
T(K)
159

145

141

137

132

129

124

121

118

115
112
110

keq,ax(s-1)

Dd/ppm

7100

3600

1600

910

580

270

180

120

86
57
50
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to the details of parameterizations of DFT methods as compared with the HF method and may lead to 

DFT methods being useless for evaluation of steric energy (see Ref.41 p.123). Thus, as it follows from 

Table 4, the axial conformer of molecule 4 is an example of stabilization of a form, which is not favored 

by electrostatic effects and is favored predominantly by steric and conjugation effects. For molecule 2 the 

non-Lewis part of the total energy (E(NL)), that is conjugations, plays an important role in stabilization of 

the equatorial conformer (see Table 4).  

Table 4. Results of the NBO analysis and energy decomposition of total electronic energy E(total) 

into Lewis E(L), non-Lewis E(NL), total steric E(ST) and electrostatic E(NCE) energies at the M06-2X/6-

311++G** level of theory. Relative energies are in kcal mol–1.  

Note: a) for the axial conformers of 4 and 2 at the HF/6-311++G** level of theory, DE(ST) is –

2.8 and –1.7 kcal mol–1, respectively (see text). 

 

Explicitly correlated42 MP2 and coupled cluster calculations were carried out in order to derive a 

CCSD(T)/CBS (complete basis set limit) estimated electronic energy difference between axial and 

equatorial conformers of both cyanocyclohexane (2) and silacyclohexane (4). The explicitly correlated 

methodology should ensure rapid basis set convergence while use of the CCSD(T) method (the gold 

standard of quantum chemistry) captures most of the important dynamic correlation energy (see 

computational details for more information). Shown in Table 5 are CCSD(T)/CBS calculated relative 

energies with DFT-computed zero-point energy (ZPE) and thermochemical corrections at experimental 

temperatures, compared to the experimental IR and Raman enthalpy differences of 231 and the 

NBO analysis 
(CN)SiH(CH2CH2)2CH2 (4) (CN)CH(CH2CH2)2CH2 (2) 

ax eq ax eq 

DE(tot)  0.0 1.0 0.0 0.4 

DE(L) 1.7 0.0 0.0 1.8 

DE(NL) 0.0 2.8 1.4 0.0 

DE(ST)a 10.4 0.0 0.3 0.0 

DE(NCE-tot) 3.9 0.0 0.0 1.2 

DE[NCE(L)] 3.3 0.0 0.0 1.6 
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experimental GED (at 279 K) and low-temperature DNMR (at 120 K) free energy differences of 4. The 

M06-2X value (–1.0 kcal mol–1) is close to the CCSD(T) ΔE value (–0.79 kcal mol–1). 

Table 5. Conformational properties of cyanocyclohexane (2) and cyanosilacyclohexane (4). Computed 

ΔE values are potential energy differences at 0 K (without ZPE or thermal contributions). Computed 

ΔH values include ZPE and thermal contribution (at indicated temperature) and ΔG values additionally 

include an entropic term. 

Method 
ΔE = Eax–Eeq  

(kcal mol–1) 

ΔH = Hax–Heq  

(kcal mol–1) 

A = Gax–Geq  

(kcal mol–1) 

(2)    

CCSD(T)/CBS + 

therm.corr 
–0.03 +0.03 at 298K 0.16 at 298K 

IR(Xenon)  -0.18 ± 0.03a  

Raman(neat liq.)  -0.13 ± 0.05a 	

NMR   0.24 at 193 Kb	

(4)   	

CCSD(T)/CBS + 

therm.corr 
–0.79 –0.79 –0.72 at 279 K ; –0.75 at 120 K	

GED   –1.0 ± 0.4c	

DNMR    +0.14d 
a From ref.31 Temperature range is 173–213 K for the IR exp. and 296–332 K for the Raman exp. 
b From ref.27  
cThis work. GED temperature is 279 K. 
d This work. NMR temperature is 120 K. 

 

3. Discussion 

The GED results reveal a predominant axial preference for the silacyclohexane 4 in a very good 

agreement with (gas-phase) quantum chemical calculations, both M06-2X DFT and CCSD(T)/CBS 

calculations. The gas-phase axial preference of 4 is even more pronounced than that of 1-halo-1-

silacyclohexanes (see Figure 1).23 Surprisingly, the DNMR experiment at low temperatures in solution 

(a solvent mixture of CD2Cl2, CHF2Cl, and CF3Br ) resulted in an equatorial preference and an 

axial/equatorial ratio of 35/65 mol % at 120 K. There is no doubt about the NMR signal splitting into 

one major and one minor components with cooling (Figure 5). The signal assignments to axial and 

equatorial conformers are based on (i) a general rule found for other Si-monosubstituted 
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silacyclohexanes that the C3 and C5 ring atom signals in the axial form are shifted to lower δ values 

compared to those in the equatorial form (Figure 4) and (ii) the relative chemical shifts predicted by 

QC calculations (Table 3).  

The equatorial preference at 120 K in the DNMR experiment is at odds with our best QC calculations 

as well as the GED result (see Table 5). It is still unclear what factors determine the stability of the 

equatorial conformer according to the DNMR experiment at 120 K in solution that may not be taken 

account of by the calculations. Whereas a solvation effect, possibly related to the polarity of the cyano 

group,  we note that continuum solvation calculations, by using both the COSMO43 and SMD44 

solvation models (implicit solvation models), were carried out separately at the B3LYP45-48-D3BJ49, 

50/def2-TZVP51 level (using both an infinite dielectric constant and the dielectric constant of 

dichloromethane). Those calculations predicted, however,  a shift of ~0.1 kcal mol–1 towards further 

axial stabilization. Most likely a more explicit solvation effect is responsible for this differing 

conformational behaviour. Alternative possibility is a low-temperature entropy effect that is not 

described well using the harmonic approximation. In any event, the conformational properties of 

compound 4 appear to be very sensitive to the experimental conditions.  

The present case of silacylohexane 4 is the first example of a monosubstituted silacyclohexane 

compound of general formula C5H10SiHX that is found, by experiment, to have  different 

conformational preferences in the gas-phase and in a solution. It should be noted that all 

monosubstituted silacyclohexanes that, hitherto, have been studied experimentally both in the gas-

phase at approximate ambient temperatures (GED, MW) and in solutions at low temperatures (DNMR 

and temperature-dependent Raman experiments) have the same sign of the A value in both phases. 

Most subsituents (F,52, 53 Cl,23 Br,23 I,23, 54 CF3,14, 19, 20 and SiH3
21) give negative A values (axial 

preference) both in the gas-phase and in solutions. On the other hand Me12-14 and Ph15, 55 substituents 

give positive A values both in gas-phase and in solutions. In this context, however, it is notable that 

some 1-methyl-3-hetero(X)-1-silacyclohexanes (X = NMe,56 O,57 and S58, 59) also show Me-axial 

preferences in the gas-phase (GED) but Me-equatorial preferences by DNMR in solutions. 

 Let´s now consider the cyclohexane counterpart 2 (cyanocyclohexane) and its conformational 

properties in comparison. For decades the only studies known were based on NMR analysis, which all 

consistently predicted an equatorial conformer preference (i.e. positive A values) in the range of 0.12–
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0.25 kcal mol–1.6, 25-30 Solvents like CFCl3
26, 29, CCl4

28 and CS2
27 were applied in the NMR experiments. 

A recent combined FT-microwave, Raman and infrared spectroscopy study (IR in Xenon solution and 

Raman for neat liquid) by Durig et al.31 on the other hand resulted in negative ΔH values, (Table 5). 

QC calculations reported by Durig were as follows: MP2(full)/6-311+G(d,p) ab initio calculations 

predicted the axial form to be more stable by 0.34 kcal mol–1 whereas the B3LYP method with the 

same basis sets predicted the equatorial form to be more stable by 0.51 kcal mol–1. Our CCSD(T)/CBS 

+ therm.corr. calculations, however, predict a gas-phase A value of 0.16 kcal mol–1 in good agreement 

with the early NMR results as shown in Table 5, but we note that the A value changes sign when zero-

point, thermal corrections and entropic effects are accounted for. The A value of 2 may of course also 

depend on solvent effects present in the NMR experiments. Clearly complications in terms of 

conformational preferences are also present in 2. 

Coming back to the question of whether the cyano group has pseudo-halogen character, we now 

compare the A value of the cyano group with those for the halogen series (F, Cl, Br, I and At) for both 

the cyclohexane and silacyclohexane families. This comparison is best done by comparing calculated 

relative electronic energies at 0 K ( ΔE ) at the reliable CCSD(T)/CBS level, that are not dependent on 

environmental effects and experimental conditions (see Figure 6). 

Figure 6. CCSD(T)/CBS computed axial/equatorial energy differences (kcal mol–1) of the halogen 

substituent series and the cyano group in both cyclohexane and silacyclohexane families. Modified 

from Figure 1 and reproduced with permission.23 
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Figure 6 reveals that the cyano group exhibits a dramatically different properties in cyclohexane than in 

silacyclohexane. In cyclohexane, the energy difference of axial and equatorial is close to zero kcal mol–

1 and are closest to that found for the very electronegative fluorine substitutent. In contrast, for the 

silacyclohexane family where the trends for the halogen substituents are very different, the cyano group 

has a strong axial preference, stronger than any halogen, but closest to the heavy 

bromine/iodine/astatine substituents. 

  

4. Conclusions 

The aim of this work was to explore the conformational proterties of the cyano group as a 1-

silacyclohexane substituent. A comparison with the 1-halo-1-silacyclohexanes as well as the halogen- 

and cyano- substituted cyclohexanes was made. A close relationship between the effect of the cyano 

group (often claimed to be a pseudohalogen) and the halogens was not found. One might suspect the 

cyano group to behave like kind of a conformational chameleon. The cyano group might be expected to 

have different electronic properties whether bonded to Si or C but a dramatic different conformational 

behaviour observed for the cyclohexane and the silacyclohexane families, as seen in Figure 6, is 

nonetheless striking. Perhaps the simplest way to account for this different behaviour may come from a 

comparison of the charge distribution in 2 and 4. Whereas the carbon atom of the cyano substituent in 2 

has a positive NBO charge (~ +0.29 for both ax and eq) at the PBE0/def2-TZVPP level this changes to 

a negative partial charge (~ –0.13 for both ax and eq), due to the bonding to the electropositive Si atom 

in 4. Explaining why the conformational behaviour of the cyclohexane and silacyclohexane families 

are so different for equivalent substituents remains a challenging mystery, however. 

In that respect, we strongly encourage further conformational studies of saturated six-membered 

heterocyles bearing a CN group at the heteroatom. 

5. Experimental  

5.1. Synthesis 

Standard Schlenk techniques and an inert atmosphere of dry nitrogen were used for all manipulations. 

1-Chloro-1-silacyclohexane was prepared as previously reported.23 



	 17	

 1-Cyano-1-silacyclohexane 4. Sodium cyanide (6.1 g, 123.9 mmol) was dried by continuous heating in 

vacuum for 24 hours and was then added to a stirred mixture of zinc iodide (0.17 g, 0.5 mmol), 

polyethylene glycol (1.4 g) and 1-chloro-1-silacyclohexane (13.9 g, 103.2 mmol) dissolved in CH2Cl2 

(35 mL). The reaction mixture was stirred for 24 h and then filtered under reduced pressure and the salt 

was discarded. The solvent was removed at reduced pressure and the desired product was collected by 

distillation at 152–153 °C and 1 atm (9.06 g, 72.3 mmol, 70%). 1H NMR (400 MHz, CDCl3): δ = 0.82–

0.90 (m, 2H, CH2(ax/eq)), 1.01–1.09 (m, 2H, CH2(ax/eq)), 1.24–1.34 (m, 1H, CH2(ax/eq)), 1.591–1.67 (m, 1H, 

CH2(ax/eq)), 1.68–1.79 (m, 2H, CH2(ax/eq)), 1.85–1.95 (m, 2H, CH2(ax/eq)), 4.20–4.22 (m, 1JH–Si  = 222 Hz, 

1H, SiH). 13C{1H} NMR (101 MHz, CDCl3: δ = 8.5, 23.6, 28.6, 124.1 (CN). 29Si{1H} NMR (79 MHz, 

CDCl3): δ = –36.1.    

 

5.2. GED Experiment 

The combined gas-phase electron diffraction and mass spectrometric experiment, GED/MS60-62 was 

carried out at the stainless steel effusion cell temperature 279(3) K. The scattered electrons were collected 

on Kodak S0-163 EM films of 9 x 12 cm2. Two camera distances, 598 (long) and 338 mm (short), were 

used, resulting in diffraction patterns in s-ranges of 2.0–17.2 Å–1 and 5.6–30.6 Å–1, respectively at ca 98 

kV of accelerating voltage. The accurate electron wavelengths, 0.03757(4) Å and 0.03728(4) Å, for long 

and short distances, respectively, were measured from diffraction patterns of polycrystalline ZnO. The 

diffraction patterns of 1-cyano-1-silacyclohexane were recorded with (long/short) 0.6/1.0 μA primary 

electron beam intensities, 50/90 s exposure times, and a residual pressures of (2/3) x 10–6 Torr (GED unit) 

and (7/9) x 10–7 Torr (MS block). The optical densities of the diffraction patterns were measured by a 

computer controlled MD-100 (Carl Zeiss, Jena) microdensitometer.63 The molecular scattering function, 

sM(s), was evaluated as sM(s) =(It(s)/Ib(s)–1)s, where It(s) is the total electron scattering intensity, Ib(s) is 

the experimental background. After crossing the fast electrons beam in the diffraction chamber, the 

molecular beam from the effusion cell entered directly the ionization chamber of a monopole mass 

spectrometer attached to the GED unit. This allows real-time monitoring of the vapor composition by 

recording the mass spectra simultaneously with recording the diffraction patterns. Mass spectra recorded 

at ionizing voltage 50 V was represented by the parent ion (m/z = 125 Da) and a set of daughter ions 

formed under electron impact. No peaks with the mass exceeding that of the molecular ion or caused by 

impurities, decomposition products, etc., were detected in the mass spectrum. In addition, the mass 

Deleted: (x y)



	 18	

spectra at different ionizing voltages were measured, demonstrating the decrease of the daughter ions 

contribution as the ionizing electrons energy lowers.  

When refining structural parameters the minimized functional has the form: 

 

where: ws is a weight function; s = (4π/λ)sin(θ/2) is parameter of scattering angle θ; λ is wavelength of 

electron beam; sM(s) is the molecular intensity function and k is the scale factor. As a criterion of 

minimum of the functional serves the value of R-factor: 

  (1) 

The atomic scattering factors were taken from Ref.64 Experimental backgrounds were drawn as cubic 

spline functions to the difference between experimental and theoretical molecular intensity curves using a 

program written by A. V. Belyakov. 

Least-squares structure refinements were carried out with a modified version of the program KCED25.65, 

66 Weight matrices were diagonal. The short distance data were assigned the weight of 0.5 and the long 

distance data weights equal 1.0. 

Estimated standard deviations calculated by the program were multiplied by a factor of three to include 

added uncertainty due to data correlation and an estimated scale uncertainty of 0.1%. The experimental 

and theoretical sM(s) curves along with their differences ΔsM(s) are given in Figure 7. 
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Figure 7. Experimental (dots) and calculated (solid line) combined molecular intensity curves 

for 1-cyano-1-silacyclohexane as obtained by gas electron diffraction. Below: difference curve 

(experiment – model). 

5.3. NMR Experiment 

A 400 MHz NMR spectrometer (Bruker Avance 400) was used for all NMR experiments. A solvent 

mixture of CD2Cl2, CHF2Cl, and CF3Br in a ratio of 1:2:2 was used for low-temperature 13C NMR 

measurements. The temperature of the probe was calibrated by means of a type K (Chromel/Alumel) 

thermocouple inserted into a dummy tube. The readings are estimated to be accurate within ±2 K. The 

NMR spectra were loaded into the data-handling program IGOR (WaveMetrics) for analysis, 

manipulations, and graphic display. Line shape simulations of the NMR spectra were performed by 

using the WinDNMR program.37 

5.4. Computational studies 

Calculations for direct comparison and use with the GED experiment were carried out at the M06-2X 

/aug-cc-pVTZ level of theory (see Table 1) using Gaussian 09 program.67 NBO analyses of the SCF wave 

function41, 68-70 and calculations of the total steric energy38-40 were performed using the NBO 6.0 program71, 

72 at the M06-2X/6-311++G** level of theory.  

High-level coupled cluster calculations were carried out (using the ORCA package, version 3.0.3)73 on 

MP2/def2-TZVP74, 75 optimized geometries in order to get accurate potential energy differences between 

the axial and equatorial conformers as shown in Table 5. 

Electronic energy differences were calculated using explicitly correlated MP2 and coupled cluster 

theory42 as implemented in ORCA. CCSD(T)-F12/CBS (CBS=complete basis set) level energies were 

estimated by performing large basis MP2-F12 that converge quickly to the complete basis set limit 

(CBS) and then applying a CCSD(T)-F12 correction to the MP2-F12/large basis value: 

DECCSD(T)-F12/CBS ≈ DEMP2-F12/large basis + (DECCSD(T)-F12/small basis – DE MP2-F12/small basis) 

The MP2 calculations were performed with the correlation consistent basis sets for explicitly correlated 

methods73 up to the cc-pVQZ-F12 level. The ΔE value changed by ~0.009 kcal mol–1 when going from 

the TZ-F12 to QZ-F12 for both 2 and 4 compounds and can be considered converged w.r.t. to basis set 

size. The (ΔECCSD(T)-F12/small basis – ΔE MP2-F12/small basis) term was calculated at the CCSD(T)-F12/cc-pVDZ-
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F12 and MP2/cc-pVDZ-F12 level and was 0.39 kcal mol–1 for 2 and 0.24 kcal mol–1 for 4, 

demonstrating that MP2 calculations can differ considerably from CCSD(T). Auxiliary basis sets 

(CABS) in the form of cc-pVnZ-F12/OptRI were used in all calculations.75 Similar CCSD(T)/CBS 

protocols have been used in studies on silacyclohexanes.14, 16 

The enthalpy and entropy corrections to the conformational energies were calculated from harmonic 

vibrational frequencies at the B3LYP/def2-TZVPP74 level using ORCA but using the quasi-RRHO 

approximation76 by Grimme for low frequencies as implemented in ORCA. Six-membered rings 

include a number of low-frequency vibrations that are known to be badly predicted by the harmonic 

approximation and as they contribute significantly to entropy, errors in the entropy correction are to be 

expected from the regular harmonic approximation. The quasi-RRHO approximation attempts to 

correct for such errors by replacing the vibrational entropy contribution by a rotational contribution for 

the low frequencies (below 100 cm-1). 

 Chemical shift calculations were performed using NWChem 6.6, on the MP2 geometries at the 

PBE0 level of theory and using the aug-pcS-2 basis set on carbon atoms and def2-TZVP on other 

atoms. Tetramethylsilane was used as a computational reference for converting calculated shieldings 

into chemical shifts. 
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